苏州市2019~2020高三数学一模试卷含答案
苏州市2019~2020学年第一学期高三数学上学期期中调研试卷附答案解析

苏州市2019~2020学年第一学期高三上学期期中调研数学试卷(满分160分,考试时间120分钟) 2019.11一、 填空题:本大题共14小题,每小题5分,共70分.1. 已知集合A ={-2,-1,0,1,2},B ={x|x >0},则A∩B=________.2. 已知复数z 满足z2+i=i(i 为虚数单位),则复数z 的实部为________. 3. 已知向量a =(x ,2),b =(2,-1),且a⊥b ,则实数x 的值是________. 4. 函数y =lg (x -1)2-x的定义域为________.5. 在等比数列{a n }中,a 1=1,a 4=8,S n 是{a n }的前n 项和,则S 5=________.6. 已知tan α=2,则sin αcos α+2sin α的值为________.7. “x >2”是“x>1”的________条件.(选填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)8. 已知函数y =sin 2x 图象上的每个点向左平移φ(0<φ<π2)个单位长度得到函数y =sin(2x +π6)的图象,则φ的值为________.9. 设函数f(x)=⎩⎪⎨⎪⎧e x,x ≥0,2x +1,x <0,则不等式f(x +2)>f(x 2)的解集为________.10. 已知函数f(x)=ln x -mx 的极小值大于0,则实数m 的取值范围是________.11. 在各项都为正数的等差数列{a n }中,已知a 5=3,则a 3a 7的最大值为________.12. 已知菱形ABCD 的棱长为3,E 为棱CD 上一点且满足CE →=2ED →.若AE →·EB →=-6,则cos C =________. 13. 若方程cos(2x -π6)=35在(0,π)上的解为x 1,x 2,则cos(x 1-x 2)=________.14. 已知函数f(x)=3x 2-x 3,g(x)=e x -1-a -ln x .若对于任意x 1∈(0,3),总是存在两个不同的x 2,x 3∈(0,3),使得f(x 1)=g(x 2)=g(x 3),则实数a 的取值范围是________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤. 15. (本小题满分14分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,C =120°,c =7,a -b =2. (1) 求a ,b 的值; (2) 求sin(A +C)的值.16. (本小题满分14分)已知向量a =(cos x ,3cos x),b =(cos x ,sin x). (1) 若a∥b ,x ∈[0,π2],求x 的值;(2) 若f(x)=a·b,x∈[0,π2],求f(x)的最大值及相应x的值.17. (本小题满分14分)已知等比数列{a n}满足a2=2,且a2,a3+1,a4成等差数列.(1) 求数列{a n}的通项公式;(2) 设b n=|a n-2n+1|,求数列{b n}的前n项和T n.18. (本小题满分16分)如图所示,某窑洞窗口形状上部是圆弧CD,下部是一个矩形ABCD,圆弧CD所在圆的圆心为O.经测量AB=4m,BC=33m,∠COD=120°,现根据需要把此窑洞窗口形状改造为矩形EFGH,其中E,F在边AB上,G,H在圆弧CD上.设∠OGF=θ,矩形EFGH的面积为S.(1) 求矩形EFGH的面积S关于变量θ的函数关系式;(2) 求cos θ为何值时,矩形EFGH的面积S最大?19. (本小题满分16分)已知函数f(x)=x-1x .(1) 求f(x)的图象在x=1处的切线方程;(2) 求函数F(x)=f(x)-x的极大值;(3) 若af(x)≤ln x对x∈(0,1]恒成立,求实数a的取值范围.20. (本小题满分16分)已知数列{a n}满足(n-1)a n+1=na n-a1,n∈N*.(1) 求证:数列{a n}为等差数列;(2) 设数列{a n}的前n项和为S n.若a2-a1=1,且对任意的正整数n,都有13<1S1+1S2+1S3+…+1S n<43,求整数a1的值;(3) 设数列{b n }满足b n =a n +310.若a 2-a 1=15,且存在正整数s ,t ,使得a s +b t 是整数,求|a 1|的最小值.数学附加题(满分40分,考试时间30分钟)21. 【选做题】 从A ,B ,C 三小题中选做两题,每小题10分,共20分.若多做,则按作答的前两题评分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修42:矩阵与变换) 已知二阶矩阵M =⎣⎢⎡⎦⎥⎤a 13b 的特征值λ=-1所对应的一个特征向量为⎣⎢⎡⎦⎥⎤-1 3.(1) 求矩阵M ;(2) 设曲线C 在变换矩阵M 作用下得到的曲线C′的方程为y 2=x ,求曲线C 的方程.B. (选修44:坐标系与参数方程)已知曲线C 的极坐标方程为ρ=2cos α+23sin α(α为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =1+tcos β,y =tsin β(t为参数,0<β<π2).若曲线C 被直线l 截得的弦长为13,求β的值.C. (选修45:不等式选讲)设正数a ,b ,c 满足a +b +c =1,求证:a b +c +b c +a +c a +b ≥32.【必做题】 第22,23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤. 22. 某射击小组有甲、乙、丙三名射手,已知甲击中目标的概率是34,甲、丙二人都没有击中目标的概率是112,乙、丙二人都击中目标的概率是14.甲、乙、丙是否击中目标相互独立. (1) 求乙、丙二人各自击中目标的概率;(2) 设乙、丙二人中击中目标的人数为X ,求X 的分布列和数学期望.23. 如图,在直三棱柱ABCA 1B 1C 1中,∠BAC =90°,AB =AC =a ,AA 1=b ,点E ,F 分别在棱BB 1,CC 1上,且BE =13BB 1,C 1F =13CC 1.设λ=b a.(1) 当λ=3时,求异面直线AE 与A 1F 所成角的大小; (2) 当平面AEF⊥平面A 1EF 时,求λ的值.数学参考答案及评分标准1. {1,2}2. -13. 14. (1,2)5. 316. 257. 充分不必要8. π12 9. (-1,2)10. (-∞,-1e ) 11. 9 12. 13 13. -3514. [1,e 2-ln 3-4)15. 解:(1) 由余弦定理cos C =a 2+b 2-c 22ab ,且c =7,C =120°得a 2+b 2+ab =49.(3分)因为a -b =2,所以b 2+2b -15=0.(5分) 因为b >0,所以b =3,a =5. 综上:a =5,b =3.(7分)(2) 由(1)知a =5,b =3,c =7,所以cos B =a 2+c 2-b 22ac =1314.(10分)因为B 为△ABC 的内角,所以sin B =1-cos 2B =3314.(12分)因为sin(A +C)=sin(π-B)=sin B =3314, 所以sin(A +C)的值为3314.(14分)16. 解:(1) 因为a =(cos x ,3cos x),b =(cos x ,sin x),a ∥b , 所以cos xsin x =3cos 2x ,所以cos x(sin x -3cos x)=0,(2分)所以cos x =0或sin x -3cos x =0,即cos x =0或tan x = 3.(4分) 因为x∈⎣⎡⎦⎤0,π2,所以x =π2或x =π3.(6分) (2) 因为a =(cos x ,3cos x),b =(cos x ,sin x), 所以f(x)=a·b =cos 2x +3cos xsin x(8分) =1+cos 2x 2+32sin 2x =sin(2x +π6)+12.(10分) 因为x∈⎣⎡⎦⎤0,π2,所以2x +π6∈⎣⎡⎦⎤π6,7π6, 所以sin(2x +π6)∈⎣⎡⎦⎤-12,1,所以f(x)∈⎣⎡⎦⎤0,32,(12分)所以f(x)的最大值为32,此时x =π6.(14分)17. 解:(1) 设等比数列{a n }的公比为q(不为0),因为a 2 ,a 3+1,a 4成等差数列,所以2(a 3+1)=a 2+a 4.(1分) 因为a 2=2,所以2(2q +1)=2+2q 2,解得q =2或q =0(舍去),所以a 1=a 2q =1,(3分)所以数列{a n }的通项公式为a n =2n -1.(5分)(2) 设c n =a n -2n +1=2n -1-2n +1, 所以c n +1-c n =2n-2(n +1)+1-(2n -1-2n +1)=2n -1-2,所以n≥3,c n +1>c n .(7分)因为c 4=1>0,所以n≥4时,c n >0,即n≥4时,b n =c n =2n -1-2n +1.因为c 1=0,c 2=-1,c 3=-1,所以b 1=0,b 2=1,b 3=1, 所以T 1=0,T 2=1,T 3=2.(10分)当n≥4时,T n =b 1+b 2+b 3+b 4+…+b n =(0+1+1)+b 4+b 5+…+b n =2+(23+24+…+2n -1)-(7+9+…+2n -1)=2+23(1-2n -3)1-2-7+2n -12·(n -3)=2n -n 2+3.(13分)综上,T n=⎩⎪⎨⎪⎧0,n =1,1,n =2,2,n =3,2n-n 2+3,n ≥4.(14分)18. 解:(1) 如图,作OP⊥CD 分别交AB ,GH 于M ,N.由四边形ABCD ,EFGH 是矩形,O 为圆心,∠COD=120°,所以OM⊥AB,ON⊥GH,点P,M,N分别为CD,AB,GH的中点,∠CON=60°. 