陕西省西安市西北工大启迪中学2019-2020学年八年级上学期期中数学试卷

合集下载

陕西省西安市 八年级(上)期中数学试卷-(含答案)

陕西省西安市 八年级(上)期中数学试卷-(含答案)

八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.4的平方根是()A. B. C. 2 D.2.如图,小手盖住的点的坐标可能是()A.B.C.D.3.若正比例函数的图象经过点(2,-3),则这个图象必经过点()A. B. C. D.4.如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A. 5B. 6C. 8D. 105.下列计算正确的是()A. B.C.6.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是()A. B. C. D.7.已知点A(-3,m)与点B(2,n)是直线y=-x+b上的两点,则m与n的大小关系是()A. B. C. D. 无法确定8.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A. B. C. D.9.平面直角坐标系中,△ABC关于y轴的对称图形是△A'B'C',若BC边上有点P(a,b),则它的对应点P'的坐标为()A. B. C. D.10.如图,在平面直角坐标系中,线段AB的端点坐标为A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则k的值不可能是()A.B.C. 3D. 5二、填空题(本大题共6小题,共18.0分)11.在实数0,-π,,-4中,最小的数是______ .12.若(x+y-2)2+|4x+3y-7|=0,则8x-3y的值为______ .13.如图,是直线y=x-3的图象,点P(2,m)在该直线的上方,则m的取值范围是______ .14.如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm和10cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是______ cm.15.如图,在平面直角坐标系中,已知点A(0,3),且△OAB≌△O'A'B',点A的对应点A'在直线y=x上,A'O'⊥x轴于O'点,则点B与其对应点B'间的距离为______ .16.如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD的长为______ .三、计算题(本大题共1小题,共6.0分)17.如图,Rt△ABC中,∠C=90°,AC=6,BC=8.(1)用直尺和圆规在边BC上找一点D,使D到AB的距离等于CD.(2)计算(1)中线段CD的长.四、解答题(本大题共6小题,共48.0分)18.(1)计算:+(2-)0-(-)-2+|-1|(2)计算:2•(3-4-3)19.解方程组:.20.甲、乙两商场春节期间都进行让利酬宾活动,其中,甲商场对一次购物超过200元部分打7折(不超过200元部分按原价)优惠,如图所示,表示甲商场在让利方式下购物金额y(元)关于商品原价x(元)的函数图象;若乙商场所有商品按8折出售,请在同一坐标系下画出乙商场在让利方式下y关于x的函数图象,并利用图象说明如何选择这两家商场购物更省钱.21.如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?22.某文具店销售甲、乙两种圆规,当销售5只甲种、1只乙种圆规,可获利润25元;当销售6只甲种、3只乙种圆规,可获利润39元.(1)问该文具店销售甲、乙两种圆规,每只的利润分别是多少元?(2)在(1)中,文具店共进货甲、乙两种圆规50只并全部销售完,已知甲种圆规至少能销售30只,请判断文具店如何进货才有最大利润,并求出利润的最大值.23.操作体验(1)如图①,已知△ABC,请画出△ABC的中线AD,并判断△ABD与△ACD的面积大小关系.(2)如图②,在平面直角坐标系中,△ABC的边BC在x轴上,已知点A(2,4),B(-1,0),C(3,0),试确定过点A的一条直线l,平分△ABC的面积,请写出直线l的表达式.综合运用(3)如图③,在平面直角坐标系中,若A(1,4),B(3,2),那么在直线y=-4x+20上是否存在一点C,使直线OC恰好平分四边形OACB的面积?