51定时器多个时间间隔
51单片机定时器的使用
151单片机定时器/计时器的使用步骤:1、 打开中断允许位:对IE 寄存器进行控制,IE 寄存器各位的信息如下图所示:EA : 为0时关所有中断;为1时开所有中断ET2:为0时关T2中断;为1时开T2中断,只有8032、8052、8752才有此中断 ES : 为0时关串口中断;为1时开串口中断 ET1:为0时关T1中断;为1时开T1中断 EX1:为0时关1时开 ET0:为0时关T0中断;为1时开T0中断 EX0:为0时关1时开2、 选择定时器/计时器的工作方式:定时器TMOD 格式CPU 在每个机器周期内对T0/T1检测一次,但只有在前一次检测为1和后一次检测为0时才会使计数器加1。
因此,计数器不是由外部时钟负边沿触发,而是在两次检测到负跳变存在时才进行计数的。
由于两次检测需要24个时钟脉冲,故T0/T1线上输入的0或1的持续时间不能少于一个机器周期。
通常,T0或T1输入线上的计数脉冲频率总小于100kHz 。
方式0:定时器/计时器按13位加1计数,这13位由TH 中的高8位和TL 中的低5位组成,其中TL 中的高3位弃之不用(与MCS-48兼容)。
13位计数器按加1计数器计数,计满为0时能自动向CPU 发出溢出中断请求,但要它再次计数,CPU 必须在其中断服务程序中为它重装初值。
方式1:16位加1计数器,由TH 和TL 组成,在方式1的工作情况和方式0的相同,只是计数器值是方式0的8倍。
2方式2:计数器被拆成一个8位寄存器TH 和一个8位计数器TL ,CPU 对它们初始化时必须送相同的定时初值。
当计数器启动后,TL 按8位加1计数,当它计满回零时,一方面向CPU 发送溢出中断请求,另一方面从TH 中重新获得初值并启动计数。
方式3:T0和T1工作方式不同,TH0和TL0按两个独立的8位计数器工作,T1只能按不需要中断的方式2工作。
在方式3下的TH0和TL0是有区别的:TL0可以设定为定时器/计时器或计数器模式工作,仍由TR0控制,并采用TF0作为溢出中断标志;TH0只能按定时器/计时器模式工作,它借用TR1和TF1来控制并存放溢出中断标志。
51单片机定时器的使用和详细讲解_特别是定时器2
GATE=0 定时器不受控
于外部信号;仅打开与门,
是定时器仅有TR位控制;
GATE=1 定时器受控于外
部信号,此时要求TR=1;
图8-4 方式0结构图
16
第十六页,编辑于星期三:四点 二十三分。
例题:生成周期为1.2 ms的等宽正方波。机器晶振 26.67MHz。使用T0以方式0工作,由P0.0输出
8.4 定时器T2 8.4.1 概述 定时器2 是一个16 位通用计数器,其具有两种
操作模式:16 位自动重载模式和16 位捕获模
式。
如果预分频功能被禁止,定时器2工作时,16 位通用加法计数器以12分频的周期脉冲计数,每 个周期16位通用加法计数器加1或减1。
30
第三十页,编辑于星期三:四点 二十三分。
模式2的结构图如图8-6所示。
8位加法 计数器
图8-6 方式2结构图
初值寄存 器
22
第二十二页,编辑于星期三:四点 二十三分。
4.工作模式3 当T0M(T1M)=11时定时器设定为工作模式3,只有定时
器0可以工作在工作模式3下。如把定时器1设置为工作 模式3,则定时器1停止工作。 TL0、TH0成为两个独立的8位加法计数器。它的工作情况 与模式0、模式1类似,差别在于定时范围为:
7
第七页,编辑于星期三:四点 二十三分。
1.16位加法计数器
16位加法计数器是定时器的核心,图8-1中用寄存 器TH0、TL0及TH1、TL1表示。
T0加法计数器的高8位和低8位分别用TH0、TL0表示 T1加法计数器的高8位和低8位分别用TH1、TL1 表示 高8位和第8为可分别单独使用
中断服务程序除了完成要求的方波产生这一工作之外, 还要注意将时间常数重新送入T1中,为下一次产生中 断作准备。
51单片机定时器计数器详解
51单⽚机定时器计数器详解第六章定时器/计数器6.1 定时器的结构及⼯作原理6.2 定时器的控制6.3 定时器的⼯作模式及其应⽤第六章定时器/计数器实现定时⼀般有多种⽅法:1. 利⽤软件实现(延时程序)优点:简单,控制⽅便;缺点:CPU效率低。
2. 外部硬件实现:单稳态定时器、计数定时器优点:CPU效率⾼;缺点:修改参数⿇烦。
3. 利⽤计数器实现输⼊脉冲定时器/计数器作⽤主要包括产⽣各种时标间隔、记录外部事件的数量等,是单⽚机中最常⽤、最基本的部件之⼀。
外来脉冲定时计数定时器/计数器功能⽰意图6.1 定时器/计数器的结构及⼯作原理6.1.1 定时器/计数器的基本结构MCS-51单⽚机有⼆个定时器/计数器,每个定时器/计数器由⼏个专⽤寄存器组成。
