(完整版)导数压轴题7大题型归类总结,推荐文档

合集下载

高考数学导数压轴题7大题型的总结

高考数学导数压轴题7大题型的总结

高考数学导数压轴题7大题型总结
北京八中
高考数学导数压轴题7大题型总结
高考导数压轴题考察的是一种综合能力,其考察内容方法远远高于课本,其涉及基本概念主要是:切线,单调性,非单调,极值,极值点,最值,恒成立等等。

导数解答题是高考数学必考题目,今天就总结导数7大题型,让你在高考数学中多拿一分,平时基础好的同学逆袭140也不是问题
01导数单调性、极值、最值的直接应用
02交点与根的分布
03不等式证明(一)做差证明不等式
(二)变形构造函数证明不等式
(三)替换构造不等式证明不等式
04不等式恒成立求字母范围(一)恒成立之最值的直接应用
(二)恒成立之分离参数
(三)恒成立之讨论字母范围
05函数与导数性质的综合运用
06导数应用题
07导数结合三角函数
实用标准
文案大全。

高考导数压轴题型归类总结

高考导数压轴题型归类总结

高考导数压轴题型归类总结一、导数单调性、极值、最值的直接应用 已知函数1()ln 1()af x x ax a R x-=-+-∈ ⑴当1a =-时,求曲线()y f x =在点(2,(2))f 处的切线方程;⑵当12a ≤时,讨论()f x 的单调性.1. 已知函数221()2,()3ln .2f x x axg x a x b =+=+⑴设两曲线()()y f x y g x ==与有公共点,且在公共点处的切线相同,若0a >,试建立b 关于a 的函数关系式,并求b 的最大值; ⑵若[0,2],()()()(2)b h x f x g x a b x ∈=+--在(0,4)上为单调函数,求a 的取值范围。

2. (最值直接应用)已知函数)1ln(21)(2x ax x x f +--=,其中a ∈R . (Ⅰ)若2x =是)(x f 的极值点,求a 的值; (Ⅱ)求)(x f 的单调区间;(Ⅲ)若)(x f 在[0,)+∞上的最大值是0,求a 的取值范围.设函数221()(2)ln (0)ax f x a x a x+=-+<. (1)讨论函数()f x 在定义域内的单调性;(2)当(3,2)a ∈--时,任意12,[1,3]x x ∈,12(ln 3)2ln 3|()()|m a f x f x +->-恒成立,求实数m 的取值范围.3. (最值应用,转换变量)4. (最值应用)已知二次函数()g x 对x R ∀∈都满足2(1)(1)21g x g x x x -+-=--且(1)1g =-,设函数19()()ln 28f xg x m x =+++(m R ∈,0x >).(Ⅰ)求()g x 的表达式;(Ⅱ)若x R +∃∈,使()0f x ≤成立,求实数m 的取值范围;(Ⅲ)设1m e <≤,()()(1)H x f x m x =-+,求证:对于12[1,]x x m ∀∈,,恒有12|()()|1H x H x -<.5. 设3x =是函数()()()23,x f x x ax b e x R -=++∈的一个极值点. (1)求a 与b 的关系式(用a 表示b ),并求()f x 的单调区间;(2)设()2250,4xa g x a e ⎛⎫>=+ ⎪⎝⎭,若存在[]12,0,4ξξ∈,使得()()121f g ξξ-< 成立,求a 的取值范围.6. 7.8. (2010山东,两边分求,最小值与最大值) 已知函数2()ln ,()3f x x x g x x ax ==-+-. ⑴求()f x 在[,2](0)t t t +>上的最小值;⑵若存在1,x e e ⎡⎤∈⎢⎥⎣⎦(e 是常数,e =2.71828⋅⋅⋅)使不等式2()()f x g x ≥成立,求实数a 的取值范围; ⑶证明对一切(0,),x ∈+∞都有12ln xx e ex>-成立.9. (最值应用) 设函数()2ln q f x px x x =--,且()2pf e qe e=--,其中e 是自然对数的底数. ⑴求p 与q 的关系;⑵若()f x 在其定义域内为单调函数,求p 的取值范围; ⑶设2()eg x x=,若在[]1,e 上至少存在一点0x ,使得0()f x >0()g x 成立,求实数p 的取值范围.10. (2011湖南文,第2问难,单调性与极值,好题)设函数1()ln ().f x x a x a R x =--∈⑴讨论函数()f x 的单调性;⑵若()f x 有两个极值点12,x x ,记过点11(,()),A x f x 22(,())B x f x 的直线斜率为k ,问:是否存在a ,使得2k a =-?若存在,求出a 的值;若不存在,请说明理由.11. (构造函数,好,较难)已知函数21()ln (1)(0)2f x x ax a x a R a =-+-∈≠,.⑴求函数()f x 的单调增区间;⑵记函数()F x 的图象为曲线C ,设点1122(,)(,)A x y B x y 、是曲线C 上两个不同点,如果曲线C 上存在点00(,)M x y ,使得:①1202x x x +=;②曲线C 在点M 处的切线平行于直线AB ,则称函数()F x 存在“中值相依切线”.试问:函数()f x 是否存在中值相依切线,请说明理由.12. (2011天津理19,综合应用)已知0a >,函数()2ln f x x ax =-,0x >.(()f x 的图象连续) ⑴求()f x 的单调区间;⑵若存在属于区间[]1,3的,αβ,且1βα-≥,使()()f f αβ=,证明:ln 3ln 2ln 253a -≤≤.13. (单调性,用到二阶导数的技巧) 已知函数x x f ln )(= ⑴若)()()(R a xax f x F ∈+=,求)(x F 的极大值;⑵若kx x f x G -=2)]([)(在定义域内单调递减,求满足此条件的实数k 的取值范围.已知函数()ln ,().x f x x g x e == ⑴若函数φ (x ) = f (x )-11x x ,求函数φ (x )的单调区间; ⑵设直线l 为函数f (x )的图象上一点A (x 0,f (x 0))处的切线,证明:在区间(1,+∞)上存在唯一的x 0,使得直线l 与曲线y =g (x )相切.二、交点与根的分布14. (2008四川22,交点个数与根的分布)已知3x =是函数2()ln(1)10f x a x x x =++-的一个极值点. ⑴求a ;⑵求函数()f x 的单调区间;⑶若直线y b =与函数()y f x =的图像有3个交点,求b 的取值范围. 15. 已知函数()32f x x ax bx c =-+++在(),0-∞上是减函数,在()0,1上是增函数,函数()f x 在R 上有三个零点. (1)求b 的值;(2)若1是其中一个零点,求()2f 的取值范围;(3)若()()'213ln a g x f x x x ==++,,试问过点(2,5)可作多少条直线与曲线y=g(x )相切?请说明理由.16. (交点个数与根的分布)已知函数2()8,()6ln .f x x x g x x m =-+=+ ⑴求()f x 在区间[],1t t +上的最大值();h t⑵是否存在实数,m 使得()y f x =的图像与()y g x =的图像有且只有三个不同的交点?若存在,求出m 的取值范围;若不存在,说明理由。

高考导数压轴题型归类总结

高考导数压轴题型归类总结

导数压轴题型归类总结目 录一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31)(一)作差证明不等式(二)变形构造函数证明不等式 (三)替换构造不等式证明不等式四、不等式恒成立求字母范围 (51)(一)恒成立之最值的直接应用 (二)恒成立之分离常数(三)恒成立之讨论字母范围五、函数与导数性质的综合运用 (70) 六、导数应用题 (84)七、导数结合三角函数 (85)书中常用结论⑴sin ,(0,)x x x π<∈,变形即为sin 1xx<,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+⑷ln ,0x x x e x <<>.一、导数单调性、极值、最值的直接应用1. (切线)设函数a x x f -=2)(.(1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值; (2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21.解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得33±=x .)(x g '(2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='= 曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--.令0=y ,得12122x ax x +=,∴12111211222x x a x x a x x x -=-+=-∵a x >1,∴02121<-x x a ,即12x x <. 又∵1122x a x ≠,∴a x ax x a x x a x x =⋅>+=+=11111212222222所以a x x >>21.2. (2009天津理20,极值比较讨论)已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; ⑵当23a ≠时,求函数()f x 的单调区间与极值.解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。

高考导数压轴题型归类总结

高考导数压轴题型归类总结

导数压轴题型归类总结目 录一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31)(一)作差证明不等式(二)变形构造函数证明不等式 (三)替换构造不等式证明不等式四、不等式恒成立求字母X 围 (51)(一)恒成立之最值的直接应用 (二)恒成立之分离常数 (三)恒成立之讨论字母X 围五、函数与导数性质的综合运用 (70) 六、导数应用题 (84)七、导数结合三角函数 (85)书中常用结论⑴sin ,(0,)x x x π<∈,变形即为sin 1xx<,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+ ⑷ln ,0x x x e x <<>.一、导数单调性、极值、最值的直接应用1. (切线)设函数a x x f -=2)(.(1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值;(2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21.解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得33±=x . )(x g '所以当33=x 时,)(x g 有最小值932)33(-=g .(2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='=曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--. 令0=y ,得12122x a x x +=,∴12111211222x x a x x a x x x -=-+=-∵a x >1,∴02121<-x x a ,即12x x <. 又∵1122x a x ≠,∴a x ax x a x x a x x =⋅>+=+=11111212222222 所以a x x >>21.2. (2009XX 理20,极值比较讨论)已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R ⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; ⑵当23a ≠时,求函数()f x 的单调区间与极值. 解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力与分类讨论的思想方法。

导数压轴大题归类 (解析版)

导数压轴大题归类 (解析版)