若存在,请计算点C的坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:4的平方根是:±=±2.故选:A.直接利用平方根的定义分析得出答案.此题主要考查了平方根,正确把握平方根的定义是解题关键.2.【答案】A【解析】解:因为小手盖住的点在第四象限,第四象限内点的坐标横坐标为正,纵坐标为负,且横坐标的绝对值大于纵坐标的绝对值.故只有选项A符合题意,故选:A.先判断手所在的象限,再判断象限横纵坐标的正负即可.解答此题的关键是熟记平面直角坐标系中各个象限内点的坐标符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.【答案】D【解析】解:设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象经过点(2,-3),所以-3=2k,解得:k=-,所以y=-x,把这四个选项中的点的坐标分别代入y=-x中,等号成立的点就在正比例函数y=-x的图象上,所以这个图象必经过点(-2,3).故选D.求出函数解析式,然后根据正比例函数的定义用代入法计算.本题考查正比例函数的知识.关键是先求出函数的解析式,然后代值验证答案.4.【答案】C【解析】【分析】本题考查了勾股定理,等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.根据等腰三角形的性质得到AD⊥BC,BD=CD,再根据勾股定理即可得到结论.【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∵AB=5,AD=3,∴BD==4,∴BC=2BD=8,故选C.5.【答案】B【解析】解:A、不能化简,所以此选项错误;B、3×=6,所以此选项正确;C、(2)2=4×2=8,所以此选项错误;D、==,所以此选项错误;本题选择正确的,故选B.A、和不是同类二次根式,不能合并;B、二次根式相乘,系数相乘作为积的系数,被开方数相乘,作为积中的被开方数;C、二次根式的乘方,把每个因式分别平方,再相乘;D、二次根式的除法,把分母中的根号化去.本题考查了二次根式的混合运算,熟练掌握二次根式的计算法则是关键,要注意:①二次根式的运算结果要化为最简二次根式;②与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的;③灵活运用二次根式的性质,选择恰当的解题途径.6.【答案】D【解析】解:该班男生有x人,女生有y人.根据题意得:,故选:D.根据题意可得等量关系:①男生人数+女生人数=30;②男生种树的总棵树+女生种树的总棵树=78棵,根据等量关系列出方程组即可.此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,然后再列出方程组.7.【答案】A【解析】解:∵直线y=-x+b中,k=-<0,∴此函数是减函数.∵-3<2,∴m>n.故选A.先根据直线的解析式判断出函数的增减性,再根据一次函数的性质即可得出结论.本题考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键.8.【答案】C【解析】解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9-AE,根据勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选C.根据折叠的条件可得:BE=DE,在直角△ABE中,利用勾股定理就可以求解.本题考查了利用勾股定理解直角三角形的能力即:直角三角形两直角边的平方和等于斜边的平方.9.【答案】C【解析】解:△ABC关于y轴的对称图形是△A'B'C',若BC边上有点P(a,b),则它的对应点P'的坐标为(-a,b),故选:C.关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.10.【答案】B【解析】解:把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,∴当直线y=kx-2与线段AB有交点,且过第二、四象限时,k满足的条件为k≤-3;把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,∴当直线y=kx-2与线段AB有交点,且过第一、三象限时,k满足的条件为k≥1.即k≤-3或k≥1.所以直线y=kx-2与线段AB有交点,则k的值不可能是-2.故选:B.