光的粒子性 说课稿 教案
高中物理_光的粒子性教学设计学情分析教材分析课后反思
《光的粒子性》教学设计[学习目标](一)知识与技能1 .通过实验了解光电效应的实验规律。
2 .知道爱因斯坦光电效应方程以及意义。
3 .了解康普顿效应,了解光子的动量(二)过程与方法经历科学探究过程,认识科学探究的意义,尝试应用科学探究的方法研究物理问题,验证物理规律。
(三)情感、态度与价值观领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。
★教学重点光电效应的实验规律★教学难点爱因斯坦光电效应方程以及意义★教学方法教师启发、引导,学生讨论、交流。
★教学用具:投影片,多媒体辅助教学设备一、光电效应现象图1[导学探究] 如图1所示,取一块锌板,用砂纸将其一面擦一遍,去掉表面的氧化层,连接在验电器上(弧光灯发射紫外线).(1)用弧光灯照射锌板,看到的现象为__________________________________________,说明___________________________________________________________ _____________.(2)在弧光灯和锌板之间插入一块普通玻璃板,再用弧光灯照射,看到的现象为___________________________________________________________ _____________,___________________________________________________________ _____________.(3)撤去弧光灯,换用白炽灯发出的强光照射锌板,并且照射较长时间,看到的现象为________________________________________________________________________,说明___________________________________________________________ _____________.[知识梳理]1.光电效应:当光照射在金属表面上时,金属中的电子会因吸收光的能量而逸出金属表面,这种现象称为光电效应.2.光电效应中的光包括不可见光和可见光.3.光电子:光电效应中发射出来的电子.其本质还是电子.4.光电效应能否发生与光强无关(填“有关”或“无关”).二、光电效应的实验规律[导学探究] 如图2所示,阴极K和阳极A是密封在真空玻璃管中的两个电极,K用铯做成.电源加在K和A之间的电压大小可以调整,正负极也可以对调.(1)加在光电管两极间电压为零时,用紫光照射阴极,回路中有电流吗?改变入射光强度,光电流大小如何变化?(2)保持入射光的强度不变,更换滤色片以改变入射光频率,使光由紫光→蓝光→绿光→红光,会看到什么现象?这说明什么?[知识梳理]1.光电效应的四条实验规律(1)截止频率(也叫极限频率)的存在:入射光的频率必须大于ν0,才能发生光电效应,与入射光强度及照射时间无关.不同金属材料的截止频率不同.(2)当产生光电效应时,光电流大小随入射光强度的增大而增大.(3)光电子的最大初动能与入射光的频率成线性关系,如图3所示.即光电子的最大初动能随着入射光频率的增加而增加,而与入射光强度无关.(4)光电效应的发生几乎是瞬时的,一般不超过10-9 s.2.两个决定关系(1)入射光频率决定着能否发生光电效应和光电子的最大初动能;(2)入射光强度决定着单位时间内发射的光电子数.例1入射光照射到某金属表面上发生光电效应,若入射光的强度减弱,而频率保持不变,那么( ) A.从光照至金属表面上到发射出光电子之间的时间间隔将明显增加B.逸出的光电子的最大初动能将减小C .单位时间内从金属表面逸出的光电子数目将减少D .有可能不发生光电效应针对训练1 (多选)如图所示,电路中所有元件完好,光照射到光电管上,灵敏电流计中没有电流通过.其原因可能是( )A .入射光太弱B .入射光波长太长C .光照时间太短D .电源正、负极接反三、光量子概念的提出 光电效应方程[导学探究]1.光的波动说在解释光电效应现象时遇到了哪些困难?答案 按照光的波动说,当光照射到金属表面时,金属中的电子会从入射光中持续吸收能量,只要能量积累到一定量值电子就会从金属表面逃逸出来,根据波动说这个积累时间需要几分钟或更长时间,这显然不能解释光电效应的瞬时性.2.爱因斯坦光电效应方程h ν=12mv 2+W 中,h ν和W 指的是什么?怎样解释光电效应存在截止频率和光电子的最大初动能与入射光频率成线性关系?答案 (1)h ν指的是光子的能量,它与光的频率成正比,W 表示逸出功.(2)由光电效应方程可知12mv 2=h ν-W ,即E k =h ν-W ,即E k 和入射光的频率成线性关系.(3)当E k =0时,金属表面不再有光电子逸出,即h ν0=W ,ν0=W h,ν0即为截止频率,从方程可知只有光的频率大于ν0,才能有光电子逸出,才能发生光电效应.[知识梳理]1.光子说:在空间传播的光是不连续的,而是一份一份的,每一份叫做一个光的能量子,简称光子,光子的能量ε=h ν.其中h =6.63×10-34 J ·s ,称为普朗克常量.2.最大初动能:发生光电效应时,金属表面上的电子吸收光子后克服原子核的引力逸出时所具有的动能的最大值.3.截止频率:能使某种金属发生光电效应的最小频率叫做该种金属的截止频率(又叫极限频率).不同的金属对应着不同的极限频率.4.光电效应方程(1)表达式:h ν=12mv 2+W 或12mv 2=h ν-W . (2)物理意义:金属中电子吸收一个光子获得的能量是h ν,这些能量一部分用于克服金属的逸出功W ,剩下的表现为逸出后电子的最大初动能.(3)光电效应方程说明了产生光电效应的条件若有光电子逸出,则光电子的最大初动能必须大于零,即E k =h ν-W >0,亦即h ν>W ,ν>W h =ν0,而ν0=W h恰好是光电效应的截止频率. 5.E k -ν曲线如图4所示是光电子最大初动能E k 随入射光频率ν的变化曲线.这里,横轴上的截距是截止频率(或极限频率);纵轴上的截距是逸出功的负值;斜率为普朗克常量.图46.