第二章 基因工程工具酶
基因工程-2-工具酶
5‘ (a) 3’ 5‘ 3‘ 5’ 3‘
(a)DNaseI处理双链的DNA 分子
(b)带有3’-OH末端的单链缺口 (c) polⅠ从5‘-P移去一个核 苷酸 (d) polⅠ将32P标记的核苷 酸参入取代被移去的核苷酸 (e)重复(c)(d)的步骤,缺口 沿5’-3‘方向移动,形成32P标记 的核苷酸合成的DNA链
HindⅢ Bacillus amyloliquefaciens H
BamHⅠ
Escherichia coli R质粒
EcoRⅠ
六、限制内切酶的反应体系
DNA 1μ l(1μ g)
buffer(10×)
ddH2O 限制性内切酶 总体积
2μ l
16μ l 1μ l(1u) 20μ l
A)确定酶切DNA的量
100~200 units
up to 20 μl
70℃保温15分钟后冰上冷却,得到第一链cDNA。
4个 6个
44 =256
λDNA 49Kb
46=4096
48 =65536
12位点。 Bgl II 6个;BamH I 5个;Sal I 2个。
三、II型限制性内切酶切割类型
1、平齐末端(Blunt end)
Hind II 切割反应
Sma I 切割反应
2、粘性末端(Sticky end) 2.1 产生5’粘性末端
(b) (c)
3’
5‘ 3’ 5‘
5’
3‘ 5’ 3‘ 5’
(d)
3’
* *** ****
5‘ (e) 3’
3‘ 5’
五、DNA聚合酶的应用
2.制备DNA分子杂交探针(随机引物法)
2第二章 基因工程工具酶
DNA连接酶
作用模式图: 1. 连接粘性末端
5′
3′
*********G —OH *********C T T A A — P
3′
5′
5′
3′
P— A A T T C********* OH— G*********
3′
5′
DNA连接酶
5′ **********GAATTC**********
目录
用途: ①连接带匹配粘端的DNA分子。 ②使平端的双链DNA分子互相连接或与合成
接头相连接。
三 核酸酶S1
功能: 水解双链DNA、RNA或DNA-RNA
杂交体中的单链部分。
核酸酶S1
核酸酶S1
+
核酸酶S1
用途:
1. 除去双链DNA的粘性末端以产生 平末端;
2. 除去cDNA合成时形成的发夹结构;
(3)特点: 星号活力的识别形式常对标准识别顺序中两侧 的碱基没有特异性。
GACTAGCNAATTNTACGCAATTT CTGATCGNTTAANATGCGTTAAA
EcoRI*
EcoRI*
(4)产生的原因 a.高甘油含量(>5%V/V) b.内切酶用量过大,一般为> 100U/g DNA c.低离子强度<25mmol/L d.高pH值 pH8.0 e.含有机溶剂:DMSO、乙醇、乙烯二乙醇 Mn2+、Cu2+、Co2+、Zn2+等非Mg2+的离子存在
9 Double Digestion(双酶切反应)时Universal Buffer(通 用缓冲液)的使用表
二、DNA连接酶用于催化DNA片段连接
DNA连接酶(DNA ligase):催化两个相邻的3′-OH和 5′-磷酸基团形成3′,5′-磷酸二酯键,从而使DNA片段或单 链断裂形成的缺口连接起来。
基因工程常用的工具酶
四、影响限制酶活性的因素
DNA的纯度: 蛋白质、苯酚、氯仿、EDTA、SDS
增加限制酶用量 扩大酶催化反应体系 延长酶催化时间
DNA的甲基化程度:
反应温度:
DNA的分子结构:
酶缓冲液组成: 甘油浓度:
MgCl2: NaCl/KCl: Tris-HCl: β-巯基乙醇/二硫苏糖醇(DTT): 牛血清白蛋白(BSA):
连接方式
缺口DNA:
5’ 3’
OH P
3’
5’
平齐末端DNA:
5’ 3’
OH P P OH
3’ 5’
粘性末端DNA:
5’ 3’
3’ 5’
基因工程中常用的连接酶