当直线y=kx-2与线段AB的交点为A点时,把A(-2,4)代入y=kx-2,求出k=-3,根据一次函数的有关性质得到当k≤-3时直线y=kx-2与线段AB有交点;当直线y=kx-2与线段AB的交点为B点时,把B(4,2)代入y=kx-2,求出k=1,根据一次函数的有关性质得到当k≥1时直线y=kx-2与线段AB有交点,从而能得到正确选项.本题考查了一次函数y=kx+b(k≠0)的性质:当k>0时,图象必过第一、三象限,k越大直线越靠近y轴;当k<0时,图象必过第二、四象限,k越小直线越靠近y轴.11.【答案】-4【解析】解:∵|-4|>|-π|>|-|,∴最小的数为-4,故答案为:-4.根据0大于一切负数,两个负数,绝对值大的反而小.本题考查了实数的大小比较,属于基础题,任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.也可以利用数轴来比较大小.12.【答案】5【解析】解:∵(x+y-2)2+|4x+3y-7|=0,∴,②-①×3得:x=1,把x=1代入①得:y=1,则8x-3y=5,故答案为:5.利用非负数的性质列出方程组,求出方程组的解得到x与y的值,代入原式计算即可得到结果.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.【答案】m>-1【解析】解:当x=2时,y=2-3=-1,∵点P(2,m)在该直线的上方,∴m>-1.故答案为:m>-1.把x=2代入直线的解析式求出y的值,再根据点P(2,m)在该直线的上方即可得出m的取值范围.本题考查的是一次函数图象上点的坐标特点,根据题意求出当x=2时y的值是解答此题的关键.14.【答案】5【解析】解:由题意知:盒子底面对角长为=10cm,盒子的对角线长:=20cm,细木棒长25cm,故细木棒露在盒外面的最短长度是:25-20=5cm.长方体内体对角线是最长的,当木条在盒子里对角放置的时候露在外面的长度最小,这样就是求出盒子的对角线长度即可.本题重点考查学生的空间想象能力及勾股定理的应用.15.【答案】4【解析】解:∵△OAB≌△O'A'B',∴OA=O′A′.∵A'O'⊥x轴于O'点,OA⊥x轴,∴△A′B′O′由△ABO平移而成,∴AA′=BB′.∵点A(0,3),点A的对应点A'在直线y=x上,∴A′(4,3),∴AA′=BB′=4.故答案为:4.根据题意可知△A′B′O′由△ABO平移而成,再由点A'在直线y=x上得出A′点的坐标,进而可得出结论.本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.16.【答案】3【解析】解:在Rt△AOB中,AO2=AB2-BO2;Rt△DOC中可得:DO2=DC2-CO2;∴可得AD2=AO2+DO2=AB2-BO2+DC2-CO2=18,即可得AD==3.故答案为:3.在Rt△AOB、Rt△DOC中分别表示出AO2、DO2,从而在Rt△ADO中利用勾股定理即可得出AD的长度.此题考查了勾股定理的知识,解答本题的关键是在Rt△AOB、Rt△DOC中分别表示出AO2、DO2,需要我们熟练掌握勾股定理的表达形式.17.【答案】解:(1)画角平分线正确,保留画图痕迹(2)设CD=x,作DE⊥AB于E,则DE=CD=x,∵∠C=90°,AC=6,BC=8.∴AB=10,∴EB=10-6=4.∵DE2+BE2=DB2,∴x2+42=(8-x)2,x=3,即CD长为3.【解析】(1)根据角平分线上的点到角的两边距离相等知作出∠A的平分线即可;(2)设CD的长为x,然后用x表示出DB、DE、BF利用勾股定理得到有关x 的方程,解之即可.本题考查了勾股定理的应用,通过本题使同学们明白勾股定理不但可以在直角三角形中求线段的长,而且可以根据其列出等量关系.18.【答案】解:(1)原式=4+1-4+1=2;(2)原式=4•(12--9)=4(3-)=36-4.【解析】(1)首先化简二次根式,计算0次幂、负指数次幂、去掉绝对值符号,然后进行加减即可;(2)首先化简二次根式,然后利用单项式与多项式的乘法法则计算即可.本题考查了二次根式的混合运算,是二次根式乘法、除法及加减法运算法则的综合运用.学习二次根式的混合运算应注意:与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.19.【答案】解:原方程组可化为,①-②得,x=,把x=代入①得,9-y=5,解得y=4,故方程组的解为.【解析】先把方程组②中的括号去掉,再用加减消元法或代入消元法求解即可.