光电效应方程实质上是能量守恒方程.(1)能量为ε=hν的光子被电子所吸收,电子把这些能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面时的动能.(2)如果克服吸引力做功最少为W,则电子离开金属表面时动能最大为E k,根据能量守恒定律可知:E k=hν-W.例2在光电效应实验中,某金属的截止频率相应的波长为λ0,该金属的逸出功为______.若用波长为λ(λ<λ0)的单色光做该实验,则其遏止电压为______.已知电子的电荷量、真空中的光速和普朗克常量分别为e、c和h.例3如图所示,当开关K断开时,用光子能量为2.5 eV的一束光照射阴极P,发现电流表读数不为零.合上开关,调节滑动变阻器,发现当电压表读数小于0.6 V时,电流表读数仍不为零.当电压表读数大于或等于0.6 V时,电流表读数为零.由此可知阴极材料的逸出功为( )A.1.9 eV B.0.6 eV C.2.5 eV D.3.1 eV针对训练2 (多选)一单色光照到某金属表面时,有光电子从金属表面逸出,下列说法中正确的是( )A.只增大入射光的频率,金属逸出功将减小B.只延长入射光照射时间,光电子的最大初动能将不变C.只增大入射光的频率,光电子的最大初动能将增大D.只增大入射光的频率,光电子逸出所经历的时间将缩短课堂小结:1.光电效应规律中的两条线索、两个关系:(1)两条线索:(2)两个关系:光强增大→光子数目多→发射光电子多→光电流大;光子频率高→光子能量大→产生光电子的最大初动能大.2.光电效应的瞬时性:当光照射到金属上时,光子的全部能量将立刻被金属中的电子所吸收,不需要积累能量的时间.3.遏止电压:使光电流减小到零的反向电压U 0,即eU 0=E k =12mv 2. 作业:《光的粒子性》练习题《光的波动性》学情分析:学生对光的波动性还没有学习,这样就增加了对这节内容学习的难度,只有采用在学习本节内容之前让学生先学习一些有关光的波动性的知识,即经典的电磁理论知识。
《光的粒子性》教学案
《光的粒子性》教学案课标要求了解光电效应,分析光电效应方程 课型 新授学习目标1.了解光电效应及其实验规律,以及光电效应与电磁理论的矛盾.2.知道爱因斯坦光电效应方程及应用.3.了解康普顿效应及其意义,了解光子的动量.学习重点 1、光电效应及其实验规律 2、爱因斯坦光电效应方程及应用 学习难点爱因斯坦光电效应方程及应用学 习 过 程【合作探究】分析问题情境,提炼核心问题 任务一、光电效应现象及其实验规律 活动: 观察实验,交流思考: (1)在甲图中发现,利用紫外线照射锌板无论光的强度如何变化,验电器都有张角,而用红光照射锌板,无论光的强度如何变化,验电器总无张角,这说明了什么?(2)在乙图中光电管两端加正向电压,用一定强度的光照射时,若增加电压,电流表示数不变,而光强增加时,同样电压,电流表示数会增大,这说明了什么?(3)在乙图中若加反向电压,当光强增大时,遏止电压不变,而入射光的频率增加时,遏止电压却增加,这一现象说明了什么?(4)光电效应实验表明,发射电子的能量与入射光的强度无关,而与光的频率有关,试用光子说分析原因. 【交流总结】1.光电效2.光电效应中的光包括不可见光和可见光.3.光电子:光电效应中发射出来的光电子,其本质还是电子. 4.能不能发生光电效应由入射光的频率决定,与入射光的强度无关. 5.保持入射光频率不变,入射光越强,单位时间内发射的光电子数越多. 6.光的强度与饱和光电流:饱和光电流与光强有关,与所加的正向电压大小无关.且饱和光电流与入射光强度成正比的规律是对频率相同的光照射金属产生光电效应而言的.对于不同频率的光,由于每个光子的能量不同,饱和光电流与入射光强度之间不是简单的正比关系.【例1】现用某一光电管进行光电效应实验,当用某一频率的光入射时,有光电流产生.下列说法正确的是( )A.保持入射光的频率不变,入射光的光强变大,饱和光电流变大B.入射光的频率变高,饱和光电流变大C.入射光的频率变高,光电子的最大初动能变大D.保持入射光的光强不变,不断减小入射光的频率,始终有光电流产生【针对性训练1】如图所示,电路中所有元件完好,光照射到光电管上,灵敏电流计中没有电流通过.其原因可能是( )A.入射光太弱 B.入射光波长太长C.光照时间太短 D.电源正、负极接反任务二、光电效应方程的理解和应用【导学探究】用如图所示的装置研究光电效应现象.用光子能量为2.75 eV 的光照射到光电管上时发生了光电效应,电流表的示数不为零;移动滑动变阻器的滑动触头,发现当电压表的示数大于或等于1.7 V时,电流表示数为0.(1)光电子的最大初动能是多少?遏止电压为多少?(2)光电管阴极的逸出功又是多少?(3)当滑动触头向a端滑动时,光电流变大还是变小?(4)当入射光的频率增大时,光电子最大初动能如何变化?遏止电压呢?【深化】光电效应方程E k=hν-W0的四点理解(1)式中的E k是光电子的最大初动能,就某个光电子而言,其离开金属时剩余动能大小可以是0~E k范围内的任何数值.(2)光电效应方程实质上是能量守恒方程.①能量为ε=hν的光子被电子吸收,电子把这些能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面时的动能.②如要克服吸引力做功最少为W0,则电子离开金属表面时动能最大为E k,根据能量守恒定律可知:E k=hν-W0.(3)光电效应方程包含了产生光电效应的条件.若发生光电效应,则光电子的最大初动能必须大于零,即E k=hν-W0>0,亦即hν>W0,ν>W0h=νc,而νc=W0h恰好是光电效应的截止频率.【例2】在光电效应实验中,分别用频率为νa、νb的单色光a、b照射到同种金属上,测得相应的遏止电压分别为U a和U b,光电子的最大初动能分别为E k a和E k b.h为普朗克常量.下列说法正确的是()A.若νa>νb,则一定有U a<U bB.若νa>νb,则一定有E k a>E k bC.若U a<U b,则一定有E k a<E k bD.若νa>νb,则一定有hνa-E k a>hνb-E k b【例3】如图所示,当开关K断开时,用光子能量为2.5 eV的一束光照射阴极P,发现电流表读数不为零.