导数压轴大题归类目录重难点题型归纳 1【题型一】恒成立求参 1【题型二】三角函数恒成立型求参 4【题型三】同构双变量绝对值型求参 7【题型四】零点型偏移证明不等式 10【题型五】非对称型零点偏移证明不等式 14【题型六】条件型偏移证明不等式 18【题型七】同构型证明不等式 21【题型八】先放缩型证明不等式 24【题型九】放缩参数型消参证明不等式 26【题型十】凸凹翻转型证明不等式 28【题型十一】切线两边夹型证明不等式 30【题型十二】切线放缩型证明不等式 32【题型十三】构造一元二次根与系数关系型证明不等式 35【题型十四】两根差型证明不等式 38【题型十五】比值代换型证明不等式 41【题型十六】幂指对与三角函数型证明不等式 43【题型十七】不等式证明综合型 46好题演练 50一、重难点题型归纳重难点题型归纳题型一恒成立求参【典例分析】1.已知函数f x =x+2aln x(a∈R).(1)讨论f x 的单调性;(2)是否存在a∈Z,使得f x >a+2对∀x>1恒成立?若存在,请求出a的最大值;若不存在,请说明理由.【答案】(1)当a≤0时,f x 在0,+∞上单调递减,在上单调递增;当a>0时,f x 在0,2a2a,+∞上单调递增.(2)不存在满足条件的整数a,理由见解析【分析】(1)构造新函数g x =f x ,分a≤0及a>0两种情况,利用导数研究函数的单调性即可求解;(2)将问题进行转化x ln x-x-ax+2a>0,构造新函数并求导,分a≤0和a>0两种情况分别讨论,利用导数研究函数的单调性及最值,整理求解.(1)因为f x =x +2a ln x x >0 ,所以f x =ln x +1+2ax.记g x =f x =ln x +1+2axx >0 ,则g x =1x -2a x 2=x -2ax 2,当a ≤0时,g x >0,即g x 在0,+∞ 上单调递增;当a >0时,由g x >0,解得x >2a ,即g x 在2a ,+∞ 上单调递增;由g x <0,解得0<x <2a ,即g x 在0,2a 上单调递减.综上所述,当a ≤0时,f x 在0,+∞ 上单调递增;当a >0时,f x 在0,2a 上单调递减,在2a ,+∞ 上单调递增.(2)假设存在a ∈Z ,使得f x >a +2对任意x >1恒成立,即x ln x -x -ax +2a >0对任意x >1恒成立.令h x =x ln x -x -ax +2a x >1 ,则h x =ln x -a ,当a ≤0且a ∈Z 时,h x >0,则h x 在1,+∞ 上单调递增,若h x >0对任意x >1恒成立,则h 1 =a -1≥0,即a ≥1,矛盾,故舍去;当a >0,且a ∈Z 时,由ln x -a >0得x >e a ;由ln x -a <0得1<x <e a ,所以h x 在1,e a 上单调递减,在e a ,+∞ 上单调递增,所以h x min =h e a =2a -e a ,则令h x min =2a -e a >0即可.令G t =2t -e t t >0 ,则G t =2-e t ,当2-e t >0,即t <ln2时,G t 单调递增;当2-e t <0,即t >ln2时,G t 单调递减,所以G t max =G ln2 =2ln2-2<0,所以不存在a >0且a ∈Z ,使得2a -e a >0成立.综上所述,不存在满足条件的整数a .【技法指引】恒成立基本思维:①若k ≥f (x )在[a ,b ]上恒成立,则k ≥f (x )max ;②若k ≤f (x )在[a ,b ]上恒成立,则k ≤f (x )min ;③若k ≥f (x )在[a ,b ]上有解,则k ≥f (x )min ;④若k ≤f (x )在[a ,b ]上有解,则k ≤f (x )max ;【变式演练】1.已知函数f (x )=1+xex ,g (x )=1-ax 2.(1)若函数f (x )和g (x )的图象在x =1处的切线平行,求a 的值;(2)当x ∈[0,1]时,不等式f (x )≤g (x )恒成立,求a 的取值范围.【答案】(1)a =12e (2)-∞,1-2e【分析】(1)分别求出f (x ),g (x )的导数,计算得到f (1)=g (1),求出a 的值即可;(2)问题转化为h x ≤0对任意x ∈[0,1]的恒成立,求导,对参数分类讨论,通过单调性与最值即可得到结果.(1)f (x )=-x ex,f (1)=-1e ,g (x )=-2ax ,g (1)=-2a ,由题意得:-2a =-1e ,解得:a =12e;(2)令h x =f (x )-g (x ),即h x ≤0对任意x ∈[0,1]的恒成立,h x =-xex +2ax ,①a ≤0时,h x ≤0在x ∈[0,1]的恒成立,所以h x 在[0,1]上单调递减. h x max =h 0 =0,满足条件;②a >0时,hx =-x +2axe x e x =x 2ae x -1 e x,令h x =0,得x 1=0,x 2=ln12a(i )当ln 12a ≤0,即a ≥12时,h x ≥0在x ∈[0,1]的恒成立,仅当x =0时h x =0,所以h x 在[0,1]上单调递增.又h 0 =0,所以h x ≥0在[0,1]上恒成立,不满足条件;(ii )当0<ln 12a <1,即12e <a <12时,当x ∈0,ln 12a时,h x <0,h x 上单调递减,当x ∈ln 12a,1 时,h x >0,h x 上单调递增,又h 0 =0,h 1 =2e -1+a ≤0,得a ≤1-2e,于是有12e <a ≤1-2e .(iii )当ln 12a ≥1,即0<a ≤12e时,x ∈[0,1]时,h x ≤0,h x 上单调递减,. 又h 0 =0,所以h x ≤0对任意x ∈[0,1]的恒成立,满足条件综上可得,a 的取值范围为-∞,1-2e题型二三角函数恒成立型求参【典例分析】1.已知函数f (x )=e x +cos x -2,f (x )为f (x )的导数.(1)当x ≥0时,求f (x )的最小值;(2)当x ≥-π2时,xe x +x cos x -ax 2-2x ≥0恒成立,求a 的取值范围.【答案】(1)1(2)(-∞,1]【分析】(1)求导得f ′(x )=e x -sin x ,令g x =e x -sin x ,利用导数分析g (x )的单调性,进而可得f (x )的最小值即可.(2)令h (x )=e x +cos x -ax -2,问题转化为当x ≥-π2时,x ⋅h (x )≥0恒成立,分两种情况:当a ≤1时和当a >1时,判断x e x +cos x -ax -2 ≥0是否成立即可.【详解】(1)由题意,f (x )=e x -sin x ,令g (x )=e x -sin x ,则g (x )=e x -cos x ,当x ≥0时,e x ≥1,cos x ≤1,所以g (x )≥0,从而g (x )在[0,+∞)上单调递增,则g (x )的最小值为g (0)=0,故f (x )的最小值0;(2)由已知得当x ≥-π2时,x e x +cos x -ax -2 ≥0恒成立,令h x =e x+cos x -ax -2,h x =e x -sin x -a ,①当a ≤1时,若x ≥0时,由(1)可知h x ≥1-a ≥0,∴h x 为增函数,∴h x ≥h 0 =0恒成立,∴x ⋅h x ≥0恒成立,即x e x +cos x -ax -2 ≥0恒成立,若x ∈-π2,0 ,令m x =e x -sin x -a 则m x =e x-cos x ,令n x =e x -cos x ,则n x =e x +sin x ,令p x =e x +sin x ,则p x =e x +cos x ,∵在p x 在x ∈-π2,0 内大于零恒成立,∴函数p x 在区间-π2,0 为单调递增,又∵p -π2=e -π2-1<0,p 0 =1,,∴p x 上存在唯一的x 0∈-π2,0 使得p x 0 =0,∴当x ∈-π2,x 0 时,nx <0,此时n x 为减函数,当x ∈x 0,0 时,h x >0,此时n x 为增函数,又∵n -π2=e -π2>0,n 0 =0,∴存在x 1∈-π2,x 0 ,使得n x 1 =0,∴当x ∈-π2,x 1 时,m x >0,m x 为增函数,当x ∈x 1,0 时,mx <0,m x 为减函数,又∵m -π2=e -π2+1-a >0,m 0 =1-a ≥0,∴x ∈-π2,0时,hx >0,则h x 为增函数,∴h x ≤h 0 =0,∴x e x +cos x -ax -2 ≥0恒成立,②当a >1时,m (x )=e x -cos x ≥0在[0,+∞)上恒成立,则m x 在[0,+∞)上为增函数,∵m 0 =1-a <0,m (ln (1+a ))=eln (1+a )-sin (ln (1+a ))-a =1-sin (ln (1+a ))≥0,∴存在唯一的x 2∈0,+∞ 使h x 2 =0,∴当0≤x <x 2时,h (x )<0,从而h (x )在0,x 2 上单调递减,∴h x <h 0 =0,∴x e x +cos x -ax -2 <0,与xe x +x cos x -ax 2-2x ≥0矛盾,综上所述,实数a 的取值范围为(-∞,1].【变式演练】1.已知函数f (x )=2x -sin x .(1)求f (x )的图象在点π2,f π2 处的切线方程;(2)对任意的x ∈0,π2,f (x )≤ax ,求实数a 的取值范围.【答案】(1)2x -y -1=0(2)2-2π,+∞ 【分析】(1)根据导数的几何意义即可求出曲线的切线方程;(2)将原不等式转化为a ≥2-sin x x =h (x )x ∈0,π2,利用二次求导研究函数h (x )的单调性,求出h (x )max 即可.解(1)因为f π2=π-1,所以切点坐标为π2,π-1 ,因为f x =2-cos x ,所以f π2=2,可得所求切线的方程为y -π-1 =2x -π2,即2x -y -1=0.(2)由f x ≤ax ,得2x -sin x ≤ax ,所以a ≥2-sin x x ,其中x ∈0,π2,令h x =2-sin x x ,x ∈0,π2 ,得hx =sin x -cos x x 2,设φx =sin x -x cos x ,x ∈0,π2,则φ x =x sin x >0,所以φx 在0,π2上单调递增,所以φx >φ0 =0,所以h x >0,所以h x 在0,π2上单调递增,h x max =h π2 =2-2πsin π2=2-2π,所以a ≥2-2π,即a 的取值范围为2-2π,+∞ .题型三同构双变量绝对值型求参【典例分析】1.已知函数f x =a ln x +x 2(a 为实常数).(1)当a =-4时,求函数f x 在1,e 上的最大值及相应的x 值;(2)若a >0,且对任意的x 1,x 2∈1,e ,都有f x 1 -f x 2 ≤1x 1-1x 2,求实数a 的取值范围.【答案】(1)当x =e 时,取到最大值e 2-4(2)a ≤1e-2e 2【分析】(1)求导,由导函数判出原函数的单调性,从而求出函数在1,e 上的最大值及相应的x 值;(2)根据单调性对f x 1 -f x 2 ≤1x 1-1x 2转化整理为f x 2 +1x 2≤f x 1 +1x 1,构造新函数h x =f x +1x在1,e 单调递减,借助导数理解并运用参变分离运算求解.解:(1)当a =-4时,则f x =-4ln x +x 2,fx =2x 2-4x(x >0),∵当x ∈1,2 时,f x <0.当x ∈2,e 时,f x >0,∴f x 在1,2 上单调递减,在2,e 上单调递增,又∵f e -f 1 =-4+e 2-1=e 2-5>0,故当x =e 时,取到最大值e 2-4(2)当a >0时,f x 在x ∈1,e 上是增函数,函数y =1x在x ∈1,e 上减函数,不妨设1≤x 1≤x 2≤e ,则f x 1 -f x 2 ≤ 1x 1-1x 2可得f x 2 -f x 1 ≤1x 1-1x 2即f x 2 +1x 2≤f x 1 +1x 1,故原题等价于函数h x =f x +1x 在x ∈1,e 时是减函数,∵h 'x =a x +2x -1x 2≤0恒成立,即a ≤1x -2x 2在x ∈1,e 时恒成立.∵y =1x -2x 2在x ∈1,e 时是减函数∴a ≤1e -2e 2.【变式演练】1.已知f x =x 2+x +a ln x (a ∈R ).(1)讨论f x 的单调性;(2)若a =1,函数g x =x +1-f x ,∀x 1,x 2∈(0,+∞),x 1≠x 2,x 1g x 2 -x 2g x 1 >λx 1-x 2 恒成立,求实数λ的取值范围.【答案】(1)当a ≥0时,f x 在区间0,+∞ 上单调递增;当a <0时,f x 在区间0,-1+1-8a 4 上单调递减,在区间-1+1-8a4,+∞ 上单调递增.(2)-∞,12ln2+52【分析】(1)先求出f x 的导数fx =2x 2+x +ax,根据a 的取值范围进行分类讨论即可;(2)当x 1x 2>0,时,x 1g x 2 -x 2g x 1 >λx 1-x 2 ⇔g x 2 x 2-g x 1 x 1 >λ1x 2-1x 1,去绝对值后,构造函数求解即可.【详解】(1)由已知,f x =x 2+x +a ln x (a ∈R )的定义域为0,+∞ ,fx =2x +1+a x =2x 2+x +ax,①当a ≥0时,f x >0在区间0,+∞ 上恒成立,f x 在区间0,+∞ 上单调递增;②当a <0时,令f x =0,则2x 2+x +a =0,Δ=1-8a >0,解得x 1=-1-1-8a 4<0(舍),x 2=-1+1-8a4>0,∴当x ∈0,-1+1-8a4时,2x 2+x +a <0,∴f x <0,∴f x 在区间0,-1+1-8a4上单调递减,当x ∈-1+1-8a4,+∞ 时,2x 2+x +a >0,∴f x >0,∴f x 在区间-1+1-8a4,+∞ 上单调递增,综上所述,当a ≥0时,f x 在区间0,+∞ 上单调递增;当a <0时,f x 在区间0,-1+1-8a 4 上单调递减,在区间-1+1-8a4,+∞ 上单调递增.(2)当a =1时,g x =x +1-x 2+x +ln x =-x 2-ln x +1,x ∈0,+∞ ,∀x 1,x 2∈(0,+∞),x 1≠x 2,x 1g x 2 -x 2g x 1 >λx 1-x 2 等价于x 1g x 2 -x 2g x 1x 1x 2>λx 1-x 2x 1x 2,即g x 2 x 2-g x 1 x 1 >λ1x 2-1x 1,令h x =g x x ,x ∈0,+∞ ,则h x 2 -h x 1 >λ1x 2-1x 1恒成立hx =xg x -g x x 2=x -2x -1x --x 2-ln x +1 x 2=ln x -x 2-2x 2,令F x =ln x -x 2-2,x ∈0,+∞ ,则Fx =1x -2x =1-2x 2x,令F x =0,解得x =22,当x ∈0,22时,Fx >0,F x 在区间0,22 单调递增;当x ∈22,+∞ 时,F x <0,F x 在区间22,+∞ 单调递减,∴当x ∈0,+∞ 时,F x 的最大值为F 22 =ln 22-12-2=-12ln2-52<0,∴当x ∈0,+∞ 时,F x =ln x -x 2-2≤-12ln2-52<0,即hx =ln x -x 2-2x2<0,∴h x =g xx在区间0,+∞ 上单调递减,不妨设x 1<x 2,∴∀x 1,x 2∈(0,+∞),有h x 1 >h x 2 ,又∵y =1x 在区间0,+∞ 上单调递减,∀x 1,x 2∈(0,+∞),且x 1<x 2,有1x 1>1x 2,∴h x 2 -h x 1 >λ1x 2-1x 1等价于h x 1 -h x 2 >λ1x 1-1x 2,∴h x 1 -λx 1>h x 2 -λx 2,设G x =h x -λx,x ∈0,+∞ ,则∀x 1,x 2∈(0,+∞),且x 1<x 2,h x 1 -λx 1>h x 2 -λx 2等价于G x 1 >G x 2 ,即G x 在(0,+∞)上单调递减,∴G x =h x +λx2≤0,∴λ≤-x 2h x ,∴λ≤-x 2⋅ln x -x 2-2x 2=-F x ,∵当x ∈0,+∞ 时,F x 的最大值为F 22 =-12ln2-52,∴-F x 的最小值为12ln2+52,∴λ≤12ln2+52,综上所述,满足题意的实数λ的取值范围是-∞,12ln2+52.题型四零点型偏移证明不等式【典例分析】1.已知函数f x =x ln x ,g x =ax 2+1.(1)求函数f x 的最小值;(2)若不等式x +1 ln x -2x -1 >m 对任意的x ∈1,+∞ 恒成立,求m 的取值范围;(3)若函数f x 的图象与g x 的图象有A x 1,y 1 ,B x 2,y 2 两个不同的交点,证明:x 1x 2>16.(参考数据:ln2≈0.69,ln5≈1.61)【答案】(1)-1e;(2)-∞,0 ;(3)证明见解析.【分析】(1)先求函数f x 的定义域,然后求导,令f (x )>0,可求单调递增区间;令f (x )<0可求单调递减区间.(2)设函数h (x )=(x +1)ln x -2(x -1)(x >1),只需利用二次求导的方法求函数h x 的最小值即可.(3)首先根据题意得出ax 1=ln x 1-1x 1,ax 2=ln x 2-1x 2,从而可构造出ln (x 1x 2)-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x 2x 1;然后根据(2)的结论可得出x 1+x 2x 2-x 1ln x2x 1>2,即得出ln (x 1x 2)-2(x 1+x 2)x 1x 2>2成立;再根据基本不等式得到ln x 1x 2-2x 1x 2>1,从而通过构造函数G (x )=ln x -2x 即可证明结论.解:(1)已知函数f (x )=x ln x 的定义域为0,+∞ ,且f (x )=1+ln x ,令f (x )>0,解得x >1e ;令f (x )<0,解得0<x <1e ,所以函数f x 在0,1e 单调递减,在1e,+∞ 单调递增,所以当x =1e 时,f (x )取得最小值-1e.(2)设函数h (x )=(x +1)ln x -2(x -1)(x >1),则m <h (x )对任意的x ∈1,+∞ 恒成立.h (x )=ln x +1x-1,设函数ϕ(x )=ln x +1x -1(x >1),则ϕ (x )=x -1x 2>0,所以ϕ(x )在1,+∞ 上单调递增,所以ϕ(x )>ϕ(1)=0,即h (x )>0,所以h (x )在1,+∞ 上单调递增,所以h (x )>h (1)=0,所以m 的取值范围是-∞,0 .(3)因为函数f x 的图象与g (x )的图象有A (x 1,y 1),B (x 2,y 2)两个不同的交点,所以关于x 的方程ax 2+1=x ln x ,即ax =ln x -1x有两个不同的实数根x 1,x 2,所以ax 1=ln x 1-1x 1①,ax 2=ln x 2-1x 2②,①+②,得ln (x 1x 2)-x 1+x2x 1x 2=a (x 1+x 2),②-①,得ln x 2x 1+x 2-x1x 1x 2=a (x 2-x 1),消a 得,ln (x 1x 2)-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x2x 1,由(2)得,当m =0时,(x +1)ln x -2(x -1)>0,即x +1x -1ln x >2对任意的x ∈1,+∞ 恒成立.不妨设x 2>x 1>0,则x 2x 1>1,所以x 1+x 2x 2-x 1ln x2x 1=x 2x 1+1x 2x 1-1lnx 2x 1>2,即ln (x 1x 2)-2(x 1+x 2)x 1x 2>2恒成立.因为ln (x 1x 2)-2(x 1+x 2)x 1x 2<ln (x 1x 2)-2×2x 1x 2x 1x 2=2ln x 1x 2-4x 1x 2,所以2ln x1x2-4x1x2>2,即ln x1x2-2x1x2>1.令函数G(x)=ln x-2x,则G(x)在0,+∞上单调递增.又G(4)=ln4-12=2ln2-12≈0.88<1,G(5)=ln5-25≈1.21>1,所以当G(x1x2)>1时,x1x2>4,即x1x2>16,所以原不等式得证.【变式演练】1.已知函数f(x)=12x2+ln x-2x.(1)求函数f(x)的单调区间;(2)设函数g(x)=e x+12x2-(4+a)x+ln x-f(x),若函数y=g(x)有两个不同的零点x1,x2,证明:x1 +x2<2ln(a+2).【答案】(1)f(x)的单调递增区间为(0,+∞),无单调减区间(2)证明见解析【分析】(1)求得函数的导数f (x)=x+1x-2,结合基本不等式求得f (x)≥0恒成立,即可求解;(2)由y=g(x)有两个不同的零点x1,x2,转化为(a+2)=e xx有两个根,设I(x)=e xx,利用导数求得最大值I(1)=e,得到a>e-2,转化为x1-x2ln x1-ln x2=1x1+x2=2ln(a+2)+ln x1x2,不妨设x1>x2,要证x1+x2<2ln(a+2),只需证明x1x2<1,转化为2ln t-t+1t <0恒成立,设h(t)=2ln t-t+1t,结合导数求得函数的单调性,即可求解.【解析】(1)解:由函数f(x)=12x2+ln x-2x定义域为(0,+∞),且f (x)=x+1x-2,因为x+1x≥2x⋅1x=2,当且仅当x=1x时,即x=1时,等号成立,所以f (x)≥0恒成立,所以f x 在(0,+∞)单调递增,故函数f(x)的单调递增区间为(0,+∞),无单调减区间.(2)解:由函数g(x)=e x-(a+2)x,(x>0),因为函数y=g(x)有两个不同的零点x1,x2,所以e x=(a+2)x有两个不同的根,即(a+2)=e xx有两个不同的根,设I(x)=e xx,可得I(x)=e x(x-1)x2,当x∈(0,1)时,I (x)<0;当x∈(1,+∞)时,I (x)>0,所以y=I(x)在(0,1)上单调递减,(1,+∞)上单调递增,当x=1时,函数y=I(x)取得最小值,最小值为I(1)=e,所以a+2>e,即a>e-2,由e x1=(a+2)x1e x2=(a+2)x2,可得x1=ln(a+2)+ln x1x2=ln(a+2)+ln x2,即x1-x2=ln x1-ln x2x1+x2=2ln(a+2)+ln x1x2,所以x1-x2ln x1-ln x2=1x1+x2=2ln(a+2)+ln x1x2 ,不妨设x1>x2,要证x1+x2<2ln(a+2),只需证明x1x2<1即可,即证x1x2<x1-x2ln x1-ln x2,只需证明:lnx1x2<x1x2-x2x1,设x1x2=t(t>1),即证:2ln t-t+1t<0恒成立,设h(t)=2ln t-t+1t,t>1,可得h (t)=2t-1t2-1=-t2+2t-1t2=-(t-1)2t2<0,所以y=h(t)在(1,+∞)上单调递减,所以h(t)<h(1)=0,故x1x2<1恒成立,所以x1+x2<2ln(a+2).