本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.20.【答案】解:由题意:y乙=0.8x,在同一坐标系下画出乙商场在让利方式下y关于x 的函数图象如图所示:∵y乙=0.8x,y甲=200+0.7(x-200)=0.7x+60,令0.7x+60=0.8x,得x=600,当x>600元时,选择甲,当x=600元时,甲乙一样,当x<600元时,选择乙.【解析】=0.8x,在同一坐标系下画出乙商场在让利方式下y关于x的函数由题意y乙图象即可解决问题.本题考查了一次函数的应用以及一次函数图象,解题的关键是理解题意,学会理由函数图象解决省钱问题.21.【答案】解:连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132,BC2=122,而122+52=132,即BC2+BD2=CD2,∴∠DBC=90°,S四边形ABCD=S△BAD+S△DBC=•AD•AB+DB•BC,=×4×3+×12×5=36.所以需费用36×200=7200(元).【解析】仔细分析题目,需要求得四边形的面积才能求得结果.连接BD,在直角三角形ABD中可求得BD的长,由BD、CD、BC的长度关系可得三角形DBC为一直角三角形,DC为斜边;由此看,四边形ABCD由Rt△ABD和Rt△DBC构成,则容易求解.本题考查了勾股定理的应用,通过勾股定理由边与边的关系也可证明直角三角形,这样解题较为简单.22.【答案】解:(1)设销售甲种圆规的利润为x元/只,销售乙种圆规的利润为y元/只,根据题意得:,解得:.答:该文具店销售甲种圆规每只的利润为4元,销售乙种圆规每只的利润为5元.(2)设文具店购进甲种圆规z只(30≤z≤50),总利润为w元,则购进乙种圆规(50-z)只,根据题意得:w=4z+5(50-z)=-z+250,∵-1<0,z≥30,∴当z=30时,利润取最大值,最大值为220.答:文具店购进甲种圆规30只、乙种圆规20只时,销售利润最大,最大利润为220元.【解析】(1)设销售甲种圆规的利润为x元/只,销售乙种圆规的利润为y元/只,根据“当销售5只甲种、1只乙种圆规,可获利润25元;当销售6只甲种、3只乙种圆规,可获利润39元”即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设文具店购进甲种圆规z只,总利润为w元,则购进乙种圆规(50-z)只,根据总利润=甲种圆规的单件利润×购进数量+乙种圆规的单件利润×购进数量即可得出w关于z的一次函数关系式,根据一次函数的性质结合z的取值范围即可解决最值问题.本题考查了一次函数的应用、一次函数的性质以及二元一次方程组的应用,解题的关键是:(1)根据“当销售5只甲种、1只乙种圆规,可获利润25元;当销售6只甲种、3只乙种圆规,可获利润39元”列出关于x、y的二元一次方程组;(2)根据总利润=甲种圆规的单件利润×购进数量+乙种圆规的单件利润×购进数量找出w关于z的一次函数关系式.23.【答案】解:(1)如图①,过A作AE⊥BC于点E,∵AD为BC边上的中线,∴BD=CD,∴BD•AE=CD•AE,即S△ABD=S△ACD;(2)如图②,设BC的中点为F,∵直线l平分△ABC的面积,∴由(1)可知直线l过点F,∵B(-1,0),C(3,0),∴F(1,0),设直线l的表达式为y=kx+b,把A、F的坐标代入可得,解得,∴直线l的表达式y=4x-4;(3)如图③,连接AB交OC于点G,∵直线OC恰好平分四边形OACB的面积,∴直线OC过AB的中点,即G为AB的中点,∵A(1,4),B(3,2),∴G(2,3),设直线OC解析式为y=ax,则3=2a,解得a=,∴直线OC表达式为y=x,联立两直线解析式可得,解得,∴存在满足条件的点C,其坐标为(,).【解析】(1)过A作AE⊥BC于点E,则可表示出△ABD和△ACD的面积,可比较其大小关系;(2)由(1)可知直线l应过BC的中点F,由B、C的坐标可求得F点的坐标,利用待定系数法可求得直线l的表达式;(3)由条件可知直线OC过AB的中点G,由AB的坐标可求得G的坐标,利用待定系数法可求得直线OC的解析式,联立两直线解析式可求得C点坐标.本题为一次函数的综合应用,涉及待定系数法、三角形的中线、三角形的面积等知识.在(1)中表示出两三角形的面积是解题的关键,在(2)中确定出直线l过BC的中点是解题的关键,在(3)中求得直线OC的解析式是解题的关键.本题考查知识点较多,综合性较强,但难度不大.。