合上开关,调节滑动变阻器,发现当电压表读数小于0.6 V时,电流表读数仍不为零.当电压表读数大于或等于0.6 V时,电流表读数为零.由此可知阴极材料的逸出功为( )A.1.9 eV B.0.6 eV C.2.5 eV D.3.1 eV【例4】在光电效应实验中,飞飞同学用同一光电管在不同实验条件下得到了三条光电流与电压之间的关系曲线(甲光、乙光、丙光),如图所示,则可判断出()A.甲光的频率大于乙光的频率B.乙光的波长大于丙光的波长C.乙光的频率大于丙光的频率D.甲光对应的光电子最大初动能大于丙光对应的光电子最大初动能【例5】在某次光电效应实验中,得到的遏止电压U c与入射光的频率ν的关系如图7所示.若该直线的斜率和纵截距分别为k和b,电子电荷量的绝对值为e,则普朗克常量可表示为________,所用材料的逸出功可表示为________.【巩固训练】A组1、如图所示,用弧光灯照射擦得很亮的锌板,验电器指针张开一个角度,则下列说法中正确的是( )A.用紫外线照射锌板,验电器指针会发生偏转B.用红光照射锌板,验电器指针一定会发生偏转C.锌板带的是负电荷D.使验电器指针发生偏转的是正电荷2、利用光电管研究光电效应实验如图所示,用频率为ν的可见光照射阴极K,电流表中有电流通过,则( )A.用紫外线照射,电流表不一定有电流通过B.用红光照射,电流表一定无电流通过C.用频率为ν的可见光照射K,当滑动变阻器的滑动触头移到A端时,电流表中一定无电流通过D.用频率为ν的可见光照射K,当滑动变阻器的滑动触头向B端滑动时,电流表示数可能不变3、如图所示是光电效应中光电子的最大初动能E k与入射光频率ν的关系图象.从图中可知( )A.E k与ν成正比B.E k与入射光强度成正比C.对同一种金属而言,E k仅与ν有关D.入射光频率必须小于极限频率νc时,才能产生光电效应4、在光电效应实验中,某金属的截止频率相应的波长为λ0,该金属的逸出功为.若用波长为λ(λ<λ0)的单色光做该实验,则其遏止电压为.已知电子电荷量的绝对值、真空中的光速和普朗克常量分别为e、c和h.B组5、物理学家密立根利用图甲所示的电路研究金属的遏止电压U c与入射光频率ν的关系,描绘出图乙中的图象,由此算出普朗克常量h,电子电荷量的绝对值用e表示,下列说法正确的是:A.入射光频率增大,测遏止电压时,应使滑动变阻器的滑片P向M端移动B.增大入射光的强度,光电子的最大初动能也增大C.由U c-ν图象可知,这种金属截止频率为νcD.由U c-ν图象可得普朗克常量的表达式为h=U1eν1-νc6、在某次光电效应实验中,得到的遏止电压U c与入射光的频率ν的关系如图所示,若该直线的斜率和纵截距分别为k和-b,电子电荷量的绝对值为e,则( )A.普朗克常量可表示为k eB.若更换材料再实验,得到的图线的k不改变,b改变C.所用材料的逸出功可表示为ebD.b由入射光决定,与所用材料无关【课堂总结】。
高中光学粒子性教案-高考复习必备
高中光学粒子性教案-高考复习必备一、教学目标1. 理解光粒子性的概念,掌握光具有粒子性的证据和表现。
2. 掌握光的波粒二象性,理解波动性和粒子性的统一。
3. 掌握光电效应和康普顿效应的原理,了解光子能量与频率的关系。
4. 能够运用光的粒子性解决相关问题,提高分析问题和解决问题的能力。
二、教学重点与难点1. 重点:光的粒子性概念,光的波粒二象性,光电效应和康普顿效应的原理。
2. 难点:光的波粒二象性的统一理解,光电效应和康普顿效应的数学表达式。
三、教学方法1. 采用问题驱动法,引导学生通过思考问题来理解和掌握光的粒子性。
2. 利用多媒体课件和实验视频,生动展示光的粒子性现象,增强学生的直观感受。
3. 通过例题分析,让学生学会运用光的粒子性解决实际问题。
四、教学准备1. 多媒体课件和实验视频。
2. 相关练习题和高考真题。
五、教学过程1. 导入:回顾光的波动性,引导学生思考光的粒子性。
2. 光的粒子性概念:介绍光粒子性的概念,给出光具有粒子性的证据和表现。
3. 光的波粒二象性:讲解光的波粒二象性,引导学生理解波动性和粒子性的统一。
4. 光电效应和康普顿效应:讲解光电效应和康普顿效应的原理,给出数学表达式。
5. 应用练习:利用光的粒子性解决实际问题,巩固所学知识。
7. 布置作业:布置相关练习题和高考真题,巩固所学知识。
六、光的粒子性与量子力学1. 教学目标:理解量子力学的基本原理。
掌握光子能量与频率的关系。
解释光的粒子性与量子力学的关系。
2. 教学重点与难点:重点:量子力学的基本原理,光子能量与频率的关系。
难点:量子力学与光的粒子性的内在联系。
3. 教学方法:采用案例分析法,通过具体案例让学生理解量子力学的基本概念。
使用多媒体演示光的粒子性现象与量子力学的关联。
4. 教学准备:准备相关案例和多媒体演示资料。
准备练习题和思考题。
5. 教学过程:导入:通过光电效应案例引入量子力学概念。
量子力学基本原理:介绍波粒二象性、不确定性原理等。
高中光学粒子性教案高考复习必备
高中光学粒子性教案-高考复习必备第一章:光的粒子性概述1.1 光的波粒二象性1.2 光的粒子性实验1.3 光的粒子性与波动性的关系第二章:光电效应2.1 光电效应的发现2.2 光电效应方程2.3 光电效应的条件2.4 光电效应的实验现象第三章:康普顿效应3.1 康普顿效应的发现3.2 康普顿效应方程3.3 康普顿效应与光的粒子性3.4 康普顿效应的实验现象第四章:光的吸收与散射4.1 光的吸收现象4.2 光的散射现象4.3 吸收与散射的原理4.4 吸收与散射的实验现象第五章:光的粒子性与物质波5.1 物质波的概念5.2 物质波的性质5.3 物质波的实验证实5.4 光的粒子性与物质波的关系第六章:光的干涉与衍射6.1 干涉现象的解释6.2 双缝干涉实验6.3 单缝衍射与双缝衍射6.4 光的干涉与衍射的原理第七章:光的偏振7.1 偏振现象的发现7.2 偏振光的性质7.3 马吕斯定律7.4 光的偏振与光的粒子性第八章:光的量子性8.1 光的量子概念8.2 光量子假说的发展8.3 光量子性与波动性的关系8.4 光的量子性实验验证第九章:光的传播与介质9.1 光在介质中的传播9.2 光的速度与折射率9.3 