题型五非对称型零点偏移证明不等式【典例分析】1.已知函数f x =a ln x-x a∈R.(1)求函数y=f x 的单调区间;(2)若函数y=f x 在其定义域内有两个不同的零点,求实数a的取值范围;(3)若0<x1<x2,且x1ln x1=x2ln x2=a,证明:x1ln x1<2x2-x1.【答案】(1)当a≤0时,函数y=f x 的单调递减区间为0,+∞;当a>0时,函数y=f x 的单调递增区间为0,a,单调递减区间为a,+∞.(2)a>e(3)证明见解析【分析】(1)先求定义域,然后对a进行分类讨论,求解不同情况下的单调区间;(2)在第一问的基础上,讨论实数a的取值,保证函数有两个不同的零点,根据函数单调性及极值列出不等式,求出a>e时满足题意,再证明充分性即可;(3)设x2=tx1,对题干条件变形,构造函数对不等式进行证明.解:(1)函数f x 定义域为0,+∞,∵f x =a ln x-x a∈R,∴f x =ax -1=a-xx①当a≤0时,f x <0在0,+∞上恒成立,即函数y=f x 的单调递减区间为0,+∞;②当a>0时,f x =0,解得x=a,当x∈0,a时,f x >0,∴函数y=f x 的单调递增区间为0,a,当x∈a,+∞时,f x <0,∴函数y=f x 的单调递减区间为a,+∞,综上可知:①当a≤0时,函数y=f x 的单调递减区间为0,+∞;②当a>0时,函数y=f x 的单调递增区间为0,a,单调递减区间为a,+∞;(2)由(1)知,当a≤0时,函数y=f x 在0,+∞上单调递减,∴函数y=f x 至多有一个零点,不符合题意,当a>0时,函数y=f x 在0,a上单调递增,在a,+∞上单调递减,∴f(x)max=f a =a ln a-a,又函数y=f x 有两个零点,∴f a =a ln a-a=a ln a-1>0,∴a>e又f1 =-1<0,∴∃x1∈1,a,使得f x1=0,又f a2=a ln a2-a2=a2ln a-a,设g a =2ln a-a,g a =2a-1=2-aa∵a>e,∴g a <0∴函数g a 在e,+∞上单调递减,∴g a max=g e =2-e<0,∴∃x2∈a,a2,使得f x2=0,综上可知,a>e为所求.(3)依题意,x1,x20<x1<x2是函数y=f x 的两个零点,设x2=tx1,因为x2>x1>0⇒t>1,∵a=x1ln x1=x2ln x2=tx1ln x1+ln t,∴ln x1=ln tt-1,ax1=1ln x1=t-1ln t不等式x1ln x1<2x2-x1⇔x1ln x1<2tx1-x1⇔1ln x1<2t-1⇔t-1ln t<2t-1,∵t>1,所证不等式即2t ln t-ln t-t+1>0设h t =2t ln t-ln t-t+1,∴h t =2ln t+2-1t-1,h t =2t+1t2>0,∴h t 在1,+∞上是增函数,且h t >h 1 =0,所以h t 在1,+∞上是增函数,且h t >h1 =0,即2t ln t-ln t-t+1>0,从而所证不等式成立.【变式演练】1.函数f x =ln x-ax2+1.(1)若a=1,求函数y=f2x-1在x=1处的切线;(2)若函数y=f x 有两个零点x1,x2,且x1<x2,(i)求实数a的取值范围;(ii)证明:x22-x1<-a2+a+1a2.【答案】(1)y=-2x-1;(2)(i)0<a<e2;(ii)证明见解析.【分析】(1)先设g x =f2x-1,再对其求导,根据导数的几何意义,即可求出切线方程;(2)(i)根据题中条件,得到方程ln x+1x2=a有两不等实根,令g x =ln x+1x2,则g x =ln x+1x2的图象与直线y=a有两不同交点,对g x 求导,得到其单调性,结合函数值的取值情况,即可得出结果;(ii)先由题中条件,得到ln x2-ln x1x2-x1=a x2+x1,令h t =ln t-2t-1t+1,t>1,证明ln t>2t-1t+1对任意的t>1恒成立;得出ln x2-ln x1x2-x1>2x2+x1;进一步推出x2+x1>2e;得到x22-x1<x22+x2-1,因此只需证明x22+x2≤1a2+1a即可,即证x2≤1a,即证f x2≥f1a,即证0≥f1a ,即证ln 1a≤1a-1成立;构造函数证明ln1a≤1a-1成立即可.【详解】(1)设g x =f2x-1=ln2x-1-2x-12+1,∴g x =22x-1-42x-1,∴g 1 =-2,且g1 =0,∴切线方程:y=-2x-1.(2)(i)由f x =ln x-ax2+1可得定义域为0,+∞,因为函数y=f x 有两个零点x1,x2,且x1<x2,所以方程ln x-ax2+1=0有两不等实根,即方程ln x+1x2=a有两不等实根,令g x =ln x+1x2,则g x =ln x+1x2的图象与直线y=a有两不同交点,因为g x =1x⋅x2-ln x+1⋅2xx4=-1-2ln xx3,由g x >0得0<x<e-12;由g x <0得x>e-12,所以g x =ln x+1x2在0,e-12上单调递增,在e-12,+∞上单调递减;因此g x max=g e-1 2=-12+1e-1=e2,又当0<x<1e时,ln x+1<0,即g x =ln x+1x2<0;当x>1e时,ln x+1>0,即g x =ln x+1x2>0,所以为使g x =ln x+1x2的图象与直线y=a有两不同交点,只需0<a<e2;即实数a的取值范围为0<a<e 2;(ii)由(i)可知,x1与x2是方程ln x-ax2+1=0的两根,则ln x1-ax12+1=0ln x2-ax22+1=0,两式作差可得ln x2-ln x1=a x22-x12,因为0<x 1<x 2,所以x 2x 1>1,则ln x 2-ln x 1x 2-x 1=a x 2+x 1 ;令h t =ln t -2t -1 t +1=ln t +4t +1-2,t >1,则ht =1t -4t +1 2=t -1 2t t +1 2>0对任意的t >1恒成立,所以h t 在t ∈1,+∞ 上单调递增,因此h t >h 1 =0,即ln t >2t -1t +1对任意的t >1恒成立;令t =x 2x 1,则ln x 2x 1>2x2x 1-1 x 2x 1+1=2x 2-x 1 x 2+x 1,所以ln x 2-ln x 1x 2-x 1>2x 2+x 1,因此a x 2+x 1 =ln x 2-ln x 1x 2-x 1>2x 2+x 1,所以x 2+x 1 2>2a >4e ,则x 2+x 1>2e ;∴x 22-x 1<x 22+x 2-2e<x 22+x 2-1,因此,要证x 22-x 1<-a 2+a +1a 2=1a 2+1a -1,只需证x 22+x 2≤1a2+1a ,因为二次函数y =x 2+x 在0,+∞ 单调递增,因此只需证x 2≤1a ,即证f x 2 ≥f 1a,即证0≥f 1a ,即证ln 1a ≤1a -1成立;令u (x )=ln x -x +1,x >0,则u (x )=1x -1=1-xx,当x ∈0,1 时,u (x )>0,即u (x )单调递增;当x ∈1,+∞ 时,u (x )<0,即u (x )单调递减;所以u (x )≤u (1)=0,所以ln x ≤x -1,因此ln 1a ≤1a -1,所以结论得证.题型六条件型偏移证明不等式【典例分析】1.已知函数f x =ln x +axx,a ∈R .(1)若a =0,求f x 的最大值;(2)若0<a <1,求证:f x 有且只有一个零点;(3)设0<m <n 且m n =n m ,求证:m +n >2e.【答案】(1)1e(2)证明见解析(3)证明见解析【分析】(1)由a =0,得到f x =ln x x ,求导f x =1-ln xx 2,然后得到函数的单调性求解;(2)求导fx =1x +a x -ln x -ax x 2=1-ln x x 2,结合(1)的结论,根据0<a <1,分x >e ,0<x <e ,利用零点存在定理证明;(3)根据m n =n m 等价于ln m m =ln n n ,由(1)知f x =ln xx的单调性,得到0<m <e <n ,令g x =2e -x ln x -x ln 2e -x ,0<x <e ,用导数法得到g x 在0,e 上单调递增,则ln xx<ln 2e -x 2e -x ,0<x <e ,再结合0<m <e <n 且ln m m =ln nn ,利用f x 在e ,+∞ 上单调递减求解.(1)解:由题知:若a =0,f x =ln xx,其定义域为0,+∞ ,所以f x =1-ln xx2,由fx =0,得x =e ,所以当0<x <e 时,f x >0;当x >e 时,f x <0,所以f x 在0,e 上单调递增,在e ,+∞ 上单调递减,所以f x max =f e =1e;(2)由题知:f x =1x +a x -ln x -axx 2=1-ln xx 2,由(1)知,f x 在0,e 上单调递增,在e ,+∞ 上单调递减,因为0<a <1,当x >e 时,f x =ln x +ax x =a +ln xx>a >0,则f x 在e ,+∞ 无零点,当0<x <e 时,f x =ln x +ax x =a +ln xx,又因为f 1e =a -e <0且f e =a +1e>0,所以f x 在0,e 上有且只有一个零点,所以,f x 有且只有一个零点.(3)因为m n =n m 等价于ln m m =ln nn,由(1)知:若a =0,f x =ln xx,且f x 在0,e 上单调递增,在e ,+∞ 上单调递减,且0<m <n ,所以0<m <e ,n >e ,即0<m <e <n ,令g x =2e -x ln x -x ln 2e -x ,0<x <e ,所以g x =-ln x +2e -x x -ln 2e -x +x2e -x ,=-ln x 2e -x +2e -x x +x2e -x ,=-ln x -e 2+e 2 +2e -x x +x2e -x>-ln e 2+2=0,所以g x 在0,e 上单调递增,g x <g e =0,所以ln x x <ln 2e -x 2e -x,0<x <e ,又因为0<m <e <n 且ln m m =ln nn ,所以ln n n =ln mm <ln 2e -m 2e -m ,又因为n >e ,2e -m >e ,且f x 在e ,+∞ 上单调递减,所以n >2e -m ,即m +n >2e.【变式演练】1.已知函数f x =2ln x +x 2+a -1 x -a ,(a ∈R ),当x ≥1时,f (x )≥0恒成立.(1)求实数a 的取值范围;(2)若正实数x 1、x 2(x 1≠x 2)满足f (x 1)+f (x 2)=0,证明:x 1+x 2>2.【答案】(1)-3,+∞ ;(2)证明见解析.【分析】(1)根据题意,求出导函数f x ,分类讨论当a ≥-3和a <-3两种情况,利用导数研究函数的单调性,结合x ≥1时,f (x )≥0恒成立,从而得出实数a 的取值范围;(2)不妨设x 1<x 2,由f (x 1)+f (x 2)=0得出f (x 2)=-f (x 1),从而可知只要证明-f (x 1)>f (2-x 1)⇔f (x 1)+f (2-x 1)<0,构造新函数g (x )=f (x )+f (2-x ),求出g(x )=4(x -1)3x (x -2),利用导数研究函数的单调性得出g (x )在区间(0,1)上单调增函数,进而可知当0<x <1时,g (x )<0成立,即f (x )+f (2-x )<0,从而即可证明x 1+x 2>2.(1)解:根据题意,可知f x 的定义域为0,+∞ ,而f (x )=2x+2x +(a -1),当a ≥-3时,f (x )=2x+2x +(a -1)≥a +3≥0,f 1 =0,∴f (x )为单调递增函数,∴当x ≥1时,f (x )≥0成立;当a <-3时,存在大于1的实数m ,使得f (m )=0,∴当1<x <m 时,f (x )<0成立,∴f (x )在区间(1,m )上单调递减,∴当1<x <m 时,f (x )<f 1 =0;∴a <-3不可能成立,所以a ≥-3,即a 的取值范围为-3,+∞ .(2)证明:不妨设x 1<x 2,∵正实数x 1、x 2满足f (x 1)+f (x 2)=0,有(1)可知,0<x 1<1<x 2,又∵f (x )为单调递增函数,所以x 1+x 2>2⇔x 2>2-x 1⇔f (x 2)>f (2-x 1),又∵f (x 1)+f (x 2)=0⇔f (x 2)=-f (x 1),所以只要证明:-f (x 1)>f (2-x 1)⇔f (x 1)+f (2-x 1)<0,设g (x )=f (x )+f (2-x ),则g (x )=2[ln x +ln (2-x )+x 2-2x +1],可得g(x )=4(x -1)3x (x -2),∴当0<x <1时,g (x )>0成立,∴g (x )在区间(0,1)上单调增函数,又∵g 1 =0,∴当0<x <1时,g (x )<0成立,即f (x )+f (2-x )<0,所以不等式f (x 1)+f (2-x 1)<0成立,所以x 1+x 2>2.题型七同构型证明不等式【典例分析】1.材料:在现行的数学分析教材中,对“初等函数”给出了确切的定义,即由常数和基本初等函数经过有限次的四则运算及有限次的复合步骤所构成的,且能用一个式子表示的.如函数f x =x x x >0 ,我们可以作变形:f x =x x =e ln x x =e x ⋅ln x =e t t =x ln x ,所以f x 可看作是由函数f t=e t 和g x =x ln x 复合而成的,即f x =x x x >0 为初等函数,根据以上材料:(1)直接写出初等函数f x =x x x >0 极值点(2)对于初等函数h x =x x 2x >0 ,有且仅有两个不相等实数x 1,x 20<x 1<x 2 满足:h x 1 =h x 2 =e k .(i )求k 的取值范围.(ii )求证:x e 2-2e 2≤e-e 2x 1(注:题中e 为自然对数的底数,即e =2.71828⋯)【答案】(1)极小值点为x =1e ,无极大值点(2)(i )k ∈-12e,0 ;(ii )证明见解析【分析】(1)根据材料中的信息可求得极小值点为x =1e;(2)(i )将问题转化为求函数的最小值问题,同时要注意考查边界;(ii )通过换元,将问题转化为求函数的最值问题,从而获得证明.解:(1)极小值点为x =1e,无极大值点.(2)由题意得:x x 211=x x 222=e k 即x 21ln x 1=x 22ln x 2=k .(i )问题转化为m x =x 2ln x -k 在0,+∞ 内有两个零点.则m x =x 1+2ln x 当x ∈0,e-12时,mx <0,m x 单调递减;当x ∈e -12,+∞ 时,m x >0,m x 单调递增.若m x 有两个零点,则必有m e -12<0.解得:k >-12e若k ≥0,当0<x <e-12时,m x =x 2ln x -k ≤x 2ln x <0,无法保证m x 有两个零点.若-12e<k <0,又m e 1k>0,m e -12 <0,m 1 =-k >0故∃x 1∈e 1k ,e-12使得m x 1 =0,∃x 2∈e -12,1 使得m x 2 =0.综上:k ∈-12e ,0(ii )设t =x 2x 1,则t ∈1,+∞ .将t =x 2x 1代入x 21ln x 1=x 22ln x 2可得:ln x 1=t 2ln t 1-t 2,ln x 2=ln t 1-t 2(*)欲证:x e 2-2e2≤e -e 2x 1,需证:ln x e 2-2e2≤ln e -e 2x 1即证:ln x 1+e 2-2e ln x 2≤-e 2.将(*)代入,则有t 2+e 2-2e ln t 1-t 2≤-e2则只需证明:x +e 2-2e ln x1-x ≤-e x >1 即ln x ≥e x -1 x +e 2-2ex >1 .构造函数φx =x -1ln x -x e -e +2,则φ x =ln x -x -1xln 2x -1e ,φ x =x +1 2x -1 x +1-ln xx 2ln 3xx >1 (其中φ x 为φx 的导函数)令ωx =2x -1 x +1-ln x x >1 则ωx =-x -1 2x x +1 2<0所以ωx <ω1 =0则φ x <0.因此φ x 在1,+∞ 内单调递减.又φ e =0,当x ∈1,e 时,φ x >0,φx 单调递增;当x ∈e ,+∞ 时,φ x <0,φx 单调递减.所以φx =x -1ln x -x e -e +2≤φe =0,因此有x -1ln x -xe ≤e -2即ln x ≥e x -1x +e 2-2ex >1 .综上所述,命题得证.【变式演练】1.已知函数f x =e ax x ,g x =ln x +2x +1x,其中a ∈R .(1)试讨论函数f x 的单调性;(2)若a =2,证明:xf (x )≥g (x ).【答案】(1)答案见解析;(2)证明见解析.【分析】(1)f x 的定义域为(-∞,0)∪(0,+∞),求出f x ,分别讨论a >0,a =0,a <0时不等式f x >0和fx <0的解集即可得单调递增区间和单调递减区间,即可求解;(2)g x 的定义域为0,+∞ ,不等式等价于xe 2x ≥ln x +2x +1,e ln x +2x ≥ln x +2x +1,令t =ln x +2x ∈R ,只需证e t ≥t +1,令h t =e t -t -1,利用导数判断单调性和最值即可求证.解:(1)f x 的定义域为(-∞,0)∪(0,+∞),由f x =e ax x 可得:f x =ae ax ⋅x -e ax ⋅1x 2=e ax (ax -1)x 2,当a >0时,令f x >0,解得x >1a ;令f x <0,解得x <0或0<x <1a;此时f x 在1a ,+∞上单调递增,在-∞,0 和0,1a上单调递减:当a =0时,f (x )=1x,此时f x 在(-∞,0)和(0,+∞)上单调递减;当a <0时,令f x >0,解得x <1a ,令f x <0,解得1a<x <0或x >0,此时f x 在-∞,1a 上单调递增,在1a,0 和(0,+∞)上单调递减:综上所述:当a >0时,f x 在1a ,+∞ 上单调递增,在(-∞,0)和0,1a上单调递减;当a =0时,f x 在(-∞,0)和(0,+∞)上单调递减;当a <0时,f x 在-∞,1a 上单调递增,在1a ,0 和(0,+∞)上单调递减.(2)因为a =2,g x =ln x +2x +1x的定义域为0,+∞ ,所以xf (x )≥g (x )即xe 2x ≥ln x +2x +1,即证:e ln x ⋅e 2x =e ln x +2x≥ln x +2x +1,令t =ln x +2x ∈R ,只需证e t ≥t +1,令h t =e t -t -1,则h t =e t-1,令h t >0,解得:t >0;h t <0,解得t <0;所以h t 在(-∞,0)上单调递减,在(0,+∞)上单调递增;所以h t ≥h 0 =e 0-0-1=0,所以e t ≥t +1,所以e ln x +2x ≥ln x +2x +1,即xf (x )≥g (x )成立.题型八先放缩型证明不等式【典例分析】1.设函数f x =a ln x +1x-1a ∈R .(1)求函数f x 的单调区间;(2)当x ∈0,1 时,证明:x 2+x -1x-1<e x ln x .【答案】(1)答案不唯一,具体见解析;(2)证明见解析.【分析】(1)求得f x =ax -1x2,分a ≤0、a >0两种情况讨论,分析导数f x 在0,+∞ 上的符号变化,由此可得出函数f x 的增区间和减区间;(2)由(1)可得出ln x >1-1x,要证原不等式成立,先证e x <x +1 2对任意的x ∈0,1 恒成立,构造函数h x =e x -x +1 2,利用导数分析函数h x 在0,1 上的单调性,由此可证得e x <x +1 2对任意的x ∈0,1 恒成立,即可证得原不等式成立.(1)解:f x 的定义域为0,+∞ ,则f x =a x -1x 2=ax -1x2,当a ≤0时,fx ≤0在0,+∞ 恒成立,则函数f x 的单调减区间为0,+∞ ,没有增区间:当a >0时,当x ∈0,1a 时,f x <0;当x ∈1a ,+∞ 时,f x >0.则函数f x 的单调减区间为0,1a,单调增区间为1a ,+∞ .综上所述,当a ≤0时,函数f x 的单调减区间为0,+∞ ,没有增区间:当a >0时,函数f x 的单调减区间为0,1a ,单调增区间为1a,+∞ .(2)证明:由(1)可知当a =1时,f x 的单调减区间为0,1 ,单调增区间为1,+∞ ;当x =1时,f x 取极小值f 1 =0,所以f x ≥f 1 =0,当x ∈0,1 时,即有ln x +1x -1>0,所以ln x >1-1x,所以要证x 2+x -1x -1<e x ln x ,只需证x 2+x -1x -1<e x 1-1x ,整理得e x ⋅x -1x>x +1 2x -1x,又因为x ∈0,1 ,所以只需证e x <x +1 2,令h x =e x -x +1 2,则h x =e x -2x +1 ,令H x =h x =e x -2x +1 ,则H x =e x -2,令H x =e x -2=0,得x =ln2,当0<x <ln2时,H x <0,H x 单调递减,当ln2<x <1时,H x >0,H x 单调递增,所以H x min =H ln2 =e ln2-2ln2+1 =-2ln2<0,又H 0 =e 0-2=-1<0,H 1 =e -4<0,所以在x ∈0,1 时,H x =h x <0恒成立,所以h x 在0,1 上单调递减,所以h x <h 0 =0,即h x =e x -x +1 2<0,即e x <x +1 2成立,即得证.【变式演练】1.已知函数f x =ae x -2-ln x +ln a .(1)若曲线y =f x 在点2,f 2 处的切线方程为y =32x -1,求a 的值;(2)若a ≥e ,证明:f x ≥2.【答案】(1)a =2(2)证明见解析【分析】(1)由f 2 =32,可得a 的值,再验证切点坐标也满足条件;(2)由a ≥e ,e x -2>0知要证f x =ae x -2-ln x +ln a ≥2也即证e x -1-ln x -1≥0,设g x =e x -1-ln x -1,求出导数分析其单调性,得出其最值可证明.解:(1)f x =ae x -2-1x ,则f 2 =ae 2-2-12=a -12=32,解得a =2又f 2 =32×2-1=2,f 2 =ae 2-2-ln2+ln a =2,可得a =2综上a =2(2)由a ≥e ,e x -2>0知要证f x =ae x -2-ln x +ln a ≥2即证e ⋅e x -2-ln x +ln e =e x -1-ln x +1≥2也即证e x -1-ln x -1≥0。

