热管换热器的结构形式
换热器的类型概述
螺旋板换热器的主要缺点是: (1)操作压强和温度不宜太高:目前最高操作压强不超过 2Mpa,温度不超过300~400℃。 (2)不易检修:因整个换热器被焊成一体,一旦损坏,修理 很困难。 3)平板式换热器
平板式换热器简称板式换热器,是由一组长方形的薄金 属板平行排列,加紧组装于支架上而构成。两相邻板片的边 缘衬有垫片,压紧后板间形成密封的流体通道,且可用垫片
2021/10/24
4、 热管
热管是60年代中期发展起来一种新型传热元件。它是由 一根抽除不凝性气体的密封金属管内充以一定量的某种工作 液体而成。工作液体在热端吸收热量而沸腾汽化,产生的蒸 汽流至冷端冷凝放出潜热,冷凝液回至热端,再次沸腾汽化 。如此反复循环,热量不断从热端传至冷端。冷凝液的回流 可以通过不同的方法(如毛细管作用、重力、离心力)来实 现,目前应用最广的方法是奖具有毛细结构的吸液芯装在管 的内壁,利用毛细管的作用是冷凝液由冷端回流至热端
2021/10/24
2)不易结垢和堵塞:由于流体的速度较高,又有惯性离心 力的作用,流体中悬浮的颗粒被抛向螺旋形通道的外缘而 受到流体本身的冲刷,故螺旋板换热器不易结垢和堵塞, 适合处理悬浮液及粘度较大的介质。
3)能利用温度较低的热源:由于流体流动的流道较长和 两流体可进行完全逆流,故可在较小的温差下操作,能充 分利用温度较低的热源。 4)结构紧凑:单位体积的传热面积为列管式的3倍,可节 约金属材料。
2021/10/24
的厚度调节通道的大小。每块板的四个角上,各开一个圆 孔,其中有一对圆孔和一组板间流道相通,另外一对圆孔 则通过在孔的周围放置垫片而阻止流体进入该组板间的通 道。这两对圆孔的位置在相邻板上是错开的以分别形成两 流体的通道。冷热流体交错地在板片两侧流过,通过板片 进行换热。板片厚度约为0.5~3mm,通常压制成凹凸地波 纹状。例如人字形波纹板。增加了板的刚度以防止板片受 压时变形,同时又使流体分布均匀,增强了流体湍动程度 和加大了传热面积,有利于传热。
热管换热器的工作原理
热管换热器的工作原理热管换热器是一种利用液体和蒸汽的相变过程来传递热量的设备。
它主要由热管、冷凝器和蒸发器组成。
热管是热管换热器的核心部件,通常由内部镶嵌有多个鳍片的金属管组成。
热管内填充有一种称为工作介质的特殊液体,通常为蒸发液体。
热管的两端分别连接一个冷凝器和一个蒸发器。
工作原理如下:1. 脉动蒸发:当热管的蒸发器端加热时,工作介质在蒸发器内迅速汽化。
汽化的工作介质变成蒸汽,并迅速上升到热管的冷凝器端。
2. 相变传热:在冷凝器端,蒸汽与冷凝器内的冷凝介质接触,传热给冷凝介质。
蒸汽在冷凝器内冷却,并逐渐凝结成液体。
3. 导热返回:在冷凝成液体后,冷凝介质流入热管的蒸发器端,通过鳍片的导热作用,将热量传递给蒸发器。
4. 重复循环:液体工作介质在蒸发器中再次汽化,蒸汽上升到冷凝器端再次冷凝,循环往复。
热管换热器的工作原理可基于两个基本原理来解释。
第一个是相变传热原理。
当液体在蒸发器内蒸发时,蒸汽所需的潜热可以从周围环境吸收,从而降低周围环境的温度。
相对应的,在冷凝器端,蒸汽释放出潜热,将热量传递给冷凝介质。
由于相变过程的热传导非常高效,所以热管换热器的热传输效率很高。
第二个原理是液体的循环工作原理。
热管内的工作介质在蒸发器端蒸发成蒸汽后,蒸汽的上升作用和重力的配合使得液体循环并将蒸汽带到冷凝器端。
液体在冷凝器端冷却凝结后,由于重力作用,液体流回蒸发器,再次蒸发成蒸汽,循环往复完成热量的传递。
热管换热器的工作原理使其具有以下优点:1. 高热传输效率:利用相变传热和液体循环工作原理,热管换热器的热传输效率高于传统的热交换器。
2. 快速响应:由于热管内的蒸汽和液体循环快速,热管换热器能够在很短的时间内响应温度的变化。
3. 节省空间:由于热管换热器可以实现高热传输效率,所以相同换热功率的热管换热器相对较小,占用的空间较少。
4. 不需要外部电源:热管换热器的工作原理不依赖于外部电源,因此可以在没有电力供应的环境下运行。