T4噬菌体DNA连接酶(T4连接酶) 大肠杆菌DNA连接酶 热稳定性DNA连接酶
第三节 DNA聚合酶
DNA聚合酶:能够催化DNA复制和修复DNA分子损伤 的一类酶
HaeⅢ 的切割位点
5‘ … G A G G C C G A G … 3’ 3‘ … C T C C G G C T C … 5’
HaeⅢ的识别序列
大部分酶的切割位点在识别序列内部或两侧 部分限制酶能识别多种核苷酸序列
HindⅡ的识别序列 5‘ … G C G T Py Pu A C G A G … 3’ 3‘ … C G C A Pu Py T G C T C … 5’
与识别位点一致 Mg2+
低
高
EcoK、EcoB
Hind Ⅱ
同时存在 两个亚基 Ι 、Ⅱ之间 与识别位点不一 Mg2+、 SAM
低 EcoPΙ
二、限制酶的命名
命名原则
限制酶寄主微生物属名头字母(大写)和种名前两字母(小 写)表示寄主物种
第二节 基因工程工具酶
第二节 基因工程工具酶【掌握常用工具酶的定义、特点、作用方式】我们大家都知道,基因工程是现代生物技术的核心技术,带动其他技术的发展。
基因工程的基本技术就是:切接 转 增 检用人工的方法把不同生物的遗传物质(基因)分离出来,在体外进行剪切、拼接、重组,形成基因重组体,然后再把重组体引入宿主细胞或个体中以得到高效表达,最终获得人们所需要的基因产物。
在进行这些操作时,需要借助一类特殊的工具【如同做外科手术需要手术刀这种工具一样】,在基因工程操作中这种必不可少的工具就是——酶;由于这些酶类被用作工具,所以称之为“工具酶”。
这些酶种类繁多,作用、特点各异,到目前为止,常用的工具酶有300多种。
下面着重讲解一些重要的工具酶。
一、限制性核酸内切酶● 定义:是一类能够识别双链DNA 分子中的特定核苷酸序列,并由此切割DNA 双链结构的核酸内切酶。
● 生理功能特性:切割降解入侵的外源DNA ,使得外源DNA 的入侵受到限制的现象。
(一)命名EcoR Ⅰ(E :属名;co :种名;R :细菌株RY13的第一个字母;Ⅰ:发现次序)Eco Escherichia属名 Coli 种名 Ry13 株系编号(三)基本特性1、识别特定序列✧绝大多数的Ⅱ型限制性核酸内切酶都能够识别由4-8个核苷酸组成的特定的核苷酸序列。
限制性核酸内切酶就是从其识别序列内切割DNA分子的,因此这些识别序列又叫核酸内切酶的切割位点或靶序列。
✧识别序列有连续的(如GATC)和间断的(如GANTC)两种,它们都呈回文结构。
2、切割方式:由核酸内切限制酶的作用而造成的DNA分子的断裂作用,通常有下列两种不同的方式:(1)产生平末端在识别序列双链DNA两条链的对称轴上同时切断磷酸二酯键,形成平头双链末端,称为平整末端。
【书上p15图】(2)产生粘性末端限制性内切酶交错切割DNA双链而形成彼此互补的单链末端,可形成氢键,叫做~。
5’粘性末端【书上】3’粘性末端它们能够通过互补碱基间的相互作用而重新环化起来。
基因工程的工具酶
第二章基因工程的酶学基础内容一、概述二、限制性内切核酸酶三、DNA连接酶四、其他工具酶一、概述工具酶:在生物技术中常用的各种工具酶系指能用于DNA和RNA分子的切割、连接、聚合、反转录等有关的各种酶系统称为工具酶。
工具酶名称主要功能限制性内切核酸酶在DNA分子内部的特异性的restriction endonucleases 碱基序列内部进行切割DNA连接酶将两条以上的线性DNA分子或片段DNA ligase 催化形成磷酸二酯键连接成一个整体DNA聚合酶I通过向3’端逐一增加核苷酸以填补双链DNA分子上的单链DNA polymerase I 裂口,即5’→3’DNA聚合酶活性与3’→5’及5’→3’外切酶活性多核苷酸激酶催化将把一个磷酸分子加到多核苷酸链的DNA polymerase kinease 5’-OH末端上(接下表格)工具酶名称主要功能反转录酶以RNA分子为模板合成互补的cDNA链reverse