接地电容电流
单相接地电容电流
单相接地电容电流一、引言单相接地电容电流是电力系统中的一种特殊电流形式,它是由于系统中出现接地故障而产生的。
接地故障是指电力系统中的相线与地之间发生短路或接触,导致电流通过地面流回电源,形成回路。
接地电容电流的产生与电力系统的接地方式、接地电阻等因素有关。
二、接地方式及接地电容电流的产生原理2.1 接地方式电力系统的接地方式主要有直接接地、间接接地和无接地三种形式。
直接接地是指将电力系统中的相线直接接地,通常采用接地刀闸或接地开关实现;间接接地是指通过接地电阻将系统接地,通常采用接地变压器或接地电抗器实现;无接地是指电力系统不与地直接接触,通常用于特殊场合。
2.2 接地电容电流的产生原理接地电容电流的产生是由于电力系统中的电容器与地之间的电容所引起的。
当电容器与地之间发生接地故障时,电流通过电容器与地之间的电容流回电源,形成回路。
接地电容电流的大小与电容值、故障电压、频率等因素有关。
三、接地电容电流的特点接地电容电流具有以下特点:3.1 交流电流接地电容电流属于交流电流,其频率与电力系统的频率一致,通常为50Hz或60Hz。
交流电流的特点是周期性变化,具有正负交替的特性。
3.2 电流幅值较小接地电容电流的幅值通常较小,一般在几十安培以下。
由于电容的特性,接地电容电流的幅值受到电容值及故障电压的影响。
3.3 波形不对称接地电容电流的波形通常不对称,正、负半周期的波形形状不同。
这是由于电容的特性决定的,电容在充电和放电过程中的特性不同。
3.4 含有谐波成分接地电容电流中通常含有谐波成分,这是由于电力系统中存在非线性负载和谐波源所引起的。
谐波成分对电力系统的稳定运行具有一定的影响。
四、接地电容电流的影响及防护措施4.1 影响接地电容电流对电力系统的影响主要表现在以下几个方面:1.电压失真:接地电容电流中的谐波成分会引起电力系统中的电压失真,影响电力设备的正常运行。
2.电流过载:接地电容电流的存在会导致系统中的电流增大,可能引起设备过载,甚至烧毁设备。
线路对地电容电流计算
一、电力线路电容电流估算方法。
一、中性点不接地系统对地电容电流近似计算公式:
无架空地线:Ic=××U×L×10-3(A)
有架空地线:Ic=××U×L×10-3(A)
其中U为额定线电压(KV)
L为线路长度(KM)
为系数,如果是水泥杆、铁塔线路增加10%
说明:1、双回线路的电容电流是单回线路的倍(6-10KV系统)
1、按现场实测经验:夏季比冬季电容电流增加10%左右。
2、由变电所中电力设备所引起的电容电流的增加估算如下:
额定电压(KV) 6 10 35 110
增值% 18 16 13 10
二、电力电缆线路的电容电流估算
6KV:Ic=Ue(95+)/(2200+6S)(安/公里)
10KV:Ic=Ue(95+)/(2200+)(安/公里)
其中S为电缆截面积(mm2)
Ue为额定线电压(KV)
上面的公式适用于油浸纸绝缘电力电缆,聚氯乙烯绞联电缆单位长度对地电容电流比油浸纸绝缘电力电缆大,参考厂家提供的参数和现场实测经验,大约增值20%左右。
单相接地电容电流
自动化论坛:单相接地电容电流的计算方法单相接地电容电流的计算4.1 空载电缆电容电流的计算方法有以下两种:(1)根据单相对地电容,计算电容电流(见参考文献2)。
Ic=√3×UP×ω×C×103式中: UP━电网线电压(kV)C ━单相对地电容(F)一般电缆单位电容为200-400 pF/m左右(可查电缆厂家样本)。
(2)根据经验公式,计算电容电流Ic=0.1×UP ×L式中: UP━电网线电压(kV)L ━电缆长度(km)4.2 架空线电容电流的计算有以下两种:(1)根据单相对地电容,计算电容电流Ic=√3×UP×ω×C×103式中: UP━电网线电压(kV)C ━单相对地电容(F)一般架空线单位电容为5-6 pF/m。
(2)根据经验公式,计算电容电流Ic= (2.7~3.3)×UP×L×10-3式中: UP━电网线电压(kV)L ━架空线长度(km)2.7━系数,适用于无架空地线的线路3.3━系数,适用于有架空地线的线路关于单相接地电容电流计算单相接地电容电流我所知道估算公式:对架空线:Ic=UL / 350对电缆:Ic=UL / 10我想请问的是L是指的架空线长度还是架空线距离?比如是三相的L是不是为距离X 3 另请问有没有更详细的计算方法?工业与民用配电设计手册上对L的定义是线路的长度,单位km,这里的长度与楼主说的距离是同一个概念,也就是说L是指架空线或电缆的距离,三相不需要再用距离乘以3更详细的单相接地电容电流计算公式见附件,摘自工业与民用配电设计手册152页描述:没有文件说明附件:( 189 K)单相接地电容电流计算.pdf下载次数(27)首先应该明确为什么要算这个电容电流,一般计算单相接地电容电流首先要了解,中性点接地系统的分类,什么样的系统才要计算单相接地电容电流,相关国家规定是怎样规定的,算出这个电流怎样进行相关的补偿,选用什么装置进行补偿,补偿的分类是欠补偿,还是过补偿,还是完全补偿,为什么要选用过补偿,单单理解怎样计算是没有任何用处的,中性点接地系统是个综合问题,考虑的要全面。
35kV系统接地电容电流的计算
35KV配电网络中性点接地华北水利水电大学周国安摘要电网中性点接地是关系到电网安全可靠运行的关键问题之一。