十三种类型换热器结构原理及特点(图文并茂)
十三种类型换热器结构原理及特点(图文并茂)小7:亲爱的各位读者朋友们,为了提升阅读体验,我们接下来会将所有文章首发到化工707网,大家可以通过点击菜单栏直接访问化工707网。
需要下载文档的朋友,请访问化工707论坛下载!一、板式换热器的构造原理、特点:板式换热器由高效传热波纹板片及框架组成。
板片由螺栓夹紧在固定压紧板及活动压紧板之间,在换热器内部就构成了许多流道,板与板之间用橡胶密封。
压紧板上有本设备与外部连接的接管。
板片用优质耐腐蚀金属薄板压制而成,四角冲有供介质进出的角孔,上下有挂孔。
人字形波纹能增加对流体的扰动,使流体在低速下能达到湍流状态,获得高的传热效果。
并采用特殊结构,保证两种流体介质不会串漏。
板式换热器结构图二、螺旋板式换热器的构造原理、特点:三、列管式换热器的构造原理、特点:列管式换热器(又名列管式冷凝器),按材质分为碳钢列管式换热器,不锈钢列管式换热器和碳钢与不锈钢混合列管式换热器三种,按形式分为固定管板式、浮头式、U型管式换热器,按结构分为单管程、双管程和多管程,传热面积1~500m2,可根据用户需要定制。
列管式换热器结构图四、管壳式换热器的构造原理、特点:管壳式换热器结构图五、容积式换热器的构造原理、特点:六、浮头式换热器的构造原理、特点:七、管式换热器的构造原理、特点:八、热管换热器的构造原理、特点:金属高几百倍至数千倍。
热管还具有均温特性好、热流密度可调、传热方向可逆等特性。
用它组成热管换热器不仅具有热管固有的传热量大、温差小、重量轻体积小、热响应迅速等特点,而且还具有安装方便、维修简单、使用寿命长、阻力损失小、进、排风流道便于分隔、互不渗漏等特点。
热管是由内壁加工有槽道的两端密封的铝(轧)翅片管经清洗并抽成高真空后注入最佳液态工质而成,随注入液态工质的成分和比例不同,分为KLS低温热管换热器、GRSC-A中温热管换热器、GRSC-B高温热管换热器。
热管一端受热时管内工质汽化,从热源吸收汽化热,汽化后蒸汽向另一端流动并遇冷凝结向散热区放出潜热。
换热器的结构讲解
换热器的结构管壳式换热器就是具有换热管和壳体的一种换热设备,换热管与管板连接,再用壳体固定。
按其结构型式,主要分为:固定管板式换热器、浮头式换热器、U形管式换热器、填料函式换热器、方形壳体翅片管换热器等。
详细结构如下:固定管板式换热器:固定管板式换热器结构如上图所示,换热器的两端管板采用焊接方法与壳体连接固定。
换热管可为光管或低翅管。
其结构简单,制造成本低,能得到较小的壳体内径,管程可分成多样,壳程也可用纵向隔板分成多程,规格范围广,故在工程中广泛应用。
其缺点是壳侧不便清洗,只能采用化学方法清洗,检修困难,对于较脏或对材料有腐蚀性的介质不能走壳程。
壳体与换热管温差应力较大,当温差应力很大时,可以设置单波或多波膨胀节减小温差应力浮头式换热器浮头式换热器结构如图所示,其一端管板与壳体固定,而另一端的管板可以在壳体内自由浮动。
壳体和管束对热膨胀是自由的,故当两种介质的温差较大时,管束与壳体之间不会产生温差应力。
浮头端设计成可拆结构,使管束可以容易地插入或抽出,这样为检修和清洗提供了方便。
这种形式的换热器特别适用于壳体与换热管温差应力较大,而且要求壳程与管程都要进行清洗的工况。
浮头式换热器的缺点是结构复杂,价格较贵,而且浮头端小盖在操作时无法知道泄漏情况,所以装配时一定要注意密封性能U形管式换热器上图为双壳程U形管式换热器。
U形管式换热器是将换热管弯成U形,管子两端固定在同一块管板上。
由于换热管可以自由伸缩,所以壳体与换热管无温差应力。
因U形管式换热器仅有一块管板,所以结构较简单,管束可从壳体内抽出,壳侧便于清洗,但管内清洗稍困难,所以管内介质必须清洁且不易结垢。
U形管式换热器一般用于高温高压情况下,尤其是壳体与换热管金属壁温差较大时。
壳程可设置纵向隔板,将壳程分为两程(如图中所示)。
填料函式换热器上图为填料函式双管程双壳程换热器,填料函式换热器的换热管束可以自由滑动,壳侧介质靠填料密封。