transcriptaseDNA末端转移酶将同聚物尾巴加到线性双链或单链DNA分子的3’-OH DNA terminal transferase 末端或DNA的3’-末端标记dNTP碱性磷酸酶去除DNA,RNA,dNTP的5’磷酸基团BAP orCIAP核酸外切酶III 降解DNA3’-OH末端的核苷酸残基exonuclease III降解酶S1 降解单链DNA或RNA,产生带5’磷酸的单核苷酸或nuclease S1寡聚核苷酸,同时也可切割双链核酸分子的单链工具酶名称主要功能核酸酶Bal 31 降解双链DNA,RNA的5’及3’末端,nuclease Bal31Taq DNA聚合酶能在高温(72℃)下的单链DNA为模板,Taq DNA polymerase从5’→3’方向合成新生的互补链核糖核酸酶专一性降解RNARNase脱氧核糖核酸酶内切核酸酶,水解单链或双链DNA DNase二、限制性内切核酸酶1、限制性核酸内切酶的分类2、限制性核酸内切酶的命名原则3、限制性核酸内切酶的基本特征4、影响限制性内切酶的活性因素5、限制性核酸内切酶的应用1、限制性核酸内切酶的分类限制性核酸内切酶主要分成三大类:I类:能识别专一的核苷酸顺序,并在识别点附近的一些核苷酸上切割双链,但切割序列没有专一性,是随机的。
基因工程-第二章--基因克隆所需的工具酶
常用限 制性内 切酶种 类及特 性
2010-11-8
苏州科技学院生物系
叶亚新
2010-11-8
苏州科技学院生物系
叶亚新
6、限制性内切酶的星号活性
在某些反应条件下,限制酶识别顺序的 特异性可能发生变化,结果一种限制酶 酶切同一种DNA片断会产生新的酶切位点, 得到不同的酶切片断,这就是限制酶的 星号活性( activity) 星号活性(star activity) EcoR 1 GAATTC---- AATT
第二章 基因克隆所需的工具酶
限制性内切酶—主要用于DNA分子的特异切割 限制性内切酶 DNA甲基化酶 甲基化酶—用于DNA分子的甲基化 DNA甲基化酶 核酸酶—用于DNA和RNA的非特异性切割 核酸酶 核酸聚合酶—用于DNA和RNA的合成 核酸聚合酶 核酸连接酶—用于DNA和RNA的连接 核酸连接酶 核酸末端修饰酶—用于DNA和RNA的末端修饰 核酸末端修饰酶 其它酶类--用于生物细胞的破壁,转化,核酸纯化,检测等 其它酶类
2010-11-8
苏州科技学院生物系
叶亚新
四.限制酶的特点
1. 识别顺序和酶切位点 识别4 1)识别4-8个相连的核苷酸 MboI NGATCN; NGATCN;AvaII GG(A/T)CC Bam HI GGATCC; GGATCC;PpuMI PuGG(A/T)CCPy Not I GCGGCCGC; GCGGCCGC; SfiI GGCC N N N N N GGCC N’ N N N CCGG N N’N’N’N’ CCGG Fok I 5 -GGATG(N)9-3’ 5’-GGATG( )93’-CCTAC(N)13-5’ 外侧,产生5’-端突 -CCTAC( )13- 外侧,产生5 起 富含GC 2)富含GC
第2章 基因工程工具酶
2.DNA纯度
限制核酸内切酶酶解DNA的效率很大程上取决于DNA 本身的纯度。 纯度较差的DNA在正常的酶切时可做如下补救:
①加大酶的用量:每微克DNA基质由1单位提高到5-10倍。
10U/µgDNA
② 扩大反应体积:以让污染物相应得到稀释。 ③ 延长酶解的反应时间,但DNase污染不能用此法。
A B N B’ A’ A’ B’ N B A 大多数识别位点具有180度旋转对称的结构形 式,即这些核苷酸对的顺序是回文结构。
断裂类型: DNA被限制性内切酶切 开之后,呈现两种断裂类型
切割方式:按切割位点相对于二重对称轴的 位置来区分 (1)平头末端(blunt ends ) :如Pvu II, Alu I, EcoR V 切割方式是在对称轴处切割 ,就产生平末端
④ 如RNA过多可在反应体系中加入适量的RNase.
