第八 假设检验与方差分析
假设检验-方差分析及回归分析
1.645 时,拒绝 H0。
率有显著提高,此时犯(第一类)错误的 5% 。 概率不会超过
若取 0.005 , 查表得
z 0.005 2.57 , 仍有 z 3.125 2.57 , 所以在显著性水平 0.005 下
也拒绝 H0,从而可断定犯错误的概率 不会超过 0.5% 。
( n1 1) s ( n2 1) s , n1 n2 2
2 1 2 2
若 t t ( n1 n 2 2) ,则拒绝 H0
2
右边检验
H 0 : 1 2 0 , H 1 : 1 2 0
若 t t ( n1 n 2 2 ) ,则拒绝 H0
第八章 假设检验
第九章 方差分析及回归分析
第八章 假设检验
§1 假设检验
§2 正态总体均值的假设检验
§3 正态总体方差的假设检验
§5 分布拟合检验
§1 假设检验 实际推断原理 概率很小的事件在一
次试验中实际上可认为是不会发生的。本章 的内容,一是已知总体的分布类型,而对包 含的未知参数作某些假设,二是未知总体的 分布类型,而对总体的分布作出假设。 所谓假设检验就是提出假设后,根据实 际推断原理作出接受还是拒绝的判断。
2
均未知。 2 2 2 2 H0 : 1 2 , H1 : 1 2
s 检验统计量 F , s
若 F F ( n1 1, n 2 1)
2
2 1 2 2
或 F F1 ( n1 1, n 2 1) ,
2
则拒绝 H0。
若
2 2
F1 ( n1 1, n2 1) F F ( n1 1, n2 1) ,
假设检验与方差分析 习题及答案
第七章 假设检验与方差分析 习题答案一、名词解释用规范性的语言解释统计学中的名词。
1. 假设检验:对总体分布或参数做出某种假设,然后再依据抽取的样本信息,对假设是否正确做出统计判断,即是否拒绝这种假设。
2. 原假设:又叫零假设或无效假设,是待检验的假设,表示为 H 0,总是含有等号。
3. 备择假设:是零假设的对立,表示为 H 1,总是含有不等号。
4. 单侧检验:备择假设符号为大于或小于时的假设检验。
5. 显著性水平:原假设为真时,拒绝原假设的概率。
6. 方差分析:是检验多个总体均值是否相等的一种统计分析方法。
二、判断改错对下列命题进行判断,在正确命题的括号内打“√”;在错误命题的括号内打“×”,并在错误的地方下划一横线,将改正后的内容写入题下空白处。
1. 在任何情况下,假设检验中的两类错误都不可能同时降低。
( × ) 样本量一定时2. 对于两样本的均值检验问题,若方差均未知,则方差分析和t 检验均可使用,且两者检验结果一致。
( √ )3. 方差分析中,组间离差平方和总是大于组内离差平方和。
( × )不一定4. 在假设检验中,如果在显著性水平0.05下拒绝了00:μμ≤H ,则在同一水平一定可以拒绝假设00:μμ=H 。
( × )不一定5. 为检验k 个总体均值是否显著不同,也可以用t 检验,且与方差分析相比,犯第一类错误的概率不变。
( × )会增加6. 方差分析中,若拒绝了零假设,则认为各个总体均值均有显著性差异。
( × ) 不完全相等六、简答题根据题意,用简明扼要的语言回答问题。
1. 假设检验与统计估计有何区别与联系?【答题要点】假设检验是在给定显著性水平下,计算出拒绝域,并根据样本统计量信息来做出是否拒绝零假设的决策;区间估计是利用样本信息来推断总体参数的一个可能范围。
区间估计结果可以用于假设检验,但假设检验不能用作区间估计。
2. 双侧检验与单侧检验有什么区别?【答题要点】双侧检验的零假设为等号,备择假设为不等号,得到的拒绝域为双侧的;单侧检验的备择假设或者是大于,或者是小于,其拒绝域为单侧区间。
如何撰写报告中的方差分析与假设检验
如何撰写报告中的方差分析与假设检验引言:在实证研究中,方差分析和假设检验是常用的统计方法。
它们可以帮助研究者评估不同组别之间的差异并确定结果的显著性。
然而,撰写报告时,对方差分析和假设检验的描述和解释往往带有一定的难度。
本文将从数据的准备、实验设计、统计方法和结果解读几个方面进行详细论述。
具体而言,我们将探讨实验设计中的依赖变量和自变量、方差分析和假设检验的基本概念、结果呈现的方式、以及如何进行结果解读。
一、数据准备:方差分析和假设检验的首要前提是有一组可靠的数据。
在进行实验之前,研究者需要确定准确的变量和测量方法,并设计有效的实验条件。
此外,在收集数据之前,应确保样本的代表性以及样本量的合理性。
数据的准备阶段应特别注意数据的清理和检验。
只有经过仔细清理的数据才能保证结果的准确性和可靠性。
二、实验设计:实验设计是方差分析和假设检验中的关键环节。
在设计实验时,研究者需要考虑自变量、依赖变量和控制变量。
自变量是影响依赖变量的因素,而控制变量是排除其他可能影响结果的因素。
一个好的实验设计应具备以下几个要素:随机分组、重复性、平衡性和隐蔽性。
只有在这些条件下,方差分析和假设检验的结果才能具备统计学上的合理性。
三、方差分析的基本概念:方差分析是用来比较两个或多个组别平均值差异的统计方法。
它的基本原理是通过计算组内变差和组间变差来评估组别之间的差异。
组内变差反映了组内个体的异质性,而组间变差衡量了不同组别之间的异质性。
通过比较组内变差和组间变差的大小,我们可以判断组别之间的显著性差异。
四、假设检验的基本概念:假设检验是用来验证统计假设的方法。
在方差分析中,我们通常会对两个假设进行检验,即零假设和备择假设。
零假设是指没有组别差异存在,备择假设是指组别差异显著存在。
通过计算统计量和确定显著性水平,我们可以通过拒绝或接受零假设来得出结论。
五、结果呈现的方式:在报告中呈现方差分析和假设检验的结果时,应该包括所使用的统计方法、样本的特征和主要结果。
8方差分析(一)
差值大小产生原因:抽样误差
Xj-X
病例号 1 2 3 4 均值 A药组 1 (4-3) 1 (4-3) 1 (4-3) 1 (4-3) 4 B药组 0 (3-3) 0 (3-3) 0 (3-3) 0 (3-3) 3 C药组 -1 (2-3) -1 (2-3) -1 (2-3) -1 (2-3) 2
N(μC,σ2) N(μB,σ2) N(μA,σ2)
△
△★ △★ 2
◆ ◆△ 3
★ ★ 4
◆ ◆
若μA=μB=μC=μ, 则3个样本来自同一总体
△
△★ △★ 2
◆ ◆△ 3
★A≠XB≠XC的原因是什么?
① 止痛药作用存在 μA≠μB≠μC 不存在 μA=μB=μC ② 抽样误差 一定存在
1 2 1 2 1 2
通常情况下,一般采用双侧检验.
0.05
0.025
0.025
-1.96
-1.64
假设检验的两种类型错误 统计推断目的是通过由有限的样本认 识无限的总体。由于假设检验是根据 “小概率事件实际不可能性原理”来 决定是否拒绝无效假设的,所以不论 是拒绝还是不拒绝无效假设,都没有 100%的把握。因此,在假设检验时可 能犯两类错误。
表
服用A,B,C药的疼痛分值
━━━━━━━━━━━━━━━━━━━━ 分组 A药 B 药 C药 ━━━━━━━━━━━━━━━━━━━━ 3 2 2 5 2 1 3 4 3 5 4 2 ━━━━━━━━━━━━━━━━━━━━ 例数 4 4 4 均值 4 3 2 方差 1.334 1.334 0.666 ━━━━━━━━━━━━━━━━━━━━ X=3
多次采用t检验时的假阳性率
若单次t检验假阳性错误的概率为0.05, 若进行两次t检验不犯假阳性错误的概率为 0.9025,犯假阳性错误的概率为0.0975。 若进行三次t检验不犯假阳性错误的概率为 0.8573,犯假阳性错误的概率为0.1426.