在Rt△COP中,CP=2,∠COP=60°,所以OC=433,OP=233,所以OM=OP-PM=OP-BC=33.(3分)在Rt△ONG中,∠GON=∠OGF=θ,OG=OC=433,所以GN=433sin θ,ON=433cos θ,所以GH=2GN=833sin θ,GF=MN=ON-OM=433cos θ-33,(6分)所以S=GF·GH=(433cos θ-33)·833sin θ=83(4cos θ-1)sin θ,θ∈(0,π3),所以S关于θ的函数关系式为S=83(4cos θ-1)sin θ,θ∈(0,π3).(8分)(2) S′=83(4cos2θ-4sin2θ-cos θ)=83(8cos2θ-cos θ-4).(10分)因为θ∈(0,π3),所以cos θ∈(12,1),所以S′=0,得cos θ=1+12916∈(12,1).(12分)设θ0∈(0,π3)且cos θ0=1+12916,所以由S′>0,得0<θ<θ0,即S在(0,θ0)上单调递增,由S′<0,得θ0<θ<π3,即S在(θ0,π3)上单调递减,(14分)所以当θ=θ0时,S取得最大值,所以当cos θ=1+12916时,矩形EFGH的面积S最大.(16分)19. 解:(1) 因为f(x)=x-1x,所以f′(x)=12x+12x x,所以f′(1)=1.(2分)因为y=f(x)经过(1,0),所以f(x)的图象在x=1处的切线方程为y=x-1.(4分)(2) 因为F(x)=x-1x-x,x>0,所以F′(x)=12x+12x x-1,F′(x)在(0,+∞)上递减.又F′(1)=0,(5分)所以当x∈(0,1)时,F′(x)>0,即F(x)在x∈(0,1)上递增;当x∈(1,+∞)时,F′(x)<0,即F(x)在x∈(1,+∞)上递减,(7分) 所以在x=1处,F(x)的极大值为F(1)=-1.(8分)(3) 设g(x)=ln x-af(x)=ln x-a(x-1x),x∈(0,1],所以g′(x)=1x -a 2(1x +1x x )=-a (x )2+2x -a2x x.①当a≤0时,g ′(x)>0对x∈(0,1]恒成立,所以g(x)在(0,1]上递增.又g(1)=0,所以∃x 0∈(0,1)时,g(x 0)<0,这与af(x)≤ln x 对x∈(0,1]恒成立矛盾;(10分) ②当a≥1时,设φ(x)=-a(x)2+2x -a ,x ∈(0,1],Δ=4-4a 2≤0,所以φ(x)≤0,x ∈(0,1],所以g′(x)≤0对(0,1]恒成立,所以g(x)在(0,1]上递减.又g(1)=0,所以g(x)≥0对x∈(0,1]恒成立,所以a≥1成立;(12分)③当0<a <1时,设φ(x)=-a(x)2+2x -a ,x ∈(0,1],Δ=4-4a 2>0,解φ(x)=0得两根为x 1,x 2,其中x 2=1+1-a 2a >1,x 1=1-1-a 2a =a1+1-a2∈(0,1),所以0<x 1<1,x 2>1,所以x∈(x 1,1),φ(x)>0,g ′(x)>0,所以g(x)在(x 1,1)上递增.又g(1)=0,所以g(x 1)<0,这与af(x)≤ln x 对x∈(0,1]恒成立矛盾.(15分) 综上:a≥1.(16分)20. (1) 证明:因为(n -1)a n +1=na n -a 1,n ∈N *①, 所以(n -2)a n =(n -1)a n -1-a 1,n ≥2且n∈N *②.①-②,得(n -1)a n +1-2(n -1)a n +(n -1)a n -1=0,n ≥2且n∈N *,(2分) 所以a n +1-2a n +a n -1=0,n ≥2且n∈N *, 所以a n +1-a n =a n -a n -1=…=a 2-a 1, 所以数列{a n }为等差数列.(4分)(2) 解:因为a 2-a 1=1,所以{a n }的公差为1.因为对任意的正整数n ,都有13<1S 1+1S 2+1S 3+…+1S n <43,所以13<1S 1<43,所以34<S 1<3,即34<a 1<3,所以a 1=1或2.(6分)当a 1=1时,a 2=2,S 1=1,S 2=3,所以1S 1+1S 2=1+13=43,这与题意矛盾,所以a 1≠1;(7分)当a 1=2时,a n =n +1,S n =n (n +3)2>0,1S 1=12>13,1S 1+1S 2+1S 3+…+1S n >13恒成立.(8分) 因为1S n =23(1n -1n +3),1S 1+1S 2+1S 3+…+1S n =23(1-14+12-15+13-16+…+1n -2-1n +1+1n -1-1n +2+1n -1n +3)=23(1+12+13-1n +1-1n +2-1n +3)<119<43. 综上,a 1的值为2.(10分)(3) 解:因为a 2-a 1=15,所以{a n }的公差为15,所以a n =a 1+15(n -1),所以b n =a 1+15n +110.(11分)由题意,设存在正整数s ,t ,使得a s +b t =l ,l ∈Z ,则a 1+s 5-15+a 1+t 5+110=l ,即20a 1=2(5l -s -t)+1.因为5l -s -t∈Z ,所以2(5l -s -t)是偶数,所以|20a 1|≥1,所以|a 1|≥120.(14分)当a 1=120时,b 4=1920,所以存在a 1+b 4=1∈Z .综上,|a 1|的最小值为120.(16分)。
2020年江苏苏州高三一模数学试卷

2020年江苏苏州高三一模数学试卷一、填空题(本大题共14小题,每小题5分,共70分)1.已知为虚数单位,复数,则 .2.已知集合,,若中有且只有一个元素,则实数的值为 .3.已知一组数据,,,,.则该组数据的方差是 .4.在平面直角坐标系中,已知双曲线的一条渐近线方程为,则.5.甲、乙两人下棋,两人下成和棋的概率是,乙获胜的概率是,则乙不输的概率是 .6.右图是一个算法的流程图,则输出的的值为 .开始,输出结束7.“直线:与直线:平行”是“”的 条件.(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”)8.已知等差数列的前项和为, ,,则 .9.已知点是曲线上一动点,当曲线在处的切线斜率取得最小值时,该切线的方程为 .10.已知,,则 .11.如图在矩形中,为边的中点,,.分别以,为圆心,为半径作圆弧,,将两圆弧,及边所围成的平面图形(阴影部分)绕直线旋转一周,所形成的几何体的体积为 .12.在中,,若角的最大值为,则实数的值是 .13.若函数(且)在定义域上的值域是,则的取值范围是 .14.如图,在中,,是的中点,在边上,,与交于点,若,则面积的最大值为 .二、解答题(本大题共6小题,共90分)(1)(2)15.在中,角,,所对的边分别为,,,且满足.求角.已知,,求的面积.(1)(2)16.如图,在四棱锥中,四边形为平行四边形,,为正三角形,平面平面,为的中点.证明:平面.证明:.(1)(2)17.某地为改善旅游环境进行景点改造,如图,将两条平行观光道和,通过一段抛物线形状的栈道连通(道路不计宽度),和所在直线的距离为(百米),对岸堤岸线,平行于观光道且与相距(百米)(其中为抛物线的顶点,抛物线的对称轴垂直于,且交于),在堤岸线上的,两处建造建筑物,其中,到的距离为(百米),且恰在的正对岸(即).在图②中建立适当的平面直角坐标系,并求栈道的方程.游客(视为点)在栈道的何处时,观测的视角()最大?请在()的坐标系中,写出观测点的坐标.18.如图,在平面直角坐标系中,已知椭圆的离心率为,且经过点,,分别为椭圆的左、右顶点,过左焦点的直线交椭圆于,两点(其中在(1)(2)轴上方).xyO求椭圆的标准方程.若与的面积比为,求直线的方程.(1)(2)19.已知函数的导函数.若函数存在极值,求的取值范围.设函数(其中为自然对数的底数),对任意,若关于的不等式在上恒成立,求正整数的取值集合.(1)12(2)20.已知数列,,数列满足,.若,,求数列的前项和.若数列为等差数列,且对任意,恒成立.当数列为等差数列,求证:数列,的公差相等.数列能否为等比数列?若能,请写出所有满足条件的数列;若不能,请说明理由.为奇数为偶数三、选做题(本大题共3小题,选做2道,共20分)21.已知矩阵,,且二阶矩阵满足,求的特征值及属于各特征值的一个特征向量.(1)(2)22.在平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为.求曲线的普通方程.求曲线和曲线的公共点的极坐标.23.已知正数,,满足(为常数),且的最小值为,求实数的值.【答案】解析:,∴.四、必做题(本大题共2小题,每小题10分,共20分)(1)(2)24.某商店举行促销反馈活动,顾客购物每满元,有一次抽奖机会(即满元可以抽奖一次,满元可以抽奖两次,依次类推).抽奖的规则如下:在一个不透明口袋中装有编号分别为,,,,的个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球编号一次比一次大(如,,),则获得一等奖,奖金元;若摸得的小球编号一次比一次小(如,,1),则获得二等奖,奖金元;其余情况获得三等奖,奖金元.某人抽奖一次,求其获奖金额的概率分布和数学期望.赵四购物恰好满元,假设他不放弃每次抽奖机会,求他获得的奖金恰好为元的概率.(1)(2)25.已知抛物线(为大于的质数)的焦点为,过点且斜率为的直线交于,两点,线段的垂直平分线交轴于点.抛物线在点,处的切线相交于点.记四边形的面积为.求点的轨迹方程.当点的横坐标为整数时,是否为整数?若是,请求出所有满足条件的的值;若不是,请说明理由.1.故答案为:.2.解析:∵,,又∵中有且只有一个元素,∴,.故答案为:.3.解析:∵数据,,,,的平均数,∴该组数据的方差为.故该组数据的方差为.4.解析:双曲线,,,双曲线的渐近线方程为,∴,∴.故答案为:.5.解析:“两人下成和棋”与“乙获胜”两事件互斥,由互斥事件的概率公式可得,乙不输的概率.解析:第一次循环,,,,,不满足,;第二次循环,,,,,不满足,;第三次循环,,,,,满足退出循环,输出.