3.甲基的影响
两种甲基化酶-- dam 和dcm
Dam:催化GATC序列中的腺嘌呤残基甲基化,腺嘌 呤N6位置上引入甲基; Dcm:催化CCA/TGG序列中内部胞嘧啶残基甲基化。 限制性内切酶如BglI对dam甲基化酶发生甲基化作 用的DNA很敏感,对即使纯度再高的这种DNA也很难 用什么办法酶切完全。 但BamH I(GGATAA)则不会因为N6A的甲基化而失 去活性。
同)
同尾酶:酶切后产生的DNA粘性末端相同的 一类限制酶。 (识别位点序列不一定相同) BamHI, BclI,Bgl Ⅱ ,Sau3AI,XhoⅡ是一 组同尾酶
杂种位点(hybrid site):由一对同尾酶分别产 生的粘性末端共价结合形成的位点。 杂种位点一般不能再被原来的任何一种同尾酶 所识别。
第二章 基因工程工具酶
基因工程操作的工具酶
也称为Kronberg酶,是Kronberg等1956年发 现的第一个DNA聚合酶。
具有三种酶活性
a、5’ ---3’DNA聚合酶活性
CCGATA-OH E.coli DNA pol I CCGATAGCCT
GGCTATCGGA Mg2+ dNTP
GGCTATCGGA
.
46
b、3’ ---5’ 外切酶活性
.
44
3. DNA聚合酶
分为两类: ①依赖于DNA的DNA聚合酶,包括大肠杆菌
DNA聚合酶I(全酶)、大肠杆菌DNA聚合 酶I的Klenow大片段酶、T4 DNA聚合酶、 T7DNA聚合酶和耐高温的DNA聚合酶等。 ②依赖于RNA的DNA聚合酶,有逆转录酶。
.
45
DNA聚合酶
(1)大肠杆菌DNA聚合酶I (E.coli DNA pol I):
.
21
常见的限制性内切酶
限制性核酸内切酶名称 识别序列和切割点
EcoR Ⅰ
G↓AATTC
HindⅡ
GTPy↓PuAC
Hind Ⅲ
A↓AGCTT
BsuR I
GG↓CC
.
22
Pst Ⅰ Sma Ⅰ Xba Ⅰ Xho Ⅰ BamHⅠ Not Ⅰ
CTGCA↓G CCC↓GGG
T↓CTAGA C↓TCGAG G↓GATCC
.
14
限制性酶的识别序列一般为4~8个核苷 酸,这些序列大多呈回纹结构。
Eco RⅠ识别6个核苷酸序列,在特定的G-A 之间切割DNA分子。 5’ … G↓A –A- T –T – C … 3’ 3’ … C – T –T –A –A↑G … 5’
.
15
Pst Ⅰ酶切 5’ … C – T –G –C–A↓G … 3’ 3’ … G↑A–C – G–T– C… 5’
《基因工程》第二章工具酶
•5’……G*A-A-T-T- C……3’ •3’……C- T- T-A-A*G……5’
PPT文档演模板
《基因工程》第二章工具酶
讨论:下面的序列中可能含有多 少个潜在的酶切位点?
•1
•2
•3
•4
•5
•GAATTCGAGCTCGGTACCCGGGGATCCTCTAG
A
•6
PPT文档演模板
《基因工程》第二章工具酶
•一、DNA限制性内切酶 •二、甲基化酶 • 三、分子克隆过程中所需要的另一些酶
Hale Waihona Puke PPT文档演模板《基因工程》第二章工具酶
•(一)DNA聚合酶 •(二)RNA聚合酶 •(三)反转录酶 •(四)核酸外切酶 •(五)核酸酶S1
•(六)DNA酶 •(七)RNA酶 •(八)连接酶 •(九)末端转移酶 •(十)碱性磷酸酶
•1.大肠杆菌DNA聚合酶(E.Coli DNA polymerase)主要有3种 作用:
•①5’→3’的聚合作用。但不是复制染色体而是修补DNA,填 补DNA上的空隙或是切除RNA引物后留下的空隙。 •②3’→5’的外切酶活性。消除在聚合作用中掺入的错误核苷酸。
•③5’→3’外切酶活性。切除受损伤的DNA。
PPT文档演模板
•DNA 甲基化酶普遍存在于原核和真核生物中, 能将 S-腺苷甲硫氨酸上的甲基转移到腺嘌呤或者 是胞嘧啶上。
基因工程第二章 基因工程工具酶