统计分析中的假设检验与方差分析
统计分析中的假设检验与方差分析统计分析是一种科学的方法,通过对数据进行收集、整理、分析和解释,帮助我们了解现象背后的规律和关系。
在统计分析中,假设检验和方差分析是两个重要的概念和工具。
本文将介绍这两个概念的基本原理和应用。
一、假设检验假设检验是统计学中的一种常用方法,用于判断样本数据是否能够反映总体的特征。
在假设检验中,我们首先提出一个原假设(H0)和一个备择假设(H1),然后通过对样本数据的分析,判断是否拒绝原假设。
在假设检验中,我们需要进行以下几个步骤:1. 确定原假设和备择假设:原假设通常是我们要证伪的观点,备择假设则是我们要支持的观点。
例如,我们想要检验某个新药物是否有效,原假设可以是“该药物无效”,备择假设可以是“该药物有效”。
2. 选择显著性水平:显著性水平(α)是我们在进行假设检验时所允许的错误概率。
通常情况下,我们选择的显著性水平为0.05或0.01。
如果计算得到的p值小于显著性水平,则我们拒绝原假设。
3. 计算检验统计量:检验统计量是根据样本数据计算得到的一个数值,用于判断样本数据是否支持备择假设。
常见的检验统计量包括t值、F值等。
4. 判断拒绝或接受原假设:根据计算得到的检验统计量和显著性水平,我们可以判断是否拒绝原假设。
如果p值小于显著性水平,则我们拒绝原假设,否则我们接受原假设。
假设检验在实际应用中具有广泛的应用,例如医学研究、市场调查、工程设计等。
通过假设检验,我们可以对研究结果进行客观的评估和判断,从而做出更准确的决策。
二、方差分析方差分析是一种用于比较多个样本均值是否存在显著差异的统计方法。
在方差分析中,我们将总体分为若干个独立的组,然后通过计算组间方差和组内方差的比值,来判断不同组之间的均值是否存在显著差异。
方差分析的基本原理是利用方差的性质来比较样本均值之间的差异。
具体步骤如下:1. 确定独立变量和因变量:独立变量是我们要比较的不同组别,而因变量是我们要研究的特征或指标。
项目八假设检验回归分析与方差分析
项目八 假设检验、回归分析与方差分析实验2 回归分析实验目的 学习利用Mathematica 求解一元线性回归问题. 学会正确使用命令线性回归Regress, 并从输出表中读懂线性回归模型中各参数的估计, 回归方程, 线性假设的显著性检验结果, 因变量Y 在预察点0x 的预测区间等.基本命令1.调用线性回归软件包的命令<<Statistics\LinearRegression.m 输入并执行调用线性回归软件包的命令<<Statistics\LinearRegression.m或调用整个统计软件包的命令<<Statistics`2.线性回归的命令Regress一元和多元线性回归的命令都是Regress. 其格式是Regress[数据, 回归函数的简略形式, 自变量,RegressionReport(回归报告)->{选项1,选项2,选项3,…}]注: 回归报告中包含BestFit(最佳拟合,即回归函数), ParameterCITable(参数的置信区间表), PredictedResponse(因变量的预测值), SinglePredictionCITable(因变量的预测区间), FitResiduals(拟合的残差), SummaryReport(总结性报告)等.3.抹平“集合的集合”的命令Flatten命令Flatten[A]将集合的集合A 抹平为只有一个层次的集合. 例如, 输入Flatten[{{1,2,3},{1,{3}}}]则输出{1,2,3,1,3}.4.非线性拟合的命令NonlinearFit 使用的基本格式为NonlinearFit [数据, 拟合函数, (拟合函数中的)变量集, (拟合函数中的)参数, 选项] 注: 拟合函数中既有变量又有参数, 变量的个数要与数据的形式相应. 参数集中往往需 要给出各参数的初值. 选项的内容主要是指定拟合算法、迭代次数和精度.实验举例例2.1 (教材 例2.1) 某建材实验室做陶粒混凝土实验室中, 考察每立方米)(3m 混凝土的水泥用量(kg)对混凝土抗压强度)/(2cm kg 的影响, 测得下列数据:7.894.866.822.804.771.742602502402302202103.711.686.646.613.589.56200190180170160150yx y x 抗压强度水泥用量抗压强度水泥用量(1) 画出散点图;(2) 求y 关于x 的线性回归方程,ˆˆˆx b a y+=并作回归分析; (3) 设2250=x kg, 求y 的预测值及置信水平为0.95的预测区间.先输入数据:aa = {{150,56.9},{160,58.3},{170,61.6},{180,64.6},{190,68.1},{200,71.3},{210,74.1},{220,77.4},{230,80.2},{240,82.6},{250,86.4},{260,89.7}};(1) 作出数据表的散点图. 输入ListPlot[aa,PlotRange->{{140,270},{50,90}}]则输出图2.1.图2.1(2) 作一元回归分析, 输入Regress[aa,{1,x},x,RegressionReport->{BestFit,ParameterCITable,SummaryReport}]则输出{BestFit->10.2829+0.303986x, ParameterCITable->Estimate SE CI 1 10.2829 0.850375 {8.388111,12.1776}, x 0.303986 0.00409058 {0.294872,0.3131} ParameterTable->Esimate SE Tstat PValue 110.28290.85037512.09222.71852710-⨯,x 0.303986 0.00409058 74.3137 4.884981510-⨯ Rsquared->0.998193,AdjustedRSquared->0.998012, EstimatedVariance->0.0407025,ANOV A Table->DF SumOfSq MeanSq Fratio PValue Model1 1321.43 1321.435522.524.773961510-⨯Error10 2.39280.23928Total 11 1323.82现对上述回归分析报告说明如下:BestFit(最优拟合)-> 10.2829+0.303986x 表示一元回归方程为x y 303986.02829.10+=;ParameterCITable(参数置信区间表)中: Estimate 这一列表示回归函数中参数a , b 的点估计为aˆ=10.2829 (第一行), b ˆ= 0.303986 (第二行); SE 这一列的第一行表示估计量a ˆ的标准差为0.850375, 第二行表示估计量bˆ的标准差为0.00409058; CI 这一列分别表示a ˆ的置信水平为0.95的置信区间是(8.388111,12.1776), bˆ的置信水平为0.95的置信区间是 (0.294872,0.3131).ParameterTable(参数表)中前两列的意义同参数置信区间表; Tstat 与Pvalue 这两列的第一行表示作假设检验(t 检验):0:,0:10≠=a H a H 时, T 统计量的观察值为12.0922, 检验统计量的P 值为2.71852710-⨯, 这个P 值非常小, 检验结果强烈地否定0:0=a H , 接受0:1≠a H ; 第二行表示作假设检验(t 检验): ,0:0=b H 0:1≠b H 时T 统计量的观察值为74.3137, 检验统计量的P 值为 4.884981510-⨯, 这个P 值也非常小, 检验结果强烈地否定,0:0=b H 接受0:1≠b H .Rsquared->0.998193, 表示.998193.0)()(2==总平方和回归平方和SST SSR R 它说明y 的变化有99.8%来自x 的变化; AdjustedRSquared->0.998012, 表示修正后的=2~R 0.998012.EstimatedVariance->0.0407025, 表示线性模型),0(~,2σεεN bx a y ++=中方差2σ的估计为0.0407025.ANOV A Table(回归方差分析表)中的DF 这一列为自由度: Model(一元线性回归模型)的自由度为1, Error(残差)的自由度为,102=-n Total(总的)自由度为.111=-nSumOfSq 这一列为平方和: 回归平方和=SSR 1321.43, 残差平方和=SSE 2.3928,总的平方和=+=SSE SSR SST 1323.82;MeanSq 这一列是平方和的平均值, 由SumOfSq 这一列除以对应的DF 得到, 即.23928.02,43.13211=-===n SSEMSE SSR MSR FRatio 这一列为统计量MSEMSRF =的值, 即.52.5522=F 最后一列表示统计量F 的P 值非常接近于0. 因此在作模型参数)(b =β的假设检验(F 检验):0:;0:10≠=ββH H 时, 强烈地否定0:0=βH , 即模型的参数向量.0≠β因此回归效果 非常显著.(3) 在命令RegressionReport 的选项中增加RegressionReport->{SinglePredictionCITable}就可以得到在变量x 的观察点处的y 的预测值和预测区间. 虽然0.14=x 不是观察点, 但是可以用线性插值的方法得到近似的置信区间. 