全反射现象9.4 光在介质中的衰减与散射第十章:光的粒子性与现代光学10.1 光的粒子性与激光技术10.2 光的粒子性与光纤通信10.3 光的粒子性与光学成像10.4 光的粒子性与光学探测器第十一章:光的粒子性与光谱学11.1 光谱学的基本概念11.2 光谱线的产生与分类11.3 光的粒子性与光谱学11.4 光谱学在科学研究中的应用第十二章:光的粒子性与光学仪器12.1 光学仪器的基本原理12.2 光的粒子性与望远镜12.3 光的粒子性与显微镜12.4 光的粒子性与光学传感器第十三章:光的粒子性与量子光学13.1 量子光学的基本概念13.2 光的量子态13.3 量子纠缠与量子超位置13.4 光的粒子性与量子光学实验第十四章:光的粒子性与光学应用14.1 光的粒子性与激光技术14.2 光的粒子性与光纤通信14.3 光的粒子性与光学成像14.4 光的粒子性与光学显示技术第十五章:光的粒子性与光学前沿15.1 光的粒子性与光学非线性15.2 光的粒子性与光学隐形技术15.3 光的粒子性与光学量子计算15.4 光的粒子性与光学生物学重点和难点解析本文主要介绍了高中光学粒子性的相关内容,重点包括光的波粒二象性、光电效应、康普顿效应、光的吸收与散射、光的粒子性与物质波等。
教学设计4:17.2 光的粒子性
2 光的粒子性(一)三维教学目标知识与技能(1)了解光电效应现象(2)通过实验了解光电效应的实验规律。
过程与方法:经历科学探究过程,认识科学探究的意义,尝试应用科学探究的方法研究物理问题,验证物理规律。
情感、态度与价值观:领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。
教学重点:光电效应的实验规律教学难点:光电效应的实验规律教学方法:教师启发、引导,学生讨论、交流。
教学过程:引入新课回顾前面的学习,总结人类对光的本性的认识的发展过程?光的干涉、衍射现象说明光是电磁波,光的偏振现象进一步说明光还是横波。
19世纪60年代,麦克斯韦又从理论上确定了光的电磁波本质。
然而,出人意料的是,正当人们以为光的波动理论似乎非常完美的时候,又发现了用波动说无法解释的新现象——光电效应现象。
对这一现象及其他相关问题的研究,使得人们对光的又一本质性认识得到了发展。
进行新课一、光电效应的实验规律1.光电效应概念:在光(包括不可见光)的照射下,从物体发射电子的现象叫做光电效应。
发射出来的电子叫做光电子。
2、光电效应的实验规律(1)光电效应实验如图所示,光线经石英窗照在阴极上,便有电子逸出----光电子。
光电子在电场作用下形成光电流。
(2)光电效应实验规律① 存在着 电流光电流与光强的关系:饱和光电流强度与入射光强度成正比。
② 存在着 和遏止电压,将换向开关反接,电场反向,则光电子离开阴极后将受反向电场阻碍作用。
当 K 、A 间加反向电压,光电子克服电场力作功,当电压达到某一值 Uc 时,光电流恰为0。
U c 称遏止电压。
根据动能定理,有:截止频率νc ----极限频率,对于每种金属材料,都相应的有一确定的截止频率νc ,当入射光频率ν>νc 时,电子才能逸出金属表面;当入射光频率ν <νc 时,无论光强多大也无电子逸出金属表面。
③ 效应具有光电效应是瞬时的。
高中物理选修3-5教学设计2:17.2 光的粒子性教案
2光的粒子性★新课标要求(一)知识与技能1.通过实验了解光电效应的实验规律。
2.知道爱因斯坦光电效应方程以及意义。
3.了解康普顿效应,了解光子的动量(二)过程与方法经历科学探究过程,认识科学探究的意义,尝试应用科学探究的方法研究物理问题,验证物理规律。
(三)情感、态度与价值观领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。
★教学重点光电效应的实验规律★教学难点爱因斯坦光电效应方程以及意义★教学方法教师启发、引导,学生讨论、交流。
★教学用具:投影片,多媒体辅助教学设备★课时安排2 课时★教学过程(一)引入新课提问:回顾前面的学习,总结人类对光的本性的认识的发展过程?(多媒体投影,见课件。
)学生回顾、思考,并回答。
教师倾听、点评。
光的干涉、衍射现象说明光是电磁波,光的偏振现象进一步说明光还是横波。
19世纪60年代,麦克斯韦又从理论上确定了光的电磁波本质。
然而,出人意料的是,正当人们以为光的波动理论似乎非常完美的时候,又发现了用波动说无法解释的新现象——光电效应现象。
对这一现象及其他相关问题的研究,使得人们对光的又一本质性认识得到了发展。
(二)进行新课1.光电效应教师:实验演示。
(课件辅助讲述)用弧光灯照射擦得很亮的锌板,(注意用导线与不带电的验电器相连),使验电器张角增大到约为30度时,再用与丝绸磨擦过的玻璃棒去靠近锌板,则验电器的指针张角会变大。
学生:认真观察实验。
教师提问:上述实验说明了什么?学生:表明锌板在射线照射下失去电子而带正电。
概念:在光(包括不可见光)的照射下,从物体发射电子的现象叫做光电效应。
发射出来的电子叫做光电子。
2.光电效应的实验规律(1)光电效应实验如图所示,光线经石英窗照在阴极上,便有电子逸出----光电子。
光电子在电场作用下形成光电流。
概念:遏止电压将换向开关反接,电场反向,则光电子离开阴极后将受反向电场阻碍作用。
2光的粒子性-人教版选修3-5教案
光的粒子性-人教版选修3-5教案一、教学目标1.了解光的本质和特性,学会描述光的波动和粒子性;2.了解光的产生方式和传播方式;3.掌握光的透射规律和光在各种介质中的传播规律;4.理解各种光学现象的产生原理。
二、教学内容2.1 光的本质和特性2.1.1 光的波动性光的波动性表现在光的干涉、衍射和偏振现象上。
通过干涉、衍射实验可以证明光具有波动性。
2.1.2 光的粒子性光的粒子性表现在光电效应、康普顿散射和黑体辐射定律上。
经过光电效应实验得知,光也具有粒子性。
2.2 光的产生和传播2.2.1 光的产生光的产生有自发辐射、受激辐射和受激发射。
其中,自发辐射和受激辐射是光的产生的本质差别。
2.2.2 光的传播光在真空中传播时速度是恒定的,而在介质中传播时,由于介质的折射率的不同,光的传播速度会发生变化。