对于一些壳体与管束温差较大,腐蚀严重而需经常更换管束的换热器,可采用填料函式换热器。
常见传热装置构型
常见传热装置构型有以下几种:
1.管式换热器:由一系列的管道组成,管内流体与管外流体通过管
壁进行热交换。
2.板式换热器:由一组平行的金属板组成,流体在板间流动,通过
板片进行热交换。
3.螺旋板式换热器:由两个相互嵌套的螺旋板组成,流体在螺旋板
之间流动,通过板壁进行热交换。
4.热管换热器:由一系列的热管组成,热管内的工质在蒸发端吸收
热量后汽化,在冷凝端释放热量后凝结,通过工质的相变进行热交换。
5.壳管式换热器:由一个圆柱形的外壳和内部的管束组成,管内流
体与壳侧流体通过管壁进行热交换。
6.空气冷却器:通过空气与流体进行热交换,通常用于冷却流体。
7.冷却塔:通过水与空气进行热交换,通常用于冷却水。
换热器基本知识
一、换热器的结构型式有哪些?换热器是很多工业部门广泛使用的一种常见设备,通过这种设备进行热量的传递,以满足生产工艺的需要。
可按用途、换热方式、结构型式三种不同的方法进行分类。
按结构型式分类如下:换热器分为管式换热器、板式换热器、新型材料换热器和其他型式的换热器。
管式换热器又分为:套管式换热器、管壳式换热器、沉浸式换热器、喷淋式换热器和翅片管式换热器。
板式换热器又分为:夹套式换热器、平板式换热器、伞板式换热器、螺旋板式换热器、板翅式换热器和板壳式换热器。
新型材料换热器分为:石墨换热器、聚四氟乙烯换热器、玻璃换热器和钛材及其他稀有金属材料换热器。
其他形式的换热器包括回转式换热器和热管。
二、换热器管为什么会结垢?如何除垢?因为换热器大多是以水为载热体的换热系统,由于某些盐类在温度升高时从水中结晶析出,附着于换热管表面,形成水垢。
在冷却水中加入聚磷酸盐类缓冲剂,当水的PH值较高时,也可导致水垢析出。
初期形成的水垢比较松软,但随着垢层的生成,传热条件恶化,水垢中的结晶水逐渐失去,垢层即变硬,并牢固地附着于换热管表面上。
此外,如同水垢一样,当换热器的工作条件适合溶液析出晶体时,换热管表面上即可积附由物料结晶形成的垢层;当流体所含的机械杂质有机物较多、而流体的流速又较小时,部分机械杂质或有机物也会在换热器内沉积,形成疏松、多孔或胶状污垢。
换热器管束除垢的方法主要有下列三种。
一、手工或机械方法当管束有轻微堵塞和积垢时,借助于铲削、钢丝刷等手工或机械方法来进行清理,并用压缩空气,高压水和蒸汽等配合吹洗。
当管子结垢比较严重或全部堵死时,可用管式冲水钻(又称为捅管机)进行清理。
二、冲洗法冲洗法有两种。
第一种是逆流冲洗,一般是在运动过程中,或短时间停车时采用,可以不拆开装置,但在设备上要预先设置逆流副线,当结垢情况并不严重时采用此法较为有效。
第二种方法是高压水枪冲洗法。
对不同的换热器采用不同的旋转水枪头,可以是刚性的,也可以是绕性的,压力从10MPa至200MPa自由调节。
管式换热器的失效原因分析及解决办法
管式换热器的失效原因分析及解决办法摘要:化工业作为我国发展的重要推动产业,近年来我国化工行业技术水平不断提升。
作为化工行业生产过程中极为重要的换热设备,管式换热器在化工厂中的应用范围十分广泛,但由于管式换热器材料上的差异,加之由于制作过程中的不合理及其多种因素的作用下,导致管式换热器很容易出现失效的情况,对其运行稳定性、安全性造成了负面影响。
基于此,本文针对管式换热机的失效原因进行研究,同时提出针对性的合理化解决措施,从而为相关从业人员给予理论参考依据,保证管式换热器的稳定运行。
关键词:管式换热器;失效;解决措施管式换热器作为化工行业生产过程中最为重要的设备,其结构相对来说较为紧凑,且对于材料并无太高要求,因此是化工生产中主要的换热设备。
管式换热器的应用功能主要是对不同介质的气体或者液体进行换热,由于大部分换热介质都具有腐蚀性,在实际应用中经常会出现管束泄漏、腐蚀或者堵管的现象,严重影响换热器设备的正常运行。
本文针对不同结构的管式换热器进行阐述,同时针对这几种常见问题给予维修建议,以此为相关从业人员提供参考依据,提升管式换热器维修质量,保障其安全、稳定的运行。