输入aa=Sort[aa]; (*对数据aa 按照水泥用量x 的大小进行排序*)regress2=Regress[aa,{1,x},x,RegressionReport->{SinglePredictionCITable}](*对数据aa 作线性回归, 回归报告输出y 值的预测区间*)执行后输出{SinglePredictionCITable-> Observed PredictedSE CI56.9 55.8808 0.55663 {54.6405,57.121} 58.3 58.92060.541391 {57.7143,60.1269} 61.6 61.9605 0.528883 {60.7821,63.1389} 64.6 65.00030.519305 {63.8433,66.1574} 68.1 68.0402 0.51282 {66.8976,69.1828} 71.3 71.0801 0.509547 {69.9447,72.2154}} 74.1 74.1199 0.509547 {72.9846,75.2553} 77.4 77.1598 0.51282 {76.0172,78.3024} 80.2 80.1997 0.519305 {79.0426,81.3567} 82.6 83.2395 0.528883 {82.0611,84.4179} 86.4 86.2794 0.541391 {85.0731,87.4857} 89.7 89.3192 0.55663 {88.079,90.5595}上表中第一列是观察到的y 的值, 第二列是y 的预测值, 第三列是标准差, 第四列是相应的预测区间(置信度为0.95). 从上表可见在)4.77(220==y x 时, y 的预测值为77.1598, 置信度为0.95的预测区间为(76.0172,75.2553), 在)2.80(230==y x 时, y 的预测值为80.1997, 置信度为0.95的预测区间为{79.0426,81.3567}. 利用线性回归方程, 可算得=0x 225时, y 的预测值为78.68, 置信度为0.95的预测区间为(77.546, 79.814).利用上述插值思想, 可以进一步作出预测区间的图形. 先输入调用图软件包命令<<Graphics`执行后再输入{observed2,predicted2,se2,ci2}=Transpose[(SinglePredictionCITable/.regress2)[[1]]];(*取出上面输出表中的四组数据, 分别记作observed2,predicted2,se2,ci2*) xva12=Map[First,aa];(*取出数据aa 中的第一列, 即数据中x 的值, 记作xva12*) Predicted3=Transpose[{xva12,predicted2}];(*把x 的值xva12与相应的预测值predicted2配成数对, 它们应该在一条回 归直线上*)lowerCI2=Transpose[{xva12,Map[First,ci2]}];(*Map[First,ci2]取出预测区间的第一个值, 即置信下限. x 的值xva12与相应 的置信下限配成数对*)upperCI2=Transpose[{xva12,Map[Last,ci2]}];(*Map[Last,ci2]取出预测区间的第二个值, 即置信上限. x 的值xva12与相应的置信上限配成数对*)MultipleListPlot[aa,Predicted3,lowerCI2,upperCI2,PlotJoined->{False,True,True,True},SymbolShape->{PlotSymbol[Diamond],None,None, None}, PlotStyle->{Automatic,Automatic,Dashing[{0.04,0.04}], Dashing[{0.04,0.04}]}](*把原始数据aa 和上面命令得到的三组数对predicted3,lowerCI2,upperCI2 用多重散点图命令MultipleListPlot 在同一个坐标中画出来. 图形中数据 aa 的散点图不用线段连接起来, 其余的三组散点图用线段连接起来, 而 且最后两组数据的散点图用虚线连接.*)则输出图2.2.图2.2从图形中可以看到, 由Y 的预测值连接起来的实线就是回归直线. 钻石形的点是原始数 据. 虚线构成预测区间.多元线性回归例2.2 (教材 例2.2) 一种合金在某种添加剂的不同浓度下, 各做三次试验, 得到数据如下表:8.323.327.298.277.288.301.306.321.313.274.297.312.318.292.250.300.250.200.150.10Yx 抗压强度浓度(1) 作散点图;(2) 以模型),0(~,22210σεεN x b x b b Y +++=拟合数据, 其中2210,,,σb b b 与x 无关;(3) 求回归方程,ˆˆˆˆ2210x b x b b y ++=并作回归分析. 先输入数据bb={{10.0,25.2},{10.0,27.3},{10.0,28.7},{15.0,29.8},{15.0,31.1},{15.0,27.8},{20.0,31.2},{20.0,32.6}, {20.0,29.7},{25.0,31.7},{25.0,30.1},{25.0,32.3}, {30.0,29.4},{30.0,30.8},{30.0,32.8}};(1) 作散点图, 输入ListPlot[bb,PlotRange->{{5,32},{23,33}},AxesOrigin->{8,24}]则输出图2.3.图2.3(2) 作二元线性回归, 输入Regress[bb,{1,x,x^2},x,RegressionReport->{BestFit,ParameterCITable,SummaryReport}](*对数据bb 作回归分析, 回归函数为,2210x b x b b ++用{1,x,x^2}表示, 自变量为x, 参数0b ,1b ,2b 的置信水平为0.95的置信区间)执行后得到输出的结果:{bestFit->19.0333+1.00857x-0.020381x 2, ParameterCITable->Estimate SE CI119.0333 3.27755{11.8922,26.1745} x 1.00857 0.356431{0.231975,1.78517}x 2 -0.0203810.00881488{-0.0395869,-0.00117497}ParameterTable->Estimate SE Tstat PValue 119.03333.277555.807180.0000837856x 1.00857 0.356431 2.82964 0.0151859 x 2 -0.0203810.00881488-2.312110.0393258Rsquared->0.614021,AdjustedRSquared->0.549692, EstimatedVariance->2.03968,ANOV A Table->DF SumOfSqMeanSq Fratio PValue Mode1 2 38.937119.4686 9.54490.00330658Error 12 24.47622.03968Total14 63.4133从输出结果可见: 回归方程为,020381.000857.10333.192x x Y -+=.020381.0ˆ,00857.1ˆ,0333.19ˆ210-===b b b 它们的置信水平为0.95的置信区间分别是 (11.8922,26.1745),(0.231975,1.78517),(-0.0395869,-0.00117497).假设检验的结果是: 在显著性水平为0.95时它们都不等于零. 模型),0(~,22210σεεN x b x b b Y +++=中,2σ的估计为2.03968. 对模型参数T b b ),(21=β是否等于零的检验结果是: .0≠β因此回归效果显著.非线性回归例2.3 下面的数据来自对某种遗传特征的研究结果, 一共有2723对数据, 把它们分成8类后归纳为下表.36.1937.1991.2079.2115.2342.257.2908.3887654321917461203246071021579y x 遗传性指标分类变量频率研究者通过散点图认为y 和x 符合指数关系:,c ae y bx += 其中c b a ,,是参数. 求参数c b a ,,的最小二乘估计.因为y 和x 的关系不是能用Fit 命令拟合的线性关系, 也不能转换为线性回归模型. 因此考虑用(1)多元微积分的方法求c b a ,,的最小二乘估计; (2)非线性拟合命令NonlinearFit 求c b a ,,的最小二乘估计.(1) 微积分方法 输入Off[Genera1::spe11] Off[Genera1::spe111] Clear[x,y,a,b,c]dataset={{579,1,38.08},{1021,2,29.70},{607,3,25.42},{324,4,23.15},{120,5,21.79},{46,6,20.91},{17,7,19.37},{9,8,19.36}}; (*输入数据集*) y[x_]:=a Exp[b x]+c (*定义函数关系*)下面一组命令先定义了曲线c ae y bx +=与2723个数据点的垂直方向的距离平方和, 记为).,,(c b a g 再求),,(c b a g 对c b a ,,的偏导数,,,cgb g a g ∂∂∂∂∂∂分别记为.,,gc gb ga 用FindRoot 命令解三个偏导数等于零组成的方程组(求解c b a ,,). 其结果就是所要求的c b a ,,的最小二乘估计. 输入Clear[a,b,c,f,fa,fb,fc]g[a_,b_,c_]:=Sum[dataset[[i,1]]*(dataset[[i,3]]-a*Exp[dataset[[i,2]]*b]-c)^2,{i,1,Length[dataset]}] ga[a_,b_,c_]=D[g[a,b,c],a]; gb[a_,b_,c_]=D[g[a,b,c],b]; gc[a_,b_,c_]=D[g[a,b,c],c]; Clear[a,b,c]oursolution=FindRoot[{ga[a,b,c]==0,gb[a,b,c]==0,gc[a,b,c]==0},{a,40.