故答案为.解析:∵直线 :与直线 :平行,∴ ,解得,易知,“”为“”的必要不充分条件,∴“直线:与直线:平行”是“”的必要不充分条件,故答案为:必要不充分条件.解析:数列为等差数列,∴,,∴,,.解得.∴.6.必要不充分7.8.9.解析:由曲线可知,,,∴ 切线斜率:,当且仅当,即时等号成立,当时,,即切点坐标为,∴ 切线方程为,即.10.解析:∵、,∴,,∵,∴,∴,∴,.11.解析:图中阴影部分绕旋转一周所形成的几何体为圆柱去掉两个半径为的半球,两个半球的体积为: .圆柱的底面半径为,高为,∴圆柱的体积为,∴该几何体的体积为故答案为:.12.解析:∵,∴,即,化简得,则,当且仅当,即时等号成立,又角的最大值为,则的最小值为,∴,化简得,即,解得或,又,故的值是.13.解析:时,在单调递增,则,即,∴,令,,令,,在上单调递增,上单调递减,,∴,∴,当时,在单调递减,则,即,又∵,∴,而,∴无解,同理无解,∴不成立,综上.14.解析:如图,建系,则,,,设,则:,,则,,:,则,(1)(2)(1),,,.化简得,的最大值为.解析:在中,由正弦定理得.因为,所以,从而,所以,所以.因为,,,所以,,,所以的面积.解析:连结交于,因为为平行四边形,所以为的中点.连结,在中,因为是的中点,所以.又因为平面,平面,所以平面.(1).(2).15.(1)证明见解析.(2)证明见解析.16.(2)(1)(2)因为为正三角形,是的中点,所以.又因为平面平面,平面平面,且,平面,所以平面.因为平面,所以,又因为,且,平面,平面,所以平面.因为平面,所以.解析:以为原点,所在直线为轴,所在的直线为轴,建立如图所示的平面直角坐标系,则由题意可知 ,,设抛物线方程为:(),则,解得:,所以栈道的方程为,().过点作于点,设,其中,(1),().(2),观测的视角最大.17.则,设 , ,则,所以,,所以,令,则,当且仅当,即时取等号,因为且,所以,因为在上单调递减,所以当最大时,最大,即最大,此时,,即,所以点的坐标为,观测的视角最大.(1)(2)(1)解析:由椭圆,则,将代入椭圆,,解得:,,故椭圆的方程.由()可知,,则,则,,设,,,,∴,,由,则即①,由题可知直线斜率不为,可设直线方程为,联立得,∴,∴②,③,由①②③可解得或,经检验,当时,在轴下方不符,∴,即直线方程为:即.解析:,所以,所以,①当时,即或时,恒成立,所以在上递增,故无极值;②当时,即时,有两个根,(不妨设).(1).(2).18.(1).(2).19.(2)(1)列表如下:极大值极小值满足题意.综上所述,.因为,所以对任意,在上恒成立,即对任意,在上恒成立,所以在上恒成立,即对任意恒成立.记,所以,因为,所以在上单调递增且连续不间断,而,,所以在上存在惟一零点.极小值所以,其中, 且,所以,所以,又因为,所以由得对任意恒成立,由题意知,因为,且,所以,,即正整数的取值集合为.解析:因为,,(1).12(2)证明见解析.数列不能为等比数列.20.12(2)则,.所有.设数列的公差为,的公差为,因为数列是递增数列,所以,,即,,所以,,由(Ⅰ)得:对恒成立,所以,由(Ⅱ)得:对恒成立,所以,所以,即数列,的公差相等.数列不能为等比数列,若存在数列为等比数列,设数列的公差为,数列的公比为,因为数列是递增数列,所以,所以.又因为,则当时,,所以必存在正奇数,有,所以,即,所以,即.因为,所以.记,则,因为,,所以对,有成立.设,,则,当时,,单调递增;当时,,单调递减,为奇数为偶数(Ⅰ)(Ⅱ)(1)所以对,有,从而时,,因为,所以,,所以,即.从而对,.因为,所以,所以,所以对,.而上式不成立,所以数列不能为等比数列.解析:设,则,所以,解得,所以,令的特征多项式,得,所以的特征值为,设属于特征值的特征向量为,则由,得,所以,所以,所以的属于特征值的一个特征向量为.解析:因为,所以,所以,即,所以曲线的直角坐标方程为.的特征值为,属于特征值的一个特征向量为.21.(1).(2)极坐标为.22.(2)(1)曲线的参数方程为(为参数),所以曲线的直角坐标方程为,由,得,所以(舍)或,故曲线和曲线的公共点的直角坐标为,其极坐标为.(注:答案不唯一)解析:由柯西不等式.当且仅当时取等号,此时,,,解得,,,所以的最小值为,因为的最小值为,所以,又因为,所以解得.解析:个球中摸三个球情况有,其中编号一次比一次大的情况有,.23.(1)的概率分布列如下:数学期望为.(2).24.(2)(1)(2)编号一次比一次小的情况有.∴一等奖概率为,二等奖概率为,三等奖概率为,X的可能取值为,,.∴;;.分布列如下:∴期望.赵四抽奖三次,获得奖金为的情况共两种,第一种:一次一等奖,两次三等奖,这种概率;第二种:三次二等奖,这种概率;∴总共概率.解析:由题意得,直线的方程为:,设,,由,消去整理得,所以,由,可得,所以在点的切线方程为:,即①,同理可得在处的切线方程为:②,联立①②可得,即,所以点的轨迹方程为(且为大于的质数).设的中点为,连接,,(1)(且为大于的质数).(2)不是整数;证明见解析.25.由,,得,所以,因为,所以,所以,因为,所以平行于轴,所以,又因为,所以≌,所以,所以.又因为,且,所以.由题意得为整数,设,所以.假设为整数,则,即,所以,所以只能为整数.设,则,所以,所以或或或或.因为,,所以只能,但当时,,与矛盾,不符合题意.综上所述,不是整数.21。
江苏省苏州市吴江区2019-2020学年第一学期第一次月度质量调研试卷高三数学(有解析)

数学试题2019.9 1.设集合M={﹣1,0,1},N={x|x2+x≤0},则M∩N=.2.复数z=(1﹣2i)(3+i),其中i为虚数单位,则|z|是.3.已知抛物线方程为y=4x2,则抛物线的焦点坐标为.4.函数f(x)的定义域为.5.函数的最小正周期为.6.已知θ是第三象限角,且,则sinθ+cosθ=.7.函数f(x)=log2(﹣x2+2)的值域为.8.已知(4x,2x),(1,),x∈R,若⊥,则.9.在平面直角坐标系中,曲线y=e x+2x+1在x=0处的切线方程是10.在△ABC中,已知C=120°,sin B=2sin A,且△ABC的面积为,则AB 的长为.11.已知函数f(x)是定义R在上的奇函数,当x>0时,f(x)=2x﹣3,则不等式f(x)≤﹣5的解集为.12.已知函数f(x)=sin(2x)(0≤x<π),且f(α)=f(β)(α≠β),则α+β=.13.已知△ABC的三个内角A,B,C的对边依次为a,b,c,外接圆半径为1,且满足,则△ABC面积的最大值为.14.已知函数,,>,若方程f(x)=a有四个不等的实根x1,x2,x3,x4,且满足x1<x2<x3<x4,则(x1+1)(x2+1)(x3+1)(x4+1)的取值范围为.二、解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)15.(本小题满分14分)已知向量(cosα,﹣1),(2,sinα),其中,,且.(1)求cos2α的值;(2)若sin(α﹣β),且,,求角β.16.(本小题满分14分)如图,在四棱锥P﹣ABCD中,AD∥BC,且AD=2BC,AD ⊥CD,PA=PD,M为棱AD的中点.(1)求证:CD∥平面PBM;(2)求证:平面PAD⊥平面PBM.17.(本小题满分14分)已知定义域为R的函数是奇函数.(1)求实数m的值;(2)解不等式f(x)+f(1+x)>0.18.(本小题满分16分)为解决城市的拥堵问题,某城市准备对现有的一条穿城公路MON进行分流,已知穿城公路MON自西向东到达城市中心点O后转向东北方向(即∠AOB).现准备修建一条城市高架道路L,L在MO上设一出入口A,在ON上设一出入口B.假设高架道路L在AB部分为直线段,且要求市中心O与AB的距离为10km.(1)求两站点A,B之间距离的最小值;(2)公路MO段上距离市中心O30km处有一古建筑群C,为保护古建筑群,设立一个以C为圆心,5km为半径的圆形保护区.则如何在古建筑群C和市中心O之间设计出入口A,才能使高架道路L及其延伸段不经过保护区(不包括临界状态)?19.(本小题满分16分)已知函数f(x)=xlnx﹣(k+1)x,k∈R.(1)若k=﹣1,求f(x)的最值;(2)若对于任意x∈[e,e3],都有f(x)<4lnx成立,求实数k的取值范围;(3)对于任意x∈[2,e2],都有f(x)>﹣2x﹣k成立,求整数k的最大值.20.(本小题满分16分)已知函数f(x)=(x﹣m)lnx(x>0),m>0.(1)当m=1时,求函数f(x)在x=1处的切线方程;(2)当x∈[1,e]时恒有f(x)≤0成立,求满足条件的m的范围;(3)当m=e时,令方程f(x)=t有两个不同的根x1,x2,且满足x1<x2,求证:x2﹣x1.1.由N中不等式变形得:x(x+1)≤0,解得:﹣1≤x≤0,即N=[﹣1,0],∵M={﹣1,0,1},∴M∩N={﹣1,0}.答案:{﹣1,0}.2.复数z=(1﹣2i)(3+i),i为虚数单位,则|z|=|(1﹣2i)|×|(3+i)|=5.答案:5.3.由题意,x2,故其焦点在y轴正半轴上,p.∴焦点坐标为,,答案,.4.由题意,>,解得1<x≤3,答案:(1,3].5.函数的最小正周期为:T3π.答案:3π.6.已知θ是第三象限角,且,所以sinθ<0,cosθ<0,则,解得,所以sinθ+cosθ.答案:.7.∵0<﹣x2+22,∴x=0时,f(x)最大,f(x)=f(0),最大值答案:(﹣∞,].8.∵,∴且2x>0,∴解得2x=1,∴,,,,∴,,∴.答案:2.9.∵y=e x+2x+1,∴f′(x)=e x+2,∴在x=0处的切线斜率k=f′(0)=1+2=3,∴f(0)=1+0+1=2,∴y=e x+2x+1在x=0处的切线方程为:y﹣2=3x,∴y=3x+2,答案:y=3x+2.10.∵sin B=2sin A,由正弦定理可得,b=2a,∴s△ABC2,∴a=2,b=4,由余弦定理可得,c2=a2+b2﹣2ab cos C28,∴c=2,答案:2.11.