2.3 光的透射和反射2.3.1 光的透射和反射规律当光从一种介质通过到另一种介质时,会发生折射。
当光从一种介质射入另一种介质且入射角度为0时,会发生全反射。
2.3.2 光的透射和反射现象通过实验可以发现,光在不同的介质中会产生各种不同的现象,例如:光的色散现象、光的多重透射现象等。
2.4 光的衍射光的衍射是光通过狭缝或障碍物后发生的现象。
经过实验可以证明,障碍物的大小和狭缝的宽度和衍射现象密切相关。
2.5 光的偏振光的偏振是指振动方向相同且处于同一平面的光的集合。
影响光的偏振的因素包括反射、透射和折射等。
三、教学重点1.光的本质和特性;2.光的产生和传播;3.光的透射、反射、衍射和偏振。
四、教学方法1.演示法:通过演示实验的方式展示光的各种现象,帮助学生理解和掌握知识;2.探究法:引导学生通过实验和科学探究的方式深入理解光的本质和特性;3.合作学习法:通过小组合作的形式,让学生互相交流和学习,提高学习效果。
五、教学评价通过教师观察、学生表现和考试成绩等综合评价学生对于光的本质和特性、光的产生和传播、光的透射、反射、衍射和偏振等方面的掌握程度。
人教版高中物理教案-光的粒子性
第十七章波粒二象性新課標要求1.內容標準(1)瞭解微觀世界中的量子化現象。
比較宏觀物體和微觀粒子的能量變化特點。
體會量子論的建立深化了人們對於物質世界的認識。
(2)通過實驗瞭解光電效應。
知道愛因斯坦光電效應方程以及意義。
(3)瞭解康普頓效應。
(4)根據實驗說明光的波粒二象性。
知道光是一種概率波。
(5)知道實物粒子具有波動性。
知道電子雲。
初步瞭解不確定性關係。
(6)通過典型事例瞭解人類直接經驗的局限性。
體會人類對世界的探究是不斷深入的。
例1 通過電子衍射實驗,初步瞭解微觀粒子的波粒二象性,體會人類對於物質世界認識的不斷深入。
2.活動建議閱讀有關微觀世界的科普讀物,寫出讀書體會。
新課程學習17.2 科學的轉折:光的粒子性★新課標要求(一)知識與技能1.通過實驗瞭解光電效應的實驗規律。
2.知道愛因斯坦光電效應方程以及意義。
3.瞭解康普頓效應,瞭解光子的動量(二)過程與方法經歷科學探究過程,認識科學探究的意義,嘗試應用科學探究的方法研究物理問題,驗證物理規律。
(三)情感、態度與價值觀領略自然界的奇妙與和諧,發展對科學的好奇心與求知欲,樂於探究自然界的奧秘,能體驗探索自然規律的艱辛與喜悅。
★教學重點光電效應的實驗規律★教學難點愛因斯坦光電效應方程以及意義★教學方法教師啟發、引導,學生討論、交流。
★教學用具:投影片,多媒體輔助教學設備★課時安排2 課時★教學過程(一)引入新課提問:回顧前面的學習,總結人類對光的本性的認識的發展過程?(多媒體投影,見課件。
)學生回顧、思考,並回答。
教師傾聽、點評。
光的干涉、衍射現象說明光是電磁波,光的偏振現象進一步說明光還是橫波。
19世紀60年代,麥克斯韋又從理論上確定了光的電磁波本質。
然而,出人意料的是,正當人們以為光的波動理論似乎非常完美的時候,又發現了用波動說無法解釋的新現象——光電效應現象。
對這一現象及其他相關問題的研究,使得人們對光的又一本質性認識得到了發展。
(二)進行新課1.光電效應教師:實驗演示。
教学设计3:17.2 光的粒子性
2光的粒子性一、教学目标1.应该掌握的知识方面.(1)光电效应现象具有哪些规律.(2)人们研究光电效应现象的目的性.(3)爱因斯坦的光子说对光电效应现象的解释.2.培养学生分析实验现象,推理和判断的能力方面.(1)观察用紫外线灯照射锌板的实验,分析现象产生的原因.(2)观察光电效应演示仪的实验过程,掌握分析现象所得到的结论.3.结合物理学发展史使学生了解到科学理论的建立过程,渗透科学研究方法的教育.二、重点、难点分析1.光电效应现象的基本规律、光子说的基本思想和做好光电效应的演示实验是本节课的重点.2.难点是(1)对光的强度的理解,(2)发生光电效应时光电流的强度为什么跟光电子的最大初动能无关,只与入射光的强度成正比.三、教具锌板、验电器、紫外线灯、白炽灯、丝绸、玻璃棒、光电效应演示仪.四、教学过程(一)新课的引入光的波动理论学说虽然取得了很大的成功,但并未达到十分完美的程度.光的有些现象波动说遇到了很大的困难,请观察光电效应现象.(二)教学过程的设计1.演示实验.将锌板与验电器用导线连接,用细砂纸打磨锌板表面.把丝绸摩擦过的玻璃棒放在锌板附近,用紫外线灯照射锌板.边演示边提问:紫外线灯打开前后,验电器指针有什么变化?这一现象说明了什么问题?引导学生分析并得出结论:光线照射金属表面,金属失去了电子导致验电器指针张开一角度.明确指出光电效应是光照射金属表面,使物体发射电子的现象.照射的光可以是可见光,也可以是不可见光.发射出的电子叫光电子.说明:这个实验如果按照课本上的装置进行效果很不理想,因为紫外线照射锌板飞出电子时锌板带正电,在锌板附近形成电场又将电子吸附回去.锌板电势升到很小的值就使逸出和返回的电子达到动态平衡,很难使验电器指针明显地张开.2.进一步研究光电效应.以上实验改用很强的白炽灯照射,却不能发生光电效应.向学生提出问题:光电效应的发生一定是有条件的,存在着一定规律.有什么规律呢?让我们进一步研究.向学生介绍光电效应演示仪.在黑板上画一示意图,如图所示.S为抽成真空的光电管,C是石英窗口,光线可通过它照射到金属板K上,金属板A和K组成一对电极与外部电路相连接.光源为白炽灯,在光源和石英窗口C之间插入不同颜色的滤光片可以改变入射光的频率,光源的亮度可以通过另一套装置调节.观察现象一:在没有光照射K时,电压表有示数,电流表没有示数,说明什么?明确:AK之间有电场存在,但没有光电子逸出,说明没有发生光电效应.提出问题:要发生光电效应,是不是用任何频率的光线照射都行?是不是弱光线不行,只要光的强度足够大就行?是不是只要有足够大的电场电压就行?观察现象二:保持AK间电压一定,灯泡亮度一定,在窗口C前依次放上红色、橙色、绿色滤光片,观察到红光照射金属板K时没有光电流,橙光和绿光照射时有光电流.用红光照射时改变入射光的亮度和改变电场电压都不发生光电效应.让学生考虑原因.结论一:入射光线的频率大于等于该金属的极限频率υ0才能产生光电效应.观察现象三:逐渐减小KA间的正向电压,直到电压为零时,电流表仍有示数,说明光电流依然存在.如果在KA间加一反向电压,则光电流变小,增大反向电压,使光电流刚好为零.提出问题:为什么KA间没有电场,仍然有光电流?也就是说仍然有光电子从K极板飞向A极板呢?在KA间加反向电压,光电子在电场中受力方向如何?电场力对光电子做正功还是负功?光电子克服电场力做功和它的动能变化关系如何呢?根据学生回答的问题引导分析:KA间没有电场仍有光电流说明光线照射金属板逸出的光电子具有一定的动能,一部分光电子可以到达极板A 形成光电流.金属中的电子吸收光的能量获得动能,只有达到某一值 U c 时,光电流恰为0。