},{b,-1.},{c,20.}](* 40是a 的初值, -1是b 的初值, 20是c 的初值*)则输出{a->33.2221,b->-0.626855,c->20.2913} 再输入yhat[x_]=y[x]/.oursolution则输出20.2913+33.2221x e 626855.0这就是y 和x 的最佳拟合关系. 输入以下命令可以得到拟合函数和数据点的图形:p1=Plot[yhat[x],{x,0,12},PlotRange->{15,55},DisplayFunction->Identity]; pts=Table[{dataset[[i,2]],dataset[[i,3]]},{i,1,Length[dataset]}]; p2=ListPlot[pts,PlotStyle->PointSize[.01],DisplayFunction->Identity]; Show[p1,p2,DisplayFunction->$DisplayFunction];则输出图2.4.图2.4(2) 直接用非线性拟合命令NonlinearFit 方法 输入data2=Flatten[Table[Table[{dataset[[j,2]],dataset[[j, 3]]},{i,dataset[[j,1]]}],{j,1,Length[dataset]}],1]; (*把数据集恢复成2723个数对的形式*)<<Statistics`w=NonlinearFit[data2,a*Exp[b*x]+c,{x},{{a,40},{b,-1},{c,20}}]则输出x e 626855.02221.332913.20-+这个结果与(1)的结果完全相同. 这里同样要注意的是参数c b a ,,必须选择合适的初值.如果要评价回归效果, 则只要求出2723个数据的残差平方和.)ˆ(2∑-i i yy 输入 yest=Table[yhat[dataset[[i,2]]],{i,1, Length[dataset]}];yact=Table[dataset[[i,3]],{i,1,Length[dataset]}]; wts=Table[dataset[[i,1]],{i,1,Length[dataset]}]; sse=wts.(yact-yest)^2 (*作点乘运算*)则输出59.9664即2723个数据的残差平方和是59.9664. 再求出2723个数据的总的相对误差的平方和.]ˆ/)ˆ[(2∑-i i i y yy 输入 sse2=wts.((yact-yest)^2/yest) (*作点乘运算)则输出2.74075由此可见, 回归效果是显著的.实验习题1.某乡镇企业的产品年销售额x 与所获纯利润y 从1984年的数据(单位:百万元)如下表3.225.207.174.157.135.117.94.83.84.65.43.349.328.294.241.214.176.147.104.95.71.69493929190898887868584y x 纯利润销售额年度 试求y 对x 的经验回归直线方程, 并作回归分析.2.在钢线碳含量对于电阻的效应的研究中, 得到以下数据268.236.2221191815/95.080.070.055.040.030.010.0%/Ωμy x 电阻碳含量试求y 对x 的经验回归直线方程, 并作简单回归分析.(1) 画出散点图;(2) 求y 关于x 的线性回归方程,ˆˆˆx b a y+=并作回归分析; (3) 求0.14=x 时y 的置信水平为0.95的预测区间.4.下面给出了某种产品每件平均单价Y (单位:元)与批量x (单位:件)之间的关系的一组数 据18.120.121.124.126.130.140.148.155.165.170.181.1908075706560504035302520y x(i)作散点图. (ii)以模型),0(~,22210σεεN x b x b b Y +++=拟合数据, 求回归方程,ˆˆˆˆ2210x b x b b Y ++=并作简单回归分析.]。
概率与统计中的假设检验和方差分析
概率与统计中的假设检验和方差分析统计学是研究数据收集、分析和解释的科学。
在统计学的研究中,假设检验和方差分析是两个重要的工具。
本文将对这两个概念进行详细介绍,并探讨它们在实际问题中的应用。
一、假设检验假设检验是指根据样本数据对总体参数提出的关于总体的假设进行检验的过程。
假设检验主要包括以下几个步骤:1. 提出原假设(H0)和备选假设(H1):原假设是对总体参数的某种陈述,备选假设是对原假设的否定。
例如,假设检验中常见的原假设是总体参数等于某个特定值,备选假设是总体参数不等于该特定值。
2. 选择检验统计量:检验统计量是根据样本数据计算的统计量,用于衡量观察到的样本结果与原假设之间的差异。
3. 确定显著性水平(α):显著性水平是在假设检验中指定的判断标准,通常取0.05或0.01。
当P值(观察到的统计量发生的概率)小于显著性水平时,拒绝原假设,否则接受原假设。
4. 进行假设检验:根据选择的检验统计量,计算其观察值,并与理论上的检验统计量分布进行比较,得出拒绝或接受原假设的结论。
假设检验在实际中的应用非常广泛,比如医学研究中对新药物疗效的检验、市场调研中对产品平均销量的检验等。
二、方差分析方差分析是一种用于比较多个总体均值差异是否显著的统计方法。
方差分析的基本思想是将总体的差异分解成不同成分,通过比较成分之间的差异来判断总体均值是否存在差异。
方差分析主要包括以下几个步骤:1. 提出假设:假设要比较的多个总体没有显著差异(H0),备选假设为多个总体之间存在显著差异(H1)。
2. 计算变异程度:将总体的差异分解成组间变异和组内变异两部分。
组间变异是指各个样本均值与总体均值之间的差异,组内变异是指同一样本内各个观测值与样本均值之间的差异。
3. 计算F值:根据组间变异和组内变异的比值计算F值。
F值越大,说明组间差异相对于组内差异的贡献越大。
4. 判断显著性:将计算得到的F值与理论上的F分布进行比较,得出拒绝或接受原假设的结论。
假设检验-方差分析
置信上限: x + uα / 2 σ = 1.96 + 1.96 × 0.028 = 1.98
n 6
置信区间:(1.94,1.98) (3)作出判断结论:因为在H0成立的条件下 作出判断结论:因为在 成立的条件下95%的置信区间 作出判断结论 的置信区间 不包含µ ,故在显著水平α 下拒绝H 不包含µ0=2,故在显著水平α=0.05下拒绝 0。 下拒绝
u=
x − µ0 σ/ n
=
1 . 96 − 2 0 . 028 / 6
= − 3 . 4993
(3)给定α求临界值:取α=0.05,查表得u0.05/2=1.96, 由于|u|>1.96,故在显著性水平α=0.05下拒绝H0。
2、置信区间法 (1)提出原假设H0:µ=2,备择假设H1: µ≠2 (2)给定α求置信区间:取α=0.05,查表得u0.05/2=1.96, σ=0.028, =1.96,则: x 置信下限: x − uα / 2 σ = 1.96 − 1.96 × 0.028 = 1.94
t =
ቤተ መጻሕፍቲ ባይዱ
x − µ0 s/ n
=
0 . 47 − 0 . 5 0 . 05 / 25
= −3
(3) 由α=0.01及df=25-1=24,查表得 及 ,查表得P(|t|>3)=p<0.01, 拒绝 H0(0.001<p<0.01)。即该厂生产的这批药片不符合规定。 。即该厂生产的这批药片不符合规定。
(二)两个正态总体的检验 1、配对比较与成组比较
小概率事件在一次试验中不会发生。 二、假设检验步骤 1、提出原假设H0和备择假设H1 2、在原假设成立的条件下,构造一个分布已知的 统计量 用于检验原假设的合理性的统计量称为检验统 计量,简称检验。如S=f(X1,X2,…,Xn)使得 P(S∈S0)=α,即S∈S0是一个小概率事件。称S0为拒 绝域或临界域。
统计学原理——假设检验与方差分析
二、假设检验中的两类错误**
第Ⅰ类错误/弃真错误 (type Ⅰ error)
当原假设为真时拒绝原假设。犯第Ⅰ类错误的概率
通常记为 。
第Ⅱ类错误/取伪错误(type Ⅱ error)
n1 P 40010.2 320 f 5
所以为大样本分布,检验统计量 Z 近似服从 正态分布。样本数据显示:
p 100 0.25 400
Z p P0 0.25 0.20 0.05 2.5
P 1 P 0.21 0.2 0.02
n
400
在显著性水平 0.05 情况下,查表可知,
比RMB 245.95小或者比RMB 274.05大。所以,在双侧 检验(见下图8-1)中有两个拒绝域。
拒绝域
接受域
拒绝域
245.95
260.00
274.05
图8-1 双边检验的拒绝域与接受域
[例8-2] 在例8-1的假设检验中,如果样本的均值
为 X 240.00 ,当显著性水平为0.05时,原假设是否被 拒绝。
重点是三种不同情况下的假设检验方法,总体方差已 知时正态总体均值和总体比例的假设检验。
难点是总体方差未知时正态总体均值的假设检验和方 差分析。
第一节 假设检验
一、假设检验的概念
一、假设检验的概念
假设(hypothesis),又称统计假设,是对总体参数 的具体数值所作的陈述。
假设检验(hypothesis test) 是先对总体参数提出 某种假设,然后利用样本信息判断假设是否成立的过程。
(3) H0:μ = μ0 H1:μ<μ
假设检验方差分析
方差分析是通过比较不同组别之间的差异来检验假设
的一种统计方法。
02
它通过将总变异性分解为组间变异性和组内变异性,
来评估组间差异是否显著。
03
方差分析的基本思想是,如果各组之间存在显著差异
,那么组间变异性应该大于组内变异性。
方差分析的应用场景