陕西省西安市八年级上学期数学期中考试试卷

陕西省西安市八年级上学期数学期中考试试卷

陕西省西安市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八上·港南期中) 小芳有两根长度为和的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择木条的长度为()A .B .C .D .2. (2分) (2016八上·湖州期中) 如图,BE=CF,AB=DE,添加下列哪些条件可以推证△ABC≌△DFE()A . BC=EFB . ∠A=∠DC . AC∥DFD . AC=DF3. (2分) (2015八下·武冈期中) 一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A . 4B . 5C . 6D . 74. (2分) (2018八上·宁波月考) 下列三角形中,若 AB=AC,则能被一条直线分成两个小等腰三角形的是()A . ①②B . ①③C . ②③5. (2分)下列计算正确的是()A .B .C .D .6. (2分)利用基本尺规作图,下列条件中,不能作出唯一直角三角形的是()A . 已知斜边和一锐角B . 已知一直角边和一锐角C . 已知斜边和一直角边D . 已知两个锐角7. (2分) (2019九上·温岭月考) 如图图形中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .8. (2分) (2019八上·确山期中) 如图,在中,,,,则()A . 50°C . 60°D . 65°9. (2分)(2019·新会模拟) 如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于点D,DE恰好是AB 的垂直平分线,垂足为E.若BC=6,则AB的长为()A . 3B . 4C . 8D . 1010. (2分)下列计算中,正确的是()A . (xn)3n=x4nB . (x2)3+(x3)2=2x6C . (a3)n+1=a3n+1D . (﹣a2)4•a8=﹣a16二、填空题 (共6题;共7分)11. (1分)已知等腰三角形的两边长分别为2、5,则三角形的周长为________12. (1分) (2019八上·保山期中) 如图,△ABC≌△DCB,若AC=7,BE=5,则DE的长为________.13. (1分)有若干张如图所示的正方形A类、B类卡片和长方形C类卡片,如果要拼成一个长为(2a+b),宽为(3a+2b)的大长方形,则需要C类卡片________张.14. (2分) (2016七下·岳池期中) 如下图,直线a∥b,则∠A=________度.15. (1分) (2016八上·萧山月考) 点P(4,-3)关于x轴对称的点P'的坐标为 ________16. (1分) (2017八上·台州期中) 如图,在△ABC中,已知点D,E,F分别是BC、AD、CE的中点,且三角形ABC的面积等于4cm2 ,则三角形BEF的面积等于________cm2 .三、解答题 (共9题;共67分)17. (5分) (2017七下·杭州期中) 计算题(1)计算:| ﹣2|+()﹣1﹣(π﹣3.14)0﹣;(2)计算:[xy(3x﹣2)﹣y(x2﹣2x)]÷x2y.18. (10分) (2020七上·蜀山期末) 如图已知∠1与线段a,用直尺和圆规按下列步骤作图(保留作图痕迹,不写做法。

2019-2020学年八年级上学期期中考试数学试卷含解析

2019-2020学年八年级上学期期中考试数学试卷含解析

2019-2020学年八年级上学期期中考试数学试卷一.选择题(共10小题)1.计算:=()A.2 B.﹣2 C.D.2.下列分式是最简分式的是()A.B.C.D.3.下列长度的各组线段中可组成三角形的是()A.1,2,3 B.2,5,8 C.6,2,2 D.3,5,34.把分式中的x和y都扩大2倍,则分式的值()A.扩大4倍B.扩大2倍C.缩小2倍D.不变5.方程=1的解是()A.无解B.x=﹣1 C.x=0 D.x=16.化简a÷b•的结果是()A.B.a C.ab2D.ab7.如图,已知△ABC是等边三角形,点B、C,D、E在同一直线上,且CG=CD,DF=DE,则∠E=()A.30°B.20°C.15°D.100°8.下列命题的逆命题是真命题的是()A.对顶角相等B.同一三角形内等角对等边C.同角的余角相等D.全等三角形对应角相等9.