新北师大版七年级数学下册全册教案(打印版)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1同底数幂的乘法

教学目标:

知识与技能:使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算。

过程与方法:在推导“性质”的过程中,培养学生观察、概括与抽象的能力。

情感、态度、价值观:提高学生学习数学的兴趣。

教学重点和难点:

幂的运算性质.

教学过程:

一、实例导入:

二、温故:

2.,指出下列各式的底数与指数:

(1)34;(2)a3;(3)(a+b)2;(4)(-2)3;(5)-23.

其中,(-2)3与-23的含义是否相同?结果是否相等?(-2)4与-24呢?

三、知新:

1.利用乘方的意义,提问学生,引出法则

计算103×102.

解:103×102=(10×10×10)×(10×10)(幂的意义)

=10×10×10×10×10ﻩ(乘法的结合律)

=105.

2.引导学生建立幂的运算法则

将上题中的底数改为a,则有

a3·a2=(aaa)·(aa)

=aaaaa

=a5,

即a3·a2=a5=a3+2.

用字母m,n表示正整数,则有

即a m·an=a m+n.

3.引导学生剖析法则

(1)等号左边是什么运算?

(2)等号两边的底数有什么关系?

(3)等号两边的指数有什么关系?

(4)公式中的底数a可以表示什么

(5)当三个以上同底数幂相乘时,上述法则是否成立?

要求学生叙述这个法则:同底数幂相乘,底数不变,指数相加。

注意:强调幂的底数必须相同,相乘时指数才能相加.

四、巩固:

例1计算:

(1) (-3)7×(-3)6;(2)(1/111)3×(1/111).

(3) -x3·x5 (4) b2m·b2m+1.

.例2、光在真空中的速度约为3×108米/秒,泰阳光照射到地球上大约需要5×102秒,地球距

离太阳大约有多远?

五、拓展:

1、计算:(1)105·106;(2)a7·a3;(3)y3·y2;

(4)b5·b; (5)a6·a6;(6)x5·x5.

2、计算:(1)y12·y6;(2)x10·x;(3)x3·x9;

(4)10·102·104;(5)y4·y3·y2·y;(6)x5·x6·x3.

六、课堂小结:

1.同底数幂相乘,底数不变,指数相加,对这个法则要注重理解“同底、相乘、不变、相加”这八个字.

2.解题时要注意a的指数是1.

3.解题时,是什么运算就应用什么法则.同底数幂相乘,就应用同底数幂的乘法法则;整式加减就要合并同类项,不能混淆.

4.-a2的底数a,不是-a.计算-a2·a2的结果是-(a2·a2)=-a4,而不是(-a)2+2=a4.

5.若底数是多项式时,要把底数看成一个整体进行计算。

七、板书设计:

八、教学后记:

1.2幂的乘方与积的乘方(1)

教学目标:

知识与技能:了解幂的乘方与积的乘方的运算性质,并能解决一些实际问题。

过程与方法:经历探索幂的乘方与积的乘方的运算性质的过程,进一步体会幂的意义,发展推理能力

和有条理的表达能力。

情感、态度、价值观:提高学生学习数学的兴趣。

教学重点:会进行幂的乘方的运算。 教学难点:幂的乘方法则的总结及运用。 教学方法:尝试练习法,讨论法,归纳法。 活动准备:课件 教学过程: 一、温故:

计算(1)(x+y)2·(x+y)3(2)x2·x 2·x+x 4

·x

(3)(0.75a)3

·(

4

1a )4(4)x 3·x n-1-xn -2·x 4

通过练习的方式,先让学生复习乘方的知识,并紧接着利用乘方的知识探索新课的内容。

二、知新:

1、64

表示_________个___________相乘.

(62)4

表示_________个___________相乘. a3

表示_________个___________相乘. (a 2)3

表示_________个___________相乘.

在这个练习中,要引导学生观察,推测(62)4与(a 2)3

的底数、指数。并用乘方的概念解答问题。 2、(62)4

=________×_________×_______×________=__________

(33)5

=_____×_______×_______×________×_______=__________

(a 2)3

=_______×_________×_______=__________ (am )2

=________×_________=__________ (a m)n

=________×________×…×_______×__________=__________

即 (a m )n

= ______________(其中m 、n 都是正整数) 通过上面的探索活动,发现了什么?

幂的乘方,底数__________,指数__________.

学生在探索练习的指引下,自主的完成有关的练习,并在练习中发现幂的乘方的法则,从猜测到探索到理解法则的实际意义从而从本质上认识、学习幂的乘方的来历。教师应当鼓励学生自己发现幂的乘方的性质特点(如底数、指数发生了怎样的变化)并运用自己的语言进行描述。然后再让学生回顾这一性质的得来过程,进一步体会幂的意义。 三、巩固:

1、计算下列各题:

(1)(102)3 (2)(b 5)5 (3)(a n )3

(4)-(x 2)m (5)(y 2)3·y (6)2(a 2)6-(a 3)4

学生在做练习时,不要鼓励他们直接套用公式,而应让学生说明每一步的运算理由,进一步体会乘方的意义与幂的意义。

2、 判断题,错误的予以改正。

(1)a 5+a5=2a 10

( )

(2)(s 3)3=x 6

( )

(3)(-3)2·(-3)4=(-3)6=-36

( )

(4)x 3+y3=(x+y)3

( )

(5)[(m-n )3]4-[(m -n )2]6

=0 ( )

学生通过练习巩固刚刚学习的新知识。在此基础上加深知识的应用. 四、拓展:

1、 1、计算 5(P 3)4·(-P 2)3+2[(-P)2]4·(-P 5)2

相关文档
最新文档