一、管式换热器的形式及结构(一)固定管板式换热器针对固定管板式换热器在安装过程中普遍会利用焊接方式进行安装,这种结构的换热器两端管板及壳体相互连接,且其内部存在诸多紧密的排管,但相对来说,固定管板式换热器的结构较为简易,在这种换热器的壳测流动中设有折流板,管程为偶数倍且旁路小,因此固定管板式换热器内部中的各个排管都可以进行清洁,同时成本较低,经济效益较高。
(二)U型管式换热器U型管式换热器顾名思义就是将管子制作成U型,同时具备一个管板。
在U型管式换热器的结构中,管子两端是固定在相同的管板上,且此种换热器的壳体同管体相对分离,并不在一起,因此管束之间并不会发生热应力,其热补偿性能较高,管程也是较长的双管程[2]。
U型管式换热器可以承受外部环境中所造成的较大压力,在运行过程中也具备较快的流速以及较高的传热性能,因此U性管式换热器普遍应用在高温高压的环境中。
换热器类型与结构简介
换热器广泛应用于化工、石油、制药、 能源等工业生产过程中,其主要用途适用 于加热、冷却、蒸发、冷凝、干燥等方面, 因其使用的条件不同,其容量、压力、温 度等变动范围较大,为了适应不同的用途, 故要采用各种形式及结构的换热器。
换热器分类
一. 按传热特征分: 间壁式:冷、热流体由固体间壁隔开,传热面积固定, 热量传递为对流-导热-对流的串联过程。 混合式:通过冷、热两流体的直接混合来进行热量交换。 蓄热式 (蓄热器):由热容量较大的蓄热室构成,使冷、 热流体交替通过换热器的同一蓄热室。 二. 按用途分:加热器、冷却器、冷凝器、蒸发器和再沸器 等。 三. 按结构分:夹套式、浸没式、喷淋式、套管式和管壳式 等。 选取换热器时,应根据工艺要求选用合适的类型,还应 按传热基本原理选定合理的换热流程,确定换热器的传热面 积、结构尺寸以及校核流体阻力等。
常见的间/D(浮头式列管换热器)
常见的间壁式换热器 六.板式换热器
板式换热器工作原理示意图
板式换热器的特点
(1). 结构紧凑,占用空间小 很小的空间即可提供较大的换热面积,不 需另外的拆装空间;相同使用环境下,其占地面积和重量是其他类型换热 器的1/3~1/5。 (2). 传热系数高 雷诺准数>10时,即可产生剧烈湍流,一般总传热系数 可高达3000~8000W/m2.K。 (3). 端部温差小 逆流换热,可达到1℃的端部温差。 (4). 热损失小 只有板片边缘暴露,不需保温,热效率≥98%。 (5). 适应性好,易调整 通过改变板片数目和组合方式即可调节换热能 力,与变化的热负荷相匹配。 (6). 流体滞留量小,对变化反应迅速,拆装简单,容易维护 板片是独 立的单元体,拆装简单,可将密封垫密闭的板片拆开、清洗。 (7). 结垢倾向低 高度紊流、光滑板表面,使积垢机率很小,且具自清 洁功能,不易堵塞。 (8). 低成本 使用一次冲压成型的波纹板片装配而成,金属耗量低,当 使用耐蚀材料时,投资成本明显低于其他的换热器。
热管及热管式换热器的研究
热管及热管式换热器的研究文章来源:中国换热器网添加人:admin 添加时间:2008-12-10<DIV><FONT face=Verdana>热管及热管式换热器的研究</FONT></DIV><DIV> </DIV><DIV><FONT face=Verdana> 能源是发展国民经济的重要物质基础,是人类赖以生存的必要条件,能源的开发和利用程度直接影响着国民经济的发展和人民物质文化生活水平的提高,余热回收是合理利用能源、节约能源、提高能源利用率等方面不可忽视的问题。
热管是一种具有高效传热性能的元件,它可利用很小的截面积远距离传输大量热量而无需外加动力。
热管式换热器具有输热能力大、均温性能优良、传热方向可逆、热流密度可变、适应环境能力较强、阻力损失较小等优点,所以热管式换热器能较大限度的回收利用低品位余热。
< BR> 1热管及热管式换热器的发展<BR> 1.1热管工作原理及特点<BR> 热管是依靠自身内部工作液体相变来实现传热的元件,一般由管壳、吸液芯、工质组成,管壳通常由金属制成,两端焊有端盖,管壳内壁装有一层由多孔性物质构成的管芯(若为重力式热管则无管芯),管内抽真空后注入某种工质,然后密封。