某公司承担了制作600套校服的任务,原计划每天制作x套,实际上平均每天比原计划多制作了5套,因此提前6天完成任务.根据题意,下列方程正确的是()A.B.C.D.10.如图,在△ABC中,BD平分∠ABC,BC的垂直平分线交BC于点E,交BD于点F,连结CF和DE,若∠A=70°,∠DCF=50°,BC=8.则AB长为()A.4 B.2C.8 D.4二.填空题(共5小题)11.H7N9病毒的直径为30纳米(1纳米10﹣9米),30纳米用科学记数法可表示为米.12.计算(﹣)3的结果是.13.如图,已知AE=BE,DE是AB的垂直平分线,BF=12,CF=3,则AC=.14.已知x﹣=6,求x2+的值为.15.如图,△ABC中,AB=BD,点D,E分别是AC,BD上的点,且∠ABD=∠DCE,若∠BEC =105°,则∠A的度数是.三.解答题(共8小题)16.计算:(2m2n﹣3)2•3m﹣3n4.17.计算:+﹣118.解方程:.19.如图,△ABC中,BD=EC,AB=AC,∠B=∠C,求证:△ABE≌△ACD20.如图,点E在△ABC的外部,点D在BC上,DE交AC于点F,∠1=∠2=∠3,AB=AD.求证:△ABC≌△ADE.21.节能环保的油电混合动力汽车,既可用油做动力行驶,也可用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求汽车行驶中每千米用电费用是多少元?(2)甲、乙两地的距离是多少千米?22.如图,在△ABC中,∠C=90°,PD=PA,(1)尺规作图:作BD的垂直平分线交BC于点E,交BD于点F(不写作法,保留作图痕迹);(2)在(1)所作的图中,连接DE,求证:DE⊥DP.23.如图,在等边△ABC的顶点B、C处各有一只蜗牛,它们同时出发,分别都以每分钟1个单位的速度由C向A和由B向C爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D、P处,请问:(1)在爬行过程中,BD和AP始终相等吗?(2)在爬行过程中BD与AP所成的∠DQA有变化吗?若无变化是多少度?参考答案与试题解析一.选择题(共10小题)1.计算:=()A.2 B.﹣2 C.D.【分析】根据负整数指数幂解答即可.【解答】解:=2,故选:A.2.下列分式是最简分式的是()A.B.C.D.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:A、该分式的分子、分母中含有公因数a,则它不是最简分式.故本选项错误;B、该分式的分子、分母中含有公因数3,则它不是最简分式.故本选项错误;C、该分式符合最简分式的定义.故本选项正确.D、分母为(x+1)(x﹣1),所以该分式的分子、分母中含有公因式(x+1),则它不是最简分式.故本选项错误;故选:C.3.下列长度的各组线段中可组成三角形的是()A.1,2,3 B.2,5,8 C.6,2,2 D.3,5,3【分析】根据三角形的三边满足两边之和大于第三边来进行判断.【解答】解:A、2+1=3,不能构成三角形,故不符合题意;B、2+5=7<8,不能构成三角形,故不符合题意;C、2+2=4<6,不能构成三角形,故不符合题意;D、3+3>5,可以构成三角形,故符合题意;故选:D.4.把分式中的x和y都扩大2倍,则分式的值()A.扩大4倍B.扩大2倍C.缩小2倍D.不变【分析】先根据题意列出算式,再根据分式的性质进行化简,即可得出选项.【解答】解:=,即分式的值不变,故选:D.5.方程=1的解是()A.无解B.x=﹣1 C.x=0 D.x=1【分析】移项可得﹣1==0,可得x=0;【解答】解:=1,∴移项可得﹣1==0,∴x=0,经检验x=0是方程的根,∴方程的根是x=0;故选:C.6.化简a÷b•的结果是()A.B.a C.ab2D.ab【分析】分式的乘法法则:分式乘分式,用分子的积作积的分子,分母的积作积的分母.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.【解答】解:a÷b•=a••=,故选:A.7.如图,已知△ABC是等边三角形,点B、C,D、E在同一直线上,且CG=CD,DF=DE,则∠E=()A.30°B.20°C.15°D.100°【分析】由于△ABC是等边三角形,那么∠B=∠1=60°,而CD=CG,那么∠CGD=∠2,而∠1是△CDG的外角,可得∠1=2∠2,同理有∠2=2∠E,等量代换有4∠E=60°,解即可求∠E.