导数压轴题7大题型归类总结

导数压轴题7大题型归类总结

导数压轴题7大题型归类总结,逆袭140+一、导数单调性、极值、最值的直接应用设a> 0,函数g(x)= (a A2 + 14)e A x + 4•若E 1、E 2 € [0 , 4],使得|f( E 1) - g( E 2)| v 1 成立, 求a 的取值范围.二、交点与根的分布三、不等式证明(一)做差证明不等式LL期嗨敕门划=1扣M】求的单调逼减区创!<2)^7 I >-1 r求证1 I ----- +x+ 1W;的宦义域为(一4 +<o)v,U)=>—=—-1 = ■―・x + 1 T t 4-1I ■丈0山厂w" 阳=」耳+ 1・二的中说逆减区簡为①,车呵一⑵国小由⑴得_虫(一1, ®时” /r Ct)>O f*庄曰① #8)时./'(XXO ・II /+(0) = 0z.t>- 1 时.f骑)Wf(Qh ・〔耳口仇in(.T + ht T, I I x >X<^> = lnU + 1)+ ------ 1 t则K C<)* ----- -------- =------- -|r+1 立*1 {x+1)- G + I广/. — !< c<0时.X W Y O T «A0时., JJ x F«h = <)」・T A—l时、* S) (0)t UP \a(j[ + I M---------- 1MQX + 1;.+1) ) ------- ,:心一1时t I------------- < ln{x + n^j.(二)变形构造函数证明不等式Ehl&£ /IU li故)白)替换构造不等式证明不等式>=/U ) “川理kC 1;/< <6 N 实出氓I:的崗散丿I+ 2<u- 3<r In \ >0>I 沟申求齡./i(2JfiF(x) = /(.r)r-g(x>nt,护订} > 03r hH(f > [}). I J J //(:>- 2/0-^. ftInjr". tl 中i堆fiU |他①5)的必人饥为hie'* = m 叫z・削灯育公共恵・且在谆戍坯的也皱丹匸,%、b 、曲求占的E 大fh/(X) K (r K ).v = /<x) 'j .v = xtO(i >Ol 存佥共C <^ r ()i 牡的岗绥翎同;In u J - 3<J In “故FOQ 在❻ 宀为城闸乩十e)为増険断J 込函眈F(x)枉®+8}上的jg 小f“ 工 F(a) = F(X M ) = /(^)"£(^…)(ll|ifl A :. u +四、不等式恒成立求字母范围(一)恒成立之最值的直接应用(二)恒成立之分离参数(三)恒成立之讨论字母范围五、函数与导数性质的综合运用已期朿散V)xe' (.<£R)⑼加幣垃/CO的巾调区何利极仇;闕已如嚼蛙门的图怨U丽故v =川計的闊象k J I仁IH = 1对帕证叩十/(x)>g{x)⑶如!(I占工耳・= /(^;), iifcafl X, > 2馆;応小島主整号柞#数的底用:利用*数研赢南融的隼调忙戒血裁摆紬知说・谢庄远算能力及用甫战息巒和折圳檢轲忌帕能九<!)/r(Jf)^O -J*c>e 1f令丿%}讹褂卞=4 ・当上匪<Wt・fM. fUO的侧U»况如卜我 ___________________fg _ - TF 丫------ F ---------- ~ ' 1—------------ ------------- -- ----- .............. ... - ------ ™|jr 1 (t.4-x)二八耳)在(一扯1)内杲噌圉敢*在(匕+忙)内心减南Kh MXfj'i/□) = -.€⑵证明:由46歳可期黑山冃!2—小緬工匸口一瑞4尺怕骷訴)=re 1 -+ (才一2址“ * 则F"(x)二仁丫一1)(07 —])护"'世un |时’ "一2M、从血戶」一J A O.乂严>(X9rWF(.i)>O.^rtjF(x)4[l.+«J£«»Rfi数・比刚=F J —屮=<\ 听Llx > IHJ * 有t >=O T&J/?A»K(A I,⑶证w< o(x2-i)=o,由⑴即(jj二m则右-x i = h与册*护川;勾丰F ( <1 - 1M-U I) A Or由⑴及/ (% ) = J*{_D)* 御工I - _i J3x t丰A:不用」化根据①^讶佔-D(£- I) cOM、奶< Lx, > I.由⑵可如,fg)A*g)+则止(七)=:/(2” £)* .听以八屯)- X3)T为屯 > I ・所W 2 -x2 < ]・比1川【呵幼函魏门歸W间(-<■* B内砂削S敌,所以即斗专壬A Z六、导数应用题七、导数与三角函数的结合S4.已== ^/■(rj + sinx 14faK|nJ|-L i| hffj减喙数.to 求d 的ifiictfhuu若gSXF#山+ 1在Jew卜口]上恒诫屯敕的取ffl范》hVtt(I) f(X)= A t.\ glA) = XA +SLII X.Vr(x)^a-Ul 上单琳谥减.*\^'(x) = ii+cosjt^0A-ii-cosjrffil-l. ll hiSaifl:, 爲—的最大值为_1..................................... 4仆(U)由題帝[gCO]. - 5(-0 = -X Rsuil,只</2十血+ 1 二(/ + +4ni+J >*>i4t中4 w-u恒ifi 工>A{^) = (r + D^i + f^ + sinl + l>(K/l 冬一1)・则巧"(0"时』3".「」⑴在血打上为卑雨敌:当jr w 卜才30)时.齐⑴"• A 7;Cx)&[e,+®) XratFSffi:3 2 4时・l/i")仁=/i(«) = (r-^)1 +w-e当=-T EJJ/rt +■时,方程脊一个ft!:^m-e1<■ H.wr< r?+-时* 冇用冇曲个t« ....................... 14^/ + l<0n A ,/,(r) = x1- 2rx+ f肌-/ -I -F-f +sin I + 1 >0, …j 血『-叶winfn Oh[城、L :.i <-l,r -14-sin i>0。

高考导数压轴题型归类总结

高考导数压轴题型归类总结

导数压轴题型归类总结目 录一、 (1) 二、 (23) 三、 (31)(一)作差证明不等式(二)变形构造函数证明不等式 (三)替换构造不等式证明不等式四、 (51)(一)恒成立之最值的直接应用 (二)恒成立之分离常数(三)恒成立之讨论字母范围五、 (70) 六、 (84) (85)书中常用结论⑴sin ,(0,)x x x π<∈,变形即为sin 1xx<,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+⑷ln ,0x x x e x <<>.1. (切线)设函数a x x f -=2)(.(1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值;(2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21.解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得33±=x .)(x g '(2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='=曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--.令0=y ,得12122x ax x +=,∴12111211222x x a x x a x x x -=-+=-∵a x >1,∴02121<-x x a ,即12x x <. 又∵1122x a x ≠,∴a x a x x a x x a x x =⋅>+=+=11111212222222所以a x x >>21.2. (2009天津理20,极值比较讨论)已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; ⑵当23a ≠时,求函数()f x 的单调区间与极值.解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。

最新高考数学导数压轴题7大题型总结34390

最新高考数学导数压轴题7大题型总结34390

高考数学导数压轴题7大题型总结目前虽然全国高考使用试卷有所差异,但高考压轴题目题型基本都是一致的,几乎没有差异,如果有差异只能是难度上的差异,高考导数压轴题考察的是一种综合能力,其考察内容方法远远高于课本,其涉及基本概念主要是:切线,单调性,非单调,极值,极值点,最值,恒成立等等。

导数解答题是高考数学必考题目,然而学生由于缺乏方法,同时认识上的错误,绝大多数同学会选择完全放弃,我们不可否认导数解答题的难度,但也不能过分的夸大。

掌握导数的解体方法和套路,对于基础差的同学不说得满分,但也不至于一分不得。

为了帮助大家复习,今天就总结倒数7大题型,让你在高考数学中多拿一分,平时基础好的同学逆袭140也不是问题。

1导数单调性、极值、最值的直接应用2交点与根的分布3不等式证明(一)做差证明不等式(二)变形构造函数证明不等式(三)替换构造不等式证明不等式4不等式恒成立求字母范围(一)恒成立之最值的直接应用(二)恒成立之分离参数(三)恒成立之讨论字母范围5函数与导数性质的综合运用6导数应用题7导数结合三角函数一、选择题(单项选择题,每题2分)1.中药药理学的研究目的是(A)A.研究中药产生药效的机理B.分离有效成分C.鉴定有效成分的化学结构D.研究有效成分的理化性质E.鉴定中药的品种2.下列哪项不是中药药动学的研究内容(E)A.生物膜对药物的吸收B.药物在体内的分布C.药物的生物转化(代谢)D.药物的排泄E.药物的作用强度3.国内对何种中药最早进行现代药理研究工作(D)A.黄连B.黄芩C.金银花D.麻黄E.人参4.许多寒凉药具有的药理作用是(E)A.兴奋中枢神经系统B.兴奋交感神经系统C.促进内分泌系统功能D.加强基础代谢功能E.具有抗感染作用5.辛味药所含的主要成分是(C)A.氨基酸B.有机酸C.挥发油D.生物碱E.皂苷6.下列哪项不是柴胡的主要作用(E)A.解热B.抗炎C.降血脂D.利胆E.抗心律失常7.下列哪项不是麻黄的作用(E)A.兴奋中枢B.升高血压C.抗炎D.解热E.镇静8.酸味药所含的主要成分是(C)A.挥发油B.皂苷C.有机酸和鞣质D.生物碱E.糖类9.甘味所含的主要成分是(E)A.挥发油B.皂苷C.有机酸和鞣质D.生物碱E.氨基酸和糖类10.苦味所含的主要成分是(D)A.挥发油B.皂苷C.有机酸和鞣质D.生物碱和苷类E.氨基酸和糖类11.下列哪种药具有保肝利胆作用(D)A.麻黄B.桂枝C.细辛D.柴胡E.葛根12.葛根治疗偏头痛的主要依据是(D)A.有镇静作用B.有降压作用C.有兴奋吗啡受体作用D.有调节脑血管收缩、舒张功能E.以上均非。