CCGGN’N’N’N’N’CCGG Fok I 5’-GGATG(N)9-3’
3’-CCTAC(N)13-5’ 外侧,产生5’-端突 起
2)富含GC
3)对称性—双对称
EcoRI 5’-G A A T T C-3’
3’-C T T A A G-5’
4)切点大多数在识别顺序之内,也有例外
④当DNA需2种或以上酶切时,应用通用缓冲液 ,若没有通用缓冲液时,只有用1种酶切完后 ,纯化酶切产物,再进行下一个酶切反应。
七. 其它特异性的内切酶及其用途
1. λ末端酶(λ terminase):
5’-GGGCGGCGACCTN--3’ N--5’,出现的频率约412
分子量为 117,000 = 1 A(74,000)+ 2 Nul(21,000)
5’-GOH 3’-CTTAAP
PAATTC-3’ HOG-5’
3) 平齐末端
SmaI 5’-CCCGGG-3’
5’-CCC
3’-GGGCCC-5’
3’-GGG
4)非互补的粘性末端
GGG-3’ CCC-5’
a)切点在识别顺序之外的,如:FokI
Fok I 5’-GGATG(N)9-3’
5’-GGATG(N)9
影响限制性核酸内切酶活性的因素
①DNA样品的纯度 DNA样中混有蛋白质、苯酚、氯仿、乙醇、 EDTA、SDS、NaCl等,都有可能抑制酶活性。 可采用以下方法,提高酶活性:
加大酶的用量,1μg DNA用10U酶 加大反应总体积 延长反应时间
②DNA样品的甲基化程度
大肠杆菌中的dam甲基化酶在5′GATC3′序列中的 腺嘌呤引入甲基,受其影响的酶有Bcl I Mbol 等, 但BamHI、BglII、Sau3A I不受影响。
第二章基因工程中常用的工具酶
第二章 基因工程中常用的工具酶限制性内切酶—主要用于DNA 分子的特异切割分子的特异切割DNA 甲基化酶—用于DNA 分子的甲基化分子的甲基化 核酸连接酶—用于DNA 和RNA 的连接的连接核酸聚合酶—用于DNA 和RNA 的合成的合成核酸酶—用于DNA 和RNA 的非特异性切割的非特异性切割核酸末端修饰酶—用于DNA 和RNA 的末端修饰的末端修饰其它酶类--用于生物细胞的破壁、转化、核酸纯化、检测等。
用于生物细胞的破壁、转化、核酸纯化、检测等。
§2-1 核酸内切限制酶定义:核酸内切限制酶是一类能够识别双链DNA 分子中的某种特定核苷酸序列,并由此切割DNA 双链结构的核酸内切酶。
双链结构的核酸内切酶。
到目前为止已经从许多种不同的微生物中分离出了2300种以上不同的核酸内切限制酶。
种以上不同的核酸内切限制酶。
核酸内切限制酶的发现及其生物功能(图)一 、限制修饰系统的种类(图)限制修饰系统的种类(图)二、 限制性内切酶的定义、命名1. 定义:广义指上述三个系统中的限制酶;广义指上述三个系统中的限制酶;狭义指II 型限制酶。
型限制酶。
2. 命名:限制酶由三部分构成,即菌种名、菌系编号、分离顺序。
限制酶由三部分构成,即菌种名、菌系编号、分离顺序。
例如:Hin d Ⅲ 前三个字母来自于菌种名称H. influenzae ,“d”表示菌系为d型血清型;“Ⅲ”表示分离到的第三个限制酶。
表示分离到的第三个限制酶。
Eco RI RI——Escherichia coli RI RI Hin d Ⅲ—Haemophilus influensae d ⅢSac I (II)—Streptomyces achromagenes I (Ⅱ)三、Ⅰ型和Ⅲ型核酸内切限制酶的缺点a.Ⅰ型核酸内切限制酶虽然能够识别DNA 分子中的特定序列,但它们的切割作用却是随机的,在距特异性位点至少1000bp 的地方可以随机地切割DNA 分子,因此这类酶在基因克隆中显然是没有用处的。
2 基因工程的工具酶
限制性核酸内切酶
II 型限制性核酸内切酶酶解反应的操作