【解答】解:如右图所示,∵△ABC是等边三角形,∴∠B=∠1=60°,∵CD=CG,∴∠CGD=∠2,∴∠1=2∠2,同理有∠2=2∠E,∴4∠E=60°,∴∠E=15°.故选:C.8.下列命题的逆命题是真命题的是()A.对顶角相等B.同一三角形内等角对等边C.同角的余角相等D.全等三角形对应角相等【分析】先交换原命题的题设与结论得到四个逆命题,然后判断它们的真假.【解答】解:A、对顶角相等的逆命题是相等的角是对顶角,是假命题;B、同一三角形内等角对等边的逆命题是同一三角形内等边对等角,是真命题;C、同角的余角相等的逆命题是余角相等的角是同角,也可以是等角,是假命题;D、全等三角形对应角相等的逆命题是对应角相等的三角形是全等三角形,是假命题;故选:B.9.某公司承担了制作600套校服的任务,原计划每天制作x套,实际上平均每天比原计划多制作了5套,因此提前6天完成任务.根据题意,下列方程正确的是()A.B.C.D.【分析】设原计划每天制作x套,实际平均每天制作(x+5)套,根据实际提前6天完成任务,列方程即可.【解答】解:设原计划每天制作x套,实际平均每天制作(x+5)套,由题意得,﹣=6.故选:C.10.如图,在△ABC中,BD平分∠ABC,BC的垂直平分线交BC于点E,交BD于点F,连结CF和DE,若∠A=70°,∠DCF=50°,BC=8.则AB长为()A.4 B.2C.8 D.4【分析】根据角平分线的定义得到∠ABD=∠CBD,根据线段垂直平分线的性质得到FB=FC,得到∠FCB=∠CBD,根据三角形内角和定理得到∠BCA=∠A,根据等腰三角形的判定定理解答.【解答】解:∵BD平分∠ABC,∴∠ABD=∠CBD,∵EF是BC的垂直平分线,∴FB=FC,∴∠FCB=∠CBD,∴∠ABD=∠CBD=∠FCB,∠ABD+∠CBD+∠FCB+∠A+∠DCF=180°,解得,∠FCB=20°,∴∠BCA=70°,∴∠BCA=∠A,∴AB=BC=8,故选:C.二.填空题(共5小题)11.H7N9病毒的直径为30纳米(1纳米10﹣9米),30纳米用科学记数法可表示为3×10﹣8米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:30纳米=30×10﹣9米=3×10﹣8米.故答案为:3×10﹣8.12.计算(﹣)3的结果是﹣.【分析】根据分式的乘方法则计算,得到答案.【解答】解:(﹣)3=﹣=﹣,故答案为:﹣.13.如图,已知AE=BE,DE是AB的垂直平分线,BF=12,CF=3,则AC=15 .【分析】利用垂直平分线的性质得出AF=BF,从而求出AC的长.【解答】解:∵DE是AB的垂直平分线,∴AF=BF∴AC=AF+CF=BF+CF=12+3=15.14.已知x﹣=6,求x2+的值为38 .【分析】把x﹣=6两边平方后化简整理解答即可.【解答】解:将x﹣=6两边平方,可得:,解得:,故答案为:38.15.如图,△ABC中,AB=BD,点D,E分别是AC,BD上的点,且∠ABD=∠DCE,若∠BEC =105°,则∠A的度数是85°.【分析】设∠A=∠BDA=x,∠ABD=∠ECD=y,构建方程组即可解决问题.【解答】解:∵BA=BD,∴∠A=∠BDA,设∠A=∠BDA=x,∠ABD=∠ECD=y,则有,解得x=85°,故答案为85°.三.解答题(共8小题)16.计算:(2m2n﹣3)2•3m﹣3n4.【分析】先算乘方,再根据单项式乘单项式的运算法则进行计算即可得出答案.【解答】解:(2m2n﹣3)2•3m﹣3n4=(4m4n﹣6)(3m﹣3n4)=12mn﹣2=.17.计算:+﹣1【分析】先把要求的式子进行变形,再根据分式的加减法则进行计算即可得出答案.【解答】解:+﹣1=﹣﹣1=1﹣1=0.18.解方程:.【分析】去分母,将分式方程转化为整式方程,即可解决问题.【解答】解:∵,∴1440﹣1260=6x,即180=6x,解得:x=30.经检验:x=30是原方程的解.19.如图,△ABC中,BD=EC,AB=AC,∠B=∠C,求证:△ABE≌△ACD【分析】利用SAS证明△ABE和△ACD全等即可.【解答】证明:∵BD=CE,∴BE=CD,在△ABE和△ACD中,∵,∴△ABE≌△ACD(SAS).20.如图,点E在△ABC的外部,点D在BC上,DE交AC于点F,∠1=∠2=∠3,AB=AD.求证:△ABC≌△ADE.【分析】根据角的和差和三角形的内角和得到∠BAC=∠DAE,∠C=∠E,然后根据全等三角形的判定定理即可得到结论.