高考数学导数压轴大题7大题型梳理归纳

高考数学导数压轴大题7大题型梳理归纳

导数压轴大题7个题型梳理归纳题型一:含参分类讨论 类型一:主导函数为一次型例1:已知函数()ln f x ax a x =--,且()0f x ≥.求a 的值 解:()1ax f x x-'=.当0a ≤时,()0f x '<,即()f x 在()0,+∞上单调递减,所以当01x ∀>时,()()010f x f <=,与()0f x ≥恒成立矛盾.当0a >时,因为10x a <<时()0f x '<,当1x a>时()0f x '>,所以()min 1f x f a ⎛⎫= ⎪⎝⎭,又因为()1ln10f a a =--=,所以11a =,解得1a =类型二:主导函数为二次型例2: 已知函数()()320f x x kx x k =-+<.讨论()f x 在[],k k -上的单调性. 解:()f x 的定义域为R ,()()23210f x x kx k '=-+<,其开口向上,对称轴3k x =,且过()0,1,故03kk k <<<-,明显不能分解因式,得2412k ∆=-.(1)当24120k ∆=-≤时,即0k ≤<时,()0f x '≥,所以()f x 在[],k k -上单调递增;(2)当24120k ∆=->时,即k <令()23210f x x kx '=-+=,解得:12x x ==,因为()()210,010f k k f ''=+>=>,所以两根均在[],0k 上.因此,结合()f x '图像可得:()f x 在,,33k k k k ⎡⎡⎤+-⎢⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦上单调递增,在⎢⎥⎣⎦上单调递减.类型三:主导函数为超越型例3:已知函数()cos xf x e x x =-.求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最值. 解:定义域0,2π⎡⎤⎢⎥⎣⎦,()()cos sin 1x f x e x x '=--,令()()cos sin 1xh x e x x =--,则()()cos sin sin cos 2sin .xx h x e x x x x e x '=---=-当0,2x π⎡⎤∈⎢⎥⎣⎦,可得()0h x '≤,即()h x 在0,2π⎡⎤⎢⎥⎣⎦递减,可得()()()000h x h f '≤==,则()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦递减,所以()()()max01,.22f x f f x f ππ⎛⎫====- ⎪⎝⎭类型四:复杂含参分类讨论例4:已知函数()()33f x x x a a R =+-∈.若()f x 在[]1,1-上的最大值和最小值分别记为()(),M a m a ,求()()M a m a -.解:()33333,333,x x a x a f x x x a x x a x a ⎧+-≥⎪=+-=⎨-+<⎪⎩,()2233,33,x x af x x x a⎧+≥⎪'=⎨-<⎪⎩ ①当1a ≤-时,有x a ≥,故()333f x x x a =+-,所以()f x 在()1,1-上是增函数,()()()()143,143M a f a m a f a ==-=-=--,故()()8M a m a -=.②当11a -<<时,若()()3,1,33x a f x x x a ∈=+-,在(),1a 上是增函数;若()1,x a ∈-,()333f x x x a =-+,在()1,a -上是减函数,()()(){}()()3max 1,1,M a f f m a f a a =-==,由于()()1162f f a --=-+因此当113a -<≤时,()()334M a m a a a -=--+;当113a <<时,()()332M a m a a a -=-++.③当1a ≥时,有x a ≤,故()333f x x x a =-+,此时()f x 在()1,1-上是减函数,因此()()()()123,123M a f a m a f a =-=+==-+,故()()4M a m a -=.题型二:利用参变分离法解决的恒成立问题类型一:参变分离后分母跨0例5:已知函数()()()242,22xf x x xg x e x =++=+,若2x ≥-时,()()f x kg x ≤,求k 的取值范围.解:由题意()24221xx x ke x ++≤+,对于任意的2x ≥-恒成立.当1x =-,上式恒成立,故k R ∈;当1x >-,上式化为()24221x x x k e x ++≥+,令()()()2421,21x x x h x x e x ++=>-+ ()()()22+221x xxe x h x e x -'=+,所以()h x 在0x =处取得最大值,()01k h ≥= 当21x -≤<-时,上式化为()24221x x x k e x ++≤+,()h x 单调递增,故()h x 在2x =-处取得最小值,()22k h e ≤-=.综上,k 的取值范围为21,e ⎡⎤⎣⎦.类型二:参变分离后需多次求导例6:已知函数()()()()212ln ,f x a x x a R =---∈对任意的()10,,02x f x ⎛⎫∈> ⎪⎝⎭恒成立,求a 的最小值.解:即对12ln 0,,221xx a x ⎛⎫∈>-⎪-⎝⎭恒成立. 令()2ln 12,0,12x l x x x ⎛⎫=-∈ ⎪-⎝⎭,则()()()()222212ln 2ln 211x x x x x l x x x --+-'=-=-- 再令()()()222121122ln 2,0,,02x m x x x m x x x x x --⎛⎫'=+-∈=-+=< ⎪⎝⎭()m x 在10,2⎛⎫ ⎪⎝⎭上为减函数,于是()122ln 202m x m ⎛⎫>=->⎪⎝⎭,从而,()0l x '>,于是()l x 在10,2⎛⎫ ⎪⎝⎭上为增函数,()124ln 22l x l ⎛⎫<=- ⎪⎝⎭,故要2ln 21xa x >--恒成立,只要[)24ln 2,a ∈-+∞,即a 的最小值24ln 2-. 变式1:已知函数()()1ln ,0x f x x a R a ax -=+∈≠,()()()11x g x b x xe b R x=---∈(1)讨论()f x 的单调性;(2)当1a =时,若关于x 的不等式()()2f x g x +≤-恒成立,求b 取值范围.类型三:参变分离后零点设而不求例7:已知函数()ln f x x x x =+,若k Z ∈,且()1f x k x <-对于任意1x >恒成立,求k 的最大值.解:恒成立不等式()minln ln ,111f x x x x x x x k k x x x ++⎛⎫<=< ⎪---⎝⎭,令()ln 1x x x g x x +=-,则()()2ln 21x x g x x --'=-,考虑分子()ln 2,h x x x =-- ()110h x x'=->,()h x 在()1,+∞单调递增.()()31ln 30,42ln 20h h =-<=->由零点存在定理,()3,4b ∃∈,使得()0h b =.所以()1,x b ∈,()()00h x g x '<⇒<,同理()(),,0x b g x '∈+∞>,所以()g x 在 ()1,b 单调递减,在(),b +∞单调递增.()()min ln 1b b bg x g b b +==-,因为()0h b =即ln 20ln 2b b b b --=⇒=-,()()()23,4,1b b b g b b b +-==∈-所以,k b <得max 3k =变式1:(理)已知函数().x ln x eaxx f x +-=(2)当0>x 时,()e x f -≤,求a 的取值范围.题型三:无法参变分离的恒成立问题类型一:切线法例8:若[)20,,10x x e ax x ∈+∞---≥,求a 的取值范围.类型二:赋值法例9:已知实数0a ≠,设函数()ln 1,0f x a x x x =++>.(1)当34a =-时,求函数()f x 的单调区间; (2)对于任意21,e ⎡⎫+∞⎪⎢⎣⎭均有()2x f x a ≤,求a 的取值范围. 解析:(1)当34a =-时,3()ln 1,04f x x x x =-++>. 3(12)(21()42141x x f 'x x x x x++=-=++ 所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得0a <≤当04a <≤时,()2f x a≤等价于22ln 0x a a --≥.令1t a=,则t ≥.设()22ln ,g t t x t =≥,则()2ln g t g x ≥=.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤则()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-=.故所以,()(1)0p x p ≥= .因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,1()1g t g x ⎛+= ⎝.令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫⎪⎝⎭.由(i )得11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭.所以,()<0q x . 因此1()10g t g x ⎛+=>⎝.由(i )(ii )得对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2x f x a.综上所述,所求a 的取值范围是⎛ ⎝⎦题型四:零点问题类型一:利用单调性与零点存在定理讨论零点个数 例10:已知函数()()31+ln .4f x x axg x x =+=-,(2)用{}min ,m n 表示,m n 中最小值,设函数()()(){}()min ,0h x f x g x x =>讨论()h x 零点个数.解:(2)当(1,)x ∈+∞时,()ln 0g x x =-<,从而()min{(),()}()0h x f x g x g x =<≤,∴()h x 在(1,)+∞无零点.当x =1时,若54a -≥,则5(1)04f a =+≥,(1)min{(1),(1)}(1)0h fg g ===, 故x =1是()h x 的零点;若54a <-,则5(1)04f a =+<,(1)min{(1),(1)}(1)0h f g f ==<,故x =1不是()h x 的零点.当(0,1)x ∈时,()ln 0g x x =->,所以只需考虑()f x 在(0,1)的零点个数. (ⅰ)若3a -≤或0a ≥,则2()3f x x a '=+在(0,1)无零点,故()f x 在(0,1)单调,而1(0)4f =,5(1)4f a =+,所以当3a -≤时,()f x 在(0,1)有一个零点; 当a ≥0时,()f x 在(0,1)无零点.(ⅱ)若30a -<<,则()f x 在(01)单调递增,故当x ()f x 取的最小值,最小值为f 14.①若f >0,即34-<a <0,()f x 在(0,1)无零点.②若f =0,即34a =-,则()f x 在(0,1)有唯一零点;③若f <0,即334a -<<-,由于1(0)4f =,5(1)4f a =+, 所以当5344a -<<-时,()f x 在(0,1)有两个零点; 当534a -<≤-时,()f x 在(0,1)有一个零点.综上,当34a >-或54a <-时,()h x 由一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点.类型二:±∞方向上的函数值分析例11:已知函数()()22.x xf x ae a e x =+--若()f x 有两个零点,求a 取值范围.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点. (ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+.①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln 1n a ⎛⎫>+⎪⎝⎭,则()()000032ln 10n nf n e ae n f a ⎛⎫⎛⎫>-->+> ⎪ ⎪⎝⎭⎝⎭, 因此()f x 在(ln ,)a -+∞有一个零点.综上,a 的取值范围为(0,1).总结:若()01,ln 0a f a <<-<,要证明()f x 有两个零点,结合零点存在定理,分别在a 的左右两侧,这两个点的函数值()f x 都大于0,这时候需要我们对函数进行适当地放缩,化简,以便取值.先分析当x →-∞,2,x x ae ae 虽然为正,但是对式子影响不大,因此可以大胆的舍掉,得出()2xf x x e >--,显然我们对于右侧这个式子观察,就容易得出一个足够小的x (如1x =-),使得式子大于0了.再分析当x →+∞,我们可以把x ae 这个虽然是正数,但贡献比较小的项舍掉来简化运算,得到()()2xxf x eaex >--,显然当x 足够大,就可以使()2x ae -大于任何正数.那么把它放缩成多少才可以使得x e 的倍数大于x 呢?由常用的不等式1x e x x ≥+>,因此只需要使得21x ae ->即3ln x a >(如3ln 1x a=+)就可以了.题型五:极值点偏移类型一:标准极值点偏移例13:已知函数()()()221x f x x e a x =-+-有两个零点1,2x x ,证明12 2.x x +<解: 不妨设12x x <,由(Ⅰ)知12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,又()f x 在(,1)-∞上单调递减,所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<.由于222222(2)(1)x f x x e a x --=-+-, 而22222()(2)(1)0xf x x e a x =-+-=,所以222222(2)(2)x x f x x ex e --=---.设2()(2)xx g x xex e -=---,则2'()(1)()x x g x x e e -=--.所以当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <. 从而22()(2)0g x f x =-<,故122x x +<.类型二:推广极值点偏移例14:已知()()()12ln ,f x x x f x f x ==,求证121x x +<. 解:我们可以发现12,x x 不一定恒在12x =两侧,因此需要分类讨论: (1)若12102x x <<<,则1211122x x +<+=,该不等式显然成立; (2)若121012x x <<<<,令()()()()()1ln 1ln 1g x f x f x x x x x =--=---102x <<,故()()()()12ln ln 12,01x g x x x g x x x -'''=+-+=>-,()g x '在10,2⎛⎫ ⎪⎝⎭上单调递增,当0x →时,()1;22ln 202g x g ⎛⎫''→-∞=-> ⎪⎝⎭.010,2x ⎛⎫∃∈ ⎪⎝⎭使()00g x '=即()g x 在()00,x 上单调递减,在01,2x ⎛⎫ ⎪⎝⎭上单调递增,又0x →时,()0g x →,且102g ⎛⎫=⎪⎝⎭,故()0g x <,即()()1f x f x <-对10,2x ⎛⎫∈ ⎪⎝⎭成立,得证.题型六:双变量问题类型一:齐次划转单变量例15:已知函数()()1ln 1a x f x x x -=-+()2a ≤.设,m n R +∈,且m n ≠,求证ln ln 2m n m nm n -+<-. 解:设m n >,证明原不等式成立等价于证明()2ln m n mm n n-<+成立,即证明21ln 1m m n m n n⎛⎫- ⎪⎝⎭<+成立.令m t n =,1t >,即证()()21ln 01t g t t t -=->+.由(1)得,()g t 在()0,+∞上单调递增,故()()10g t g >=,得证.变式1:对数函数()x f 过定点⎪⎭⎫ ⎝⎛21,e P ,函数()()()为常数m ,n x f m n x g '-=,()()的导函数为其中x f x f '.(1)讨论()x g 的单调性;(2)若对于()+∞∈∀,x 0有()m n x g -≤恒成立,且()()n x x g x h -+=2在()2121x x x ,x x ≠=处的导数相等,求证:()()22721ln x h x h ->+.解:(2)因为()1g n m =-,而()0,x ∀∈+∞有()()1g x n m g ≤-=恒成立,知()g x 当1x =时有最大值()1g ,有(1)知必有1m =.∴()()()11ln ,22ln ,g x n x h x g x x n x x x x=--=+-=-- 依题意设()()211122221120,1120k x x h x h x k k x x ⎧-+-=⎪⎪''==⎨⎪-+-=⎪⎩∴12111x x +=121212+=4x x x x x x ⇒≥>∴()()()()121212*********+ln ln 21ln h x h x x x x x x x x x x x ⎛⎫+=-+-+=-- ⎪⎝⎭令()124,21ln t x x t t t ϕ=>=--,()()1204t t tϕ'=->> ∴()t ϕ在4t >单调递增,∴()()472ln 2t ϕϕ>=-类型二:构造相同表达式转变单变量例16:已知,m n 是正整数,且1m n <<,证明()()11.nmm n +>+解:两边同时取对数,证明不等式成立等价于证明()()ln 1ln 1n m m n +>+,即证明()()ln 1ln 1m n m n ++>,构造函数()()ln 1x f x x+=,()()2ln 11xx x f x x -++'=,令()()ln 11x g x x x =-++,()()()22110111x g x x x x -'=-=<+++,故()()00g x g <=,故()0f x '<,结合1,m n <<知()()f m f n >类型三:方程消元转单变量例17:已知()ln xf x x=与()g x ax b =+,两交点的横坐标分别为1,2x x ,12x x ≠,求证:()()12122x x g x x ++>解:依题意11211112222222ln ln ln ln x ax b x x ax bx x x ax bx ax b x ⎧=+⎪⎧=+⎪⎪⇒⎨⎨=+⎪⎪⎩=+⎪⎩,相减得: ()()()12121212ln ln x x a x x x x b x x -=+-+-,化简得()()121212lnx x a x x b x x ++=-,()()()()()()112121121212121122221ln ln 1x x x x x x x x g x x x x a x x b x x x x x x ++++=+++==⎡⎤⎣⎦-- 设12x x >,令121x t x =>,()()()12122112ln 2ln 011t t x x g x x t t t t -+++>⇔>⇔->-+ 再求导分析单调性即可.变式1:已知函数()1++=ax x ln x f 有两个零点21x ,x .()10a -<<(2)记()x f 的极值点为0x ,求证:()0212x ef x x >+.变式2:设函数()()3211232xf x ex kx kx =--+. 若()f x 存在三个极值点123,,x x x ,且123x x x <<,求k 范围,证明1322x x x +>.变式3:已知函数()122ln 21x ef x a x x x-⎛⎫=++-- ⎪⎝⎭在定义域()0,2内有两个极值点.(1)求实数a 的取值范围;(2)设12,x x 是()f x 两个极值点,求证12ln ln ln 0x x a ++>.类型四:利用韦达定理转单变量例18:已知()()21ln 02f x x x a x a =-+>,若()f x 存在两极值点1,2x x , 求证:()()1232ln 24f x f x --+>.解:()21,a x x af x x x x-+'=-+=由韦达定理12121,x x x x a +==1140,4a a ∆=->< ()()()()()212121212121+2ln 2f x f x x x x x x x a x x ⎡⎤=+--++⎣⎦ ()11121ln ln 22a a a a a a =--+=--令()()11ln ,0,ln 024g a a a a a g a a '=--<<=<,()g a 在10,4⎛⎫⎪⎝⎭上单调递减,故()132ln 244g a g --⎛⎫>=⎪⎝⎭. 变式1:已知函数().R a ,x ax x ln x f ∈-+=22(2)若n ,m 是函数()x f 的两个极值点,且n m <,求证:.mn 1>方法二:变式2:已知函数()213ln 222f x x ax x =+-+()0a ≥. (1)讨论函数()f x 的极值点个数;(2)若()f x 有两个极值点12,x x ,证明()()110f x f x +<.题型六:不等式问题类型一:直接构造函数解决不等式问题例19:当()0,1x ∈时,证明:()()221ln 1x x x ++<.解:令()()()221ln 1f x x x x =++-,则()00f =,而()()()()2ln 1ln 12,00f x x x x f ''=+++-=,当()0,1x ∈时,有()ln 1x x +<,故()()()ln 12222ln 10111x f x x x x x x+''=+-=+-<⎡⎤⎣⎦+++, ()f x '在()0,1上递减,即()()00f x f ''<=,从而()f x 在()0,1递减,()()00f x f ≤=,原不等式得证.变式1:已知函数()()()R a ex x ln x a x f ∈+-=1.(1)求函数()x f 在点1=x 处的切线方程;(2)若不等式()0≤-x e x f 对任意的[)+∞∈,x 1恒成立,求实数a 的取值范围解:(2)令()()()()1ln 1,x xg x f x e a x x ex e x =-=-+->()1ln 1xg x a x e e x ⎛⎫'=+-+- ⎪⎝⎭, ①若0a ≤,则()g x '在[)1,+∞上单调递减,又()10g '=.即()0g x '≤恒成立,所以()g x 在[)1,+∞上单调递减,又()10g =,所以()0g x ≤恒成立.②0a >,令()()1ln 1,x h x g x a x e e x ⎛⎫'==+-+- ⎪⎝⎭所以()211xh x a e x x ⎛⎫'=+-⎪⎝⎭,易知211x x +与x -e 在[)1,+∞上单调递减,所以()h x '在[)1,+∞上单调递减,()12h a e '=-. 当20a e -≤,即02ea <≤时,()0h x '≤在[)1,+∞上恒成立,则()h x 在[)1,+∞上单调递减,即()g x '在[)1,+∞上单调递减,又()10g '=,()0g x '≤恒成立,()g x 在[)1,+∞上单调递减,又()10g =,()0g x ≤恒成立.当20a e ->时,即2ea >时,()01,x ∃∈+∞使()00h x '=,所以()h x 在()01,x 上单调递增,此时()()10h x h >=,所以()0g x '>所以()g x 在()01,x 递增,得()()10g x g >=,不符合题意. 综上,实数a 的取值范围是2e a ≤. 变式2:(文)已知函数()()()().R a ,x a x g ,x ln x x f ∈-=+=11(1)求直线()x g y =与曲线()x f y =相切时,切点T 的坐标. (2)当()10,x ∈时,()()x f x g >恒成立,求a 的取值范围.解:(1)设切点坐标为()00x y ,,()1ln 1f x x x'=++,则()()000001ln 11ln 1x a x x x a x ⎧++=⎪⎨⎪+=-⎩,∴00012ln 0x x x -+=.令()12ln h x x x x=-+,∴()22210x x h x x -+'=-≤,∴()h x 在()0+∞,上单调递减, ∴()0h x =最多有一根.又∵()10h =,∴01x =,此时00y =,T 的坐标为(1,0).(2)当()0 1x ∈,时,()()g x f x >恒成立,等价于()1ln 01a x x x --<+对()0 1x ∈,恒成立. 令()()1ln 1a x h x x x -=-+,则()()()()2222111211x a x ah x x x x x +-+'=-=++,()10h =. ①当2a ≤,()1x ∈0,时,()22211210x a x x x +-+≥-+>, ∴()0h x '>,()h x 在()0 1x ∈,上单调递增,因此()0h x <. ②当2a >时,令()0h x '=得1211x a x a =-=-由21x >与121x x =得,101x <<.∴当()1 1x x ∈,时,()0h x '<,()h x 单调递减, ∴当()1 1x x ∈,时,()()10h x h >=,不符合题意; 综上所述得,a 的取值范围是(] 2-∞,.变式3:(文)已知函数().x x x ln x f 12---=(2)若存在实数m ,对于任意()∞+∈0x ,不等式()()()0212≤+-+x x m x f 恒成立,求实数m 的最小整数值.解:(2)法一:参变分离+二次局部求导+虚设零点变式4:(理)已知函数()()()R a x a eae x f xx∈-++=-22.(1)讨论()x f 的单调性;(2)当0≥x 时,()(),x cos a x f 2+≥求实数a 的取值范围.变式5:已知()1ln ,mf x x m x m R x-=+-∈. (1)当202e m <≤时,证明()21x e x xf x m >-+-.类型二:利用min max f g >证明不等式问题例20:设函数()1ln x xbe f x ae x x-=+曲线()y f x =在点()()1,1f 的切线方程为()12y e x =-+.(1)求,a b 值; (2)证明:()1f x >【解析】(1)函数()f x 的定义域为(0,)+∞,112()ln xx x x a b b f x ae x e e e x x x--=+-+. 由题意可得(1)2f =,(1)f e '=.1, 2.a b ==故(2)由(1)知12()ln xx f x e x e x -=+,从而()1f x >等价于2ln x x x xe e->-. 设函数()1g x x nx =,则'()1g x nx =.所以当1(0,)x e ∈时,()0g x '<;当1(,)x e ∈+∞时,()0g x '>.故()g x 在1(0,)e 单调递减,在1(,)e+∞单调递增,从而()g x 在(0,)+∞的最小值为11()g e e=-. 设函数2()xh x xee-=-,则'()(1)x h x e x -=-. 所以当(0,1)x ∈时()0h x '>;当(1,)x ∈+∞时,()0h x '<故()h x 在(0,1)单调递增, 在(1,)+∞单调递减,从而()h x 在(0,)+∞的最大值为1(1)h e=-.变式1. 已知函数()x ln a bx x f +=2的图像在点()()11f ,处的切线斜率为2+a .(1)讨论()x f 的单调性; (2)当20e a ≤<时,证明:()222-+<x e xx x f 解:(2)要证()222x f x x e x -<+,需证明22ln 2x a x e x x-<.令()ln 02a x e g x a x ⎛⎫=<≤ ⎪⎝⎭,则()()21ln a x g x x -'=, 当()0g x '>时,得0x e <<;当()0,g x '<得x e >. 所以()()max ag x g e e==. 令()()2220x e h x x x -=>,则()()2322x e x h x x--'=. 当()0h x '>时,得2x >;当()0h x '<时,得02x <<. 所以()()min 122h x h ==.因为02e a <≤,所以()max 12a g x e ==. 又2e ≠,所以22ln 2x a x e x x-<,即()222x f x x e x -<+得证.变式2:(理)已知函数()().ax ln axx f -=(1)求()x f 的极值;(2)若()012≤+-++m x e mx x ln e x x ,求正实数m 的取值范围.变式3:已知()1ln ,mf x x m x m R x-=+-∈. (2)当202e m <≤时,证明()21x e x xf x m >-+-.类型三:利用赋值法不等式问题例21:已知函数()2x xf x e e x -=--.(1)讨论()f x 的单调性;(2)设()()()24g x f x bf x =-,当0x >,()0g x >,求b 的最大值. (3)估计ln 2(精确小数点后三位).解:因为()()()()()2224484xx x x g x f x bf x e e b e e b x --=-=---+-所以()()()()()2222422222xx x x x x x xg x ee b e e b e e e e b ----⎡⎤'=+-++-=+-+-+⎣⎦①当2b ≤时,()0,g x '≥等号仅当0x =时成立,所以()g x 在R 上单调递增,而()00g =,所以对于任意()0,0x g x >>.②当2b >,若x 满足222x x e e b -<+<-,即(20ln 12x b b b <<-+-时,()0g x '<,而()00g =,因此当(20ln 12x b b b <≤--时,()0g x <,综上最大为2.(3)由(2)知,(()3221ln 22g b =-+-,当2b =时,(36ln 20,ln 20.69282g =->>>;当14b =+时,(ln 1b -+=(()32ln 202g =--<,18ln 20.69328+<<,所以近似值为0.693类型四:利用放缩法构造中间不等式例22:若0x >,证明:()ln 1.1x x xx e +>- 解:转化成整式()()2ln 11xx e x +->.令()()()2ln 11xf x x e x =+--,则()()1ln 121x xe f x e x x x -'=++-+()()()21ln 1211x x x e x e f x e x x x +''=+++-++.由()+1ln 11x x e x x x ≥+≥+,, 得()()()()3222112120,11x x x x f x x x x +++''≥++-=>++()()00,f x f ''≥=故()()00f x f ≥=,得证.变式1:(2020河南鹤壁市高三期末)已知函数()21xf x e kx =--,()()()2ln 1g x k x x k R =+-∈.(2)若不等式()()0f x g x +≥对任意0x ≥恒成立,求实数k 范围.变式2:(2020年河南六市联考)已知函数()()2ln 1sin 1f x x x =+++,()1ln g x ax b x =-- 证明:当1,x >-()()2sin 22xf x x x e<++类型五:与数列相关的不等式例23:设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,求m 的最小值.解:(2)由(1)知当(1,)x ∈+∞时,1ln 0x x -->令112n x =+得11ln(1)22n n +<,从而 221111111ln(1)ln(1)ln(1)112222222n n n ++++⋅⋅⋅++<++⋅⋅⋅+=-<故2111(1)(1)(1)222n e ++⋅⋅⋅+<而23111(1)(1)(1)2222+++>,所以m 的最小值为3.变式1:(理)已知函数()()()021>+-+=a ax xx ln x f .(1)若不等式()0≥x f 对于任意的0≥x 恒成立,求实数a 的取值范围;(2)证明:().N n ln ln ln ln n n n *-∈⎪⎭⎫⎝⎛->⎪⎪⎭⎫ ⎝⎛-++⋅⋅⋅+++1212121279353变式1:(2020河南开封二模)已知函数()1xf x e x =--.(1)证明()0f x >;(2)设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, 求m 的最小值.类型六:与切、割线相关的不等式例24:已知函数()()2901xf x a ax =>+ (1)求()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值;(2)若直线2y x a =-+为曲线()y f x =的切线,求实数的值;(3)当2a =时,设12141,,22x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,且121414x x x +⋅⋅⋅+=,若不等式()()()1214f x f x f x λ+⋅⋅⋅+≤恒成立,求实数λ的最小值.解:证明()29412xf x x x=≤-++,即32281040x x x -+-+≥, 令()3228104F x x x x =-+-+,()261610F x x x '=-+-,所以()F x在1,12⎛⎫⎪⎝⎭,5,23⎛⎫ ⎪⎝⎭递减,在51,3⎛⎫ ⎪⎝⎭递增.而()50,203F F ⎛⎫>> ⎪⎝⎭,表明不等式()29412xf x x x =≤-++成立.所以()()()12141244+442n f x f x f x x x x ++⋅⋅⋅+≤-+-+⋅⋅⋅-+=, 等号在全部为1时成立,所以λ最小值为42。