TMOD(89H )⾼四位TMOD(89H )低四位⽅式寄存器TCON(88H)TCON(88H)控制寄存器*8DH 8BH 8CH 8AH TH1 TL1TH0 TL0数据寄存器(16位)定时器T1定时器T0定时器/计数器的结构如下图所⽰。
定时器/计数器的基本结构框图申请P3.5or P3.4or 8DH 8BH8CH 8AH6.1.2 定时器/计数器的⼯作原理定时器/计数器结构原理图INTx P3.YGATE :门控制位:定时/计数控制位TC/x=0,1Y=2,3Z=4,5⼀. 对外部输⼊信号的计数功能当T0或T1设置为计数⼯作⽅式时,计数器对来⾃输⼊引脚P3.4(T0)和P3.5(T1)的外部信号计数。
若前⼀个机器周期采样值为1,后⼀个机器周期采样值为0,则计数器加1。
所以计数器计数的频率最⾼为fosc 的1/24。
BDEHT H >1个机器周期T L >1个机器周期L⼆. 定时功能:定时器/计数器的定时功能也是通过计数实现的,它的计数脉冲是由单⽚机的⽚内振荡器输出经12分频后产⽣的信号,即为对机器周期计数。
INTx P3.Y例如:晶振频率=12MHz 机器周期=1us ,计数1次=1us ,计数频为=1MHz 。
MCS-51单片机的定时器计数器
1. 定时器T0/T1 中断申请过程
(1)在已经开放T0/T1中断允许且已被启动的前提下, T0/T1加1计满溢出时 TF0/TF1标志位自动置“1” ;
(2)CPU 检测到TCON中TF0/TF1变“1”后,将产生指 令:LCALL 000BH/LCALL 001BH 执行中断服务程序;
(3)TF0/TF1标志位由硬件自动清“0”,以备下次中断申
郑州大学
docin/sundae_meng
(3)工作方式寄存器TMOD
T1
T2
GATE C / T M1 M0 GATE C / T M1 M0
M1,M0:工作方式选择位 。
=00:13位定时器/计数器; =01:16位定时器/计数器(常用); =10:可自动重装的8位定时器/计数器(常用); =11:T0 分为2个8位定时器/计数器;仅适用于T0。 C/T :定时方式/计数方式选择位。 = 1:选择计数器工作方式,对T0/T1引脚输入的外部事件 的负脉冲计数; = 0 :选择定时器工作方式,对机器周期脉冲计数定时。 如下页图所示。
CPL P1.0 MOV TH0,#15H MOV TL0,#0A0H
START:MOV SP,#60H MOV P1,#0FFH
SETB TR0 POP PSW
MOV TMOD,#01H MOV TH0,#15H MOV TL0,#0A0H
POP ACC RETI END
SETB EA
Байду номын сангаас
SETB ET0
定时器/计数器0采用工作方式1,其初值为:
21650ms/1s=6553650000=15536=3CB0H
电路图如下:
郑州大学
docin/sundae_meng
51 单片机 定时器 延时1s函数
51 单片机定时器延时1s函数1.引言1.1 概述本文介绍了51单片机中的定时器功能以及如何通过定时器实现延时1秒的函数。
在单片机应用中,定时器是一种非常重要且常用的功能模块之一。
它能够精确计时,并可用于实现周期性的任务触发、计时、脉冲输出等功能。
本文首先将对51单片机进行简要介绍,包括其基本概念、结构和特点。
随后,重点讲解了定时器的基本原理和功能。
定时器通常由一个计数器和一组控制寄存器组成,通过预设计数器的初值和控制寄存器的配置来实现不同的计时功能。
接着,本文详细介绍了如何通过编程实现一个延时1秒的函数。
延时函数是单片机开发中常用的功能,通过定时器的计时功能可以实现精确的延时控制。
本文将以C语言为例,介绍延时函数的编写步骤和原理,并给出示例代码和详细的说明。
最后,本文对所述内容进行了总结,并展望了定时器在单片机应用中的广泛应用前景。
通过学习定时器的相关知识和掌握延时函数的编写方法,我们可以更好地应用定时器功能,提高单片机应用的效率和精确性。
综上所述,通过本文的学习,读者可全面了解51单片机中定时器的功能和应用,并能够掌握延时函数的编写方法,为单片机应用开发提供一定的参考和指导。
1.2 文章结构本文以51单片机定时器功能为主题,旨在介绍如何使用定时器进行延时操作。
文章分为引言、正文和结论三个主要部分。
在引言部分,首先会对文章的背景进行概述,介绍单片机的基本概念和应用领域。
然后,给出本文的整体结构,并阐述文章的目的和意义。
正文部分将分为两个小节。
在2.1节中,将对单片机进行详细介绍,包括其构造与工作原理。
这部分的内容将帮助读者全面了解单片机的基本知识,为后续的定时器功能介绍打下基础。
2.2节将重点介绍定时器的功能和特点。
这部分将涵盖定时器的基本原理、工作模式以及在实际应用中的使用方法。
同时,还将详细讲解如何使用定时器进行1秒钟的延时操作,包括具体的代码实现和注意事项。
结论部分将对全文进行总结,并强调定时器的重要性和应用前景。