该文通过介绍中性点接地的基本概念、设计思想和理论联系实际的方法展开分析与研究。
阐明了35kV 配电网络中性点采取消弧线圈接地方式的原因及解决其接线的具体措施。
通过理论分析,明确了消弧线圈的作用,并深入地讨论了消弧线圈的调整范围及方法。
清楚地表达了35KV配电网络中性点消弧线圈的整定值的合理性。
文中还明确了35KV配电网络进一步完善措施与该网络形成的接地设施之间的内在联系,从而提出了对35KV配电网络完善要求的具体措施。
关键词35KV 配电消弧线前言农村和城市配电网的负荷逐步在增大,就有110KV和35KV 电网直接深入负荷区,这样给供电的安全、可靠性提出了更高的要求。
为此,必须分析和研究关系到整个供电系统安全、可靠的关键问题之一即35KV配电网络中性点接地方式问题。
对于大型变电站主变压器一般选择220/110/35KV 或220/110/10KV ,其接线组别为Y0/Y0/ Δ,三角形接线侧为35KV或10KV,35KV或10KV是中性点不直接接地系统,只有选择接地变压器接在不同的母线段上,来完成接地补偿等问题。
另外,弄清这个问题,便于进一步完善该网络时,尽可能考虑采取技术合理、经济节省的相应措施。
1规划设计的中性点接地方式1.1中性点接地方式基本概念电力系统中电网中性点接地方式分直接接地和不接地(或称绝缘)的两种方式。
电网中性点直接接地,中性点就不可能积累电荷而发生电弧接地过电压,其各种形式的操作过电压均比中性点绝缘电网要低,但接地为短路故障,特别是瞬间接地短路,必须通过保护动作切除,再依靠重合闸恢复正常供电。
现今110KV及以上电网大都采用中性点直接接地方式。
但若较低电压等级的电网采用中性点接地的运行方式,则其接地事故频繁,甚至引起很多更严重的事故,操作次数多,且会因此增加许多设备,即可能引起供电可靠性降低,又不经济,故在我国3~35KV甚至60KV电网中性点采用非直接接地运行方式。
单相接地电容电流及保护定值计算
摘自本人撰写的《余热(中册)》一一五、已知热电厂10KV 供电线路有8回,额定电压为10.5KV ,架空线路总长度为9.6Km ,电缆线路总长度为6Km ,计算单相接地时系统总的零序(电容)电流为多少安? 由于热电厂10KV 供电系统为中性点不接地的运行方式,所以应按照公式1、2进行计算:1.对于架空线路 I dC0(架空)=350UL (A ) 2.对于电缆线路 I dC0(电缆)=10UL (A ) 式中 U ——线路额定线电压(KV )L ——与电压U 具有电联系的线路长度(Km )解:根据公式1、2计算出10KV 供电线路单相接地时的零序(电容)电流为: I dC0(总)=3509.610.5⨯+10610.5⨯=0.288+6.3≈6.6(A ) 一一六、如何计算10KV 中性点不接地系统,线路单相接地的零序电流保护定值? 中性点不接地系统发生单相接地故障时,非故障线路流过的零序电流为本线路的对地电容电流,而故障线路流过的零序电流为所有非故障线路的对地电容电流之和。
为使保护装置具有高度的灵敏性,所以非故障线路的零序电流保护不应动作,故零序电流保护的动作电流必须大于外部接地故障时流过本线路的零序电流,因此零序电流保护的动作电流I dz 应为: I dz =K K 3U φωC 0=K K I dC0式中 K K ——可靠系数。
本次计算按8回线路中的4回在运行,故选取4。
I dC0——本线路的对地电容电流。
举例:已知上题10KV 线路单相接地时,系统总的零序电流I dC (总)=6.6安,计算其中1回线路零序电流保护的定值为多少安?解: I dz =K K I dC0 本计算的可靠系数按照K K =4选取则: I dz =4×86.6=3.3(A ) 选取3.3A 该电流系流过零序电流互感器一次侧的动作电流。
如果零序电流互感器标明了其变流比,则应根据变流比计算出零序电流保护装置的动作电流;若零序电流互感器未标明其变流比,则应通过现场实测的方法,测量零序电流互感器二次测的电流,该电流就是保护装置的动作电流。
单相接地电容电流的计算
电网单相接地电容电流的计算和测量第一节有关电缆参数影响电网单相接地电容电流的因素很多,其中最大因素是电缆参数,即电缆芯对地的电容,不同的电缆有不同的参数表1和表2所示的是三芯油纸电缆和交流聚乙烯电缆参数。
表16~10KV三芯油纸电缆每KM对地电容及单相接地电容电流表26~10KV交流聚乙烯电缆参数电缆的参数还包括电缆的直流对地电阻,一般对地电阻电流为对地电容电流的3~5%。
第二节电网单相接地故障电容电流计算电网单相接地故障电容电流准确计算直接影响到选用补偿装置范围,特别是对新建变电站。
对6KV电网一般计算公式为:IC=1.14×ICC+2.8+IDC对于10KV电网一般计算公式为:IC=1.2×ICC+4.8+IDC式中:IC为电网单相接地电流,ICC为电缆计算电容电流,IDC为电网浪涌电容电流。
在计算电网单相接地故障电容电流时,要充分考虑到实际电网情况,特别是新建变电站,要充分考虑回路末端开关站以下高压部分电流。
第三节中性点小电阻接地电网特点1、单相接地电容电流测量方法,准备电压表、电流表各一块,6KV电力电容器若干,接地线及高压试电笔等。