(完整word版)高考数学导数压轴题7大题型总结

(完整word版)高考数学导数压轴题7大题型总结

高考数学导数压轴题7大题型总结
北京八中
高考数学导数压轴题7大题型总结
高考导数压轴题考察的是一种综合能力,其考察内容方法远远高于课本,其涉及基本概念主要是:切线,单调性,非单调,极值,极值点,最值,恒成立等等。

导数解答题是高考数学必考题目,今天就总结导数7大题型,让你在高考数学中多拿一分,平时基础好的同学逆袭140也不是问题
01导数单调性、极值、最值的直接应用
02交点与根的分布
03不等式证明
(一)做差证明不等式
(二)变形构造函数证明不等式
(三)替换构造不等式证明不等式
04不等式恒成立求字母范围(一)恒成立之最值的直接应用
(二)恒成立之分离参数
(三)恒成立之讨论字母范围
05函数与导数性质的综合运用
06导数应用题
07导数结合三角函数。

高考压轴题:导数题型及解题方法总结很全

高考压轴题:导数题型及解题方法总结很全

高考压轴题:导数题型及解题方法(自己总结供参考)一.切线问题题型1 求曲线)(x f y =在0x x =处的切线方程。

方法:)(0x f '为在0x x =处的切线的斜率。

题型2 过点),(b a 的直线与曲线)(x f y =的相切问题。

方法:设曲线)(x f y =的切点))(,(00x f x ,由b x f x f a x -='-)()()(000求出0x ,进而解决相关问题。

注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。

例 已知函数f (x )=x 3﹣3x .(1)求曲线y=f (x )在点x=2处的切线方程;(答案:0169=--y x )(2)若过点A )2)(,1(-≠m m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围、(提示:设曲线)(x f y =上的切点()(,00x f x );建立)(,00x f x 的等式关系。

将问题转化为关于m x ,0的方程有三个不同实数根问题。

(答案:m 的范围是()2,3--)题型3 求两个曲线)(x f y =、)(x g y =的公切线。

方法:设曲线)(x f y =、)(x g y =的切点分别为()(,11x f x )。

()(,22x f x );建立21,x x 的等式关系,12112)()(y y x f x x -='-,12212)()(y y x f x x -='-;求出21,x x ,进而求出切线方程。

解决问题的方法是设切点,用导数求斜率,建立等式关系。

例 求曲线2x y =与曲线x e y ln 2=的公切线方程。

(答案02=--e y x e )二.单调性问题题型1 求函数的单调区间。

求含参函数的单调区间的关键是确定分类标准。

分类的方法有:(1)在求极值点的过程中,未知数的系数与0的关系不定而引起的分类;(2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与0的关系不定);(3) 在求极值点的过程中,极值点的大小关系不定而引起的分类;(4) 在求极值点的过程中,极值点与区间的关系不定而引起分类等。