51单片机定时器初值的计算
51单⽚机定时器初值的计算什么是时钟周期?什么是机器周期?什么是指令周期? 时钟周期时钟周期也称为振荡周期,定义为时钟脉冲的倒数(可以这样来理解,时钟周期就是单⽚机外接晶振的倒数,例如12M的晶振,它的时间周期就是1/12 us),是计算机中最基本的、最⼩的时间单位。
在⼀个时钟周期内,CPU 仅完成⼀个最基本的动作。
对于某种单⽚机,若采⽤了1MHZ的时钟频率,则时钟周期为1us;若采⽤4MHZ的时钟频率,则时钟周期为250ns。
由于时钟脉冲是计算机的基本⼯作脉冲,它控制着计算机的⼯作节奏(使计算机的每⼀步都统⼀到它的步调上来)。
显然,对同⼀种机型的计算机,时钟频率越⾼,计算机的⼯作速度就越快。
但是,由于不同的计算机硬件电路和器件的不完全相同,所以其所需要的时钟周频率范围也不⼀定相同。
我们学习的8051单⽚机的时钟范围是1.2MHz-12MHz。
在8051单⽚机中把⼀个时钟周期定义为⼀个节拍(⽤P表⽰),⼆个节拍定义为⼀个状态周期(⽤S表⽰)。
机器周期在计算机中,为了便于管理,常把⼀条指令的执⾏过程划分为若⼲个阶段,每⼀阶段完成⼀项⼯作。
例如,取指令、存储器读、存储器写等,这每⼀项⼯作称为⼀个基本操作。
完成⼀个基本操作所需要的时间称为机器周期。
⼀般情况下,⼀个机器周期由若⼲个S周期(状态周期)组成。
8051系列单⽚机的⼀个机器周期同6个S周期(状态周期)组成。
前⾯已说过⼀个时钟周期定义为⼀个节拍(⽤P表⽰),⼆个节拍定义为⼀个状态周期(⽤S表⽰),8051单⽚机的机器周期由6个状态周期组成,也就是说⼀个机器周期=6个状态周期=12个时钟周期。
指令周期指令周期是执⾏⼀条指令所需要的时间,⼀般由若⼲个机器周期组成。
指令不同,所需的机器周期数也不同。
对于⼀些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,⽴即译码执⾏,不再需要其它的机器周期。
对于⼀些⽐较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。
MCS-51定时计数器的应用.
方案选择: (1)怎样实现较长时间的定时?
上一个实验已经讨论了单片机定时器的最大时间间 隔,采用定时器与计数器相结合的方法解决了较长时 间定时的问题
这里还可用另一种方法解决:用T1作定时器,用软件 对定时时间到计数,这样可节省一个定时器作其它用
如果设T1为定时方式0,定时间隔选为10ms,那么要想 达到2秒的定时,软件计数的次数应该是200次。
第四章 MCS-51定时/计数器的应用 定时/计数器是单片机应用中的重要部件,
其工作方式的灵活应用对提高编程技巧, 减轻CPU的负担和简化外围电路有很大益 处。本章通过两个实验说明定时/计数器的 基本用法,通过应用实例,使读者掌握定 时/计数器的软件设计技巧。
1
一、定时/计数器的基本用法
【实验1】利用T0定时,T1计数 二者复合的方法,实现较长 时间的定时间隔。 实验要求:如图所示,在 P1.7 端 接 有 一 个 发 光 二 极 管 , 要 利 用 定 时 控 制 使 LED 亮一秒停一秒,周而复始。
注意:T0与T1都是加1计数器,所以初值应按补码 计算。实际计算方法是:假定初值为X,若定时间隔 100ms,应该有
(216-X) ·2μ S=100ms ∴x=15536=3CB0H 3CH装入TH0,B0H装入TL0 T1 计 数 器 在 方 式 2 下 是 8 位 的 , 计 数 5 次 的 初 值 的 是 (256-5)=251=FBH,同时装入TH1与TL1。
=216·2μ S=131.07ms 3
而实验要求定时间隔为1秒,这三种方式都不能 满足。对于较长的定时间隔应采取复合的办法。 例如,可将T0设成定时间隔为100ms(只能用方式1), 当定时时间到,将P1.0的输出反相,再加到T1端作 计数脉冲,需要定时两次才构成一个完整的计数脉 冲,因此设T1计数5次,就能完成1秒的定时:
51单片机定时计数器的工作原理
51单片机定时计数器的工作原理
51单片机是一种常用的微控制器,它具有多个定时计数器,其中包括定时器0和定时器1。
这些定时计数器是通过内部时
钟源提供的脉冲进行计数的。
定时器0和定时器1是独立的计数器,它们可以用于不同
的应用。
这里我们将主要关注定时器0的工作原理。
定时器0
由一个八位计数器和一个控制寄存器组成。
当定时器0启动时,它会根据时钟源提供的脉冲进行计数,每个脉冲会使计数器的值增加1。
定时器0的计数范围为0-255,即八位二进制数。
通过控制寄存器,我们可以设置定时器0的工作模式、计
数器的初始值以及时钟源的频率。
定时器0可以以不同的方式工作,包括定时模式和计数模式。
在定时模式下,我们可以设置一个初始值,并在每次计数
器增加到该值时产生一个中断。
这样就可以实现精确的定时功能。