若x<0,则﹣x>0,∵当x>0时,f(x)=2x﹣3,∴当﹣x>0时,f(﹣x)=2﹣x﹣3,∵f(x)是定义在R上的奇函数,∴f(﹣x)=2﹣x﹣3=﹣f(x),则f(x)=﹣2﹣x+3,x<0,当x>0时,不等式f(x)≤﹣5等价为2x﹣3≤﹣5即2x≤﹣2,无解,不成立;当x<0时,不等式f(x)≤﹣5等价为﹣2﹣x+3≤﹣5即2﹣x≥8,得﹣x≥3,即x≤﹣3;当x=0时,f(0)=0,不等式f(x)≤﹣5不成立,综上,不等式的解为x≤﹣3.故不等式的解集为(﹣∞,﹣3].答案:(﹣∞,﹣3].12.解法一:∵函数f(x)=sin(2x)(0≤x<π),∴2x∈[,).∵f(α)=sin(2α)=f(β)=sin(2β)∈(0,),(α≠β),不妨假设α<β,则2α∈(,π),2β∈(2π,),∴α∈(,),β∈(π,),∴α∈(,),β∈(,),∴α+β∈(,).再根据 sin(2α)﹣sin(2β)=2cos sin2cos(α+β)sin(α﹣β)=0,∴cos(α+β)=0,∴,或,则α+β(舍去)或α+β,答案:.解法二:∵函数f(x)=sin(2x)(0≤x<π),∴2x∈[,).∵f(α)=f(β)(α≠β),则由正弦函数的图象的对称性可得2α2β2•,即α+β,答案:.13.由r=1,利用正弦定理可得:c=2r sin C=2sin C,b=2r sin B=2sin B,∵tan A,tan B,∴,∴sin A cos B=cos A(2sin C﹣sin B)=2sin C cos A﹣sin B cos A,即sin A cos B+cos A sin B=sin(A+B)=sin C=2sin C cos A,∵sin C≠0,∴cos A,即A,∴cos A,∴bc=b2+c2﹣a2=b2+c2﹣(2r sin A)2=b2+c2﹣3≥2bc﹣3,∴bc≤3(当且仅当b=c时,取等号),∴△ABC面积为S bc sin A3,则△ABC面积的最大值为:.答案:.14.不妨设,,>,由题意,g(x)=a有四个不等实根,设为t1,t2,t3,t4,且t1<t2<t3<t4,t1=x1+1,t2=x2+1,t3=x3+1,t4=x4+1,作函数g(x)的图象,由图可知,﹣1<t1<0<t2<1<t3<2<t4,且,,,∴,,∴,设,,函数,则<,∴函数h(m)在(0,1)上为减函数,∴h(m)∈(h(1),h(0))=(﹣4,0),即(x1+1)(x2+1)(x3+1)(x4+1)的取值范围为(﹣4,0).答案:(﹣4,0).15.(1)∵向量(cosα,﹣1),(2,sinα),其中,,且.∴2cosα﹣sinα=0,∴sin2α+cos2α=5cos2α=1,∴cos2α,∴cos2α=2cos2α﹣1.(2)∵cos2α,,,∴cosα,sinα,∵sin(α﹣β),且,,∴sinαcosβ﹣cosαsinβ,∴2cosβ﹣sinβ,∴sinβ=2cos,∴sin2β+cos2β=5cos2β﹣20,解得cosβ或cosβ(舍),∵,,∴β.16.证明:(1)因为AD∥BC,且AD=2BC,所以四边形BCDM为平行四边形,故CD∥BM,又CD⊄平面PBM,BM⊂平面PBM,所以CD∥平面PBM;(6分)(2)因为PA=PD,点M为棱AD的中点,所以PM⊥AD,又AD⊥CD,CD∥BM,故AD⊥BM,而PM∩BM=M,PM、BM⊂平面PBM,所以AD⊥平面PBM,又AD⊂平面PAD,所以平面PAD⊥平面PBM.(本小题满分14分)17.(1)由题意可得,f(﹣1)=﹣f(1),,∴m=2;(2)由(1)可得,f(x),设x1<x2,则f(x2)﹣f(x1)<0 ∴f(x)在R上单调递减∵f(x)+f(1+x)>0,∴f(x)>﹣f(1+x)=f(﹣1﹣x),∴1+x<﹣x,解可得,x<,综上可得,不等式的解集为(﹣∞,)18.(1)过点O作OE⊥AB于点E,则OE=10,设∠AOE=α,则<α<,所以∠BOEα,所以AB=AE+BE=10tanα+1+10tan(α);解得cosαcos(α)sin(2α);所以当α时,AB取得最小值为20(1);(2)以O为原点建立平面直角坐标系,如图所示;则圆C的方程为(x+30)2+y2=25,设直线AB的方程为y=kx+t,(k>0,t>0);∴10,∴5,解得t<20k或t>60k(舍),∴OA<20,又当AB∥ON时,OA→10,所以10<OA<20;综上知,当10<OA<20时,即设计出入口A离市中心O的距离在10km 到20km之间时,才能使高架道路L及其延伸段不经过保护区(不包括临界状态).19.(1)f(x)=xlnx,x>0.则f'(x)=1+lnx.当0<x<e﹣1时,f'(x)<0,f(x)单调递减;当x=e﹣1时,f'(x)=0;当x>e﹣1时,f'(x)>0,f(x)单调递增.所以当x=e﹣1时,f(x)取最小值f(e﹣1)=﹣e﹣1.(2)f(x)<4lnx⇔k+1>(1)lnx.令g(x)=(1)lnx,则g'(x).当x≥e时,x﹣4+4lnx≥e﹣4+4>0,所以g(x)在[e,e3]单调递增,g(x)=g(e3)=3.所以,所以k>31=2.(3)当x∈[2,e2]时,f(x)>﹣2x﹣k⇔k<.令h(x),h'(x).令u(x)=x﹣lnx﹣2,则u'(x)=1.因为x∈[2,e2],所以u'(x)≥1>0,u(x)单调递增,又u(3)=1﹣ln3<0,u(4)=2﹣2ln2>0,所以u(x)存在唯一的零点x0,且3<x0<4.当x∈[2,x0)时,u(x)<0,所以h'(x)<0,h(x)单调递减;当x=x0时,u(x)=0,h'(x)=0;当x∈(x0,e2]时,u(x)>0,所以h'(x)>0,h'(x)单调递增.所以k<,h(x)=h(x)x0∈(3,4),所以整数k的最大值为3.20.(1)解:由题意,当m=1时,f(x)=(x﹣1)lnx,x>0.f′(x)=lnx1,x>0.∵f′(1)=0,f(1)=0.∴函数f(x)在x=1处的切线方程为:y=0.(2)解:由题意,当x∈[1,e]时恒有f(x)≤0成立,即(x﹣m)lnx≤0对任意x∈[1,e]成立.∵当x∈[1,e]时,lnx≥0恒成立,∴x﹣m≤0对任意x∈[1,e]恒成立.∴m≥x max=e.∴m的取值范围为[e,+∞).(3)证明:由题意,当m=e时,f(x)=(x﹣e)lnx,x>0.f′(x)=lnx lnx+1,x>0.①令f′(x)=0,即lnx+1,根据下面图象:根据图,很明显交点的横坐标在1与e之间,设为x0,即f′(x)=0的解为x=x0,(1<x0<e),且lnx0+1.②令f′(x)<0,即lnx+1<,解得0<x<x0;③令f′(x)>0,即lnx+1>,解得x>x0.∴f(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,在x=x0处取得极小值.∵f(1)=0,f(e)=0.∴根据题意,画图如下:由图,①设函数f(x)在x=1处的切线为l1,∵f′(1)=1﹣e.∴直线l1的直线方程:y=(1﹣e)(x﹣1),令y=t,解得x31;②设函数f(x)在x=e处的切线为l2,∵f′(e)=1.∴直线l2的直线方程:y=x﹣e,令y=t,解得x4=e+t.∴x2﹣x1≤x4﹣x3=e+t1=e﹣1.。
江苏省苏州市2019-2020学年高考数学联考试题

2019-2020学年高考数学模拟试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图,矩形ABCD中,1AB=,2BC=,E是AD的中点,将ABE△沿BE折起至A BE',记二面角A BE D'--的平面角为α,直线A E'与平面BCDE所成的角为β,A E'与BC所成的角为γ,有如下两个命题:①对满足题意的任意的A'的位置,αβπ+≤;②对满足题意的任意的A'的位置,αγπ+≤,则( )A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立2.著名的斐波那契数列{}n a:1,1,2,3,5,8,…,满足121a a==,21n n na a a++=+,*Nn∈,若2020211nnka a-==∑,则k=( )A.2020 B.4038 C.4039 D.40403.已知函数f(x)=223,1ln,1x x xx x⎧--+≤⎨>⎩,若关于x的方程f(x)=kx-12恰有4个不相等的实数根,则实数k 的取值范围是()A.1e2⎛⎝B .12e⎡⎢⎣C .1,2ee⎛⎝⎦D .12ee⎛⎝⎭4.下列函数中,值域为R且为奇函数的是()A.2y x=+B.y sinx=C.3y x x=-D.2xy=5.已知平面向量a,b,c满足:0,1a b c⋅==,5a cb c-=-=,则a b-的最小值为( ) A.5 B.6 C.7 D.86.一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为1r,大圆柱底面半径为2r,如图1放置容器时,液面以上空余部分的高为1h,如图2放置容器时,液面以上空余部分的高为2h,则12hh=()A .21r rB .212r r ⎛⎫ ⎪⎝⎭C .321r r ⎛⎫ ⎪⎝⎭D 21r r 7.设函数()f x 的定义域为R ,满足(2)2()f x f x +=,且当2(]0,x ∈时,()(2)f x x x =--.若对任意(,]x m ∈-∞,都有40()9f x ≤,则m 的取值范围是( ). A .9,4⎛⎤-∞ ⎥⎝⎦B .19,3⎛⎤-∞ ⎥⎝⎦C .(,7]-∞D .23,3⎛⎤-∞ ⎥⎝⎦8.函数()sin()f x x π=-223的图象为C ,以下结论中正确的是( )①图象C 关于直线512x π=对称; ②图象C 关于点(,0)3π-对称;③由y =2sin2x 的图象向右平移3π个单位长度可以得到图象C. A .①B .①②C .②③D .①②③9.已知点P 在椭圆τ:2222x y a b+=1(a>b>0)上,点P 在第一象限,点P 关于原点O 的对称点为A ,点P 关于x 轴的对称点为Q ,设34PD PQ =,直线AD 与椭圆τ的另一个交点为B ,若PA ⊥PB ,则椭圆τ的离心率e=( ) A .12B 2C 3D 310.某市气象部门根据2018年各月的每天最高气温平均数据,绘制如下折线图,那么,下列叙述错误的是( )A .各月最高气温平均值与最低气温平均值总体呈正相关B .全年中,2月份的最高气温平均值与最低气温平均值的差值最大C .全年中各月最低气温平均值不高于10°C 的月份有5个D .从2018年7月至12月该市每天最高气温平均值与最低气温平均值呈下降趋势11.如图所示,已知某几何体的三视图及其尺寸(单位:cm ),则该几何体的表面积为( )A .15π2cmB .21π2cmC .24π2cmD .33π2cm12.已知复数552iz i i=+-,则||z =( ) A .5B .52C .32D .25二、填空题:本题共4小题,每小题5分,共20分。