新课标人教版3-5选修三17.2《光的粒子性》优秀教案2(重点资料).doc
普通高中课程标准实验教科书—物理(选修3-5)[人教版]第十七章波粒二象性新课标要求1.内容标准(1)了解微观世界中的量子化现象。
比较宏观物体和微观粒子的能量变化特点。
体会量子论的建立深化了人们对于物质世界的认识。
(2)通过实验了解光电效应。
知道爱因斯坦光电效应方程以及意义。
(3)了解康普顿效应。
(4)根据实验说明光的波粒二象性。
知道光是一种概率波。
(5)知道实物粒子具有波动性。
知道电子云。
初步了解不确定性关系。
(6)通过典型事例了解人类直接经验的局限性。
体会人类对世界的探究是不断深入的。
例1 通过电子衍射实验,初步了解微观粒子的波粒二象性,体会人类对于物质世界认识的不断深入。
2.活动建议阅读有关微观世界的科普读物,写出读书体会。
新课程学习17.2 科学的转折:光的粒子性★新课标要求(一)知识与技能1.通过实验了解光电效应的实验规律。
2.知道爱因斯坦光电效应方程以及意义。
3.了解康普顿效应,了解光子的动量(二)过程与方法经历科学探究过程,认识科学探究的意义,尝试应用科学探究的方法研究物理问题,验证物理规律。
(三)情感、态度与价值观领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。
★教学重点光电效应的实验规律★教学难点爱因斯坦光电效应方程以及意义★教学方法教师启发、引导,学生讨论、交流。
★教学用具:投影片,多媒体辅助教学设备★课时安排2 课时★教学过程(一)引入新课提问:回顾前面的学习,总结人类对光的本性的认识的发展过程?(多媒体投影,见课件。
)学生回顾、思考,并回答。
教师倾听、点评。
光的干涉、衍射现象说明光是电磁波,光的偏振现象进一步说明光还是横波。
19世纪60年代,麦克斯韦又从理论上确定了光的电磁波本质。
然而,出人意料的是,正当人们以为光的波动理论似乎非常完美的时候,又发现了用波动说无法解释的新现象——光电效应现象。
对这一现象及其他相关问题的研究,使得人们对光的又一本质性认识得到了发展。
高中光学粒子性教案高考复习必备
高中光学粒子性教案-高考复习必备第一章:光的粒子性概述1.1 光的基本概念光的传播特性光的波动性与粒子性的关系1.2 光的粒子性原理光的粒子性与波粒二象性光的能量与频率第二章:光电效应2.1 光电效应的实验现象光电效应的定义与实验现象光电效应的逸出功与光电子的最大动能2.2 光电效应方程爱因斯坦光电效应方程逸出功与光电子最大动能的关系第三章:康普顿效应3.1 康普顿效应的实验现象康普顿效应的定义与实验现象康普顿效应与光的粒子性3.2 康普顿效应方程康普顿效应的方程及其意义康普顿效应与光的波粒二象性第四章:光的干涉与衍射4.1 光的干涉现象干涉的定义与条件双缝干涉与单缝衍射的实验现象4.2 光的衍射现象衍射的定义与条件泊松亮斑与菲涅耳衍射的实验现象第五章:光的偏振与旋光现象5.1 光的偏振现象偏振的定义与条件马吕斯定律与偏振光的性质5.2 旋光现象旋光的定义与条件旋光仪的原理与应用第六章:光的量子性6.1 光子的概念光子的定义与特性光子的能量与频率6.2 光的量子性与波粒二象性光的量子性原理光的波粒二象性与实验证明第七章:光的吸收与发射7.1 光的吸收现象吸收的定义与原理吸收光谱与能级跃迁7.2 光的发射现象发射的定义与原理发射光谱与能级跃迁第八章:激光的原理与应用8.1 激光的原理激光的定义与特性激光的产生原理与过程8.2 激光的应用激光通信与激光雷达激光切割与激光医疗第九章:光纤光学9.1 光纤的原理与结构光纤的定义与工作原理光纤的结构与分类9.2 光纤的应用光纤通信与光纤网络光纤传感器与光纤测量第十章:光学粒子性的现代进展10.1 量子光学量子光学的定义与发展量子纠缠与量子隐形传态10.2 光学粒子性的实验进展光子反泡实验与光子纠缠光量子计算机与光学粒子性在未来应用的展望第十一章:光的干涉与光的粒子性11.1 光的干涉现象干涉的定义与条件双缝干涉与单缝衍射的实验现象11.2 光的粒子性与干涉现象光的粒子性原理光的干涉现象与光的粒子性的关系第十二章:光的衍射与光的粒子性12.1 光的衍射现象衍射的定义与条件泊松亮斑与菲涅耳衍射的实验现象12.2 光的粒子性与衍射现象光的粒子性原理光的衍射现象与光的粒子性的关系第十三章:光的偏振与光的粒子性13.1 光的偏振现象偏振的定义与条件马吕斯定律与偏振光的性质13.2 光的粒子性与偏振现象光的粒子性原理光的偏振现象与光的粒子性的关系第十四章:光的旋光现象与光的粒子性14.1 光的旋光现象旋光的定义与条件旋光仪的原理与应用14.2 光的粒子性与旋光现象光的粒子性原理光的旋光现象与光的粒子性的关系第十五章:光学粒子性的总结与展望15.1 光学粒子性的总结光的粒子性概述光电效应、康普顿效应与光的粒子性的关系15.2 光学粒子性的展望光的量子性与光的粒子性的未来研究方向光学粒子性在科学技术中的应用前景重点和难点解析本文主要讲解了光学粒子性的基本概念、原理、实验现象及其应用。
17.2 光的粒子性 高中物理选修3-5优秀教案优秀教学设计【精品】
2 光的粒子性★新课标要求(一)知识与技能1.通过实验了解光电效应的实验规律。
2.知道爱因斯坦光电效应方程以及意义。
3.了解康普顿效应,了解光子的动量(二)过程与方法经历科学探究过程,认识科学探究的意义,尝试应用科学探究的方法研究物理问题,验证物理规律。
(三)情感、态度与价值观领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。