定时器0的中断服务程序可以完成各种操作,例如控制其他外设、延时等。
在计数模式下,定时器0将简单地计数外部触发信号的脉
冲次数。
这可以用于测量外部事件的时间间隔或频率。
需要注意的是,定时器0的工作需要通过编程来完成。
我
们可以使用汇编语言或C语言来配置定时器0的寄存器,并
设计相应的中断服务程序。
51单片机定时器的工作原理是通过定时器0和定时器1实
现计数功能。
定时器0可以在定时模式或计数模式下工作,通过设置计数值和时钟源频率,实现精确的定时功能或测量外部
事件的时间间隔或频率。
编程则是必不可少的,通过配置寄存器和编写中断服务程序来实现定时器的工作。
51单片机中几个时间周期的概念区分
51单片机中几个时间周期的概念区分时钟周期:时钟周期也叫振荡周期或晶振周期,即晶振的单位时间发出的脉冲数,一般有外部的振晶产生,比如12MHZ=12×10的6次方,即每秒发出12000000个脉冲信号,那么发出一个脉冲的时间就是时钟周期,也就是1/12微秒。
通常也叫做系统时钟周期。
是计算机中最基本的、最小的时间单位。
在8051单片机中把一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示)。
机器周期:在计算机中,为了便于管理,常把一条指令的执行过程划分为若干个阶段,每一阶段完成一项工作。
例如,取指令、存储器读、存储器写等,这每一项工作称为一个基本操作。
完成一个基本操作所需要的时间称为机器周期。
一般情况下,一个机器周期由若干个S周期(状态周期)组成。
8051系列单片机的一个机器周期同6个S周期(状态周期)组成。
前面已说过一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示),8051单片机的机器周期由6个状态周期组成,也就是说一个机器周期=6个状态周期=12个时钟周期。
在标准的51单片机中,一般情况下,一个机器周期等于12个时钟周期,也就是机器周期=12*时钟周期,(上面讲到的原因)如果是12MHZ,那么机器周期=1微秒。
单片机工作时,是一条一条地从RoM中取指令,然后一步一步地执行。
单片机访问一次存储器的时间,称之为一个机器周期,这是一个时间基准。
机器周期不仅对于指令执行有着重要的意义,而且机器周期也是单片机定时器和计数器的时间基准。
例如一个单片机选择了12MHZ晶振,那么当定时器的数值加1时,实际经过的时间就是1us,这就是单片机的定时原理。
但是在8051F310中,CIP-51 微控制器内核采用流水线结构,与标准的 8051 结构相比指令执行速度有很大的提高。
在一个标准的 8051 中,除 MUL和 DIV 以外所有指令都需要12 或24 个系统时钟周期,最大系统时钟频率为12-24MHz。
51单片机定时器初值的计算
51单片机定时器初值的计算单片机中的定时器是实时计时器,一般用于测量时间或控制系统的时间间隔。
在51系列单片机中,定时器实际上是一个16位的计数器,可以以不同的方式工作,如定时器模式、计数器模式、定时/计数器模式等。
定时器的工作原理是根据晶振频率产生一个时钟信号,通过计数器进行计数,当计数值达到设定值时触发中断或产生相应的输出信号。
因此,在使用定时器之前,首先需要计算定时器的初值。
定时器的初值可以通过以下步骤计算:1.确定定时器的工作模式:定时器可以有多种工作模式,如定时模式、计数器模式等。
根据具体的应用需求选择相应的工作模式,并将定时器寄存器设置为相应的模式。
2.确定定时器的时钟源:定时器的时钟源可以是外部晶振或内部时钟信号,由于外部晶振的频率一般比较稳定,因此通常将晶振作为定时器的时钟源。
3.确定定时器的分频系数:定时器的分频系数决定了定时器的工作频率,可以通过设置定时器的分频寄存器来实现。
分频系数越大,定时器的工作频率越低。
4. 确定所需的定时时间:根据具体的应用需求确定需要的定时时间,例如10ms、100ms等。
5.计算初值:根据定时器的时钟源、分频系数和所需的定时时间,可以计算出定时器的初值。
计算公式为:初值=(2^16-1)-定时时间*定时器工作频率其中,2^16-1是定时器的最大计数值。
6.将初值写入定时器寄存器:最后,将计算得到的初值写入定时器的寄存器中,使得定时器按照设定的时间开始计数。
需要注意的是,计算出来的初值是一个16位的值,需要将其拆分为高8位和低8位,并分别写入定时器的高字节和低字节寄存器中。
总结起来,计算定时器初值的步骤包括确定定时器的工作模式、时钟源和分频系数,确定所需的定时时间,根据计算公式计算初值,将初值写入定时器寄存器中。
这样,定时器就可以按照设定的时间开始计数了。
MCS-51的定时计数器
第六章MCS-51的定时/计数器1.如果采用晶振的频率为3MHz,定时器/计数器工作方式0、1、2下,其最大的定时时间为多少?解答:因为机器周期,所以定时器/计数器工作方式0下,其最大定时时间为;同样可以求得方式1下的最大定时时间为262.144ms;方式2下的最大定时时间为1024ms。