高考导数压轴题分类总结

高考导数压轴题分类总结

导数常考题型总结一、导数单调性、极值、最值的直接应用1.(切线)设函数a x x f -=2)(.(1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值;(2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21.解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得33±=x .)(x g '的变化情况如下表:x0)33,0(33)1,33(1)(x g '-+)(x g 0↘极小值↗0所以当33=x 时,)(x g 有最小值932)33(-=g .(2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='=曲线)(x f y =在点P处的切线方程为)(2)2(1121x x x a x y -=--.令0=y ,得12122x a x x +=,∴12111211222x x a x x a x x x -=-+=-∵a x >1,∴02121<-x x a ,即12x x <.又∵1122x a x ≠,∴a x a x x a x x a x x =⋅>+=+=11111212222222所以a x x >>21.2.(2009天津理20,极值比较讨论)已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R ⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率;w.w.w.k.s.5.u.c.o.m⑵当23a ≠时,求函数()f x 的单调区间与极值.解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。

导数压轴题题型梳理归纳

导数压轴题题型梳理归纳

导数题型梳理归纳题型一:含参分类讨论 类型一:主导函数为一次型例1:已知函数()ln f x ax a x =--,且()0f x ≥.求a 的值 解:()1ax f x x-'=.当0a ≤时,()0f x '<,即()f x 在()0,+∞上单调递减,所以当01x ∀>时,()()010f x f <=,与()0f x ≥恒成立矛盾.当0a >时,因为10x a <<时()0f x '<,当1x a>时()0f x '>,所以()min 1f x f a ⎛⎫= ⎪⎝⎭,又因为()1ln10f a a =--=,所以11a =,解得1a =类型二:主导函数为二次型例2: 已知函数()()320f x x kx x k =-+<.讨论()f x 在[],k k -上的单调性. 解:()f x 的定义域为R ,()()23210f x x kx k '=-+<,其开口向上,对称轴3k x =,且过()0,1,故03kk k <<<-,明显不能分解因式,得2412k ∆=-.(1)当24120k ∆=-≤时,即0k ≤<时,()0f x '≥,所以()f x 在[],k k -上单调递增;(2)当24120k ∆=->时,即k <令()23210f x x kx '=-+=,解得:12x x ==,因为()()210,010f k k f ''=+>=>,所以两根均在[],0k 上.因此,结合()f x '图像可得:()f x 在,,33k k k k ⎡⎡⎤+-⎢⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦上单调递增,在⎢⎥⎣⎦上单调递减.类型三:主导函数为超越型例3:已知函数()cos xf x e x x =-.求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最值. 解:定义域0,2π⎡⎤⎢⎥⎣⎦,()()cos sin 1x f x e x x '=--,令()()cos sin 1xh x e x x =--,则()()cos sin sin cos 2sin .xx h x e x x x x e x '=---=-当0,2x π⎡⎤∈⎢⎥⎣⎦,可得()0h x '≤,即()h x 在0,2π⎡⎤⎢⎥⎣⎦递减,可得()()()000h x h f '≤==,则()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦递减,所以()()()max01,.22f x f f x f ππ⎛⎫====- ⎪⎝⎭类型四:复杂含参分类讨论例4:已知函数()()33f x x x a a R =+-∈.若()f x 在[]1,1-上的最大值和最小值分别记为()(),M a m a ,求()()M a m a -.解:()33333,333,x x a x a f x x x a x x a x a ⎧+-≥⎪=+-=⎨-+<⎪⎩,()2233,33,x x af x x x a⎧+≥⎪'=⎨-<⎪⎩ ①当1a ≤-时,有x a ≥,故()333f x x x a =+-,所以()f x 在()1,1-上是增函数,()()()()143,143M a f a m a f a ==-=-=--,故()()8M a m a -=.②当11a -<<时,若()()3,1,33x a f x x x a ∈=+-,在(),1a 上是增函数;若()1,x a ∈-,()333f x x x a =-+,在()1,a -上是减函数,()()(){}()()3max 1,1,M a f f m a f a a =-==,由于()()1162f f a --=-+因此当113a -<≤时,()()334M a m a a a -=--+;当113a <<时,()()332M a m a a a -=-++.③当1a ≥时,有x a ≤,故()333f x x x a =-+,此时()f x 在()1,1-上是减函数,因此()()()()123,123M a f a m a f a =-=+==-+,故()()4M a m a -=.题型二:利用参变分离法解决的恒成立问题类型一:参变分离后分母跨0例5:已知函数()()()242,22xf x x xg x e x =++=+,若2x ≥-时,()()f x kg x ≤,求k 的取值范围.解:由题意()24221xx x ke x ++≤+,对于任意的2x ≥-恒成立.当1x =-,上式恒成立,故k R ∈;当1x >-,上式化为()24221x x x k e x ++≥+,令()()()2421,21x x x h x x e x ++=>-+ ()()()22+221x xxe x h x e x -'=+,所以()h x 在0x =处取得最大值,()01k h ≥= 当21x -≤<-时,上式化为()24221x x x k e x ++≤+,()h x 单调递增,故()h x 在2x =-处取得最小值,()22k h e ≤-=.综上,k 的取值范围为21,e ⎡⎤⎣⎦.类型二:参变分离后需多次求导例6:已知函数()()()()212ln ,f x a x x a R =---∈对任意的()10,,02x f x ⎛⎫∈> ⎪⎝⎭恒成立,求a 的最小值.解:即对12ln 0,,221xx a x ⎛⎫∈>-⎪-⎝⎭恒成立. 令()2ln 12,0,12x l x x x ⎛⎫=-∈ ⎪-⎝⎭,则()()()()222212ln 2ln 211x x x x x l x x x --+-'=-=-- 再令()()()222121122ln 2,0,,02x m x x x m x x x x x --⎛⎫'=+-∈=-+=< ⎪⎝⎭()m x 在10,2⎛⎫ ⎪⎝⎭上为减函数,于是()122ln 202m x m ⎛⎫>=->⎪⎝⎭,从而,()0l x '>,于是()l x 在10,2⎛⎫ ⎪⎝⎭上为增函数,()124ln 22l x l ⎛⎫<=- ⎪⎝⎭,故要2ln 21xa x >--恒成立,只要[)24ln 2,a ∈-+∞,即a 的最小值24ln 2-. 变式1:已知函数()()1ln ,0x f x x a R a ax -=+∈≠,()()()11x g x b x xe b R x=---∈(1)讨论()f x 的单调性;(2)当1a =时,若关于x 的不等式()()2f x g x +≤-恒成立,求b 取值范围.类型三:参变分离后零点设而不求例7:已知函数()ln f x x x x =+,若k Z ∈,且()1f x k x <-对于任意1x >恒成立,求k 的最大值.解:恒成立不等式()minln ln ,111f x x x x x x x k k x x x ++⎛⎫<=< ⎪---⎝⎭,令()ln 1x x x g x x +=-,则()()2ln 21x x g x x --'=-,考虑分子()ln 2,h x x x =-- ()110h x x'=->,()h x 在()1,+∞单调递增.()()31ln 30,42ln 20h h =-<=->由零点存在定理,()3,4b ∃∈,使得()0h b =.所以()1,x b ∈,()()00h x g x '<⇒<,同理()(),,0x b g x '∈+∞>,所以()g x 在 ()1,b 单调递减,在(),b +∞单调递增.()()min ln 1b b bg x g b b +==-,因为()0h b =即ln 20ln 2b b b b --=⇒=-,()()()23,4,1b b b g b b b +-==∈-所以,k b <得max 3k =变式1:(理)已知函数().x ln x eaxx f x +-=(2)当0>x 时,()e x f -≤,求a 的取值范围.题型三:无法参变分离的恒成立问题类型一:切线法例8:若[)20,,10x x e ax x ∈+∞---≥,求a 的取值范围.类型二:赋值法例9:已知实数0a ≠,设函数()ln 1,0f x a x x x =++>.(1)当34a =-时,求函数()f x 的单调区间; (2)对于任意21,e ⎡⎫+∞⎪⎢⎣⎭均有()2x f x a ≤,求a 的取值范围. 解析:(1)当34a =-时,3()ln 1,04f x x x x =-++>. 3(12)(21()42141x x f 'x x x x x++=-=++ 所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得0a <≤当04a <≤时,()2f x a≤等价于22ln 0x a a --≥.令1t a=,则t ≥.设()22ln ,g t t x t =≥,则()2ln g t g x ≥=.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤则()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-=.故所以,()(1)0p x p ≥= .因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,1()1g t g x ⎛+= ⎝.令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫⎪⎝⎭.由(i )得11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭.所以,()<0q x . 因此1()10g t g x ⎛+=>⎝.由(i )(ii )得对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2x f x a.综上所述,所求a 的取值范围是⎛ ⎝⎦题型四:零点问题类型一:利用单调性与零点存在定理讨论零点个数 例10:已知函数()()31+ln .4f x x axg x x =+=-,(2)用{}min ,m n 表示,m n 中最小值,设函数()()(){}()min ,0h x f x g x x =>讨论()h x 零点个数.解:(2)当(1,)x ∈+∞时,()ln 0g x x =-<,从而()min{(),()}()0h x f x g x g x =<≤,∴()h x 在(1,)+∞无零点.当x =1时,若54a -≥,则5(1)04f a =+≥,(1)min{(1),(1)}(1)0h fg g ===, 故x =1是()h x 的零点;若54a <-,则5(1)04f a =+<,(1)min{(1),(1)}(1)0h f g f ==<,故x =1不是()h x 的零点.当(0,1)x ∈时,()ln 0g x x =->,所以只需考虑()f x 在(0,1)的零点个数. (ⅰ)若3a -≤或0a ≥,则2()3f x x a '=+在(0,1)无零点,故()f x 在(0,1)单调,而1(0)4f =,5(1)4f a =+,所以当3a -≤时,()f x 在(0,1)有一个零点; 当a ≥0时,()f x 在(0,1)无零点.(ⅱ)若30a -<<,则()f x 在(01)单调递增,故当x ()f x 取的最小值,最小值为f 14.①若f >0,即34-<a <0,()f x 在(0,1)无零点.②若f =0,即34a =-,则()f x 在(0,1)有唯一零点;③若f <0,即334a -<<-,由于1(0)4f =,5(1)4f a =+, 所以当5344a -<<-时,()f x 在(0,1)有两个零点; 当534a -<≤-时,()f x 在(0,1)有一个零点.综上,当34a >-或54a <-时,()h x 由一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点.类型二:±∞方向上的函数值分析例11:已知函数()()22.x xf x ae a e x =+--若()f x 有两个零点,求a 取值范围.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点. (ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+.①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln 1n a ⎛⎫>+⎪⎝⎭,则()()000032ln 10n nf n e ae n f a ⎛⎫⎛⎫>-->+> ⎪ ⎪⎝⎭⎝⎭, 因此()f x 在(ln ,)a -+∞有一个零点.综上,a 的取值范围为(0,1).总结:若()01,ln 0a f a <<-<,要证明()f x 有两个零点,结合零点存在定理,分别在a 的左右两侧,这两个点的函数值()f x 都大于0,这时候需要我们对函数进行适当地放缩,化简,以便取值.先分析当x →-∞,2,x x ae ae 虽然为正,但是对式子影响不大,因此可以大胆的舍掉,得出()2xf x x e >--,显然我们对于右侧这个式子观察,就容易得出一个足够小的x (如1x =-),使得式子大于0了.再分析当x →+∞,我们可以把x ae 这个虽然是正数,但贡献比较小的项舍掉来简化运算,得到()()2xxf x eaex >--,显然当x 足够大,就可以使()2x ae -大于任何正数.那么把它放缩成多少才可以使得x e 的倍数大于x 呢?由常用的不等式1x e x x ≥+>,因此只需要使得21x ae ->即3ln x a >(如3ln 1x a=+)就可以了.题型五:极值点偏移类型一:标准极值点偏移例13:已知函数()()()221x f x x e a x =-+-有两个零点1,2x x ,证明12 2.x x +<解: 不妨设12x x <,由(Ⅰ)知12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,又()f x 在(,1)-∞上单调递减,所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<.由于222222(2)(1)x f x x e a x --=-+-, 而22222()(2)(1)0xf x x e a x =-+-=,所以222222(2)(2)x x f x x ex e --=---.设2()(2)xx g x xex e -=---,则2'()(1)()x x g x x e e -=--.所以当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <. 从而22()(2)0g x f x =-<,故122x x +<.类型二:推广极值点偏移例14:已知()()()12ln ,f x x x f x f x ==,求证121x x +<. 解:我们可以发现12,x x 不一定恒在12x =两侧,因此需要分类讨论: (1)若12102x x <<<,则1211122x x +<+=,该不等式显然成立; (2)若121012x x <<<<,令()()()()()1ln 1ln 1g x f x f x x x x x =--=---102x <<,故()()()()12ln ln 12,01x g x x x g x x x -'''=+-+=>-,()g x '在10,2⎛⎫ ⎪⎝⎭上单调递增,当0x →时,()1;22ln 202g x g ⎛⎫''→-∞=-> ⎪⎝⎭.010,2x ⎛⎫∃∈ ⎪⎝⎭使()00g x '=即()g x 在()00,x 上单调递减,在01,2x ⎛⎫ ⎪⎝⎭上单调递增,又0x →时,()0g x →,且102g ⎛⎫=⎪⎝⎭,故()0g x <,即()()1f x f x <-对10,2x ⎛⎫∈ ⎪⎝⎭成立,得证.题型六:双变量问题类型一:齐次划转单变量例15:已知函数()()1ln 1a x f x x x -=-+()2a ≤.设,m n R +∈,且m n ≠,求证ln ln 2m n m nm n -+<-. 解:设m n >,证明原不等式成立等价于证明()2ln m n mm n n-<+成立,即证明21ln 1m m n m n n⎛⎫- ⎪⎝⎭<+成立.令m t n =,1t >,即证()()21ln 01t g t t t -=->+.由(1)得,()g t 在()0,+∞上单调递增,故()()10g t g >=,得证.变式1:对数函数()x f 过定点⎪⎭⎫ ⎝⎛21,e P ,函数()()()为常数m ,n x f m n x g '-=,()()的导函数为其中x f x f '.(1)讨论()x g 的单调性;(2)若对于()+∞∈∀,x 0有()m n x g -≤恒成立,且()()n x x g x h -+=2在()2121x x x ,x x ≠=处的导数相等,求证:()()22721ln x h x h ->+.解:(2)因为()1g n m =-,而()0,x ∀∈+∞有()()1g x n m g ≤-=恒成立,知()g x 当1x =时有最大值()1g ,有(1)知必有1m =.∴()()()11ln ,22ln ,g x n x h x g x x n x x x x=--=+-=-- 依题意设()()211122221120,1120k x x h x h x k k x x ⎧-+-=⎪⎪''==⎨⎪-+-=⎪⎩∴12111x x +=121212+=4x x x x x x ⇒≥>∴()()()()121212*********+ln ln 21ln h x h x x x x x x x x x x x ⎛⎫+=-+-+=-- ⎪⎝⎭令()124,21ln t x x t t t ϕ=>=--,()()1204t t tϕ'=->> ∴()t ϕ在4t >单调递增,∴()()472ln 2t ϕϕ>=-类型二:构造相同表达式转变单变量例16:已知,m n 是正整数,且1m n <<,证明()()11.nmm n +>+解:两边同时取对数,证明不等式成立等价于证明()()ln 1ln 1n m m n +>+,即证明()()ln 1ln 1m n m n ++>,构造函数()()ln 1x f x x+=,()()2ln 11xx x f x x -++'=,令()()ln 11x g x x x =-++,()()()22110111x g x x x x -'=-=<+++,故()()00g x g <=,故()0f x '<,结合1,m n <<知()()f m f n >类型三:方程消元转单变量例17:已知()ln xf x x=与()g x ax b =+,两交点的横坐标分别为1,2x x ,12x x ≠,求证:()()12122x x g x x ++>解:依题意11211112222222ln ln ln ln x ax b x x ax bx x x ax bx ax b x ⎧=+⎪⎧=+⎪⎪⇒⎨⎨=+⎪⎪⎩=+⎪⎩,相减得: ()()()12121212ln ln x x a x x x x b x x -=+-+-,化简得()()121212lnx x a x x b x x ++=-,()()()()()()112121121212121122221ln ln 1x x x x x x x x g x x x x a x x b x x x x x x ++++=+++==⎡⎤⎣⎦-- 设12x x >,令121x t x =>,()()()12122112ln 2ln 011t t x x g x x t t t t -+++>⇔>⇔->-+ 再求导分析单调性即可.变式1:已知函数()1++=ax x ln x f 有两个零点21x ,x .()10a -<<(2)记()x f 的极值点为0x ,求证:()0212x ef x x >+.变式2:设函数()()3211232xf x ex kx kx =--+. 若()f x 存在三个极值点123,,x x x ,且123x x x <<,求k 范围,证明1322x x x +>.变式3:已知函数()122ln 21x ef x a x x x-⎛⎫=++-- ⎪⎝⎭在定义域()0,2内有两个极值点.(1)求实数a 的取值范围;(2)设12,x x 是()f x 两个极值点,求证12ln ln ln 0x x a ++>.类型四:利用韦达定理转单变量例18:已知()()21ln 02f x x x a x a =-+>,若()f x 存在两极值点1,2x x , 求证:()()1232ln 24f x f x --+>.解:()21,a x x af x x x x-+'=-+=由韦达定理12121,x x x x a +==1140,4a a ∆=->< ()()()()()212121212121+2ln 2f x f x x x x x x x a x x ⎡⎤=+--++⎣⎦ ()11121ln ln 22a a a a a a =--+=--令()()11ln ,0,ln 024g a a a a a g a a '=--<<=<,()g a 在10,4⎛⎫⎪⎝⎭上单调递减,故()132ln 244g a g --⎛⎫>=⎪⎝⎭. 变式1:已知函数().R a ,x ax x ln x f ∈-+=22(2)若n ,m 是函数()x f 的两个极值点,且n m <,求证:.mn 1>方法二:变式2:已知函数()213ln 222f x x ax x =+-+()0a ≥. (1)讨论函数()f x 的极值点个数;(2)若()f x 有两个极值点12,x x ,证明()()110f x f x +<.题型六:不等式问题类型一:直接构造函数解决不等式问题例19:当()0,1x ∈时,证明:()()221ln 1x x x ++<.解:令()()()221ln 1f x x x x =++-,则()00f =,而()()()()2ln 1ln 12,00f x x x x f ''=+++-=,当()0,1x ∈时,有()ln 1x x +<,故()()()ln 12222ln 10111x f x x x x x x+''=+-=+-<⎡⎤⎣⎦+++, ()f x '在()0,1上递减,即()()00f x f ''<=,从而()f x 在()0,1递减,()()00f x f ≤=,原不等式得证.变式1:已知函数()()()R a ex x ln x a x f ∈+-=1.(1)求函数()x f 在点1=x 处的切线方程;(2)若不等式()0≤-x e x f 对任意的[)+∞∈,x 1恒成立,求实数a 的取值范围解:(2)令()()()()1ln 1,x xg x f x e a x x ex e x =-=-+->()1ln 1xg x a x e e x ⎛⎫'=+-+- ⎪⎝⎭, ①若0a ≤,则()g x '在[)1,+∞上单调递减,又()10g '=.即()0g x '≤恒成立,所以()g x 在[)1,+∞上单调递减,又()10g =,所以()0g x ≤恒成立.②0a >,令()()1ln 1,x h x g x a x e e x ⎛⎫'==+-+- ⎪⎝⎭所以()211xh x a e x x ⎛⎫'=+-⎪⎝⎭,易知211x x +与x -e 在[)1,+∞上单调递减,所以()h x '在[)1,+∞上单调递减,()12h a e '=-. 当20a e -≤,即02ea <≤时,()0h x '≤在[)1,+∞上恒成立,则()h x 在[)1,+∞上单调递减,即()g x '在[)1,+∞上单调递减,又()10g '=,()0g x '≤恒成立,()g x 在[)1,+∞上单调递减,又()10g =,()0g x ≤恒成立.当20a e ->时,即2ea >时,()01,x ∃∈+∞使()00h x '=,所以()h x 在()01,x 上单调递增,此时()()10h x h >=,所以()0g x '>所以()g x 在()01,x 递增,得()()10g x g >=,不符合题意. 综上,实数a 的取值范围是2e a ≤. 变式2:(文)已知函数()()()().R a ,x a x g ,x ln x x f ∈-=+=11(1)求直线()x g y =与曲线()x f y =相切时,切点T 的坐标. (2)当()10,x ∈时,()()x f x g >恒成立,求a 的取值范围.解:(1)设切点坐标为()00x y ,,()1ln 1f x x x'=++,则()()000001ln 11ln 1x a x x x a x ⎧++=⎪⎨⎪+=-⎩,∴00012ln 0x x x -+=.令()12ln h x x x x=-+,∴()22210x x h x x -+'=-≤,∴()h x 在()0+∞,上单调递减, ∴()0h x =最多有一根.又∵()10h =,∴01x =,此时00y =,T 的坐标为(1,0).(2)当()0 1x ∈,时,()()g x f x >恒成立,等价于()1ln 01a x x x --<+对()0 1x ∈,恒成立. 令()()1ln 1a x h x x x -=-+,则()()()()2222111211x a x ah x x x x x +-+'=-=++,()10h =. ①当2a ≤,()1x ∈0,时,()22211210x a x x x +-+≥-+>, ∴()0h x '>,()h x 在()0 1x ∈,上单调递增,因此()0h x <. ②当2a >时,令()0h x '=得1211x a x a =-=-由21x >与121x x =得,101x <<.∴当()1 1x x ∈,时,()0h x '<,()h x 单调递减, ∴当()1 1x x ∈,时,()()10h x h >=,不符合题意; 综上所述得,a 的取值范围是(] 2-∞,.变式3:(文)已知函数().x x x ln x f 12---=(2)若存在实数m ,对于任意()∞+∈0x ,不等式()()()0212≤+-+x x m x f 恒成立,求实数m 的最小整数值.解:(2)法一:参变分离+二次局部求导+虚设零点变式4:(理)已知函数()()()R a x a eae x f xx∈-++=-22.(1)讨论()x f 的单调性;(2)当0≥x 时,()(),x cos a x f 2+≥求实数a 的取值范围.变式5:已知()1ln ,mf x x m x m R x-=+-∈. (1)当202e m <≤时,证明()21x e x xf x m >-+-.类型二:利用min max f g >证明不等式问题例20:设函数()1ln x xbe f x ae x x-=+曲线()y f x =在点()()1,1f 的切线方程为()12y e x =-+.(1)求,a b 值; (2)证明:()1f x >【解析】(1)函数()f x 的定义域为(0,)+∞,112()ln xx x x a b b f x ae x e e e x x x--=+-+. 由题意可得(1)2f =,(1)f e '=.1, 2.a b ==故(2)由(1)知12()ln xx f x e x e x -=+,从而()1f x >等价于2ln x x x xe e->-. 设函数()1g x x nx =,则'()1g x nx =.所以当1(0,)x e ∈时,()0g x '<;当1(,)x e ∈+∞时,()0g x '>.故()g x 在1(0,)e 单调递减,在1(,)e+∞单调递增,从而()g x 在(0,)+∞的最小值为11()g e e=-. 设函数2()xh x xee-=-,则'()(1)x h x e x -=-. 所以当(0,1)x ∈时()0h x '>;当(1,)x ∈+∞时,()0h x '<故()h x 在(0,1)单调递增, 在(1,)+∞单调递减,从而()h x 在(0,)+∞的最大值为1(1)h e=-.变式1. 已知函数()x ln a bx x f +=2的图像在点()()11f ,处的切线斜率为2+a .(1)讨论()x f 的单调性; (2)当20e a ≤<时,证明:()222-+<x e xx x f 解:(2)要证()222x f x x e x -<+,需证明22ln 2x a x e x x-<.令()ln 02a x e g x a x ⎛⎫=<≤ ⎪⎝⎭,则()()21ln a x g x x -'=, 当()0g x '>时,得0x e <<;当()0,g x '<得x e >. 所以()()max ag x g e e==. 令()()2220x e h x x x -=>,则()()2322x e x h x x--'=. 当()0h x '>时,得2x >;当()0h x '<时,得02x <<. 所以()()min 122h x h ==.因为02e a <≤,所以()max 12a g x e ==. 又2e ≠,所以22ln 2x a x e x x-<,即()222x f x x e x -<+得证.变式2:(理)已知函数()().ax ln axx f -=(1)求()x f 的极值;(2)若()012≤+-++m x e mx x ln e x x ,求正实数m 的取值范围.变式3:已知()1ln ,mf x x m x m R x-=+-∈. (2)当202e m <≤时,证明()21x e x xf x m >-+-.类型三:利用赋值法不等式问题例21:已知函数()2x xf x e e x -=--.(1)讨论()f x 的单调性;(2)设()()()24g x f x bf x =-,当0x >,()0g x >,求b 的最大值. (3)估计ln 2(精确小数点后三位).解:因为()()()()()2224484xx x x g x f x bf x e e b e e b x --=-=---+-所以()()()()()2222422222xx x x x x x xg x ee b e e b e e e e b ----⎡⎤'=+-++-=+-+-+⎣⎦①当2b ≤时,()0,g x '≥等号仅当0x =时成立,所以()g x 在R 上单调递增,而()00g =,所以对于任意()0,0x g x >>.②当2b >,若x 满足222x x e e b -<+<-,即(20ln 12x b b b <<-+-时,()0g x '<,而()00g =,因此当(20ln 12x b b b <≤--时,()0g x <,综上最大为2.(3)由(2)知,(()3221ln 22g b =-+-,当2b =时,(36ln 20,ln 20.69282g =->>>;当14b =+时,(ln 1b -+=(()32ln 202g =--<,18ln 20.69328+<<,所以近似值为0.693类型四:利用放缩法构造中间不等式例22:若0x >,证明:()ln 1.1x x xx e +>- 解:转化成整式()()2ln 11xx e x +->.令()()()2ln 11xf x x e x =+--,则()()1ln 121x xe f x e x x x -'=++-+()()()21ln 1211x x x e x e f x e x x x +''=+++-++.由()+1ln 11x x e x x x ≥+≥+,, 得()()()()3222112120,11x x x x f x x x x +++''≥++-=>++()()00,f x f ''≥=故()()00f x f ≥=,得证.变式1:(2020河南鹤壁市高三期末)已知函数()21xf x e kx =--,()()()2ln 1g x k x x k R =+-∈.(2)若不等式()()0f x g x +≥对任意0x ≥恒成立,求实数k 范围.变式2:(2020年河南六市联考)已知函数()()2ln 1sin 1f x x x =+++,()1ln g x ax b x =-- 证明:当1,x >-()()2sin 22xf x x x e<++类型五:与数列相关的不等式例23:设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,求m 的最小值.解:(2)由(1)知当(1,)x ∈+∞时,1ln 0x x -->令112n x =+得11ln(1)22n n +<,从而 221111111ln(1)ln(1)ln(1)112222222n n n ++++⋅⋅⋅++<++⋅⋅⋅+=-<故2111(1)(1)(1)222n e ++⋅⋅⋅+<而23111(1)(1)(1)2222+++>,所以m 的最小值为3.变式1:(理)已知函数()()()021>+-+=a ax xx ln x f .(1)若不等式()0≥x f 对于任意的0≥x 恒成立,求实数a 的取值范围;(2)证明:().N n ln ln ln ln n n n *-∈⎪⎭⎫⎝⎛->⎪⎪⎭⎫ ⎝⎛-++⋅⋅⋅+++1212121279353变式1:(2020河南开封二模)已知函数()1xf x e x =--.(1)证明()0f x >;(2)设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, 求m 的最小值.类型六:与切、割线相关的不等式例24:已知函数()()2901xf x a ax =>+ (1)求()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值;(2)若直线2y x a =-+为曲线()y f x =的切线,求实数的值;(3)当2a =时,设12141,,22x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,且121414x x x +⋅⋅⋅+=,若不等式()()()1214f x f x f x λ+⋅⋅⋅+≤恒成立,求实数λ的最小值.解:证明()29412xf x x x=≤-++,即32281040x x x -+-+≥, 令()3228104F x x x x =-+-+,()261610F x x x '=-+-,所以()F x在1,12⎛⎫⎪⎝⎭,5,23⎛⎫ ⎪⎝⎭递减,在51,3⎛⎫ ⎪⎝⎭递增.而()50,203F F ⎛⎫>> ⎪⎝⎭,表明不等式()29412xf x x x =≤-++成立.所以()()()12141244+442n f x f x f x x x x ++⋅⋅⋅+≤-+-+⋅⋅⋅-+=, 等号在全部为1时成立,所以λ最小值为42。