江苏省苏州市2019-2020学年第三次高考模拟考试数学试卷含解析

江苏省苏州市2019-2020学年第三次高考模拟考试数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数z 满足202020191z i i ⋅=+(其中i 为虚数单位),则复数z 的虚部是( ) A .1- B .1C .i -D .i【答案】A 【解析】 【分析】由虚数单位i 的运算性质可得1z i =-,则答案可求. 【详解】 解:∵41i =,∴202045051i i ⨯==,201945043i i i ⨯+==-, 则202020191z i i ⋅=+化为1z i =-, ∴z 的虚部为1-. 故选:A. 【点睛】本题考查了虚数单位i 的运算性质、复数的概念,属于基础题.2.已知关于x sin 2x x m π⎛⎫+-= ⎪⎝⎭在区间[)0,2π上有两个根1x ,2x ,且12x x π-≥,则实数m 的取值范围是( ) A .10,2⎡⎫⎪⎢⎣⎭B .[)1,2C .[)0,1D .[]0,1【答案】C 【解析】 【分析】先利用三角恒等变换将题中的方程化简,构造新的函数2sin()6y x π=+,将方程的解的问题转化为函数图象的交点问题,画出函数图象,再结合12x x π-≥,解得m 的取值范围. 【详解】cos x x m +=,2sin()6m x π=+,作出2sin()6y x π=+的图象,又由12x x π-≥易知01m ≤<. 故选:C. 【点睛】本题考查了三角恒等变换,方程的根的问题,利用数形结合法,求得范围.属于中档题. 3.已知函数()sin(2)4f x x π=-的图象向左平移(0)ϕϕ>个单位后得到函数()sin(2)4g x x π=+的图象,则ϕ的最小值为( ) A .4πB .38π C .2π D .58π 【答案】A 【解析】 【分析】首先求得平移后的函数()sin 224g x x πϕ⎛⎫=+- ⎪⎝⎭,再根据sin 22sin 244x x ππϕ⎛⎫⎛⎫+-=+ ⎪ ⎪⎝⎭⎝⎭求ϕ的最小值. 【详解】根据题意,()f x 的图象向左平移ϕ个单位后,所得图象对应的函数()sin 2()sin(22)sin(2)444g x x x x πππϕϕ⎡⎤=+-=+-=+⎢⎥⎣⎦,所以22,44k k Z ππϕπ-=+∈,所以,4k k Z πϕπ=+∈.又0ϕ>,所以ϕ的最小值为4π. 故选:A 【点睛】本题考查三角函数的图象变换,诱导公式,意在考查平移变换,属于基础题型.4.如图,在三棱柱111ABC A B C -中,底面为正三角形,侧棱垂直底面,148AB AA ==,.若E F ,分别是棱1BB CC ,上的点,且1BE B E =,1114C F CC =,则异面直线1A E 与AF 所成角的余弦值为( )A.210B.2613C.1313D.1310【答案】B【解析】【分析】建立空间直角坐标系,利用向量法计算出异面直线1A E与AF所成角的余弦值.【详解】依题意三棱柱底面是正三角形且侧棱垂直于底面.设AB的中点为O,建立空间直角坐标系如下图所示.所以()()()()10,2,8,0,2,4,0,2,0,23,0,6A E A F---,所以()()10,4,4,23,2,6A E AF=-=-u u u r u u u r.所以异面直线1A E与AF所成角的余弦值为118242642213A E AFA E AF⋅-==⨯⋅u u u r u u u ru u u r u u u r.故选:B【点睛】本小题主要考查异面直线所成的角的求法,属于中档题.5.已知双曲线2222:1(0,0)x ya ba bΓ-=>>的右焦点为F,过原点的直线l与双曲线Γ的左、右两支分别交于,A B 两点,延长BF 交右支于C 点,若,||3||AF FB CF FB ⊥=,则双曲线Γ的离心率是( )A .173B .32C .53D .102【答案】D 【解析】 【分析】设双曲线的左焦点为'F ,连接'BF ,'AF ,'CF ,设BF x =,则3CF x =,'2BF a x =+,'32CF x a =+,'Rt CBF ∆和'Rt FBF ∆中,利用勾股定理计算得到答案.【详解】设双曲线的左焦点为'F ,连接'BF ,'AF ,'CF , 设BF x =,则3CF x =,'2BF a x =+,'32CF x a =+,AF FB ⊥,根据对称性知四边形'AFBF 为矩形,'Rt CBF ∆中:222''CF CB BF =+,即()()()2223242x a x a x +=++,解得x a =; 'Rt FBF ∆中:222''FF BF BF =+,即()()22223c a a =+,故2252c a =,故10e =. 故选:D .【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.6.设集合{}12M x x =<≤,{}N x x a =<,若M N M ⋂=,则a 的取值范围是( ) A .(),1-∞ B .(],1-∞C .()2,+∞D .[)2,+∞【答案】C【解析】 【分析】由M N M ⋂=得出M N ⊆,利用集合的包含关系可得出实数a 的取值范围. 【详解】{}12M x x =<≤Q ,{}N x x a =<且M N M ⋂=,M N ∴⊆,2a ∴>.因此,实数a 的取值范围是()2,+∞. 故选:C. 【点睛】本题考查利用集合的包含关系求参数,考查计算能力,属于基础题. 7.已知i 是虚数单位,若1zi i=-,则||z =( )A B .2C D .3【答案】A 【解析】 【分析】 直接将1zi i=-两边同时乘以1i -求出复数z ,再求其模即可. 【详解】 解:将1zi i=-两边同时乘以1i -,得 ()11z i i i =-=+z =故选:A 【点睛】考查复数的运算及其模的求法,是基础题.8.执行如图所示的程序框图,如果输入2[2]t e ∈-,,则输出S 属于( )A .[32]-, B .[42]-, C .[0]2, D .2[3]e -,【答案】B 【解析】 【分析】由题意,框图的作用是求分段函数[]222321ln 1t t t S t t t e ⎧+-∈-⎪=⎨⎡⎤∈⎪⎣⎦⎩,,(),,的值域,求解即得解. 【详解】 由题意可知,框图的作用是求分段函数[]222321ln 1t t t S t t t e ⎧+-∈-⎪=⎨⎡⎤∈⎪⎣⎦⎩,,(),,的值域, 当[2,1),[4,0)t S ∈-∈-; 当2[1,],[0,2]t e S ∈∈综上:[]42S ∈-,. 故选:B 【点睛】本题考查了条件分支的程序框图,考查了学生逻辑推理,分类讨论,数学运算的能力,属于基础题. 9.执行如图所示的程序框图,若输入2020m =,520n =,则输出的i =( )A .4B .5C .6D .7【答案】C 【解析】 【分析】根据程序框图程序运算即可得. 【详解】 依程序运算可得:4602520460603460604046040,,,;,,,;,,,;r i m n r i m n r i m n ============205402006,,,;,r i m n r i ======,故选:C 【点睛】本题主要考查了程序框图的计算,解题的关键是理解程序框图运行的过程.10.如图,在平面四边形ABCD 中,,,120,1,AB BC AD CD BAD AB AD ⊥⊥∠===o 若点E 为边CD 上的动点,则AE BE ⋅u u u v u u u v的最小值为 ( )A .2116B .32C .2516D .3【答案】A 【解析】【分析】 【详解】分析:由题意可得ABD △为等腰三角形,BCD V 为等边三角形,把数量积AE BE ⋅u u u v u u u v分拆,设(01)DE tDC t =≤≤u u u v u u u v,数量积转化为关于t 的函数,用函数可求得最小值。
苏州市2019~2020高三数学一模试卷含答案

江苏 2020 届高考备考系列试卷 第 3 页 (共 4 页)
19. (本小题满分 16 分)
已知数列 {an} 满足 2Sn = nan + a1,a3 = 4,其中 Sn 是数列 {an} 的前 n 项和.
(1) 求 a1 和 a2 的值及数列 {an} 的通项公式;
(2)
设 Tn =
1
1
1
+
(0, b),若 ∠F1PF2 = 120◦,则该双曲线的离心率为
.
x ⩾ 0
8.
若
x,y
满足约束条件
xx
− +
y y
⩽0 −1 ⩽
0
,则 z = x + 3y 的最大值为
.
9. 如图,某品牌冰淇淋由圆锥形蛋筒和半个冰淇淋小球组成,其中冰淇淋小球的半径与圆锥底面半径相同,已
知圆锥形蛋筒的侧面展开图是圆心角为 2 π,弧长为 4π cm 的扇形,则该冰淇淋的体积是 5
。
,因此
【点评】将双曲线与三角函数对称性勾连到一起,利用三角函数得到 b 与 c 的关系,从而建立 a 与 c 的关 系,属于中档题。
8.若 x,y 满足约束条件
,则 z=x+3y 的最大值为
.
【答案】3.
【分析】由约束条件画出(x,y)的区域,再考察 z=x+3y 的最大值。
【解答】画出(x,y)满足的区域,不难看出当 z=x+3y 过点(0,1)时取最大值 3.