01 比较不同组别之间的平均值是否存在显著差异。 02 检验一个或多个分类变量对连续变量的影响。 03 在实验设计中,用于评估不同处理或条件下的结
进行统计检验
根据样本数据和选择的统计量, 计算相应的值并进行统计检验。
提出假设
根据研究问题和数据情况,提 出原假设和备择假设。
确定显著性水平
确定一个合适的显著性水平, 用于判断假设是否成立。
做出推断
根据统计检验的结果,做出拒 绝或接受原假设的推断。
03 方差分析的原理及应用
方差分析的基本思想
01
提高数据分析的全面性和准确性。
04
加强假设检验和方差分析的理论研究,深入探讨其数 学原理和理论基础,为方法的改进和创新提供理论支 持。
THANKS FOR WATC
多因素方差分析用于比较多个分类变量与一个连续变量的关系。
详细描述
例如,比较不同品牌、不同型号、不同生产年份手机的使用寿命,通过多因素方差分析可以判断这些 因素对手机使用寿命的影响是否有显著差异。
05 结论
假设检验和方差分析的重要性
假设检验是统计学中一种重要的统计推断方法,通过检验假设是否成立,可以判断样本数据是否支持 或拒绝原假设,从而得出科学可靠的结论。
04 实际应用案例
单因素方差分析
总结词
单因素方差分析用于比较一个分类变 量与一个连续变量的关系。
概率与数理统计第8章--假设检验与方差分析
第8章假设检验与方差分析【引例】重庆啤酒股份有限公司(以下简称重庆啤酒)于1990年代初斥巨资开始乙肝新药的研发,其股票被视作“生物医药”概念股受到市场热捧。
尤其是2010~2011年的两年间,在上证指数大跌1/3的背景下,重庆啤酒股价却从23元左右飙升最高至元,但公司所研制新药的主要疗效指标的初步统计结果于2011年12月8日披露后,股价连续跌停,12月22日以元报收后停牌。
2012年1月10日重庆啤酒公告详细披露了有关研究结论,复牌后股价又遭遇连续数日下跌,1月19日跌至元。
此公告明确告知:“主要疗效指标方面,意向性治疗人群的安慰剂组与 600μg组,及安慰剂组与εPA-44 900μg组之间,HBeAg/抗HBe 血清转换在统计意义上均无差异”。
通俗地说,用药与不用药(安慰剂组)以及用药多与少(900μg组与600μg 组),都没有明显差异,这意味着该公司研制的乙肝新疫苗无效。
有关数据如表所示:表乙肝新疫苗的应答率注:εP A-44为治疗用(合成肽)乙型肝炎疫苗简称。
上表数据显示,两个用药组的应答率都高于安慰剂组的应答率,但为什么说“在统计意义上均无差异”为什么说这个结论表示乙肝新疫苗无效什么叫“在统计意义上无差异”如何根据样本数据作出统计意义上有无差异的判断解答这些问题就需要本章所要介绍的假设检验。
现实中,人们经常需要利用样本信息来判断有关总体特征的某个命题是真还是伪,或对某个(些)因素的影响效应是否显著作出推断,所以假设检验和方差分析有着广泛的应用。
例如,在生物医学领域,判断某种新药是否比旧药更有效;在工业生产中,根据某批零件抽样检查的信息来判断整批零件的质量是否符合规格要求;在流通领域,鉴别产品颜色是否对销售量有显著影响等等。
这些分析研究都离不开假设检验或方差分析。
假设检验与方差分析的具体方法很多,研究目的和背景条件不同,就需采用不同的方法。
本教材介绍假设检验与方差分析的基本原理和一些基本方法。
统计学第8章假设检验
市场调查中常用的假设检验方法包括T检验、Z检验和卡方 检验等。选择合适的检验方法需要考虑数据的类型、分布 和调查目的。例如,对于连续变量,T检验更为适用;对于 分类变量,卡方检验更为合适。
医学研究中假设检验的应用
临床试验
在医学研究中,假设检验被广泛应用于临床试验。研究 人员通过设立对照组和实验组,对不同组别的患者进行 不同的治疗,然后收集数据并使用假设检验来分析不同 治疗方法的疗效。
03 假设检验的统计方法
z检验
总结词
z检验是一种常用的参数检验方法,用于检验总体均值的假设。
详细描述
z检验基于正态分布理论,通过计算z分数对总体均值进行检验。它适用于大样本 数据,要求数据服从正态分布。z检验的优点是简单易懂,计算方便,但前提假 设较为严格。
t检验
总结词
t检验是一种常用的参数检验方法,用于检验两组数据之间的差异。
卡方检验
总结词
卡方检验是一种非参数检验方法,用于 比较实际观测频数与期望频数之间的差 异。
VS
详细描述
卡方检验通过计算卡方统计量来比较实际 观测频数与期望频数之间的差异程度。它 适用于分类数据的比较,可以检验不同分 类之间的关联性。卡方检验的优点是不需 要严格的假设前提,但结果解释需谨慎。
04 假设检验的解读与报告
详细描述
t检验分为独立样本t检验和配对样本t检验,分别用于比较两组独立数据和同一组数据在不同条件下的 差异。t检验的前提假设是小样本数据近似服从正态分布。t检验的优点是简单易行,但前提假设需满 足。
方差分析
总结词
方差分析是一种统计方法,用于比较两个或多个总体的差异。
详细描述
方差分析通过分析不同组数据的方差来比较各组之间的差异。它适用于多组数据的比较,可以检验不同因素对总 体均值的影响。方差分析的前提假设是各组数据服从正态分布,且方差齐性。
假设检验与方差分析
参数检验
不依赖于总体参数的假设,而是直接对样本数据进行统计分析,例如中位数、众数等。
非参数检验
假设检验的类型
做出推断
根据样本数据和临界值的比较结果,做出关于总体参数的推断。
计算临界值
根据选择的统计量和显著性水平,计算临界值。
确定显著性水平
选择一个合适的显著性水平,用于判断样本数据是否具有统计学上的意义。
03
2. 收集数据
收集不同肥料处理下的农作物产量数据。
04
3. 数据整理
对数据进行整理,分组并计算各组的均值和总体均值。
05
4. 计算方差分析表
包括组间方差、组内方差和总方差。
06
5. 做出决策
根据组间方差和组内方差的比较,判断是否拒绝原假设。
方差分析案例
06
总结与展望
总结
01
假设检验与方差分析是统计学中常用的方法,用于研究不同组别之间的差异和比较不同数据集之间的关系。
假设检验与方差分析
目录
contents
引言 假设检验的基本概念 方差分析的基本概念 假设检验与方差分析的关联 案例分析 总结与展望
01
引言
是一种统计推断方法,通过检验样本数据是否符合某一假设,从而对总体做出推断。
是一种统计方法,用于比较不同组数据的均值是否存在显著差异。
主题介绍
方差分析
假设检验
对未来研究的展望
随着大数据时代的到来,数据量越来越大,对于高维数据的处理和分析成为未来研究的热点。如何利用假设检验与方差分析等方法处理高维数据,揭示其内在结构和规律,是未来研究的重要方向。
THANKS FOR
假设检验与方差分析概述
显••491原冰显概0假箱设 使H用0年=限10 著著•率
即假设某品牌合格
显著水平例(单边检验)
水平水平54
示%5
•图中4为5%的临界值
意%
• 9为45%的临界 值
图
• 假设国家标准规定冰箱使用年限必须10年或以上 • 对某品牌抽样检验时,如果显著水平设为45%,则样本均值9年或以下
即可认定为不合格。显著水平设为5%,则样本均值4年或以下才可认 定为不合格。显然显著水平设为5%更合理、更有说服力
所以实用中(比如回归分析中),要获得有统计意义的结论 (即在5%显著水平拒绝原假设(H0)),可作下列任一 种判断: 看P值时,应≤5% 看t值时,应≥ 2
假设检验的步骤
• (1)确定原假设( H0 )和备择假设( H1) • (2)选择要检验的统计量(比如样本均值) • (3)确定检验的显著水平(一般为5%) • (4)确定与显著水平相对应的t分布的临界值 • (5)根据要检验的统计量的|t值|大于还是小
使用EViews软件作 单因素方差分析的详细结果
•df: 自由度
•Source of variation: 离差 来源 •Between: 组间 平方和 •Within: 组内平 方和 •Total: 总平方和
第3节 方差分析应用: 恩格尔系数的城乡比较
• 主要内容
– 恩格尔系数的概念 – 对我国近年城乡恩格尔系数的方差分析
• 求随机变量的均值等基本统计量: 菜单ViewDescriptive StatsCommon Sample
前例续3:作方差分析
选菜单ViewTest of Equality
前例续4:检验结论
• 显然方差分析的F分布值的P值=0.0001<0.05,拒绝H0, 即三个分行VIP账户余额不全相同。
假设检验方差分析
• 假设检验概述 • 方差分析概述 • 独立样本T检验 • 配对样本T检验 • 单因素方差分析 • 多因素方差分析
目录
Part
01
假设检验概述
定义与原理
定义
假设检验是一种统计方法,用于根据 样本数据对总体参数做出推断。
原理
基于样本数据和适当的统计量,对总 体参数做出接受或拒绝的决策。
适用条件
数据正态分布
两个样本的数据应符合正 态分布,这是配对样本T 检验的前提条件。
独立性
两个样本之间应相互独立, 不存在相互影响的关系。
方差齐性
两个样本的方差应具有齐 性,即方差相等。
实例分析
数据收集
收集两个相关样本的数据,例如 比较两种不同类型运动对心率的 影响。
结果解释
若P值小于显著性水平(如0.05),则 认为两个样本的均值存在显著差异; 若P值大于显著性水平,则认为两个样 本的均值无显著差异。
数据处理
计算两个样本的差值,并计算差 值的均值和标准差。
数据分析
利用T检验公式计算T值和自由度, 并查表得到对应的P值。根据P值 判断两个样本的均值是否存在显 著差异。
Part
05
单因素方差分析
定义与原理
定义
单因素方差分析(One-way ANOVA)是一种统计方法,用于比较三个或更多 独立样本组的均值是否存在显著差异。
THANKS
感谢您的观看
计算样本数据
收集样本数据并计算统计 量值。
确定显著性水平
确定一个合适的显著性水 平,用于判断原假设是否 被拒绝。
Part
02
方差分析概述
方差分析的定义
方差分析(ANOVA)是一种统计方法,用于比较两个或多个组之间的平均值差异,以确 定这些差异是否由随机误差引起,还是由于处理因素或自变量引起的。