★教学重点光电效应的实验规律★教学难点爱因斯坦光电效应方程以及意义★教学方法教师启发、引导,学生讨论、交流。
★教学用具:投影片,多媒体辅助教学设备★课时安排2 课时★教学过程(一)引入新课提问:回顾前面的学习,总结人类对光的本性的认识的发展过程?(多媒体投影,见课件。
)学生回顾、思考,并回答。
教师倾听、点评。
光的干涉、衍射现象说明光是电磁波,光的偏振现象进一步说明光还是横波。
19世纪60年代,麦克斯韦又从理论上确定了光的电磁波本质。
然而,出人意料的是,正当人们以为光的波动理论似乎非常完美的时候,又发现了用波动说无法解释的新现象——光电效应现象。
对这一现象及其他相关问题的研究,使得人们对光的又一本质性认识得到了发展。
(二)进行新课1.光电效应教师:实验演示。
(课件辅助讲述)用弧光灯照射擦得很亮的锌板,(注意用导线与不带电的验电器相连),使验电器张角增大到约为30度时,再用与丝绸磨擦过的玻璃棒去靠近锌板,则验电器的指针张角会变大。
学生:认真观察实验。
教师提问:上述实验说明了什么?学生:表明锌板在射线照射下失去电子而带正电。
概念:在光(包括不可见光)的照射下,从物体发射电子的现象叫做光电效应。
发射出来的电子叫做光电子。
2.光电效应的实验规律(1)光电效应实验如图所示,光线经石英窗照在阴极上,便有电子逸出----光电子。
光电子在电场作用下形成光电流。
概念:遏止电压将换向开关反接,电场反向,则光电子离开阴极后将受反向电场阻碍作用。
高中物理选修3-5教学设计2:17.2 光的粒子性教案
2光的粒子性★新课标要求(一)知识与技能1.通过实验了解光电效应的实验规律。
2.知道爱因斯坦光电效应方程以及意义。
3.了解康普顿效应,了解光子的动量(二)过程与方法经历科学探究过程,认识科学探究的意义,尝试应用科学探究的方法研究物理问题,验证物理规律。
(三)情感、态度与价值观领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。
★教学重点光电效应的实验规律★教学难点爱因斯坦光电效应方程以及意义★教学方法教师启发、引导,学生讨论、交流。
★教学用具:投影片,多媒体辅助教学设备★课时安排2 课时★教学过程(一)引入新课提问:回顾前面的学习,总结人类对光的本性的认识的发展过程?(多媒体投影,见课件。
)学生回顾、思考,并回答。
教师倾听、点评。
光的干涉、衍射现象说明光是电磁波,光的偏振现象进一步说明光还是横波。
19世纪60年代,麦克斯韦又从理论上确定了光的电磁波本质。
然而,出人意料的是,正当人们以为光的波动理论似乎非常完美的时候,又发现了用波动说无法解释的新现象——光电效应现象。
对这一现象及其他相关问题的研究,使得人们对光的又一本质性认识得到了发展。
(二)进行新课1.光电效应教师:实验演示。
(课件辅助讲述)用弧光灯照射擦得很亮的锌板,(注意用导线与不带电的验电器相连),使验电器张角增大到约为30度时,再用与丝绸磨擦过的玻璃棒去靠近锌板,则验电器的指针张角会变大。
学生:认真观察实验。
教师提问:上述实验说明了什么?学生:表明锌板在射线照射下失去电子而带正电。
概念:在光(包括不可见光)的照射下,从物体发射电子的现象叫做光电效应。
发射出来的电子叫做光电子。
2.光电效应的实验规律(1)光电效应实验如图所示,光线经石英窗照在阴极上,便有电子逸出----光电子。
光电子在电场作用下形成光电流。
概念:遏止电压将换向开关反接,电场反向,则光电子离开阴极后将受反向电场阻碍作用。
技术物理下册(第三版)教案 11.6 光的粒子性 光的波粒二象性
11-6 光的粒子性光的波粒二象性一、教学目标1.认识光的粒子性,知道截止频率2.了解光电效应的基本规律3.知道光既具有波动性,又具有粒子性二、教学重点、难点重点:光的粒子性,光的波粒二象性难点:解释光电效应的光的量子说,光的波粒二象性所表现出的物质性质的多样性三、教学器材多媒体教学用光盘四、教学建议教法建议互动启发、演示实验、讲授教学设计方案(一)引入新课提问:光的干涉、衍射等现象使我们认识到光具有什么性质?答:波动性设疑:在光的波动理论建立以后,人们从实验中又发现了用光的波动性解释不了的新现象。
用多媒体演示:图1 光电效应让带电的锌板与验电器连接,验电器指针偏转一定角度,然后用紫外线照射锌板,验电器原来偏转的指针闭合。
这个实验现象表明锌板受到紫外线照射时,光使电子从锌板表面逸出了。
(二)引出课程内容1.光的粒子性(1)光电效应:定义:物体在光(从可见光到 射线)的照射下发射电子的现象,称为光电效应,发射出来的电子称为光电子。
俄国物理学家斯托列夫在1888年用图2所示的实验装置研究了光电效应的规律。
图2 光电效应实验图中S是一个抽成真空的玻璃容器,容器中装有阴极K(金属板)和阳极A,C为石英小窗。
当光线透过石英小窗照射在阴极K上时,从电流计上可以看到有电流通过,这些被光照射产生的光电子在电场作用下不断由阴极K流向阳极A形成的电流称为光电流。
(2)光电效应的基本规律提问:任何金属都会发生光电效应吗?它遵守什么规律呢?从实验中可归纳得出,光电效应的基本规律是:①对于每一种金属,只有在高于某一频率的光照射时,才能产生光电效应,这个频率ν称为该金属的截止频率。
任何一种金属都具有各自的截止频率,比如锌的截止频率是8.065 1410Hz⨯,用低于这个频率的光照射锌板,无论照射光多强,也无论照射时间多长,都不能使它产生光电效应。
书上用表格列出了几种金属的截止频率和对应的波长。
几种金属的截止频率和对应的波长金属铯钙钨镍铂0H zν 4.59×1014 6.52×1014 11.1×1014 12.1×1014 15.1×10140mλμ0.654 0.460 0.271 0.248 0.197②入射光的频率大于截止频率ν时,光电流的大小与入射光的强度成正比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
③光电子的最大初动能与入射光的强度无关,只随着入射光的频率增大而增大;
④入射光照到金属上时,光电子的发射几乎是瞬时的,一般不超过10-9秒.