热管可分为蒸发段、绝热段和冷凝段三个部分,当热源在蒸发段对其供热时,工质自热源吸热汽化变为蒸汽,蒸汽在压差的作用下沿中间通道高速流向另一端,蒸汽在冷凝段向冷源放出潜热后冷凝成液体;工质在蒸发段蒸发时,其气液交界面下凹,形成许多弯月形液面,产生毛细压力,液态工质在管芯毛细压力和重力等的回流动力作用下又返回蒸发段,继续吸热蒸发,如此循环往复,工质的蒸发和冷凝便把热量不断地从热端传递到冷端。
<BR> 由于热管是利用工质的相变换热来传递热量,因此热管具有很大的传热能力和传热效率。
热管换热器(热管换热器)
Principle and design of heat exchanger 2015
③Hale Waihona Puke 旋转热管:工作液体的回流依靠离心力的分力作用
④ 重力辅助热管:同时受到毛细力和重力作用使凝液回流。当具有吸液芯的热管处于 冷凝段在加热段上方位置时,热管就将按重力辅助热管方式运行
Principle and design of heat exchanger 2015
换热器
原理与设计
Principle and design of heat exchanger
Principle and design of heat exchanger 2015
3.5 热管换热器
热管换热器是一种新型、高效、节能换热器,广泛使用于航天航空业,并逐步 用于加热炉对流室烟气余热回收中。它是由数根热管组成的。热管外部装有翅片以 提高传热效果。热管管束中间装有隔板,冷、热流体分别在隔板的两侧流动,通过 热管进行热量传递。
Principle and design of heat exchanger 2015
3)工作液 对工作液的要求: 要有较高的汽化潜热、导热系数,合适的饱和压力及沸点,较低的粘度及良好的
稳定性 应有较大的表面张力和润湿毛细结构的能力,使毛细结构能对工作液作用并产生
必须的毛细力 不能对毛细结构和管壁产生溶解作用,否则被溶解的物质将积累在蒸发段破坏毛
Principle and design of heat exchanger 2015
3.5.2 热管的结构
轴向分为三个区域:蒸发段(或称热源段、热端)、蒸发输送段(或称绝热段)、 冷凝段(或称热汇段、冷端)
换热器介绍
换热器介绍换热器一,定义: 换热器是将热流体的部分热量传递给冷流体,使流体温度达到工艺流程规定的指标的热量交换设备,又称热交换器。
二,换热器的分类适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下:(一)_换热器按传热原理分类1、表面式换热器:表面式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流,两种流体之间进行换热。
表面式换热器有管壳式、套管式和其他型式的换热器。
2、蓄热式换热器:蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体传递给低温流体,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到热量传递的目的。
蓄热式换热器有旋转式、阀门切换式等。
3、流体连接间接式换热器:流体连接间接式换热器,是把两个表面式换热器由在其中循环的热载体连接起来的换热器,热载体在高温流体换热器和低温流体之间循环,在高温流体接受热量,在低温流体换热器把热量释放给低温流体。
4、直接接触式换热器:直接接触式换热器是两种流体直接接触进行换热的设备,例如,冷水塔、气体冷凝器等。
(二)换热器按用途分类1、加热器:加热器是把流体加热到必要的温度,但加热流体没有发生相的变化。
2、预热器:预热器预先加热流体,为工序操作提供标准的工艺参数。
3、过热器:过热器用于把流体(工艺气或蒸汽)加热到过热状态。
4、蒸发器:蒸发器用于加热流体,达到沸点以上温度,使其流体蒸发,一般有相的变化。