2、测量步骤(1)测量电网自然不平衡电压U01。
在电网正常运行时,去掉电压互感器二次开口三角上的负载,接上电压表,这时电压表的读数即为U01,电压表不要拆除。
(2)选附加电容C:估算一下电网电容电流IC,估算出IC后,按以下条件选取附加电容C:U01≤1V,0.045IC≤C≤0.1IC;U01>1V,0.092IC≤C<0.13IC。
式中C单位为μF,确定C值后,按照电力电容器铭牌上的电容值即可选定附加电容器或电容器组。
(3)选择电流表量程。
电流表量程的安培数必须大于附加电容微法数,宜大出25%左右为佳。
(4)选定某一备用开关柜或带有下隔离开关的停送电柜。
将选定的电容器或电容器组同电流表串联后可靠接地,如图2所示。
必须做到:将电容器放在绝缘垫上,外壳可靠地接到电流表上;将电流表两端用一导线搭接,达到既接触良好,又可方便地挑开;准备好电容器放电接地线。
单相接地故障电容电流
单相接地故障电容电流在电力系统中,电容是一种常见的电器元件,其具有存储电能的能力。
当电容器发生故障时,可能会产生单相接地故障电流。
本文将探讨单相接地故障电容电流的产生原理、特点以及对电力系统的影响。
一、单相接地故障电容电流的产生原理电容器由两个导体板和介质组成,当电容器的绝缘介质发生击穿或损坏时,就会导致电容器内部的导体板发生短路。
在电力系统中,如果一个相位的电容器发生故障,即其中一个导体板与地接触,就会产生单相接地故障电容电流。
二、单相接地故障电容电流的特点1. 高频特性:电容器的故障通常会引起电流频率的变化。
由于电容器内部的电荷变化速度非常快,所以产生的电容电流通常是高频电流。
2. 波形特点:单相接地故障电容电流的波形通常是尖峰状或类似脉冲的形状。
这是由于故障导致电容器内部的电荷突然释放,产生了一个瞬时的电流脉冲。
3. 持续时间短:由于电容器内部的电荷释放速度非常快,所以单相接地故障电容电流的持续时间通常非常短暂,一般只有几个毫秒。
三、单相接地故障电容电流对电力系统的影响1. 电压暂降:由于单相接地故障电容电流的产生,电流会通过故障点到达地面,导致故障线路的电压暂时下降。
这可能会对电力系统的稳定性和设备的正常运行产生一定影响。
2. 故障电流大小:故障电容电流的大小取决于电容器的额定容量以及故障点与地之间的电阻大小。
通常情况下,故障电容电流较小,不会对电力系统产生严重的影响。
3. 故障检测和定位:通过检测故障电容电流的存在和特征,可以用于故障的检测和定位。
这有助于快速排除故障,减少停电时间,并提高电力系统的可靠性和稳定性。
四、如何减小单相接地故障电容电流的影响1. 定期检测和维护电容器,确保其正常运行。
通过定期检查电容器的绝缘状况和接地情况,可以及时发现潜在的故障,并采取相应的措施修复或更换电容器。
2. 加强故障检测和定位技术。
利用先进的故障检测设备和方法,可以更准确地检测和定位故障点,提高故障处理的效率和准确性。
矿井高压电网单相接地电容电流
矿井高压电网单相接地电容电流的来历。
20A一、单相接地电容电流不超过从安全角度讲,国家规定额定安全电压最高值为42V,对煤矿井下规定额定安全电压为36V,取上限为40V。
由于井下保护接地网上任一保护接地点的接地电阻不得超过2欧姆,因此,井下高压电网的接地电流为20A。
这就是《煤矿安全规程》关于“矿井高压电网单相接地电容电流不得超过20A”规定的原因。
二、单相接地电容电流的危害1、人体触电在绝缘电阻和分布电容一定时,电网电压越高,人体触电时的危险性就越大。
当电网电压一定时,供电线路越长而对地分布电容越大,人体触电时危险性就越大。
2、接地电压升高供电系统中任一相绝缘损坏接地时,该相对地电压等于零,其他非故障两相对地电压升高达电网线电压(即为正常工作的√3倍),易使绝缘薄弱处击穿造成两相接地、相间短路。
非故障两相对地电容电流也随之增大为正常时的√3倍,接地点的接地电流是非故障两相对地电容电流的矢量和,即为正常时对地电容电流的3倍。
3、接地电弧过电压4、电雷管先期爆炸爆破安全规程中规定,爆破作业场地杂散电流不得大于30 mA。
电容电单相接地或绝缘损坏漏电时,在潮湿环境和有金属导体环境,流流人大地形成杂散电流。
杂散电流大量流人工作面,可能造成电雷管先期爆炸,其危害程度与接地电容电流的大小有关,电容电流越大杂散电流越大,引爆电雷管的可能性就越大。
5、引燃瓦斯爆炸..煤矿瓦斯爆炸事故是井下重大灾害之一。
一旦发生瓦斯爆炸,不但造成重大伤亡事故,而且造成巨大损失,给安全生产造成巨大威胁。
不同浓度的瓦斯引燃温度不同,高温度也可以引燃低浓度瓦斯。
6、引燃煤尘爆炸在井下开采和运输过程中产生大量的尘粒,这些尘粒能长期悬浮在空气中,沉降很慢。
在尘粒小于lO脚以下时,不仅对人体肺部危害极大,而且还具有爆炸性。
当煤尘受热燃烧时,迅速形成大量的可燃性气体,气体在高温下燃烧爆炸,破坏性很大。
当煤尘存在空气中时,与空气接触面积加大,吸附氧分子的能力加强,从而加快氧化过程,在温度达到700℃。
单相接地电容电流的计算
电网单相接地电容电流的计算和测量第一节有关电缆参数影响电网单相接地电容电流的因素很多,其中最大因素是电缆参数,即电缆芯对地的电容,不同的电缆有不同的参数表1和表2所示的是三芯油纸电缆和交流聚乙烯电缆参数。
地电容电流的3~5%。