2.定时/计数器用作定时器时,其计数脉冲由谁提供?定时时间与哪些因素有关?答:定时/计数器作定时时,其计数脉冲由系统振荡器产生的内部时钟信号12分频后提供。
定时时间与时钟频率和定时初值有关。
3.定时/计数器用作定时器时,对外界计数频率有何限制?答:由于确认1次负跳变要花2个机器周期,即24个振荡周期,因此外部输入的计数脉冲的最高频率为系统振荡器频率的1/24。
4.采用定时器/计数器T0对外部脉冲进行计数,每计数100个脉冲后,T0转为定时工作方式。
定时1ms后,又转为计数方式,如此循环不止。
假定MCS-51单片机的晶体振荡器的频率为6MHz,请使用方式1实现,要求编写出程序。
解答:定时器/计数器T0在计数和定时工作完成后,均采用中断方式工作。
除了第一次计数工作方式设置在主程序完成外,后面的定时或计数工作方式分别在中断程序完成,用一标志位识别下一轮定时器/计数器T0的工作方式。
编写程序如下:ORG 0000HLJMP MAINORG 000BHLJMP IT0PMAIN: MOV TMOD,#06H ;定时器/计数器T0为计数方式2MOV TL0,#156 ;计数100个脉冲的初值赋值MOV TH0,#156SETB GATE ;打开计数门SETB TR0 ;启动T0,开始计数SETB ET0 ;允许T0中断SETB EA ;CPU开中断CLR F0 ;设置下一轮为定时方式的标志位WAIT: AJMP WAITIT0P: CLR EA ;关中断JB F0,COUNT ;F0=1,转计数方式设置MOV TMOD,#00H ;定时器/计数器T0为定时方式0MOV TH0,#0FEH ;定时1ms初值赋值MOV TL0,#0CHSETB EARETICOUNT: MOV TMOD,#06HMOV TL0,#156SETB EARETI5. 定时器/计数器的工作方式2有什么特点?适用于哪些应用场合?答:定时器/计数器的工作方式2具有自动恢复初值的特点,适用于精确定时,比如波特率的产生。
RTX51-Tiny使用说明
限制值
16 16 900 字节(最大) 7 字节 3 字节/任务 0 字节 定时器 0 1,000-65,535 20 机器周期(最大) 100-700 机器周期
1.4 工具需求
RTX51 Tiny 需要以下的软件工具: ◆ C51 编译器 ◆ A51 宏汇编器 ◆ BL51 或者 LX51 连接器
本质上,你要确保时间轮转任务调度不会发生在使用算术单元的地方。 注意:
如果你想要使用算术单元,那么你应该禁止时间轮转任务调度,改用合作式任务调度。
1.5.6 寄存器组 RTX51 Tiny 假定所有的任务都使用寄存器组 0,正因为这样所有的任务函数都必须采用
默认的 C51 设定来编译(REGISTERBAN(0))。 中断程序应该可以使用剩下的寄存器组,不过 RTX51 Tiny 在寄存器组中占用了 6 个固
1.2 解决的问题
下面的列表是 RTX51 Tiny 版本 1.06 中发现的问题,这些问题在版本 2 中已经被修正。
(1) RTX51 Tiny 版本 1.06 中,如果 os_wait 期间有中断产生,那么函数 isr_send_signal 将会破坏就绪(READY)状态,这将导致任务被挂起,在中断中等待信号。
第06章 MCS51单片机定时计数器
定时器/计数器的工作方式
1.定时/计数器工作方式0
工作方式0是13位计数结构的工作方式,其计数器由TH的全部8位和 TL的低5位构成,TL的高3位没有使用。当C/T=0时,多路开关接通振荡脉 冲的12分频输出,13位计数器以次进行计数。这就是定时工作方式。当 C/T=1时,多路开关接通计数引脚(To),外部计数脉冲由银南脚To输入。 当计数脉冲发生负跳变时,计数器加1,这就是我们常称的计数工作方式
ET0
TR0 HERE 0500H P1.0
;T0中断允许
;启动T0 ;等待中断 ;中断服务程序
RETI
END
4.工作方式3的应用
【例】假设有一个用户系统中已使用了两个外部中断源, 并 置定时器 T1 于方式 2, 作串行口波特率发生器用, 现要 求再增加一个外部中断源, 并由P1.0 口输出一个5 Hz的 方波(假设晶振频率为 6 MHz)。 在不增加其它硬件开销时,可把定时/计数器T0置于工作方 式3,利用外部引脚T0端作附加的外部中断输入端,把TL0 预置为0FFH,这样在T0端出现由1至0的负跳变时,TL0溢 出,申请中断,相当于边沿激活的外部中断源。在方式3 下,TH0总是作8位定时器用,可以靠它来控制由P1.0输出 的5kHz方波。 由P1.0输出5kHz的方波,即每隔100μ s使P1.0的电平发生一 次变化。则TH0中的初始值:X=M-N=256-100/2=206。 下面是有关的程序:
TL0 溢出中断服务程序(由 000BH单元转来):
TL0INT: MOV RETI TL0, #0FFH ; 外部引脚 T0 引起中断处理程序
TH0 溢出中断服务程序(由 001BH转来):
TH0INT: MOV
51单片机接口(定时器)8
PT0M0: MOV TL0,#0CH ;T0置初值低位 MOV TH0,#0F0H ;T0初值高位 SETB TR0 ;启动T0 SETB ET0 ;允许T0中断 SETB EA ;CPU 开放中断 RET ;中断服务程序 IT0P: MOV TL0,#0CH ;T0置初值低位 MOV TH0,#0F0H ;T0初值高位 CPL P1.0 ;P1.0取反 RETI
TFi
中断申请
高位 + 模式2时:低位作8位计数器,高位作重装载 寄存器(看红色框图)
GATE
中断引脚 INTi
定时器T0的模式3结构
F0/12
C/T=0 引脚 T0 TR0 GATE 中断引脚 INT0
TL0
C/T=1
TF0
中断申请
+
模式3时:T0高8位也做计数器,但要借用T1 的控制位TR1和标志位TF1以及中断资源。 此时的T1只能工作于模式2或者休息。 TH0 TR1 TF1 中断申请
51定时器框图
i=0,1 指: T0,T1和 INT0,INT1
T0,T1的模式寄存器TMOD
MSB GATE C/T M1 M0 GATE C/T M1 LSB MO
定时器T1模式
定时器T0模式
当使用INTi测量脉宽时置1,否则置0 置1时选择Counter,时钟由引脚输入。 置0时选择Timer,时钟选用fosc/12 M1M0 两位二进制数表示选择定时器模式为 模式0~3 高4位管理定时器T1,低4位管理定时器T0 GATE C/ T
定时模式,模式2的预置值计算
方式2: 8位定计数器的最大计数值=28 =256 假设计数器工作在计数器方式2,要求计数 100个脉冲的计数初值的计算如下。设计数初 始值位x,则: 28 - x = 100 x = 156 因此THx=TLx=0x9CH。 以下就定时器的工作方式0举例说明定时器的 应用方法
51单片机定时器工作原理
51单片机定时器工作原理单片机是一种集成了微处理器核心、存储器和各种外围设备接口电路的微型计算机系统,它具有体积小、功耗低、成本低等优点,因此在各种电子设备中得到了广泛的应用。
而定时器作为单片机中的重要外围设备之一,其工作原理对于单片机的应用至关重要。
本文将介绍51单片机定时器的工作原理。
首先,我们需要了解定时器的基本概念。
定时器是一种用于产生精确时间延迟的电路,它可以在一定的时间间隔内产生一个脉冲信号,用于控制其他设备的工作。
在51单片机中,定时器通常由定时器/计数器模块来实现,它可以根据程序的需要进行定时、计数等操作。
接下来,我们来详细了解51单片机定时器的工作原理。
51单片机中的定时器/计数器模块通常包括定时器/计数器控制寄存器、定时器/计数器初值寄存器、定时器/计数器当前值寄存器等部分。
在使用定时器时,我们需要首先对这些寄存器进行配置,以满足具体的定时或计数需求。
在进行定时器配置时,我们需要设置定时器的工作模式、计数初值、时钟源等参数。
其中,定时器的工作模式通常包括定时模式和计数模式两种。
在定时模式下,定时器会根据设定的计数初值和时钟源产生定时中断;而在计数模式下,定时器会根据外部脉冲信号进行计数,并在计数完成时产生中断。
通过合理配置这些参数,我们可以实现定时器的各种功能,如精确定时、脉冲生成等。
在定时器工作过程中,定时器会根据设定的工作模式和参数进行计数或定时,当计数或定时完成时,定时器会产生中断请求,通知单片机进行相应的处理。
通过中断服务程序,我们可以实现定时器中断的处理,如更新定时器的计数初值、进行下一次定时等操作。
除了定时器的基本工作原理外,我们还需要了解定时器的时钟源选择、定时器中断的优先级设置等相关内容。
在使用定时器时,时钟源的选择会直接影响定时器的计数速度,因此需要根据具体的应用需求进行合理的选择。
同时,定时器中断的优先级设置也需要根据系统的整体设计进行合理的规划,以确保定时器中断能够及时得到处理。
51单片机定时时钟工作原理
51单片机定时时钟工作原理51单片机(也被称为8051微控制器)的定时器/计数器是一个非常有用的功能,它允许用户在特定的时间间隔内执行任务。
下面是其基本工作原理:1. 结构:8051单片机通常包含两个定时器/计数器,称为Timer0和Timer1。
每个定时器都有一个16位的计数器,可以用来跟踪经过的时间或事件。
2. 时钟源:定时器的核心是一个振荡器或外部时钟源,为计数器提供脉冲。
通常,这个时钟源可以是内部的,也可以是外部的。
内部时钟源通常基于系统时钟,而外部时钟源则直接从外部硬件输入。