【解答】[5,7)之间的
=0.24+0.20=0.44,因此车辆总数=440÷0.44=1000。所以[8,9)之间通过的车辆
数为 1000×0.10=100 辆。 【点评】考察对学生频率分布直方图的读取和理解,颇具新意。
江苏省苏州市2019-2020学年高三9月调研考试数学试卷

江苏省苏州市2019-2020学年高三9月调研考试数学试卷一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置.......上.1.已知集合,集合,则______.2.命题:“”的否定是__________.3.写出命题“若,则或”的否命题为__________.4.命题“”是“”的__________条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)5.已知函数f(x)=的图象一定过点P,则P点的坐标是__________.6.函数f(x)= 的值域是____________7.函数的单调增区间为 _________.8.用“”将,,从小到大排列是__________.9. 方程的解在区间(k,k 1)()上,则k =_______.10.已知函数,则曲线在点处切线的倾斜角为__________.11.已知函数,则_____.12. 已知奇函数满足的值为___________ 。
13.定义在R上的偶函数f(x), 当x≥0时,f(x)为减函数。
若f(1-m)<f(m),则实数m的取值范围是________.14已知二次函数f (x )=ax 2+bx+1的导函数为f ′(x ),f ′(0)>0,f (x )与x 轴恰有一个交点,则的最小值为 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在直三棱柱ABC -A 1B 1C 1中,AB =AC ,E 是BC 的中点,求证: (1)平面AB 1E ⊥平面B 1BCC 1; (2)A 1C //平面AB 1E .16.(本小题满分14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,cos B =45.(1)若c =2a ,求sin Bsin C的值; (2)若C -B =π4,求sin A 的值.17.(本小题满分14分)某工厂有100名工人接受了生产1000台某产品的总任务,每台产品由9个甲型装置和3个乙型装置配套组成,每个工人每小时能加工完成1个甲型装置或3个乙型装置.现将工人分成两组分别加工甲型和乙型装置.设加工甲型装置的工人有x 人,他们加工完甲型装置所需时间为t 1小时,其余工人加工完乙型装置所需时间为t 2小时.设f (x )=t 1+t 2.A 1B 1C 1ABCE(第15题)(1)求f (x )的解析式,并写出其定义域; (2)当x 等于多少时,f (x )取得最小值?18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且过点(1,32).过椭圆C 的左顶点A 作直线交椭圆C 于另一点P ,交直线l :x =m (m >a )于点M .已知点B (1,0),直线PB 交l 于点N . (1)求椭圆C 的方程;(2)若MB 是线段PN 的垂直平分线,求实数m 的值.19.(本小题满分16分)已知函数f (x )=2x 3-3(a +1)x 2+6ax ,a ∈R .(1)曲线y =f (x )在x =0处的切线的斜率为3,求a 的值;(2)若对于任意x ∈(0,+∞),f (x )+f (-x )≥12ln x 恒成立,求a 的取值范围; (3)若a >1,设函数f (x )在区间[1,2]上的最大值、最小值分别为M (a )、m (a ),yxBAMNOP(第18题)l记h(a)=M(a)-m(a),求h(a)的最小值.20.(本小题满分16分)已知数列{a n}的各项均为正数,记数列{a n}的前n项和为S n,数列{a n2}的前n项和为T n,且3T n=S n2+2S n,n∈N*.(1)求a1的值;(2)求数列{a n}的通项公式;(3)若k,t∈N*,且S1,S k-S1,S t-S k成等比数列,求k和t的值.江苏省苏州市2019-2020学年高三9月调研考试数学试卷数学附加题21.【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.请在答卷..卡指定区域内......作答.解答应写出文字说明、证明过程或演算步骤.A.选修4—1:几何证明选讲如图,CD是圆O的切线,切点为D,CA是过圆心O的割线且交圆O于点B,DA=DC.求证: CA=3CB.DA B COB .选修4—2:矩阵与变换设二阶矩阵A =⎣⎢⎡⎦⎥⎤1234.(1)求A -1;(2)若曲线C 在矩阵A 对应的变换作用下得到曲线C :6x 2-y 2=1,求曲线C 的方程.C .选修4—4:坐标系与参数方程 在平面直角坐标系xOy 中,直线l的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =t (t为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =a +cos ,y =2a +sin (θ为参数).若直线l 与圆C 相切,求实数a 的值.D .选修4—5:不等式选讲解不等式:|x -2|+|x +1|≥5.【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡指定区域内........作答.解答应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AB ⊥AD ,AD ∥BC ,AP =AB =AD=1.(1)若直线PB 与CD 所成角的大小为π3,求BC 的长; (2)求二面角B -PD -A 的余弦值.CDPBA23.(本小题满分10分)袋中有形状和大小完全相同的四种不同颜色的小球,每种颜色的小球各有4个,分别编号为1,2,3,4.现从袋中随机取两个球. (1)若两个球颜色不同,求不同取法的种数;(2)在(1)的条件下,记两球编号的差的绝对值为随机变量X ,求随机变量X 的概率分布与数学期望.江苏省苏州市2019-2020学年高三9月调研考试数学试卷数学参考答案及评分标准一、填空题(本大题共14小题,每小题5分,计70分.) 1.;2.; 3.若,则且; 4.充分不必要5、P(-1,4);6、; 7、; 8、9、2; 10、; 11、1; 12、;13、; 14、2二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题卡的指定区域内) 15.(本小题满分14分)证明:(1)在直三棱柱ABC -A 1B 1C 1中,CC 1平面ABC . 因为AE 平面ABC ,所以CC 1AE . ……………2分 因为AB =AC ,E 为BC 的中点,所以AE BC . 因为BC 平面B 1BCC 1,CC 1平面B 1BCC 1,且BC ∩CC 1=C ,所以AE 平面B 1BCC 1. ………………5分 因为AE 平面AB 1E ,所以平面AB 1E 平面B 1BCC 1. ……………………………7分 (2)连接A 1B ,设A 1B ∩AB 1=F ,连接EF .在直三棱柱ABC -A 1B 1C 1中,四边形AA 1B 1B 为平行四边形,所以F 为A 1B 的中点. ……………………………9分A 1B 1C 1 A BC E(第15题) F又因为E是BC的中点,所以EF∥A1C.……………………………11分因为EF平面AB1E,A1C平面AB1E,所以A1C∥平面AB1E. ……………………………14分16.(本小题满分14分)解:(1)解法1在△ABC中,因为cos B=45,所以a2+c2-b22ac=45.………………………2分因为c=2a,所以(c2)2+c2-b22c×c2=45,即b2c2=920,所以bc=3510.……………………………4分又由正弦定理得sin Bsin C=bc,所以sin Bsin C=3510.……………………………6分解法2因为cos B=45,B∈(0,),所以sin B=1-cos2B=35.………………………2分因为c=2a,由正弦定理得sin C=2sin A,所以sin C=2sin(B+C)=65cos C+85sin C,即-sin C=2cos C.………………………4分又因为sin2C+cos2C=1,sin C>0,解得sin C=25 5,所以sin Bsin C=3510.………………………6分(2)因为cos B=45,所以cos2B=2cos2B-1=725.…………………………8分又0<B<π,所以sin B=1-cos2B=3 5,所以sin2B=2sin B cos B=2×35×45=2425.…………………………10分因为C-B=π4,即C=B+π4,所以A=π-(B+C)=3π4-2B,所以sin A=sin(3π4-2B)=sin 3π4cos2B-cos3π4sin2B ………………………………12分=22×725-(-22)×2425=31250.…………………………………14分17.(本小题满分14分)解:(1)因为t1=9000x,………………………2分t 2=30003(100-x)=1000100-x,………………………4分所以f(x)=t1+t2=9000x+1000100-x,………………………5分定义域为{x|1≤x≤99,x∈N*}.………………………6分(2)f(x)=1000(9x+1100-x)=10[x+(100-x)](9x+1100-x)=10[10+9(100-x)x+x100-x].………………………10分因为1≤x≤99,x∈N*,所以9(100-x)x>0,x100-x>0,所以9(100-x)x+x100-x≥29(100-x)xx100-x=6,…………………12分当且仅当9(100-x)x=x100-x,即当x=75时取等号.…………………13分答:当x=75时,f(x)取得最小值.………………………14分18.(本小题满分16分) 解:(1)因为椭圆C 的离心率为32,所以a 2=4b 2. ………………………2分 又因为椭圆C 过点(1,32),所以1a 2+34b 2=1, ………………………3分解得a 2=4,b 2=1.所以椭圆C 的方程为x 24+y 2=1. ………………………5分 (2)解法1设P (x 0,y 0),-2<x 0<2, x 0≠1,则x 024+y 02=1.因为MB 是PN 的垂直平分线,所以P 关于B 的对称点N (2-x 0,-y 0), 所以2-x 0=m . ………………………7分 由A (-2,0),P (x 0,y 0),可得直线AP 的方程为y =y 0 x 0+2(x +2),令x =m ,得y =y 0(m +2) x 0+2,即M (m ,y 0(m +2)x 0+2).因为PB ⊥MB ,所以k PB ·k MB =-1,所以k PB ·k MB =y 0x 0-1·y 0(m +2)x 0+2 m -1=-1, ………………………10分即y 02(m +2)(x 0-1)( x 0+2)( m -1)=-1. 因为x 024+y 02=1.所以( x 0-2)(m +2)4(x 0-1) ( m -1)=1. ………………………12分因为x 0=2-m ,所以化简得3m 2-10m +4=0, 解得m =5±133. ………………………15分 因为m >2,所以m =5+133. ………………………16分 解法2①当AP 的斜率不存在或为0时,不满足条件. ………………………6分 ②设AP 斜率为k ,则AP :y =k (x +2),联立⎩⎪⎨⎪⎧x 24+y 2=1,y =k (x +2),消去y 得(4k 2+1)x 2+16k 2x +16k 2-4=0.因为x A =-2,所以x P =-8k 2+24k 2+1,所以y P=4k 4k 2+1, 所以P (-8k 2+24k 2+1,4k4k 2+1). ………………………8分因为PN 的中点为B ,所以m =2--8k 2+24k 2+1=16k 24k 2+1.(*) ……………………10分因为AP 交直线l 于点M ,所以M (m ,k (m +2)),因为直线PB 与x 轴不垂直,所以-8k 2+24k 2+1≠1,即k 2≠112,所以k PB =4k4k 2+1-8k 2+24k 2+1-1=-4k 12k 2-1,k MB=k (m +2)m -1. 因为PB ⊥MB ,所以k PB ·k MB =-1, 所以-4k 12k 2-1·k (m +2)m -1=-1.(**) ………………………12分 将(*)代入(**),化简得48k 4-32k 2+1=0,解得k 2=4±1312,所以m =16k 24k 2+1=5±133. ………………………15分又因为m >2,所以m =5+133. ………………………16分 19.(本小题满分16分)解:(1)因为f (x )=2x 3-3(a +1)x 2+6ax ,所以f ′(x )=6x 2-6(a +1)x +6a ,所以曲线y =f (x )在x =0处的切线斜率k =f ′(0)=6a ,所以6a =3,所以a =12. ………………………2分(2)f (x )+f (-x )=-6(a +1)x 2≥12ln x 对任意x ∈(0,+∞)恒成立,所以-(a +1)≥2ln xx 2. ………………………4分令g (x )=2ln xx 2,x >0,则g (x )=2(1-2ln x )x 3.