第二节电网单相接地故障电容电流计算电网单相接地故障电容电流准确计算直接影响到选用补偿装置范围,特别是对新建变电站。
对6KV电网一般计算公式为:IC=1.14×ICC+2.8+IDC对于10KV电网一般计算公式为:IC=1.2×ICC+4.8+IDC式中:IC为电网单相接地电流,ICC为电缆计算电容电流,IDC为电网浪涌电容电流。
在计算电网单相接地故障电容电流时,要充分考虑到实际电网情况,特别是新建变电站,要充分考虑回路末端开关站以下高压部分电流。
第三节中性点小电阻接地电网特点1、单相接地电容电流测量方法,准备电压表、电流表各一块,6KV电力电容器若干,接地线及高压试电笔等。
2、测量步骤(1)测量电网自然不平衡电压U01。
在电网正常运行时,去掉电压互感器二次开口三角上的负载,接上电压表,这时电压表的读数即为U01,电压表不要拆除。
(2)选附加电容C:估算一下电网电容电流IC,估算出IC后,按以下条件选取附加电容C:U01≤1V,0.045IC≤C≤0.1IC;U01>1V,0.092IC≤C<0.13IC。
式中C单位为μF,确定C值后,按照电力电容器铭牌上的电容值即可选定附加电容器或电容器组。
(3)选择电流表量程。
电流表量程的安培数必须大于附加电容微法数,宜大出25%左右为佳。
(4)选定某一备用开关柜或带有下隔离开关的停送电柜。
将选定的电容器或电容器组同电流表串联后可靠接地,如图2所示。
必须做到:将电容器放在绝缘垫上,外壳可靠地接到电流表上;将电流表两端用一导线搭接,达到既接触良好,又可方便地挑开;准备好电容器放电接地线。
(5)检查接线及电表量程等,确保正确无误。
接地电容电流计算
1前言众所周知10kV中性点不接地系统(小电流接地系统)具有如下特点:当一相发生金属性接地故障时,接地相对地电位为零,其它两相对地电位比接地前升高√3倍,一般情况下,当发生单相金属性接地故障时,流过故障点的短路电流仅为全部线路接地电容电流之和其值并不大,发出接地信号,值班人员可在2小时内选择和排除接地故障,保证连续不间断供电。
2单相接地电容电流的危害当电网发展到一定规模,10kV出线总长度增加,对地电容较大时,单相接地电流就不容忽视。
当单相接地电流超出允许值,接地电弧不易熄灭,易产生较高弧光间歇接地过电压,波及整个电网。
单相接地电容电流过大的危害主要体现在五个方面:1)弧光接地过电压危害当电容电流过大,接地点电弧不能自行熄灭,出现间歇性电弧接地时,产生弧光接地过电压,这种过电压可达相电压的3-5倍或更高,它遍布于整个电网中,并且持续时间长,可达几小时,它不仅击穿电网中的绝缘薄弱环节,可使用电设备、电缆、变压器等绝缘老化,缩短使用寿命,而且对整个电网绝缘都有很大的危害。
2)造成接地点热破坏及接地网电压升高单相接地电容电流过大,使接地点热效应增大,对电缆等设备造成热破坏,该电流流入接地网后由于接地电阻的原因,使整个接地电网电压升高,危害人身安全。
3)交流杂散电流危害电容电流流入大地后,在大地中形成杂散电流,该电流可能产生火花,引燃可燃气体、煤尘爆炸等,可能造成雷管先期放炮,并且腐蚀水管,气管等金属设施。
4)接地电弧还会直接引起火灾,甚至直接引起可燃气体、煤尘爆炸。
5)配电网对地电容电流增大后,架空线路尤其是雷雨季节,因单相接地引起的短路跳闸事故占很大比例。
3 单相接地电容电流的补偿原则我国的相关电力设计技术规程中规定,3~10kV的电力网单相接地故障电流大于30A时应装设消弧线圈。
消弧线圈的作用是当电网发生单相接地故障后,提供一电感电流,补偿接地电容电流,使接地电流减小,也使得故障相接地电弧两端的恢复电压速度降低,达到熄灭电弧的目的。
单相接地电容电流的计算
电网单相接地电容电流的计算和测量第一节有关电缆参数影响电网单相接地电容电流的因素很多,其中最大因素是电缆参数,即电缆芯对地的电容,不同的电缆有不同的参数表1和表2所示的是三芯油纸电缆和交流聚乙烯电缆参数。
地电容电流的3~5%。
第二节电网单相接地故障电容电流计算电网单相接地故障电容电流准确计算直接影响到选用补偿装置范围,特别是对新建变电站。
对6KV电网一般计算公式为:IC=1.14×ICC+2.8+IDC对于10KV电网一般计算公式为:IC=1.2×ICC+4.8+IDC式中:IC为电网单相接地电流,ICC为电缆计算电容电流,IDC为电网浪涌电容电流。
在计算电网单相接地故障电容电流时,要充分考虑到实际电网情况,特别是新建变电站,要充分考虑回路末端开关站以下高压部分电流。
第三节中性点小电阻接地电网特点1、单相接地电容电流测量方法,准备电压表、电流表各一块,6KV电力电容器若干,接地线及高压试电笔等。
2、测量步骤(1)测量电网自然不平衡电压U01。
在电网正常运行时,去掉电压互感器二次开口三角上的负载,接上电压表,这时电压表的读数即为U01,电压表不要拆除。
(2)选附加电容C:估算一下电网电容电流IC,估算出IC后,按以下条件选取附加电容C:U01≤1V,0.045IC≤C≤0.1IC;U01>1V,0.092IC≤C<0.13IC。
式中C单位为μF,确定C值后,按照电力电容器铭牌上的电容值即可选定附加电容器或电容器组。
(3)选择电流表量程。
电流表量程的安培数必须大于附加电容微法数,宜大出25%左右为佳。