(三)按换热器的结构分类可分为:浮头式换热器、固定管板式换热器、U形管板换热器、板式换热器等。
三,换热器类型换热器是化工,石油,动力,食品及其它许多工业部门的通用设备,在生产中占有重要地位.在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。
换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。
热管式热交换器设计说明
本科毕业设计说明书热管式热交换器(烟气余热回收空气预热器)Heat pipe heat exchanger (flue gas heat recovery air preheater)摘要热管是一种依靠管内工质的蒸发,凝结和循环流动而传递热量的部件。
由热管元件组成的,利用热管原理实现热交换的换热器称之为热管换热器。
热管换热器最大的特点是:结构简单,传热效率高、动力消耗小。
其越来越受到人们的重视,是一种应用前景非常好的换热设备。
目前,它被广泛应用于动力、化工、冶金、电力、计算机等领域。
本文就热管换热器的发展现状、趋势、应用及设计做了一个简要的论述,着重探讨了热管换热器的设计。
在讨论热管换热器的设计过程中,主要针对热力计算,设备结构计算、元件参数的选择做了一个合理构建。
关键词:热管;热管热交换器;设计计算;ABSTRACRely on heat pipe is a pipe working fluid evaporation, condensation and recycling the flow of heat transfer member. Components of the heat pipe, heat pipe principle the use of heat exchange heat exchanger called the heat pipe heat exchanger. Heat pipe heat exchanger biggest feature is: simple structure, high heat transfer efficiency, power consumption is small. Which more and more people's attention, is a very good application prospects heat transfer equipment. Currently, it is widely used in power, chemical, metallurgy, electric power, computers and other fields. In this paper, the development of heat pipe heat exchanger status, trends, application and design to make a brief discussion, focused on the heat pipe heat exchanger design. In discussing the heat pipe heat exchanger design process, mainly for thermal calculation, equipment, structural calculations, component selection of parameters made a reasonable construction.Key words:Heat pipe;Heat pipe heat exchanger;Design calculations;目录第一章绪论 (1)第一节热管及热管换热器概述 (1)第二节热管及其应用 (3)1.2.1热管的构造原理 (3)1.2.2热管的工作原理 (7)1.2.3热管的基本特性 (8)1.2.4热管分类 (8)1.2.5热管技术 (9)1.2.6热管技术特点 (10)第二章热管换热器 (12)第一节热管换热器技术优势 (12)第二节热管换热器的分类 (12)第三节换热器应用前景 (14)第三章热管气-气换热器设计中应注意的问题 (16)第四章热管气-气换热器设计步骤 (17)第一节计算步骤 (17)第二节符号说明 (19)第三节标注说明 (20)致谢 (22)参考文献 (23)附录 (25)外文资料及翻译 (35)任务书 (55)第一章绪论第一节热管的发展及现状在现有的传热元件中,热管是我们所知的最高效的传热元件之一,它能将大量热量通过其特别小的截面积远距离地传输而不需要外加动力。