令g(x )=0,解得x =e .当x ∈(0,e)时,g(x )>0,所以g (x )在(0,e)上单调递增; 当x ∈(e ,+∞)时,g(x )<0,所以g (x )在(e ,+∞)上单调递减.所以g (x )max =g (e)=1e , ………………………6分所以-(a +1)≥1e ,即a ≤-1-1e,所以a 的取值范围为(-∞,-1-1e ]. ………………………8分(3)因为f (x )=2x 3-3(a +1)x 2+6ax ,所以f ′(x )=6x 2-6(a +1)x +6a =6(x -1)(x -a ),f (1)=3a -1,f (2)=4. 令f ′(x )=0,则x =1或a . ………………………10分 f (1)=3a -1,f (2)=4.①当1<a ≤53时,当x ∈(1,a )时,f (x )<0,所以f (x )在(1,a )上单调递减; 当x ∈(a ,2)时,f (x )>0,所以f (x )在(a ,2)上单调递增. 又因为f (1)≤f (2),所以M (a )=f (2)=4,m (a )=f (a )=-a 3+3a 2, 所以h (a )=M (a )-m (a )=4-(-a 3+3a 2)=a 3-3a 2+4. 因为h (a )=3a 2-6a =3a (a -2)<0, 所以h (a )在(1,53]上单调递减,所以当a ∈(1,53]时,h (a )最小值为h (53)=827.………………………12分②当53<a <2时,当x ∈(1,a )时,f (x )<0,所以f (x )在(1,a )上单调递减; 当x ∈(a ,2)时,f (x )>0,所以f (x )在(a ,2)上单调递增.又因为f (1)>f (2),所以M (a )=f (1)=3a -1,m (a )=f (a )=-a 3+3a 2, 所以h (a )=M (a )-m (a )=3a -1-(-a 3+3a 2)=a 3-3a 2+3a -1. 因为h (a )=3a 2-6a +3=3(a -1)2≥0. 所以h (a )在(53,2)上单调递增,所以当a∈(53,2)时,h(a)>h(53)=827.………………………14分③当a≥2时,当x∈(1,2)时,f (x)<0,所以f(x)在(1,2)上单调递减,所以M(a)=f(1)=3a-1,m(a)=f(2)=4,所以h(a)=M(a)-m(a)=3a-1-4=3a-5,所以h(a)在[2,+∞)上的最小值为h(2)=1.综上,h(a)的最小值为827.………………………16分20.(本小题满分16分)解:(1)由3T1=S12+2S1,得3a12=a12+2a1,即a12-a1=0.因为a1>0,所以a1=1.………………………2分(2)因为3T n=S n2+2S n,①所以3T n+1=S n+12+2S n+1,②②-①,得3a n+12=S n+12-S n2+2a n+1.因为a n+1>0,所以3a n+1=S n+1+S n+2,③………………………5分所以3a n+2=S n+2+S n+1+2,④④-③,得3a n+2-3a n+1=a n+2+a n+1,即a n+2=2a n+1,所以当n≥2时,an+1an=2.………………………8分又由3T2=S22+2S2,得3(1+a22)=(1+a2)2+2(1+a2),即a22-2a2=0.因为a2>0,所以a2=2,所以a2a1=2,所以对n∈N*,都有an+1an=2成立,所以数列{a n}的通项公式为a n=2n-1,n∈N*.………………………10分(3)由(2)可知S n=2n-1.因为S1,S k-S1,S t-S k成等比数列,所以(S k-S1)2=S1(S t-S k),即(2k-2)2=2t-2k,………………………12分所以2t=(2k)2-32k+4,即2t-2=(2k-1)2-32k-2+1(*).由于S k-S1≠0,所以k≠1,即k≥2.当k=2时,2t=8,得t=3.………………………14分当k≥3时,由(*),得(2k-1)2-32k-2+1为奇数,所以t-2=0,即t=2,代入(*)得22k-2-32k-2=0,即2k=3,此时k无正整数解.综上,k=2,t=3.………………………16分江苏省苏州市2019-2020学年高三9月调研考试数学试卷数学附加题参考答案及评分标准21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.请在答题卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.A .选修4—1:几何证明选讲 证明:连接OD ,因为DA =DC ,所以∠DAO =∠C .………………………2分在圆O 中,AO =DO ,所以∠DAO =∠ADO ,所以∠DOC =2∠DAO =2∠C .………………………5分因为CD 为圆O 的切线,所以∠ODC =90°, 从而DOC +C =90°,即2C +C =90°, 故∠C =30°, ………………………7分 所以OC =2OD =2OB ,所以CB =OB ,所以CA =3CB . ………………………10分 B .选修4—2:矩阵与变换解:(1)根据逆矩阵公式,可得A-1=⎣⎢⎡⎦⎥⎤-2132-12. ………………………4分 (2)设曲线C 上任意一点P (x ,y )在矩阵A 对应的变换作用下得到点P(x,y),则⎣⎢⎡⎦⎥⎤xy =⎣⎢⎡⎦⎥⎤1234 ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y 3x +4y ,所以⎩⎪⎨⎪⎧x=x +2y ,y =3x +4y .……………………8分因为(x ,y )在曲线C 上,所以6x2-y 2=1,代入6(x +2y )2-(3x +4y )2=1,化简得8y 2-3x 2=1,所以曲线C 的方程为8y 2-3x 2=1. ………………………10分C .选修4—4:坐标系与参数方程 解:由直线l的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =t ,得直线l 的普通方程为x -y +1=0.………………………2分由圆C的参数方程为⎩⎪⎨⎪⎧x =a +cos ,y =2a +sin,得圆C 的普通方程为(x -a )2+(y -2a )2=1.DA B C O (第21A 题)………………………4分因为直线l 与圆C 相切,所以∣a -2a +1∣2=1, ………………………8分 解得a =1±2.所以实数a 的值为1±2. ………………………10分 D .选修4—5:不等式选讲解:(1)当x <-1时,不等式可化为-x +2-x -1≥5,解得x ≤-2;……………………2分(2)当-1≤x ≤2时,不等式可化为-x +2+x +1≥5,此时不等式无解;……………4分 (3)当x >2时,不等式可化为x -2+x +1≥5,解得x ≥3; ……………………6分 所以原不等式的解集为(-∞,-2]∪[3,+∞). …………………………10分【必做题】第22题、第23题,每题10分,共计20分. 22.(本小题满分10分)解:(1)以{→AB ,→AD ,→AP }为单位正交基底,建立如图所示的空间直角坐标系A -xyz . 因为AP =AB =AD =1,所以A (0,0,0),B (1,0,0),D (0,1,0),P (0,0,1). 设C (1,y ,0),则→PB =(1,0,-1),→CD =(-1,1-y ,0).…………………………2分因为直线PB 与CD 所成角大小为π3, 所以|cos <→PB ,→CD >|=|→PB →CD∣→PB ∣∣→CD ∣|=12,即12×1+(1-y )2=12,解得y =2或y =0(舍),所以C (1,2,0),所以BC 的长为2. ………………………5分CDPBA(第22题)xy z(2)设平面PBD 的一个法向量为n 1=(x ,y ,z ).因为→PB =(1,0,-1),→PD =(0,1,-1), 则⎩⎪⎨⎪⎧→PB n 1=0,→PDn 1=0,即⎩⎪⎨⎪⎧x -z =0,y -z =0. 令x =1,则y =1,z =1,所以n 1=(1,1,1). ………………………7分因为平面PAD 的一个法向量为n 2=(1,0,0), 所以cos <n 1,n 2>=n 1n 2∣n 1∣|n 2∣=33, 所以,由图可知二面角B -PD -A 的余弦值为33. ………………………10分23.(本小题满分10分)解:(1)两个球颜色不同的情况共有C2442=96(种). ………………………3分 (2)随机变量X 所有可能的值为0,1,2,3.P (X =0)=4 C 2496=14, ………………………5分 P (X =1)=3C 14C1396=38,P (X =2)=2C14C 1396=14, P (X =3)=C14C 1396=18. 所以随机变量X 的概率分布列为:………………………8分所以E (X )=014+138+214+318=54. ………………………10分 X 0 1 2 3 P14381418。
2019-2020年高三一模数学试题 含答案

2019-2020年高三一模数学试题 含答案xx.12.21一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.2. 已知抛物线的顶点在平面直角坐标系原点,焦点在轴上,若经过点,则 其焦点到准线的距离为3. 若线性方程组的增广矩阵为,解为,则4. 若复数满足:(是虚数单位),则5. 在的二项展开式中第四项的系数是 (结果用数值表示)6. 在长方体中,若,,则异面直线与所成角的大小为7. 若函数的值域为,则实数的取值范围是8. 如图,在△中,若,,,则9. 定义在上的偶函数,当时,,则在上的零点个数为 个10. 将6辆不同的小汽车和2辆不同的卡车驶入如图所示的10个车位中的某8个内,其中 2辆卡车必须停在与的位置,那么不同的停车位置安排共有 种(结果用数值 表示)11. 已知数列是首项为1,公差为的等差数列,前项和为,设,若数列是递减数列,则实数的取值范围是12. 若使集合2{|(6)(4)0,}A x kx k x x Z =--->∈中的元素个数最少,则实数的取值 范围是二. 选择题(本大题共4题,每题5分,共20分)13. “”是“”的( )条件A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要14. 若(是虚数单位)是关于的方程的一个复数根,则( )A. ,B. ,C. ,D. ,15. 已知函数为上的单调函数,是它的反函数,点和点均在函数的图像上,则不等式的解集为( )A. B. C. D.16. 如图,两个椭圆、内部重叠区域的边界记为曲线,是曲线上的任意一点,给出下列三个判断:(1)到、、、四点的距离之和为定值(2)曲线关于直线、均对称(3)曲线所围区域面积必小于36上述判断中正确命题的个数为()A. 0个B. 1个C. 2个D. 3个三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 已知平面,,,,是的中点;(1)求与平面所成角的大小;(结果用反三角函数值表示)(2)求△绕直线旋转一周所构成的旋转体的体积;(结果保留)18. 已知函数2sin ()1x xf xx-=;(1)当时,求的值域;(2)已知△的内角的对边分别为,若,,,求△的面积;19. 某创业团队拟生产、两种产品,根据市场预测,产品的利润与投资额成正比(如图1),产品的利润与投资额的算术平方根成正比(如图2);(注:利润与投资额的单位均为万元)(1)分别将、两种产品的利润、表示为投资额的函数;(2)该团队已筹集到10万元资金,并打算全部投入、两种产品生产,问:当产品的投资额为多少万元时,生产、两种产品能获得最大利润,最大利润为多少?20. 如图,双曲线的左、右焦点、,过作直线交轴于点;(1)当直线平行于的一条渐近线时,求点到直线的距离;(2)当直线的斜率为1时,在的右支上是否存在点,满足?,若存在,求点的坐标,若不存在,说明理由;(3)若直线与交于不同两点、,且上存在一点,满足(其中为坐标原点),求直线的方程;21. 正数数列、满足:,且对一切,,是与的等差中项,是与的等比中项;(1)若,,求、的值;(2)求证:是等差数列的充要条件是为常数数列;(3)记,当,,指出与的大小关系并说明理由;参考答案一. 填空题1. 2. 3. 4. 5. 6. 7.8. 9. 10. 11. 12.二. 选择题13. C 14. D 15. C 16. C三. 解答题17.(1);(2);18.(1);(2);19.(1),;(2)对投资3.75万元,对投资6.25万元,可获得最大利润万元;20.(1);(2)不存在;(3);21.(1),;(2)略;(3);。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.在平面直角坐标系 xOy 中,若直线 x+my+m+2=0(m R)上存在点 P,使得过点 P 向圆 O:
作切线 PA(切点为 A),满足 PO= PA,则实数 m 的取值范围为
.