三.爱因斯坦光效应方程:
1.光子说:光本身就是由一个个不可分割的能量子组成的,频率为ν的光的能量子为hν。这些能量子后来被称为光子E=hν
2.存在遏止电压和截止频率:
a.存在遏止电压UC:解释方程:
由动能定理:
实验还表明:光电子的最大初动能只与入射光的频率有关,与入射光的强弱无关。
b.存在极限(截止)频率c:
对于每种金属,都有确定的极限频率c。
当入射光频率>c时,电子才能逸出金属表面;当入射光频率<c时,无论光强多大也无电子逸出金属表面
3.光子说对光电效应的解释:
4.光子说意义:证明了光具有粒子性。
四.康普顿效应:
1.光的散射:光在介质中与物质微粒相互作用,因而传播方向发生改变,这种现象叫做光的散射。
2.康普顿效应:1923年康普顿在做X射线通过物质散射的实验时,发现散射线中除有与入射线波长相同的射线外,还有比入射线波长更长的射线,其波长的改变量与散射角有关,而与入射线波长和散射物质都无关。
④具有瞬时性:光电子的发射几乎是瞬时的,一般不超过10-9秒.
三.爱因斯坦光效应方程:
1.光子说:光本身就是由一个个不可分割的能量子组成的,频率为ν的光的能量子为hν。这些能量子后来被称为光子E=hν
2.光电效应方程:EK=h-W0W0称为逸出功
逸出功W0:电子克服为逸出功
2.光电效应方程:EK=h-W0
四.康普顿效应:
光电效应具有瞬时性。而经典认为光能量分布在波面上,吸收能量要时间,即需能量的积累过程。为了解释光电效应,爱因斯坦在能量子假说的基础上提出光子理论,提出了光量子假设
板
书
设
计
一.光电效应:
二.光电效应的实验规律:
①对于任何一种金属,都有一个极限频率,入射光的频率必须大于这个极限频率,才能发生光电效应,低于这个频率就不能发生光电效应;
光的干涉、衍射现象说明光是电磁波,光的偏振现象进一步说明光还是横波。19世纪60年代,麦克斯韦又从理论上确定了光的电磁波本质。然而,出人意料的是,正当人们以为光的波动理论似乎非常完美的时候,又发现了用波动说无法解释的新现象——光电效应现象。对这一现象及其他相关问题的研究,使得人们对光的又一本质性认识得到了发展。
3.光子的动量:
意义:1.有力地支持了爱因斯坦“光量子”假设;
2.首次在实验上证实了“光子具有动量”的假设
3.证实了在微观世界的碰撞中,动量和能量守恒定律仍然是成立的。
**光电效应解释中的困难:经典理论无法解释光电效应的实验结果。
经典理论认为,按照经典电磁理论,入射光的光强越大,光波的电场强度的振幅也越大,作用在金属中电子上的力也就越大,光电子逸出的能量也应该越大。也就是说,光电子的能量应该随着光强度的增加而增大,不应该与入射光的频率有关,更不应该有什么截止频率。光电效应实验表明:饱和电流不仅与光强有关而且与频率有关,光电子初动能也与频率有关。只要频率高于极限频率,即使光强很弱也有光电流;频率低于极限频率时,无论光强再大也没有光电流。
3.具有瞬时性:更精确的研究推知,光电子发射所经过的时间不超过10-9秒
总结:
①存在极限频率:入射光的频率必须大于这个极限频率,才能发生光电效应,低于这个频率就不能发生光电效应;
②当入射光的频率大于极限频率时:入射光越强,饱和电流越大;
③光电子的最大初动能与入射光的强度无关:只随着入射光的频率增大而增大
一.光电效应:物体在光的照射下(包括不可见光)发出电子的现象
1.教师演示:用弧光灯照射擦得很亮的锌板,(注意用导线与不带电的验电器相连),使验电器张角增大到约为30度时,用与丝绸磨擦过的玻璃棒去靠近锌板,则验电器的指针张角会变大。
**提问:上述实验说明了什么?
**学生:表明锌板在射线照射下失去电子而带正电。
2.概念:在光(包括不可见光)的照射下,从物体发射电子的现象叫做光电效应。发射出来的电子叫做光电子。电子定向移动形成的电流叫光电流。
二.光电效应的实验规律:介绍实验装置,原理
1.存在饱和电流且入射光越强,饱和电流越大:光照不变,增大UAK,G表中电流达到某一值后不再增大,即达到饱和值。因为光照条件一定时,K发射的电子数目一定。实验还表明:入射光越强,饱和电流越大,单位时间内发射的光电子数越多。