II 型核酸内切酶的多酶联合酶解: 对盐浓度要求不同的酶,可采取下列方法: 使用较贵酶的盐浓度,加大便宜酶的用量,同时酶解 低盐酶先切,然后补加盐,高盐酶再切 一种酶先切,然后更换缓冲液,另一种酶再切 0.1倍体积的 3 M NaAc pH 5.4 2.5倍体积的冰冷乙醇
在限制修饰系统中,限制作用是指一定类 型的细菌可以通过限制性核酸内切酶的作用, 破坏入侵的外源DNA(如噬菌体DNA等),使得 外源DNA对生物细胞的入侵受到限制; 而生物细胞(如宿主)自身DNA分子通过甲基 化酶的作用,在碱基特定位置上发生了甲基化 ,可免遭自身限制性内切酶的破坏。 限制-修饰作用实际就是细菌中的限制性 内切酶降解外源DNA ,维护自身遗传稳定的保 护机制。
5’
PvuⅡ 37 ℃
5‘ … G-C-T-C-A-G-OH
3’ … C-G-A-G-T-C-P 3‘
P-C-T-G-G-A-G OH-G-A-C-C-T-C
…
… 5’
星号活性(star activity) 又称星活性,一些限制性内切酶在某 些反应条件变化时酶的专一性发生改变 ,如酶浓度过高、反应液离子强度过低 、pH改变、有机溶剂的影响等条件,酶 切割位点专一性发生改变。
5’-TGATCA-3’ 3’-ACTAGT-5’ BclⅠ
BamHⅠ BclⅠ BglⅡ三种酶可产生 相同的5’GATC粘性末端,由这种 同尾酶产生的DNA片段可因粘性末 端的互补而彼此再连接起来。
5’-AGATCT-3’
3’-TCTAGA-5’ BglⅡ
限制性核酸内切酶
II 型限制性核酸内切酶酶解反应的操作
P OH
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章基因工程工具酶
第—节限制性核酸内切酶
第二节DNA连接酶
第三节DNA聚合酶
第四节末端脱氧核苷酸转移酶
第五节核酸酶
第六节核酸外切酶
第七节碱性磷酸酶
第八节T4噬菌体多核苷酸激酶
第—节限制性核酸内切酶
1、宿主的限制和修饰现象
2、限制性核酸内切酶的类型
3、限制性核酸内切酶的命名
4、Ⅱ型限制性核酸内切酶的基本特性
4.1识别位点的长度识别靶序列长度4、5、6 bp居多,也有识别7、
8bp的
4.2 识别序列结构:回文对称
4.3 切割位置:(1)内部(大多数);(2)两端(3)同裂酶与同尾酶
4.4 Ⅱ型限制性核酸内切酶不具有甲基化功能
4.5 Ⅱ型内切酶可以对单链DNA的切割
4.6 星号活性(star activity)
(1)星活性产生的原因
(2)抑制星星活性的条件(措施)
5、Ⅱ型限制性核酸内切酶的酶切反应
5.1 标准酶解体系的建立
5.2 酶切反应的基本步骤
5.3 终止反应常用方法:
(1)加EDTA:(2)加SDS(3)加热:(4)其它
5.4 多酶联合酶解策略:
(1)对盐浓度要求相同的酶,原则上可以同时酶切
(2)对盐浓度要求不同的酶,可采取下列方法
5.5 DNA分子酶切常用缓冲液
5.6 内切酶对DNA分子的不完全酶解
5.7 内切酶酶解反应中的注意事项
6、影响限制性核酸内切酶活性的因素
6.1. DNA的纯度
6.2 DNA的甲基化程度
6.3 酶切消化反应温度
6.4 缓冲液(Buffer)
6.5 DNA分子的构型
6.6 反应时间
6.7 酶量使用
第二节DNA连接酶
1、DNA连接酶的发现
2、概念及其特点
3、DNA连接酶的种类
▪大肠杆菌连接酶:只能连接粘性末端。
▪T4噬菌体的连接酶:不但能连接粘性末端,还能连接平末端。
▪T4噬菌体RNA连接酶:催化单链DNA或RNA的5’磷酸与相邻的3’羟基共价连接。
4、DNA连接酶的反应体系
5、影响连接反应的因素
5.1 DNA末端的浓度
5.2 反应温度
5.3 ATP浓度
6 、DNA连接的策略
6.1 粘性末端DNA片段的连接
6.2 平末端DNA片段的末端连接法
▪ 6.2.1 常规连接
▪ 6.2.2 平末端DNA片段加接头连接法
▪ 6.2.3 平末端DNA片段的末端加尾连接法
6.3 防止自连--载体去磷酸化。