热管换热器
热管换热器热管是一种具有高导热性能的传热组件,热管技术首先于1944年由美国人高格勒(R·S·Gaugler)所发现,并以“热传递装置”(Heat Transter Device)为名取得专利,当时因未显示出实用意义,而没有受到应有的重视。
直到六十年代初期,由于宇航事业的发展,要求为宇航飞行器提供高效传热组件,促使美国洛斯——阿拉莫斯科学实验室的格罗弗(G·M·Grover)于1964年再次发现这种传热装置的原理,并命名为热管(Heat Pipe),首先成功地应用于宇航技术,之后引起了各国学者的极大兴趣和重视。
热管技术于上世纪七八十年代进入中国。
一、概述热管是一种具有高导热性能的传热元件,它通过在全封闭真空管壳内工质的蒸发与凝结来传递热量,具有极高的导热性、良好的等温性、冷热两侧的传热面积可任意改变、可远距离传热、可控制温度等一系列优点。
缺点是抗氧化、耐高温性能较差。
此缺点可以通过在前部安装一套陶瓷换热器来予以解决,陶瓷换热器较好地解决了耐高温、耐腐蚀的难题。
以热管为传热元件的换热器具有传热效率高、结构紧凑、流体阻损小、有利于控制露点腐蚀等优点。
目前已广泛应用于冶金、化工、炼油、锅炉、陶瓷、交通、轻纺、机械等行业中,作为废热回收和工艺过程中热能利用的节能设备,取得了显著的经济效益。
二、分类按照热流体和冷流体的状态,热管换热器可分为:气—气式、气-汽式、气—液式、液—液式、液—气式。
按照热管换热器的结构形式可分为:整体式、分离式和组合式。
三、主要特点1、热管换热器可以通过换热器的中隔板使冷热流体完全分开,在运行过程中单根热管因为磨损、腐蚀、超温等原因发生破坏时基本不影响换热器运行。
热管换热器用于易然、易爆、腐蚀性强的流体换热场合具有很高的可靠性。
2、热管换热器的冷、热流体完全分开流动,可以比较容易的实现冷、热流体的逆流换热。
冷热流体均在管外流动,由于管外流动的换热系数远高于管内流动的换热系数,用于品位较低的热能回收场合非常经济。
换热器图
冷水塔结构
•
冷水塔结构
•
冷水塔结构
•
2 管壳式热交换器
•
分程隔板
管壳式换热器
•
单程列管式换热器
• • 1 —外壳 2—管束
单程列管式换热器 3、4—接管 5—封头 6—管板 7—挡板
双程列管式换热器
• 双程列管式换热器 • 1—壳体 2—管束 3—挡板 4—隔板
U型管式
特点:结构较浮头简单;但管程不易清洗。
圆缺形与圆盘形折流挡板
热管空调应用
• 在各类工厂空调通风换气中,冬季回收 排风中的热量予热新风;夏季回收排风 中的冷量予冷新风;回收工艺设备排风 中的热量予热送风,达到节能的目的
3.5 热管热交换器
• 用途:早期用于宇航的热控制,现在扩展 到余热回收(热管空气预热器)、电子工业 (如晶体管散热)、新能源。
4.1 冷水塔
• 铜铝翅片管是由铜管和铝管经复合后在 轧制出翅片的散热管,表面均经阳极化 处理,色泽美观大方,且能有效的防止 表面腐蚀
翅片管
• 碳钢肋片管 开齿型 整体型
翅片管
• 翅片管
翅片管散热器
热管式换热器
•
气---液式热管换热器 应用于石油、化工行业的气---气热管式换热器
用于电站锅炉20万机组的热管式 空气预热器
热管空调应用
• 在各类工厂空调通风换气中,冬季回收 排风中的热量予热新风;夏季回收排风 中的冷量予冷新风;回收工艺设备排风 中的热量予热送风,达到节能的目的
热管空调应用
• 在各类工厂空调通风换气中,冬季回收 排风中的热量予热新风;夏季回收排风 中的冷量予冷新风;回收工艺设备排风 中的热量予热送风,达到节能的目的