【答案】m≥ 或 m≤0.
【分析】将 PO= PA 转化成圆心到直线的距离小于等于 即可求解。
【解答】由勾股定理知道:
【分析】分别考察充分和必要两种情况。
条件.(填“充分不必要”、
【解答】由
,“ < ”,a2=a1q,得 q>1,因此 a5=a3q2>a3,所以“ < ”是“ < ”的充分
2
条件;若“ < ”,即 a5=a3q2>a3,所以 q2>1,q>1 或 q<-1。当 q<-1 时,a2=a1q<a1,因此“ < ”是 “ < ”的不必要条件。 【点评】考察学生对充分必要条件,等比数列的定义的运用,分类讨论思想的理解和运用,属于中档题。
1
与函数
f
(x)
=
sin
( ω
x
+
π
) (ω
> 0) 的图象在 y 轴右侧的公共
2
6
点从左到右依次为 A1, A2, · · · , 若点 A1 的横坐标为 1,则点 A2 的横坐标为
.
12. 如图,在平面四边形 ABCD 中,已知 AD3,BC4,E,F 为 AB,CD 的中点,P,Q 为对角线 AC,BD 的中
=。
【点评】考察古典概型,属简单题。
4.为了了解苏州市某条道路晚高峰时段的车流量情况,随机抽查了某天单位时间内通过的车辆数,得到
以下频率分布直方图(如图),已知在[5,7)之间通过的车辆数是 440 辆,则在[8,9)之间通过的车辆数
是
.
1
【答案】100. 【分析】在[5,7)之间通过的车辆数是 440 辆,可求出车辆总数,再求[8,9)之间通过的车辆数水到渠成。
点,则 P# Q» · E# F» 的值为
.
13. 已知实数 x,y 满足 x(x + y) = 1 + 2y2,则 5x2 − 4y2 的最小值为
.
ex ex
,x ⩽ 2
14. 已知函数 f (x) = 4x − 8
(其中 e 为自然对数的底数),若关于 x 的方程 f 2(x) − 3a | f (x)| + 2a2 = 0 ,x > 2
4
(1) 当 a b 时,求 tan 2x 的值;;
(2)
设函数
f
(x)
=
2(a
+
b)
·
b,且
x
∈
( 0,
π
) ,求函数
y
=
f (x) 的最大值以及对应的 x 的值.
2
16. (本小题满分 14 分)
A
如图,在三棱柱 ABC − A1B1C1 中,CACB,D,E 分别是 AB,B1C 的中点.
(1) 求证:DE 平面 ACC1A1; (2) 若 DE⊥AB,求证:AB⊥B1C.
【解答】A=
,B={﹣1,0,1,4},则 A B={1,4}
【点评】考察集合交集的求解,属于简单题。
2.已知 i 是虚数单位,复数 z=(1+bi)(2 +i)的虚部为 3,则实数 b 的值为
.
【答案】1.
【分析】展开复数 z,对照复数的虚部的系数,列出方程求解即可。
【解答】z=2-b+(2b+1)i,因此 2b+1=3,b=1.
.
6. 已知等比数列 {an} 中,a1 > 0,则“a1 < a2”是“a3 < a5”的 不充分”、“充分必要”或“既不充分又不必要”)
条件.(填“充分不必要”、“必要
7.
在平面直角坐标系 xOy 中,己知点 F1,F2 是双曲线
x2 a2
y2 − b2
= 1(a > 0, b > 0) 的左、右焦点,点 P 的坐标为
(2) 当函数 y = f (x) 与函数 g(x) = ln x 图象的公切线 l 经过坐标原点时,求实数 a 的取值集合;
()
(3) 证明:当 a ∈
1 0,
2
时,函数
h(x)
=
f (x) − ax
有两个零点
x1,x2,且满足
11 +
x1 x2
<
1. a
江苏 2020 届高考备考系列试卷 第 4 页 (共 4 页)
启用前 ⋆ 绝密
江苏省苏州市 2019 ∼ 2020 学年度第一学期期末考试试卷
高三数学
一. 填空题(本大题共 14 小题,每小题 5 分,共计 70 分)
2020.01
1. 已知集合 A = {x |x ⩾ 1 },, B = {1, 0, 1, 4},则 A ∩ B =
.
2. 已知 i 是虚数单位,复数 z(1 + bi)(2 + i) 的虚部为 3,则实数 b 的值为
【分析】按照流程图计算即可。
【解答】x=5,因此 x<0,因此 y=log2(x-1)=log2(5-1)=log24=2.
【点评】考察流程图的读取,对数运算,属于简单题。
第4题
第5题
第9题
6.已知等比数列 中,
,则“ < ”是“ < ”的
“必要不充分”、“充分必要”或“既不充分又不必要”)
【答案】充分不必要。
cm3.
10. 在平面直角坐标系 xOy 中,若直线 √x + my + m + 2 = 0(m ∈ R) 上存在点 P,使得过点 P 向圆 O:x2 + y2 = 2
作切线 PA(切点为 A),满足 PO = 2PA,则实数 m 的取值范围为
.
11.
在平面直角坐标系 xOy 中,已知直线 l:y =
【解答】 圆锥形蛋筒的侧面展开图是圆心角为 ,弧长为 cm 的扇形,从而圆锥底面圆半径
r=
=2 , 母 线 长 l=
,由勾股定理可求的圆锥体的高
。半球体积 。因此冰淇淋的体积为
=
。圆锥体体积
=
。
【点评】本题考察范围较多,涉及到圆锥体侧面展开图求母线求底面圆半径,勾股定理求圆锥体高以及圆 锥体体积公式和球体积公式,计算量较大,考查学生的计算能力。属于中档题。
【点评】考察复数的展开及虚部的概念,属简单题。
3.从 2 名男生和 1 名女生中任选 2 名参加青年志愿者活动,则选中的恰好是一男一女的概率为
.
【答案】
【分析】古典概型,列出一男一女的可能选法的种数和三选二选法种数,二者相除即可。
【解答】三人中选二人有 种选法,一男一女的选法共有
种,因此选中的恰好是一男一女的概率为
。
,因此
【点评】将双曲线与三角函数对称性勾连到一起,利用三角函数得到 b 与 c 的关系,从而建立 a 与 c 的关 系,属于中档题。
8.若 x,y 满足约束条件
,则 z=x+3y 的最大值为
.
【答案】3.
【分析】由约束条件画出(x,y)的区域,再考察 z=x+3y 的最大值。
【解答】画出(x,y)满足的区域,不难看出当 z=x+3y 过点(0,1)时取最大值 3.
7.在平面直角坐标系 xOy 中,己知点 F1,F2 是双曲线 标为(0,b),若∠F1PF2=120°,则该双曲线的离心率为
(a>0,b>0)的左、右焦点,点 P 的坐 .
【答案】 【分析】由题意得到 b 与 c 的数量关系,从而求解离心率 e。 【 解 答 】 由 对 称 性 知 ∠ F1PO=60 ° , 所 以
+
+···+
1
(n ∈ N∗),
S1 + 2 S2 + 4 S3 + 6
Sn + 2n
① 若 T1 = T2T3,求 k 的值;
② 求证:数列 {Tn} 中的任意一项总可以表示成该数列其他两项之积.
20. (本小题满分 16 分) 已知函数 f (x) = a + ln x (a ∈ R). x (1) 求函数 y = f (x) 的单调区间;
江苏省苏州市 2019—2020 学年第一学期期末学业质量阳光指标调研卷
一、填空题(本大题共 14 小题,每小题 5 分,共计 70 分.不需要写出解答过程,请将答案填写在答.题.卡. 相.应.的.位.置.上..)
1.已知集合 A=
,B={﹣1,0,1,4},则 A B=
.
【答案】{1,4} 【分析】由交集定义求解。
D C
E B
A1
C1 B1
江苏 2020 届高考备考系列试卷 第 2 页 (共 4 页)
17. (本小题满分 14 分)
为响应“生产发展、生活富裕、乡风文明、村容整洁、管理民主”的社
会主义新农村建设,某自然村将村边一块废弃的扇形荒地 (如图) 租给蜂
农养蜂、产蜜与售蜜.已知扇形
AOB
中,∠AOB
=
5x
江苏 2020 届高考备考系列试卷 第 1 页 (共 4 页)
恰有 5 个相异的实根,则实数 a 的取值范围为
.
二. 解答题(本大题共 6 小题,共 90 分,解答时应写出文字说明、证明过程或演算步骤)
15. (本小题满分 14 分)
(
)
已知向量 a = sin x, 3 ,b = (cos x, −1).
2 π,OB
=
√ 2 3(百米),
3
A
荒地内规划修建两条直路 AB,OC,其中点 C 在 AB 上 (C 与 A,B 不重