(4)选定某一备用开关柜或带有下隔离开关的停送电柜。
将选定的电容器或电容器组同电流表串联后可靠接地,如图2所示。
必须做到:将电容器放在绝缘垫上,外壳可靠地接到电流表上;将电流表两端用一导线搭接,达到既接触良好,又可方便地挑开;准备好电容器放电接地线。
(5)检查接线及电表量程等,确保正确无误。
接地电容电流计算
1前言众所周知10kV中性点不接地系统(小电流接地系统)具有如下特点:当一相发生金属性接地故障时,接地相对地电位为零,其它两相对地电位比接地前升高√3倍,一般情况下,当发生单相金属性接地故障时,流过故障点的短路电流仅为全部线路接地电容电流之和其值并不大,发出接地信号,值班人员可在2小时内选择和排除接地故障,保证连续不间断供电。
2单相接地电容电流的危害当电网发展到一定规模,10kV出线总长度增加,对地电容较大时,单相接地电流就不容忽视。
当单相接地电流超出允许值,接地电弧不易熄灭,易产生较高弧光间歇接地过电压,波及整个电网。
单相接地电容电流过大的危害主要体现在五个方面:1)弧光接地过电压危害当电容电流过大,接地点电弧不能自行熄灭,出现间歇性电弧接地时,产生弧光接地过电压,这种过电压可达相电压的3-5倍或更高,它遍布于整个电网中,并且持续时间长,可达几小时,它不仅击穿电网中的绝缘薄弱环节,可使用电设备、电缆、变压器等绝缘老化,缩短使用寿命,而且对整个电网绝缘都有很大的危害。
2)造成接地点热破坏及接地网电压升高单相接地电容电流过大,使接地点热效应增大,对电缆等设备造成热破坏,该电流流入接地网后由于接地电阻的原因,使整个接地电网电压升高,危害人身安全。
3)交流杂散电流危害电容电流流入大地后,在大地中形成杂散电流,该电流可能产生火花,引燃可燃气体、煤尘爆炸等,可能造成雷管先期放炮,并且腐蚀水管,气管等金属设施。
4)接地电弧还会直接引起火灾,甚至直接引起可燃气体、煤尘爆炸。
5)配电网对地电容电流增大后,架空线路尤其是雷雨季节,因单相接地引起的短路跳闸事故占很大比例。
3 单相接地电容电流的补偿原则我国的相关电力设计技术规程中规定,3~10kV的电力网单相接地故障电流大于30A时应装设消弧线圈。
消弧线圈的作用是当电网发生单相接地故障后,提供一电感电流,补偿接地电容电流,使接地电流减小,也使得故障相接地电弧两端的恢复电压速度降低,达到熄灭电弧的目的。
接地电容电流计算
前言众所周知10kV中性点不接地系统(小电流接地系统)具有如下特点:当一相发生金属性接地故障时,接地相对地电位为零,其它两相对地电位比接地前升高√3倍,一般情况下,当发生单相金属性接地故障时,流过故障点的短路电流仅为全部线路接地电容电流之和其值并不大,发出接地信号,值班人员可在2小时内选择和排除接地故障,保证连续不间断供电。
2单相接地电容电流的危害当电网发展到一定规模,10kV出线总长度增加,对地电容较大时,单相接地电流就不容无视。
当单相接地电流超出允许值,接地电弧不易熄灭,易产生较高弧光间歇接地过电压,涉及整个电网。
单相接地电容电流过大的危害主要表达在五个方面:1〕弧光接地过电压危害当电容电流过大,接地点电弧不能自行熄灭,出现间歇性电弧接地时,产生弧光接地过电压,这种过电压可达相电压的3-5倍或更高,它遍布于整个电网中,并且持续时间长,可达几小时,它不仅击穿电网中的绝缘薄弱环节,可使用电设备、电缆、变压器等绝缘老化,缩短使用寿命,而且对整个电网绝缘都有很大的危害。
2〕造成接地点热破坏及接地网电压升高单相接地电容电流过大,使接地点热效应增大,对电缆等设备造成热破坏,该电流流入接地网后由于接地电阻的原因,使整个接地电网电压升高,危害人身安全。
3〕交流杂散电流危害电容电流流入大地后,在大地中形成杂散电流,该电流可能产生火花,引燃可燃气体、煤尘爆炸等,可能造成雷管先期放炮,并且腐蚀水管,气管等金属设施。
4〕接地电弧还会直接引起火灾,甚至直接引起可燃气体、煤尘爆炸。
5〕配电网对地电容电流增大后,架空线路尤其是雷雨季节,因单相接地引起的短路跳闸事故占很大比例。
3 单相接地电容电流的补偿原则我国的相关电力设计技术规程中规定,3~10kV的电力网单相接地故障电流大于30A时应装设消弧线圈。
消弧线圈的作用是当电网发生单相接地故障后,提供一电感电流,补偿接地电容电流,使接地电流减小,也使得故障相接地电弧两端的恢复电压速度降低,到达熄灭电弧的目的。
高压接地电容电流计算
渠县新临江煤业有限公司
新临江煤矿
(水井湾矿井)
矿井单相接地电容电流计算
机电科编制
矿井单相接地电容电流计算
根据《煤矿安全规程》,第四百五十三条规定,矿井6kV及以上高压电网,必须采取措施限制单相接地电容电流,生产矿井不超过20A,新建矿井不超过10A。
若超出允许值时,接地电弧不易熄灭,易产生较高弧光间歇接地过电压,波及整个电网。
已知本矿井一回、二回10KV电源来自大竹木头变电所至地面高压变电所,全长2Km,地面高压变电所至井下±0m变电所一回、二回10KV电源,全长1.75Km,井下±0m变电所至移动变电站0.3K m,井下共计高压电缆2.05Km。
1.矿井架空线路单相接地电容电流计算公式:
I C=UrL/350
式中 I C——接地电容电流,A;
Ur——线路额定线电压,10kV;
L——线路长度,km。
2.高压电缆单相接地电容电流计算公式:
I C=UrL/10