螺旋板的流道结构形式
热管换热器的分类
热管换热器的分类
1、根据换热器安装方式分类:
①直接安装式热管换热器:将换热器直接安装在管道内,形成完整的
流体系统,是目前使用最多的一种热管换热器。
②节点安装式热管换热器:将换热器安装在管路的节点处,两头设置
连接口,使用较多的是安全罐型换热器。
2、根据换热器的结构特点分类:
①单管式热管换热器:采用单管路结构,体积小,排污量小。
②双管绕管式热管换热器:将两路流体分别绕着一个管绕管结构安装,换热器面积较大,适用于较大的换热量要求场合。
3、根据原理分类:
①强迫对流式热管换热器:采用强迫对流流动方式,采用压缩机或气
动器将两路流体分别强制进入换热器内,实现换热作用。
②重力对流式热管换热器:采用重力对流流动方式,利用其他设备提
供的低压或重力势能,将两路流体分别进入换热器内,实现换热作用。
干熄焦热管换热器结构
干熄焦热管换热器结构
干熄焦热管换热器是一种高效的换热设备,常用于化工、石油等行业中的热交换过程。
其结构主要包括以下几个部分:
1. 管束:干熄焦热管换热器中的热交换管道通常采用U型或直线型管束。
管束内部通有热媒流体,通过管壁与传热介质进行热量传递。
2. 热介质流体:热介质流体(如蒸汽、热水等)通过管束中流动,与工艺流体进行热交换。
热介质流体一般通过管束的一侧进入,另一侧从管束的另一端排出。
3. 冷却介质流体:冷却介质流体(如冷水、冷凝水等)通过管束的外侧流动,降低管束外壁的温度,以实现热量传递。
4. 热固结物剥落装置:由于在干熄焦热管换热器内部易产生结焦物,需定期清理和剥落。
热固结物剥落装置通过机械或其他方式,定期或连续对管束进行剥落和清理,以保证换热效果。
5. 其他辅助设施:干熄焦热管换热器还可能配备流量计、温度计、压力表等辅助设施,用于监测和控制换热过程中的参数。
总体而言,干熄焦热管换热器结构简单、操作方便,能够实现高效、节能的热量传递,广泛应用于工业生产中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热管换热器的结构形式
(三)热管换热器的结构形式以热管为传热单元的热管换热器是一种新型高效换热器,其结构如图片4-
50、图片4-51所示,它是由壳体、热管和隔板组成的。
热管作为主要的传热元件,是一种具有高导热性能的传热装置。
它是一种真空容器,其基本组成部件为壳体、吸液芯和工作液。
将壳体抽真空后充入适量的工作液,密闭壳体便构成一只热管。
当热源对其一端供热时,工作液自热源吸收热量而蒸发汽化,携带潜热的蒸汽在压差作用下,高速传输至壳体的另一端,向冷源放出潜热而凝结,冷凝液回至热端,再次沸腾汽化。
如此反复循环,热量乃不断从热端传至冷端。
【图片4-50】
热管换热器。
【图片4-51】
热管示意图。
热管按冷凝液循环方式分为吸液芯热管、重力热管和离心热管三种。
吸液芯热管的冷凝液依靠毛细管的作用回到热端,这种热管可以在失重情况下工作;重力热管的冷凝液是依靠重力流回热端,它的传热具有单向性,一般为垂直放置离心热管是靠离心力使冷凝液回到热端,通常用于旋转部件的冷却。
热管按工作液的工作温度分为深冷热管、低温热管、中温热管和高温热管四种。
深冷热管在200K以下工作,工作液有氮、氢、
氖、氧、甲烷、乙烷等;低温热管在200~550K 范围内工作,工作液有氟里昂、氨、丙酮、乙醇、水等;中温热管在550~750K范围内工作,工作液有导热姆
A、水银、铯、水及钾─钠混合液等;高温热管在750K 以上工作,工作液有液态金属钾、钠、锂、银等。
热管的传热特点是热管中的热量传递通过沸腾汽化、蒸汽流动和蒸汽冷凝三步进行,由于沸腾和冷凝的对流传热强度都很大,而蒸汽流动阻力损失又较小,因此热管两端温度差可以很小,即能在很小的温差下传递很大的热流量。
因此,它特别适用于低温差传热及某些等温性要求较高的场合。
热管换热器具有结构简单、使用寿命长、工作可靠、应用范围广等优点,可用于气─气、气─液和液─液之间的换热过程。