完整版)导数的综合大题及其分类

完整版)导数的综合大题及其分类

完整版)导数的综合大题及其分类.导数在高考中是一个经常出现的热点,考题难度比较大,多数情况下作为压轴题出现。

命题的主要热点包括利用导数研究函数的单调性、极值、最值,不等式,方程的根以及恒成立问题等。

这些题目体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用。

题型一:利用导数研究函数的单调性、极值与最值这类题目的难点在于分类讨论,包括函数单调性和极值、最值综合问题。

1.单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,将函数定义域分段,在各段上讨论导数的符号。

如果不能确定导数等于零的点的相对位置,还需要对导数等于零的点的位置关系进行讨论。

2.极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点。

3.最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的。

在极值和区间端点函数值中最大的为最大值,最小的为最小值。

例题:已知函数f(x)=x-,g(x)=alnx(a∈R)。

x1.当a≥-2时,求F(x)=f(x)-g(x)的单调区间;2.设h(x)=f(x)+g(x),且h(x)有两个极值点为x1,x2,其中h(x1)=h(x2),求a的值。

审题程序]1.在定义域内,依据F′(x)=0的情况对F′(x)的符号进行讨论;2.整合讨论结果,确定单调区间;3.建立x1、x2及a间的关系及取值范围;4.通过代换转化为关于x1(或x2)的函数,求出最小值。

规范解答]1.由题意得F(x)=x-x/(x2-ax+1)-alnx,其定义域为(0,+∞)。

则F′(x)=(x2-ax+1)-x(2ax-2)/(x2-ax+1)2.令m(x)=x2-ax+1,则Δ=a2-4.①当-2≤a≤2时,Δ≤0,从而F′(x)≥0,所以F(x)的单调递增区间为(0,+∞);②当a>2时,Δ>0,设F′(x)=0的两根为x1=(a+√(a2-4))/2,x2=(a-√(a2-4))/2,求h(x1)-h(x2)的最小值。

高考数学导数压轴题7大题型总结88537

高考数学导数压轴题7大题型总结88537

高考数学导数压轴题7
大题型总结88537
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
高考数学导数压轴题7大题型总结
目前虽然全国高考使用试卷有所差异,但高考压轴题目题型基本都是一致的,几乎没有差异,如果有差异只能是难度上的差异,高考导数压轴题考察的是一种综合能力,其考察内容方法远远高于课本,其涉及基本概念主要是:切线,单调性,非单调,极值,极值点,最值,恒成立等等。

导数解答题是高考数学必考题目,然而学生由于缺乏方法,同时认识上的错误,绝大多数同学会选择完全放弃,我们不可否认导数解答题的难度,但也不能过分的夸大。

掌握导数的解体方法和套路,对于基础差的同学不说得满分,但也不至于一分不得。

为了帮助大家复习,今天就总结倒数7大题型,让你在高考数学中多拿一分,平时基础好的同学逆袭140也不是问题。

1导数单调性、极值、最值的直接应用
2交点与根的分布
3不等式证明
(一)做差证明不等式
(二)变形构造函数证明不等式
(三)替换构造不等式证明不等式
4不等式恒成立求字母范围
(一)恒成立之最值的直接应用
(二)恒成立之分离参数
(三)恒成立之讨论字母范围
5函数与导数性质的综合运用
6导数应用题
7导数结合三角函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档