所以矿井一回二回高压架空线路单相接地电容电流计算:
I C=UrL/350
=10×2÷350
=0.0571(A)
所以入井高压电缆单相接地电容电流计算:
I C=UrL/10
=10×2.05÷10
=2.05(A)
本矿井总的单相接地电容电流:0.0571+2.05=2.1071A。
符合《煤矿安全规程》,第四百五十三条规定。
35kV系统接地电容电流的计算
35KV配电网络中性点接地华北水利水电大学周国安摘要电网中性点接地是关系到电网安全可靠运行的关键问题之一。
该文通过介绍中性点接地的基本概念、设计思想和理论联系实际的方法展开分析与研究。
阐明了35kV配电网络中性点采取消弧线圈接地方式的原因及解决其接线的具体措施。
通过理论分析,明确了消弧线圈的作用,并深入地讨论了消弧线圈的调整范围及方法。
清楚地表达了35KV配电网络中性点消弧线圈的整定值的合理性。
文中还明确了35KV配电网络进一步完善措施与该网络形成的接地设施之间的内在联系,从而提出了对35KV配电网络完善要求的具体措施。
关键词 35KV配电消弧线前言农村和城市配电网的负荷逐步在增大,就有110KV和35KV电网直接深入负荷区,这样给供电的安全、可靠性提出了更高的要求。
为此,必须分析和研究关系到整个供电系统安全、可靠的关键问题之一即35KV配电网络中性点接地方式问题。
对于大型变电站主变压器一般选择220/110/35KV或220/110/10KV,其接线组别为Y0/Y0/Δ,三角形接线侧为35KV或10KV,35KV或10KV是中性点不直接接地系统,只有选择接地变压器接在不同的母线段上,来完成接地补偿等问题。
另外,弄清这个问题,便于进一步完善该网络时,尽可能考虑采取技术合理、经济节省的相应措施。
1 规划设计的中性点接地方式1.1 中性点接地方式基本概念电力系统中电网中性点接地方式分直接接地和不接地(或称绝缘)的两种方式。
电网中性点直接接地,中性点就不可能积累电荷而发生电弧接地过电压,其各种形式的操作过电压均比中性点绝缘电网要低,但接地为短路故障,特别是瞬间接地短路,必须通过保护动作切除,再依靠重合闸恢复正常供电。
现今110KV及以上电网大都采用中性点直接接地方式。
但若较低电压等级的电网采用中性点接地的运行方式,则其接地事故频繁,甚至引起很多更严重的事故,操作次数多,且会因此增加许多设备,即可能引起供电可靠性降低,又不经济,故在我国3~35KV甚至60KV电网中性点采用非直接接地运行方式。
电容电流的估算
电容电流的估算
10kV系统的接地电容电流与供电线路的结构、布置、长度有关, 主要取决电缆线路的截面和长度, 具体工程设计时应按工程条件计算,变电站10kV出线为电缆线路或架空线路, 根据《电力工程电气设计手册》第1册(电气一次部分) 电容电流的估算如下:
1、对于电缆线路电容电流估算为:
Ic1=0.1U e×L=1.05L [L为电缆线路总长度(km)]
10kV电缆实际各截面电容电流:
I c1=[(95+1.44S)/(2200+0.23S)]×Ue×L
表1:常用6~10kV电缆线路的电容电流(A/km)
注括号内为实测值
2、对于架空线路电容电流的估算值为:
I c2=(2.7~3.3)UeL×10-3
L——线路的长度(km)
I c2——架空线路的电容电流(A)
2.7——系数,适用于无架空地线的线路(10kV一般无地线)
3.3——系数,适用于有架空地线的线路
同杆双回线路电容电流为单回的1.3~1.6
I c2=2.7U e L·10-3=0.02835L [L为架空线路总长度(三相)]
3、对于变电站增加的接地电容电流如下表:
表2:变电站增加接地电容电流值
4、总电容电流
I C∑= I c1+ I c2
对于10kV系统, 附加的变电站电容电流为16%
故I c=1.16I C∑。
接地电容电流标准
接地电容电流标准
接地电容电流标准是在电力系统中对接地电容电流进行限制和规范的标准。
以下是接地电容电流标准的详细介绍:
定义与背景:
接地电容电流是指电力设备(如变压器、电缆等)的金属外壳与大地之间形成的电容电流。
该标准旨在确保电力设备在正常运行时,其接地电容电流不会对设备和人员造成危害。
适用范围:
该标准适用于电力系统中的各类电力设备,包括变压器、电缆、开关柜等。
对于不同电压等级的电力设备,该标准规定了相应的接地电容电流限值。
限值规定:
根据标准规定,接地电容电流应满足一定的限值要求。
对于不同的设备类型和电压等级,限值标准会有所不同。
例如,对于110kV变压器,接地电容电流应不超过10A;对于220kV变压器,应不超过8A。
测试方法:
在电力设备的运行过程中,应定期对其接地电容电流进行测试。
测试方法包括使用钳形电流表等工具进行现场测量,以及通过电力设备制造商提供的相关数据进行计算。
意义与作用:
接地电容电流标准有助于确保电力系统的安全稳定运行,防止因接地电容电流过大而引起的设备损坏和人员伤害事故。
通过限制接地电容电流,该标准有助于提高电力系统的可靠性和安全性。
更新与发展:
随着电力技术的不断发展和进步,接地电容电流标准也在不断更新和改进。