假设检验项目八假设检验、回归分析与方差分析
项目八 假设检验、回归分析与方差分析实验1 假设检验实验目的 掌握用Mathematica 作单正态总体均值、方差的假设检验, 双正态总体的均值差、方差比的假设检验方法, 了解用Mathematica 作分布拟合函数检验的方法.基本命令1.调用假设检验软件包的命令<<Statistics\HypothesisTests.m输入并执行命令<<Statistics\HypothesisTests.m2.检验单正态总体均值的命令MeanTest命令的基本格式为MeanTest[样本观察值,0H 中均值0μ的值, TwoSided->False(或True), Known Variance->None (或方差的已知值20σ),SignificanceLevel->检验的显著性水平α,FullReport->True]该命令无论对总体的均值是已知还是未知的情形均适用.命令MeanTest 有几个重要的选项. 选项Twosided->False 缺省时作单边检验. 选项Known Variance->None 时为方差未知, 所作的检验为t 检验. 选项Known Variance->20σ时为方差已知(20σ是已知方差的值), 所作的检验为u 检验. 选项Known Variance->None 缺省时作方差未知的假设检验. 选项SignificanceLevel->0.05表示选定检验的水平为0.05. 选项FullReport->True 表示全面报告检验结果.3.检验双正态总体均值差的命令MeanDifferenceTest命令的基本格式为MeanDifferenceTest[样本1的观察值,样本2的观察值,0H 中的均值21μμ-,选项1,选项2,…]其中选项TwoSided->False(或True), SignificanceLevel->检验的显著性水平α,FullReport->True 的用法同命令MeanTest 中的用法. 选项EqualVariances->False(或True)表示两个正态总体的方差不相等(或相等).4.检验单正态总体方差的命令VarianceTest命令的基本格式为VarianceTest[样本观察值,0H 中的方差20σ的值,选项1,选项2,…]该命令的选项与命令MeanTest 中的选项相同.5.检验双正态总体方差比的命令VarianceRatioTest命令的基本格式为VarianceRatioTest[样本1的观察值,样本2的观察值,0H 中方差比2221σσ的值,选项1,选项2,…] 该命令的选项也与命令MeanTest 中的选项相同.注: 在使用上述几个假设检验命令的输出报告中会遇到像OneSidedPValue->0.000217593这样的项,它报告了单边检验的P 值为0.000217593. P 值的定义是: 在原假设成立的条件下, 检验统计量取其观察值及比观察值更极端的值(沿着对立假设方向)的概率. P 值也称作“观察”到的显著性水平. P 值越小, 反对原假设的证据越强. 通常若P 低于5%, 称此结果为统计显著; 若P 低于1%,称此结果为高度显著.6.当数据为概括数据时的假设检验命令当数据为概括数据时, 要根据假设检验的理论, 计算统计量的观察值, 再查表作出结论. 用以下命令可以代替查表与计算, 直接计算得到检验结果.(1)统计量服从正态分布时, 求正态分布P 值的命令NormalPValue. 其格式为NormalPValue[统计量观察值,显著性选项,单边或双边检验选项](2)统计量服从t 分布时, 求t 分布P 值的命令StudentTPValue. 其格式为StudentTPValue[统计量观察值,自由度,显著性选项,单边或双边检验选项](3)统计量服从2χ分布时, 求2χ分布P 值的命令ChiSquarePValue. 其格式为ChiSquarePValue[统计量观察值,自由度,显著性选项,单边或双边检验选项](4)统计量服从F 分布时, 求F 分布P 值的命令FratioPValue. 其格式为FratioPValue[统计量观察值,分子自由度,分母自由度,显著性选项,单边或双边检验选项](5)报告检验结果的命令ResultOfTest. 其格式为ResultOfTest[P 值,显著性选项,单边或双边检验选项,FullReport->True]注:上述命令中, 缺省默认的显著性水平都是0.05, 默认的检验都是单边检验.实验举例单正态总体均值的假设检验(方差已知情形)例 1.1 (教材 例 1.1) 某车间生产钢丝, 用X 表示钢丝的折断力, 由经验判断),(~2σμN X , 其中228,570==σμ, 今换了一批材料, 从性能上看, 估计折断力的方差2σ不会有什么变化(即仍有228=σ), 但不知折断力的均值μ和原先有无差别. 现抽得样本, 测得其折断力为578 572 570 568 572 570 570 572 596 584取,05.0=α试检验折断力均值有无变化?根据题意, 要对均值作双侧假设检验570:,570:10≠=μμH H输入<<Statistics\HypothesisTests.m 执行后, 再输入data1={578,572,570,568,572,570,570,572,596,584};MeanTest[data1,570,SignificanceLevel->0.05,KnownVariance->64,TwoSided->True,FullReport->True](*检验均值, 显著性水平05.0=α, 方差083.02=σ已知*) 则输出结果{FullReport->MeanTestStat Distribution 575.2 2.05548 NormalDistribution[]TwoSidedPValue->0.0398326,Reject null hypothesis at significance level ->0.05}即结果给出检验报告: 样本均值2.575=x , 所用的检验统计量为u 统计量(正态分布),检验统计量的观测值为 2.05548, 双侧检验的P 值为0.0398326, 在显著性水平05.0=α下, 拒绝原假设, 即认为折断力的均值发生了变化.例 1.2 (教材 例 1.2) 有一工厂生产一种灯管, 已知灯管的寿命X 服从正态分布)40000,(μN , 根据以往的生产经验, 知道灯管的平均寿命不会超过1500小时. 为了提高灯管的平均寿命, 工厂采用了新的工艺. 为了弄清楚新工艺是否真的能提高灯管的平均寿命,他们测试了采用新工艺生产的25只灯管的寿命. 其平均值是1575小时, 尽管样本的平均值大于1500小时, 试问: 可否由此判定这恰是新工艺的效应, 而非偶然的原因使得抽出的这25只灯管的平均寿命较长呢?根据题意, 需对均值的作单侧假设检验 1500:,1500:10>≤μμH H检验的统计量为 n X U /0σμ-=, 输入 p1=NormalPValue[(1575-1500)/200*Sqrt[25]]ResultOfTest[p1[[2]],SignificanceLevel ->0.05,FullReport ->True]执行后的输出结果为OneSidedPValue ->0.0303964{OneSidedPValue->0.0303964,Fail to reject null hypothesis at significance level ->0.05}即输出结果拒绝原假设单正态总体均值的假设检验(方差未知情形)例1.3 (教材 例1.3) 水泥厂用自动包装机包装水泥, 每袋额定重量是50kg, 某日开工后随机抽查了9袋, 称得重量如下:49.6 49.3 50.1 50.0 49.2 49.9 49.8 51.0 50.2设每袋重量服从正态分布, 问包装机工作是否正常(05.0=α)?根据题意, 要对均值作双侧假设检验:50:;50:10≠=μμH H输入data2={49.6,49.3,50.1,50.0,49.2,49.9,49.8,51.0,50.2};MeanTest[data2,50.0,SignificanceLevel ->0.05,FullReport ->True](*单边检验且未知方差,故选项TwoSided,KnownVariance 均采用缺省值*)执行后的输出结果为{FullReport->Mean TestStat Distribution,49.9 -0.559503 StudentTDistribution[8]OneSidedPValue ->0.295567,Fail to reject null hypothesis at significance level ->0.05}即结果给出检验报告: 样本均值9.49=X , 所用的检验统计量为自由度8的t 分布(t 检验),检验统计量的观测值为-0.559503, 双侧检验的P 值为0.295567, 在显著性水平05.0=α下, 不拒绝原假设, 即认为包装机工作正常.例1.4 (教材 例1.4) 从一批零件中任取100件,测其直径,得平均直径为5.2,标准差为1.6.在显著性水平05.0=α下,判定这批零件的直径是否符合5的标准. 根据题意, 要对均值作假设检验: .5:;5:10≠=μμH H 检验的统计量为n s X T /0μ-=, 它服从自由度为1-n 的t 分布. 已知样本容量,100=n 样本均值2.5=X , 样本标准差6.1=s .输入StudentTPValue[(5.2-5)/1.6*Sqrt[100],100-1,TwoSided->True]则输出TwoSidedPValue->0.214246 即P 值等于0.214246, 大于0.05, 故不拒绝原假设, 认为这批零件的直径符合5的标准.单正态总体的方差的假设检验例1.5 (教材 例1.5) 某工厂生产金属丝, 产品指标为折断力. 