3. 计数过程:每当振荡器产生一个脉冲,计数器就会增加(对于向上计数的定时器)或减少(对于向下计数的定时器)一个单位。
这取决于定时器的模式。
4. 溢出:当计数器达到其最大值(对于向上计数的定时器)或达到0(对于向下计数的定时器)时,会发生溢出事件。
这会导致一个中断,可以用来执行特定的任务或操作。
5. 分频:在某些模式下,计数器的输出可以用来分频系统时钟,从而产生更精确的定时器时钟。
6. 预分频器:预分频器允许用户设置一个值,该值决定了振荡器的输入脉冲被分频的次数。
这有助于控制计数器的速度,从而控制定时器的精度。
7. 工作模式:8051微控制器支持多种定时器模式,包括正常模式、自动重装载模式和比较模式。
每种模式都有其特定的应用和行为。
8. 中断:当定时器溢出时,可以产生一个中断。
这意味着微控制器可以暂时停止当前的任务,转而处理与定时器相关的特定任务。
通过合理配置和使用这些定时器/计数器,开发人员可以在8051单片机上实现精确的时间控制和事件调度。
这对于实现诸如延时、精确计时和脉冲生成等功能非常有用。
51单片机定时器工作原理
51单片机定时器工作原理51单片机是一种常用的微控制器,它在各种电子设备中都有着广泛的应用。
而定时器作为51单片机中的一个重要模块,其工作原理对于理解和应用51单片机至关重要。
本文将详细介绍51单片机定时器的工作原理,希望能够帮助读者更好地理解和应用这一技术。
首先,我们需要了解什么是定时器。
定时器是一种用于产生精确时间延迟的设备或模块,它可以在不同的应用中用于生成精确的时间间隔,从而控制各种设备的工作。
在51单片机中,定时器通常由几个特定的寄存器和定时/计数器组成,通过对这些寄存器的设置和控制,可以实现不同的定时功能。
在51单片机中,定时器通常由T0和T1两个定时器组成。
T0定时器是一个8位定时器,而T1定时器是一个16位定时器。
这两个定时器可以分别工作在不同的工作模式下,从而实现不同的定时功能。
在使用51单片机定时器时,首先需要对定时器的工作模式进行设置。
定时器可以工作在定时模式和计数模式两种不同的工作模式下。
在定时模式下,定时器可以产生精确的时间延迟,而在计数模式下,定时器可以对外部事件进行计数。
通过设置定时器的工作模式,可以实现不同的定时和计数功能。
除了工作模式之外,定时器的工作频率也是一个重要的参数。
定时器的工作频率通常由定时器的时钟源和预分频器来确定。
通过设置定时器的时钟源和预分频器,可以实现不同的工作频率,从而满足不同的应用需求。
在使用51单片机定时器时,需要注意定时器的溢出问题。
定时器在工作过程中,当计数值达到最大值时会发生溢出,这时定时器会重新从零开始计数。
通过对定时器的溢出进行处理,可以实现更长的定时功能。
除了基本的定时功能之外,51单片机定时器还可以与外部中断结合使用,从而实现更灵活的定时功能。
通过设置定时器的中断使能和中断标志位,可以实现定时器定时中断,从而及时响应定时事件。
总之,51单片机定时器是一种非常重要的功能模块,它可以实现精确的定时和计数功能,从而在各种电子设备中得到广泛的应用。
51单片机定时器(二)
51单⽚机定时器(⼆)书接上回,下⾯是定时器的其他⼯作⽅式。
⼀、⼯作⽅式1:(还是拿t0做说明)定时/ 计数器的⼯作⽅式1⾃⼰经验是⽤的⽐较多的,它的结构图如下:TH0的⼋位和TL0的⼋位构成⼀个16位定时/计数器,可以定时时间最长在⼯作⽅式1下,计数器的计数值范围是:1—65536(216)当为定时⼯作⽅式1时,定时时间的计算公式为:(216—计数初值)╳晶振周期╳12或(216—计数初值)╳机器周期其时间单位与晶振周期或机器周期相同。
如果单⽚机的晶振选为6.000MHz,则最⼩定时时间为:[213—(216—1)]╳1/6╳10-6╳12=2╳10-6(s)=2(us)(216—0)╳1/6╳10-6╳12=131072╳10-6(s)=131072(us)。
⼯作⽅式1的使⽤,和⽅式0完全⼀样,不必赘⾔。
⼆、⼯作⽅式2⼯作⽅式2的结构图如下:从图中可以看出来,计数寄存器变成了⼀个——TL0,⼯作⽅式2下多了⼀个重装载寄存器,也就是原来的TH0。
在⼯作⽅式2下,如果TL0中的数据溢出,那么原先存储在TH0中的数据就会⾃动的装载到TL0中去,这是由单⽚机的硬件实现的,这样我们就不⽤在⼿动给定时器赋初值,⽽且硬件重装载不会耽误时间,所以⼯作⽅式2的计时是最准确的。
但是就是这样⼀来的计数结构只有8位,计数值有限,最⼤只能到255。
所以这种⼯作⽅式很适合于那些重复计数的应⽤场合。
例如我们可以通过这样的计数⽅式产⽣中断,从⽽产⽣⼀个固定频率的脉冲。
也可以当作串⾏数据通信的波特率发送器使⽤。
⼯作⽅式2下的其他使⽤和⼯作⽅式0,1相同。
三、⼯作⽅式3之前的3种⼯作⽅式中,定时器t0和t1的⼯作⽅式完全相同,⽽在⼯作⽅式3中终于有了个性的发挥不在相同了。