新标准可能会更加严格,以适应更高的电力系统性能要求和安全防护措施。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要:随着城市电网的发展,变电站10kV出线中电缆所占比重越来越高,导致10kV系统的电容电流越来越大,远远超过了规程规定的10A(10kV为架空线和电缆线混合的系统)。
因此需要在10kV中压电网中采用中性点谐振接地(经消弧线圈接地)方式。
理想的消弧线圈能实时监测电网电容电流的大小,在正常运行时电抗值很大,相当于中性点不接地系统,在发生单相接地故障时能在极短时间内自动调节电抗值完全补偿电容电流,使接地点残流的基波无功分量为零。
自动跟踪补偿消弧装置基本能实现上述功能,技术现已相当成熟,能将接地故障电流限制在允许范围内,保证系统的可靠运行及人身和设备的安全。
[关键词]:中压电网中性点谐振接地方式一、引言对10kV中压电网而言,设备的绝缘裕度受经济因素的制约作用较小,工频电压升高的不良影响较低,相反限制单相接地故障电流及其一系列危害显得尤为重要,加之接地继电保护选择性难题的攻克(之前为了检出和清除故障线路曾采用低电阻接地方式),现国内10kV中压电网多采用中性点非有效接地方式。
其包括如下几种方式:1、中性点不接地方式;2、中性点经高电阻接地方式;3、中性点谐振接地(经消弧线圈接地)方式。
所谓中性点不接地方式,实际系统是经过一定数值容抗接地的。
当系统发生一点接地时,保护不跳闸,仅发出接地信号,可带故障运行1-2小时(前提是系统接地故障电流不大于10A)。
因接地系数(零序阻抗与正序阻抗比值)k小于0,△U=-U相可能高于相电压,非故障相的工频电压升高将会略高于线电压,约为1.05U线。
另外,中性点不接地系统还具有中性点不稳定的特点,当单相接地电弧自行熄灭后,容易导致电压互感器的铁芯饱和激发中性点不稳定过电压,引起电压互感器烧毁与高压熔丝熔断等事故。
如采用中性点经高电阻接地方式:可限制电弧接地过电压;限制单相接地电弧熄灭后激起的中性点不稳定过电压。
但如系统发生单相接地故障时的故障电流超过10A,接地电弧不能自行熄灭,将引起电弧接地过电压,所以中性点经高电阻接地方式有一定局限性,只适合用于规模较小的10kV电网中。
随着城市的发展,对环境要求的提高,蜘蛛网式满天横飞的架空线路影响了城市的美观,城市的各大街道纷纷将架空线路改为电缆入地。
而每公里电缆的电容电流远大于同等长度的架空线路。
以10kV线路为例:架空线路的电容电流计算(按水泥杆、有避雷线计算)Ic=3.7U线l×10-3=3.7×10×1×10-3=0.037A(1)式电缆线路的电容电流计算Ic(u)=[(95+1.44S)/2200+0.23S]U线(2)式其中S为电缆心线截面积(mm2)以截面积为300的10kV电缆为例,每公里电容电流为2.32A。
10kV线路每公里电缆的电容电流约为架空线路的63倍,10kV出线中电缆比重的增大势必引起电容电流的增大,从而导致接地电弧无法熄灭,严重影响系统的可靠性,影响人身及设备的安全。
我国电力行业标准DL\T620-1997《交流电气装置的过电压保护和绝缘配合》中明确规定:3-10kV不直接连接发电机且由架空线路构成的系统,当单相接地故障电容电流超过10A又需在接地故障条件下运行时,应采用消弧线圈接地方式。
中性点经消弧线圈接地方式与前两种小电流接地方式相比,单相接地故障电流明显减小,非故障相的工频电压升高降低,且不存在中性点不稳定过电压的情况,基本运行特性明显优越。
二、自动跟踪补偿装置理想的消弧线圈能实时监测电网电容电流的大小,在正常运行时电抗值很大,相当于中性点不接地系统,在发生单相接地故障时能在极短时间内自动调节电抗值完全补偿电容电流,使接地点残流的基波无功分量为零。
当然这只是一种理想状态,但实际上现已研制出多种自动跟踪补偿消弧装置,基本实现了上述功能。
现即对自动跟踪补偿装置的构成及各部件的结构原理作一简要介绍。
自动跟踪补偿消弧装置主要由三大核心部件构成:接地变压器、可调节的消弧线圈及带小电流接地选线功能的自动调谐控制器。
针对消弧线圈的不同调节方式又配置了不同的部件,如调匝式等配置阻尼电阻箱,可控硅调节式配置可控硅控制箱等。
1、接地变压器因为10kV系统为三角形结线,无中性点引出,这就需要先通过接地变压器来形成一个中性点。
接地变压器采用Z型结线(或称曲折型结线),与普通变压器的区别是每相线圈分别绕在两个磁柱上,这样零序磁通能沿磁柱流通,而普通变压器的零序磁通是沿漏磁磁路流通,所以Z型接地变压器的零序阻抗很小,可带90%-100%容量的消弧线圈,相比普通变压器可带消弧线圈容量不得超过变压器容量的20%,可节省投资。
一般当系统不平衡电压较大时,Z型变三相绕组做成平衡式,当系统不平衡电压较小时(如全电缆网络),Z型变中性点要做出50-100V的不平衡电压以满足测量需要。
接地变压器除可带消弧线圈外,也可带二次负载,兼作站用变。
2、自动跟踪补偿的控制原理如何实现消弧线圈的自动跟踪补偿,使发生接地故障后的残流|Il-Ic|<5A。
(Il-消弧线圈上电感电流;Ic-电网的电容电流)。
就需要实时监测系统的电容电流。
算法有很多,如利用系统电容电流参数变化引起中性点电压、电流之间的相位变化量来计算电容电流;从消弧线圈内附PT二次侧加一电源,使位移电压发生变化,从而计算出电容电流;从消弧线圈内附PT二次侧注入不同频率的电流信号,找出谐振频率,根据谐振频率计算脱谐度和电容电流等等。