折断力的方差被用作工厂生产精度的表征. 方差越小, 表明精度越高. 以往工厂一直把该方差保持在64(kg 2)与64以下. 最近从一批产品中抽取10根作折断力试验, 测得的结果(单位为千克) 如下:578 572 570 568 572 570 572 596 584 570 由上述样本数据算得74.75,2.5752==s x .为此, 厂方怀疑金属丝折断力的方差是否变大了. 如确实增大了, 表明生产精度不如以前, 就需对生产流程作一番检验, 以发现生产环节中存在的问题.根据题意, 要对方差作双边假设检验:64:;64:2120>≤σσH H 输入 data3={578,572,570,568,572,570,572,596,584,570};VarianceTest[data3,64,SignificanceLevel->0.05,FullReport->True](*方差检验,使用双边检验,05.0=α*)则输出{FullReport->Variance TestStat Distribution75.7333 10.65 ChiSquareDistribution[9]OneSidedPValue->0.300464,Fail to reject null hypothesis at significance level->0.05}即检验报告给出: 样本方差,7333.752=s 所用检验统计量为自由度4的2χ分布统计量(2χ 检验), 检验统计量的观测值为10.65, 双边检验的P 值为0.300464, 在显著性水平05.0=α 时, 接受原假设, 即认为样本方差的偏大系偶然因素, 生产流程正常, 故不需再作进一步的 检查.例1.6 (教材 例1.6) 某厂生产的某种型号的电池, 其寿命(以小时计) 长期以来服从方差50002=σ的正态分布, 现有一批这种电池, 从它的生产情况来看, 寿命的波动性有所改变. 现随机取26只电池, 测出其寿命的样本方差92002=s .问根据这一数据能否推断这批电池的寿命的波动性较以往的有显著的变化(取02.0=α)?根据题意, 要对方差作双边假设检验: 5000:;5000:2120≠=σσH H 所用的检验统计量为,)1(2022σχS n -=它服从自由度为1-n 的2χ分布.已知样本容量,26=n 样本方差.92002=s输入ChiSquarePValue[(26-1)*9200/5000, 26-1,TwoSided->True]则输出TwoSidedPValue->0.0128357.即P 值小于0.05, 故拒绝原假设. 认为这批电池寿命的波动性较以往有显著的变化.双正态总体均值差的检验(方差未知但相等)例1.7 (教材 例1.7) 某地某年高考后随机抽得15名男生、12名女生的物理考试成绩如下: 男生: 49 48 47 53 51 43 39 57 56 46 42 44 55 44 40女生: 46 40 47 51 43 36 43 38 48 54 48 34从这27名学生的成绩能说明这个地区男女生的物理考试成绩不相上下吗?(显著性水平05.0=α).根据题意, 要对均值差作单边假设检验:211210:,:μμμμ≠=H H输入 data4={49.0,48,47,53,51,43,39,57,56,46,42,44,55,44,40};data5={46,40,47,51,43,36,43,38,48,54,48,34};MeanDifferenceTest[data4,data5,0,SignificanceLevel->0.05,TwoSided->True,FullReport->True,EqualVariances->True,FullReport->True](*指定显著性水平05.0=α,且方差相等*) 则输出{FullReport->MeanDiff TestStat Distribution3.6 1.56528 tudentTDistribution[25],OneSidedPValue->0.13009,Fail to reject null hypothesis at significance level->0.05}即检验报告给出: 两个正态总体的均值差为3.6, 检验统计量为自由度25的t 分布(t 检验),检验统计量的观察值为1.56528, 单边检验的P 值为0.13009, 从而没有充分理由否认原假 设, 即认为这一地区男女生的物理考试成绩不相上下.双正态总体方差比的假设检验例1.8 (教材 例1.8) 为比较甲、乙两种安眠药的疗效, 将20名患者分成两组, 每组10人, 如服药后延长的睡眠时间分别服从正态分布, 其数据为(单位:小时):甲: 5.5 4.6 4.4 3.4 1.9 1.6 1.1 0.8 0.1 -0.1乙: 3.7 3.4 2.0 2.0 0.8 0.7 0 -0.1 -0.2 -1.6问在显著性水平05.0=α下两重要的疗效又无显著差别.根据题意, 先在21,μμ未知的条件下检验假设:2221122210:,:σσσσ≠=H H输入 list1={5.5,4.6,4.4,3.4,1.9,1.6,1.1,0.8,0.1,-0.1};。
统计学中的方差分析与假设检验
统计学中的方差分析与假设检验方差分析(Analysis of Variance,简称ANOVA)是统计学中一种常用的假设检验方法,用于比较两个或多个样本的均值是否存在显著差异。
方差分析通过对不同组之间的方差进行比较,判断样本均值是否有统计学上的差异。
本文将介绍方差分析的基本原理和假设检验的步骤。
一、方差分析的基本原理方差分析是一种多个总体均值比较的方法,它通过计算组间离散度与组内离散度的比值来判断样本均值是否有显著差异。
方差分析的基本原理可以用以下公式表示:$$F=\frac{MS_{\text{between}}}{MS_{\text{within}}}$$其中,F为方差比值,$MS_{\text{between}}$为组间均方,$MS_{\text{within}}$为组内均方。
方差比值F的值越大,说明组间差异相对于组内差异的贡献越大,即样本均值之间的差异越显著。
通过查找F分布表,可以确定F值对应的显著性水平,从而判断样本均值是否有显著差异。
二、假设检验的步骤方差分析的假设检验可以分为以下几个步骤:1. 建立假设- 零假设(H0):各组样本的均值相等,即$\mu_1=\mu_2=...=\mu_k$- 备择假设(H1):至少有两个组样本的均值不相等,即$\mu_i\neq\mu_j$2. 计算组间均方- 组间均方$MS_{\text{between}}$的计算公式为:$MS_{\text{between}}=\frac{SS_{\text{between}}}{df_{\text{between}}}$ - 其中,$SS_{\text{between}}$为组间平方和,$df_{\text{between}}$为组间自由度。
3. 计算组内均方- 组内均方$MS_{\text{within}}$的计算公式为:$MS_{\text{within}}=\frac{SS_{\text{within}}}{df_{\text{within}}}$ - 其中,$SS_{\text{within}}$为组内平方和,$df_{\text{within}}$为组内自由度。
统计学中的假设检验与方差分析
统计学是一门研究收集、分析、解释和展示数据的学科,它在科学研究、商业分析、政府决策以及医学等领域中发挥着重要作用。
其中,假设检验与方差分析是统计学中常用的两种方法。
假设检验是通过对数据进行统计分析,来验证研究者提出的关于总体特征的假设是否成立的方法。
假设检验分为参数检验和非参数检验,其中参数检验是根据总体参数的已知或假设值,利用样本观测值计算检验统计量,并对其进行显著性检验;非参数检验则在不考虑总体参数的情况下,利用样本观测值直接进行显著性检验。
在假设检验中,我们假设一个“原假设”(H0),通常是认为不存在任何关系或差别,以及一个“备择假设”(H1),通常是认为存在某种关系或差别。
然后,利用样本数据计算检验统计量,根据统计学原理和假设检验的显著性水平,计算P值(P-value),P值小于显著性水平时,我们会拒绝原假设,否则接受原假设。
方差分析(ANOVA)是一种用于比较两个或多个样本均值是否存在显著差异的统计方法。
方差分析通过计算组间差异与组内差异的比值来判断均值之间的差异是否显著。
在方差分析中,我们将总平方和分解为组间平方和和组内平方和,然后计算组间平方和与组内平方和的比值(F值),根据F值与显著性水平的比较来判断均值是否存在显著差异。
假设检验与方差分析在数据分析中有着广泛的应用。
举一个例子来说明。
假设我们想研究不同年龄段的人的身高差异。
我们可以做一个假设,即不同年龄段的人的身高是相同的(H0)。
然后我们收集不同年龄段的人的身高数据,并计算样本均值和样本标准差。
通过假设检验和方差分析,我们可以比较不同年龄段的身高是否存在显著差异,并得出结论。
在实际应用中,假设检验和方差分析也需要注意一些问题。
首先,需要选择适当的统计方法,确保数据的分布符合所选方法的假设。
其次,需要确定显著性水平,通常选择0.05或0.01作为界限。
最后,需要进行假设检验和方差分析的正确解读,避免错误地推断结果。
综上所述,假设检验与方差分析是统计学中重要的方法,可以用于研究不同总体特征之间的差异。
假设检验与方差分析
决策:
拒绝H0
拒绝 H0
.025
结论:
有证据表明新机床加工的零件 的椭圆度与以前有显著差异
-1.96
0
1.96
Z
总体均值的检验
(2未知小样本)
• 1. 假定条件
– 总体为正态分布 2未知,且小样本
• 2. 使用t 统计量
t
X 0 S n
~ t (n 1)
2 未知小样本均值的检验
t 检验
(单尾和双尾)
Z 检验
(单尾和双尾)
2检验
(单尾和双尾)
总体均值检验
总体均值的检验
(检验统计量)
是
总体 是否已知 ?