下⾯是⼯作⽅式3情况下t0的结构图。
可以看出,t0被分成了2个定时器,每个⼋位,定时/计数器0的TL0拆成的定时器和之前⽅式0,1⼀样,不过TH0拆成的就“因霸”了,它把原先定时器1的溢出标志位给占⽤了,⽽且还不受GATE门控的控制,这样以来,如果定时器0的TH0构成的8位定时器在使⽤,定定时器1就憋屈了,没有溢出位使⽤。
51单片机定时器设置
51单片机定时器设置51单片机,也被称为8051微控制器,是一种广泛应用的嵌入式系统。
它具有4个16位的定时器/计数器,可以用于实现定时、计数、脉冲生成等功能。
通过设置相应的控制位和计数初值,可以控制定时器的启动、停止和溢出等行为,从而实现精确的定时控制。
确定应用需求:首先需要明确应用的需求,包括需要定时的时间、计数的数量等。
根据需求选择合适的定时器型号和操作模式。
设置计数初值:根据需要的定时时间,计算出对应的计数初值。
计数初值需要根据定时器的位数和时钟频率进行计算。
设置控制位:控制位包括定时器控制寄存器(TCON)和中断控制寄存器(IE)。
通过设置控制位,可以控制定时器的启动、停止、溢出等行为,以及是否开启中断等功能。
编写程序代码:根据需求和应用场景,编写相应的程序代码。
程序代码需要包括初始化代码和主循环代码。
调试和测试:在完成设置和编程后,需要进行调试和测试。
可以通过观察定时器的状态和输出结果,检查定时器是否按照预期工作。
计数初值的计算要准确,否则会影响定时的精度。
控制位的设置要正确,否则会导致定时器无法正常工作。
需要考虑定时器的溢出情况,以及如何处理溢出中断。
需要考虑定时器的抗干扰能力,以及如何避免干扰对定时精度的影响。
需要根据具体应用场景进行优化,例如调整计数初值或控制位等,以达到更好的性能和精度。
51单片机的定时器是一个非常实用的功能模块,可以用于实现各种定时控制和计数操作。
在进行定时器设置时,需要注意计数初值的计算、控制位的设置、溢出处理以及抗干扰等问题。
同时需要根据具体应用场景进行优化,以达到更好的性能和精度。
在实际应用中,使用51单片机的定时器可以很方便地实现各种定时控制和计数操作,为嵌入式系统的开发提供了便利。
在嵌入式系统和微控制器领域,51单片机因其功能强大、使用广泛而备受。
其中,定时器中断功能是51单片机的重要特性之一,它为系统提供了高精度的定时和计数能力。
本文将详细介绍51单片机定时器中断的工作原理、配置和使用方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TR0=1; //启动定时器
ET0=1; //允许定时器0中断
EA=1; //允许总中断
while(1) //无限循环
{
if(t1>5) P2_0=0; else P2_0=1; //根据时间间隔变量值闪烁LED灯
void main(void) //主函数
{
TMOD=0x01; //定时器0运行在工作模式1,GATE=0,C/T=0
TH0=(65536-15536)/256; //设置定时器0高8位初值
TL0=(65536-15536)%256; //设置定时器0低8位初值
tt++; //每中断一次,tt加1
if(tt==2) //如果tt等于2,相当于100ms,执行如下语句
{
tt=0; //将tt清0,所以tt的计数值为0---1---2(0),每个间隔为50ms
t1++;
if(t1==10){t1=0;}
t2++;
P0=dispcode[t4%10]; //显示间隔变量t4的个位
}}
void t0(void) interrupt 1 //定时器0中断服务程序
{
TH0=(65536-15536)/256; //设置定时器0高8位初值(3CH)
TL0=(65536-15536)%256; //设置定时器0低8位初值(B0H)
#include < AT89X51.H>
unsigned char tt,t1,t2,t3,t4,t5; //全局时间隔变量
unsigned char code dispcode[]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,
0x82,0xF8,0x80,0x90}; //七段数码管译码表
if(t2==20){t2=0;}
t3++;
if(t3==40){t3=0;}
t4++;
if(t4==80){t4=0;}
t5++;
if(t5==160){t5=0;}
P2_6=~P2_6; //每100ms,P2_6连接的LED灯闪烁一次
} }
if(t2>10) P2_1=0; else P2_1=1;
if(t3>20) P2_2=0; else P2_2=1;
if(t4>40) P2_3=0; else P2_3=1;
if(t5>80) P2_4=0; el10]; //显示间隔变量t4的十位