目前在自动跟踪补偿装置中用得较好的是电容电流在线实时测量法,其原理如下:首先画出系统正常运行时的零序等效电路:U0为系统的不对称电压,在装置投入运行时应先测量出来;C为系统对地的等效电容;R为回路电阻;L为有载调节消弧线圈。
首先将消弧线圈调至L1档,测量零序回路电流为I1,再将消弧线圈调至L2档,测量零序回路电流为I2。
U0=I1[R+j(X L1-X C)]U0=I2[R+j(X L2-X C)]由上两式即可求出R和X C,I C=U相/X C。
微机控制器是根据电网的脱谐度和残流的要求进行调节的,在投运前先将脱谐度ε=( Il-Ic)/ Il设定在一个范围内,当系统的脱谐度超出此范围,控制器发出指令,调整消弧线圈使脱谐度及残流满足要求。
控制器同时还有小电流接地选线功能。
在电力系统中,当小电流接地系统发生单相接地故障时会导致:a、系统零序电压升高;b、非故障线路零序电流为本身电容电流值,相位超前零序电压近90度;c、故障线路零序电流最大,为所有非故障线路零序电流之和,相位滞后零序电压近90度。
以上三点当无消弧线圈时对于基波、5次谐波均成立;而在有消弧线圈过补偿时对于基波不成立,只对5次谐波成立;另一方面,流过消弧线圈串接电阻的有功功率会流过故障点。
综上所述,采用零序基波电流、5次谐波电流相对算法,并结合零序有功分量等多种算法进行比较、表决,可大大提高接地选线的准确性。
另外还有一种称为残流增量法的算法,即在系统发生单相接地后把各线路的零序电流采集下来,然后调一档,再把各线路的零序电流采集一遍,求出各线路调档前后零序电流的变化量,其中最大者为接地线路,因为它等于消弧线圈调档前后电感电流的改变值,而其它线路基本不变。
3、消弧线圈的调节方式消弧线圈的调节方式主要有:①调匝式;②调容式;③可控硅调节式;④调直流偏磁式;⑤调气隙式…①调匝式调匝式消弧线圈是将绕组按不同的匝数抽出若干个分接头,用有载分接开关进行切换,改变接入的匝数,从而改变电感量。
调匝式因调节速度慢,只能工作在预调谐方式(即在系统正常运行无接地发生时,消弧线圈跟踪到最佳补偿位置,接地后不再调节),为保证较小的残流,必须在谐振点附近运行。
这将导致中性点位移电压升高,因此需加装阻尼电阻进行限压,保证中性点的位移电压不超过15%相电压。
为避免阻尼电阻上的有功电流使接地残流增大,在发生单相接地时,必须将阻尼电阻延时0.5秒后短接(为与选线装置配合),其原理如下:JJ为交流接触器的触点;JC为直流接触器的触点,当系统发生单相接地时,中性点电压升高,电流增大,同时母线PT开口三角输出电压。
如其值超过设定值时会启动JC或JJ将阻尼电阻短接。
延时由时间继电器控制。
②调容式通过调节消弧线圈二次侧电容量大小来调节消弧线圈的电感电流。
其采用二次调节消弧线圈,其结构如图所示:二次绕组连接电容调节柜,当二次电容全部断开时,主绕组感抗最小,电感电流最大。
二次绕组有电容接入后,根据阻抗折算原理,相当于主绕组两端并接了相同功率、阻抗为k2倍的电容,使主绕组感抗增大,电感电流减小。
因此通过调节二次电容的容量即可控制主绕组的感抗及电感电流的大小。
电容器的内部或外部装有限流线圈,以限制合闸涌流。
电容器内部还装有放电电阻。
因调容式调节速度快,可实现接地后调节(即系统正常运行时,消弧线圈工作在远离谐振点的位置,满足中性点位移电压不大于15%相电压的要求。
当发生接地故障后,再将消弧线圈调至满足残流要求的合适位置),可不加阻尼电阻。
③可控硅调节式采用高短路阻抗变压器式可控消弧线圈(短路阻抗可达100%),其结构原理图及等效电路图如下:一次绕组(GR)作为工作绕组接在接地变中性点与地之间,二次绕组(KR)作为控制绕组由两个反向并接的可控硅(KKG)短路,可控硅的导通角由触发控制器控制。
调节可控硅的导通角由0至180度之间变化,使可控硅的等效阻抗Z KKG在无穷大至零之间变化,输出的补偿电流就可在零至额定值之间得到连续无极调节。
系统中专门设计了有效滤波设施抑制可控硅导通时产生的谐波,使输出的电流保持为工频电流。
由于可控硅工作于与电感串联的无电容电路中,其工况既无反峰电压的威胁又无电流突变的冲击,可靠性得到了保障。
可控硅调节式调节速度极快,正常时消弧线圈工作在远离谐振点的位置,不加阻尼电阻。
其一大优点是因采用短路阻抗而不是励磁阻抗作为工作阻抗,所以伏安特性可保证在0-110%额定电压范围内保持极佳的线性度。
④调直流偏磁式交流工作线圈内布置一个铁芯磁化段,通过改变铁芯磁化段磁路上的直流励磁磁通大小来调节交流等值磁导,实现电感连续可调。
其基本结构如图所示:直流励磁绕组采取反串连接方式,使整个绕组上感应的工频电压相互抵消。
通过对三相全控整流电路输出电流的闭环调节,实现消弧线圈励磁电流的控制,利用微机的数据处理能力,对这类消弧线圈伏安特性上固有的不大的非线性实施动态校正。
消弧线圈还有另外一些调节方式,如调气隙式等就不一一介绍了。
三、工程中的具体应用成都地区过去10kV系统均采用中性点不接地方式,但由于10kV出线电缆所占比重的增加,导致电容电流升高超过了规程的要求,现在新建变电站已广泛采用10kV自动跟踪补偿消弧装置。
以新建青白江110kV大湾变电站为例:变电站10kV采用单母线分段结线方式,共分两段。