否
小 样本容量 n
用样本标 准差S代替
大
z 检验
z 检验
t 检验
Z
X 0
Z
X 0 S n
t
X 0 S n
n
总体均值的检验
(2 已知或2未知大样本)
独立样本 配对样本
比例
方差
Z 检验
(大样本)
t 检验
(小样本)
t 检验
(小样本)
Z 检验
F 检验
两个独立样本的均值检验
两个独立样本之差的抽样分布
总体1
1
1
2 2
总体2
抽取简单随机样 样本容量 n1 计算X1
计算每一对样本 的X1-X2
抽取简单随机样 样本容量 n2 计算X2
所有可能样本 的X1-X2
决策:
拒绝 H0
. 205
在 = 0.05的水平上不能拒绝H0
结论:
不能否定研究者的估计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
㈢ 单侧检验与双侧检验
单侧检验是指检验统计量的取值位于其抽样 分布的某一侧范围内时拒绝原假设,也就是 说抽样分布的某一侧构成了拒绝域。
双侧检验是指检验统计量的取值位于其抽样 分布的任何一侧范围内时拒绝原假设,也就 是说抽样分布的左右两侧共同构成了拒绝域。
二、假设检验中的两类错误**
第Ⅰ类错误/弃真错误 (type Ⅰ error)
当原假设为真时拒绝原假设。犯第Ⅰ类错误的概率
通常记为 。
第Ⅱ类错误/取伪错误(type Ⅱ error)
当原假设为假时没有拒绝原假设。犯第Ⅱ类错误的
概率通常记为 。
在统计实践中,进行假设检验时一般先控制第Ⅰ类 错误发生的概率,并确定犯第Ⅰ类错误的概率最大值, 称为检验的显著性水平。显著性水平一般选择为0.05和 0.01。
本章学习目的
理解原假设、备择假设、两类错误、单侧检验、双侧 检验、方差分析等概念。
掌握三种不同的实际情况下——陈述正确性、研究性、 决策——建立假设检验的方法。
掌握总体方差已知或未知时正态总体的均值假设检验 和总体比例的假设检验。
本章重难点提示
重点是三种不同情况下的假设检验方法,总体方差已 知时正态总体均值和总体比例的假设检验。
原假设(null hypothesis),又称零假设,用 H0 表示,是指研究者想收集证据予以反对的假设。
备择假设(alternative hypothesis),用 H1或 H 表示,是指研究者想收集证据予以支持的假设,它与原 假设陈述的内容相反。
假设检验的三种类型
1.对陈述正确性的检验
在这种情况下,原假设通常是基于假定的陈述是正确 的。然后建立备择假设,为拒绝提供统计证据,从而 证明这个假定的陈述是错误的。
假设检验的步骤
1.确定原假设和备择假设; 2.选择检验统计量; 3.确定检验的显著性水平 ; 4.用显著性水平来确定拒绝原假设 H0的检验统
计量的临界值、拒绝域; 5.根据样本数据,计算检验统计量的值; 6.⑴将统计量的值与临界值进行比较,并作出
决策:若统计量的值落在拒绝域内,拒绝原 假设 H0,否则不拒绝原假设 H0。
体是正态分布的。
示例
[例8-1] 某公司称其应收账金额的均值为RMB260.00,
审计师希望通过选取一个的样本计算样本均值来检验是否 如此。只有当样本均值与RMB260.00的假设值差别较大 时,审计师才会拒绝这个假设,已知应收账款金额的标准
差为 43.00,计算0.05显著性水平下假设检验的样本均
或⑵根据第5步的检验统计量的值计算 p 值。 运用 p值来确定是否拒绝。
㈠ 总体方差已知时正态总体均值的假设检验
当总体方差 2 已知,用正态分布来检验总
体均值的假设值的情况如下:
⑴ 当样本数 n 30 (大样本)时的任
意分布总体,(根据中心极限定理);
⑵ 当样本数 n p 30 (小样本)但是总
值临界值。
计算过程
假设: H0 : 260.00 ; H1 : 260.00 显著性水平: 0.05
检验统计量:n 36 , 43.00 的样本的 X
样本均值的临界值 =0
g X
2
260.00 1.96 43.00 36
260.00 14.05 245.95 ~ 274.05
计算过程
假设: H0 : 75 ; H1 : f 75 左单边检验
显著性水平: 0.05
检验统计量:n 6 , 2 14 的样本的 值
由于总体服从方差已知的正态分布,所以在原 假设下,检验统计量
X 0
78 75 14
1.964
当 0.05 时,对应于的双侧检验的临界值
0.025 1.96
2
检验统计量的值为
0.025 1.96
2
X 0 X
240.00 260.00
43.00 36
2.79
因为 2.79 p 1.96 ,落在拒绝域内,所以否定原
假设,也就是说有95%的可靠程度否定原假设。如果将
样本均值与图8-1中均值的临界值比较,将得到相同的
假设检验的三种形式
设 0 表示在原假设和备择假设中考虑的某 一特定数值, 表示总体的实际值。对总体
的假设检验一定要采取下面的三种形式之一 :
⑴ H0 : 0 H1 : p 0
⑵ H0 : 0
⑶ H0 : 0
H1 : f 0 H1 : 0
㈡ 拒绝域与检验统计量
拒绝域是指能够作出拒绝原假设这一结论的 所有可Байду номын сангаас的样本取值范围。
结论。
拒绝域
接受域
拒绝域
-1.96
1.96
图8-2 双边检验的拒绝域与接受域
示例
[例8-3] 某商场销售一种产品,原每周销售量服
从平均值为75,方差为14的正态分布。销售方案 更新后,为了考察销售量是否提高,抽查了6周销 售量,求得平均销售量为78,假定方差不变,问 在显著性水平0.05下,销售方案更新后对周销售 量是否有显著提高?
因此,为了拒绝原假设,这个样本均值的值必须
比RMB 245.95小或者比RMB 274.05大。所以,在双侧 检验(见下图8-1)中有两个拒绝域。
拒绝域
接受域
拒绝域
245.95
260.00
274.05
图8-1 双边检验的拒绝域与接受域
[例8-2] 在例8-1的假设检验中,如果样本的均值
为 X 240.00,当显著性水平为0.05时,原假设是否被拒 绝。
难点是总体方差未知时正态总体均值的假设检验和方 差分析。
第一节 假设检验
一、假设检验的概念
假设(hypothesis),又称统计假设,是对总体参数 的具体数值所作的陈述。
假设检验(hypothesis test) 是先对总体参数提出 某种假设,然后利用样本信息判断假设是否成立的过程。
㈠ 原假设与备择假设
2.对研究性假设的检验
在研究性假设检验的调查研究中,应该建立原假设和 备择假设,并用备择假设来表示研究性假设,这样如 果拒绝,将支持样本所得出的结论以及应该采取某些 行动。
3.对决策情况下的检验
在决策情况下的检验研究中,决策者必须从两种措施 中挑选其中一种,无论是接受还是拒绝,都必须采取 一定的措施。