【解答】证明:∵∠1=∠2=∠3,∠AFE=∠CFD,∴∠1+∠DAF=∠2+∠DAF,∠C=180°﹣∠3﹣∠DFC,∠E=180°﹣∠2﹣∠AFE,∴∠BAC=∠DAE,∠C=∠E,在△ABC与△ADE中,,∴△ABC≌△ADE(AAS).21.节能环保的油电混合动力汽车,既可用油做动力行驶,也可用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求汽车行驶中每千米用电费用是多少元?(2)甲、乙两地的距离是多少千米?【分析】(1)直接利用行驶的路程不变得出方程进而得出答案;(2)利用(1)中所求即可得出答案.【解答】解:(1)设汽车行驶中每千米用电费用是x元,则每千米用油费用为(x+0.5)元,根据题意可得:=,解得:x=0.3,经检验得:x=0.3是原方程的解,答:汽车行驶中每千米用电费用是0.3元;(2)甲、乙两地的距离是:30÷0.3=100(千米).22.如图,在△ABC中,∠C=90°,PD=PA,(1)尺规作图:作BD的垂直平分线交BC于点E,交BD于点F(不写作法,保留作图痕迹);(2)在(1)所作的图中,连接DE,求证:DE⊥DP.【分析】(1)利用基本作图作BD的垂直平分线EF;(2)先由PA=PD得到∠A=∠PDA,再根据线段垂直平分线的性质得到EB=ED,则∠B =∠EDB,从而得到∠PDA+∠EDB=90°,从而可判断PD⊥DE.【解答】(1)解:如图,EF为所作;(2)证明:∵PA=PD,∴∠A=∠PDA,∵EF垂直平分BD,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠PDA+∠EDB=90°,∴∠PDE=180°﹣∠PDA﹣∠EDB=90°,∴PD⊥DE.23.如图,在等边△ABC的顶点B、C处各有一只蜗牛,它们同时出发,分别都以每分钟1个单位的速度由C向A和由B向C爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D、P处,请问:(1)在爬行过程中,BD和AP始终相等吗?(2)在爬行过程中BD与AP所成的∠DQA有变化吗?若无变化是多少度?【分析】(1)根据等边三角形性质得出∠CAB=∠C=∠ABP=60°,AB=BC,根据SAS 推出△BDC≌△APB即可.(2)根据△BDC≌△APB得出∠CBD=∠BAP,根据三角形外角性质求出∠DQA=∠ABC,即可求出答案.【解答】解:(1)在爬行过程中,BD和AP始终相等,理由是:∵△ABC是等边三角形,∴∠CAB=∠C=∠ABP=60°,AB=BC,在△BDC和△APB中,,∴△BDC≌△APB(SAS),∴BD=AP.(2)蜗牛在爬行过程中BD与AP所成的∠DQA大小无变化,理由:∵△BDC≌△APB,∴∠CBD=∠BAP,∴∠DQA=∠DBA+∠BAP=∠DBA+∠CBD=∠ABC=60°,即蜗牛在爬行过程中BD与AP所成的∠DQA大小无变化,始终是60°.。

陕西省西安市 八年级(上)期中数学试卷-(含答案)

陕西省西安市   八年级(上)期中数学试卷-(含答案)

八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.(-2)2的平方根是()A. 2B.C.D.2.如图所示的直角三角形中,m的值为5的有()A. 1个B. 2个C. 3个D. 4个3.点A(2,-1)关于x轴对称的点B的坐标为()A. B. C. D.4.下列图象中,y不是x的函数的是()A. B. C. D.5.等腰三角形腰长10cm,底边16cm,则面积为()A. B. C. D.6.下列计算中,不正确的是()A. B.C. D.7.如图所示的方格纸中,假设每个小正方形的面积为2,则图中的四条线段中长度为无理数的有()A. 1条B. 2条C. 3条D. 4条8.一个正偶数的算术平方根是a,那么与这个正偶数相邻的下一个正偶数的算术平方根是()A. B. C. D.9.实数a,b在数轴上的位置,如图所示,那么化简的结果是()A. B. b C. D.10.在同一坐标系,表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象正确的是()A. B.C. D.二、填空题(本大题共8小题,共24.0分)11.电影票10排28号记为(10,28),则(3,25)表示______ .12.计算= ______ .13.a是9的算术平方根,而b的算术平方根是9,则a+b= ______ .14.木工师傅想做一个长方形桌面,经测量得知四边形桌面的长边均为60cm,短边均为32cm,对角线长为68cm,这个桌面______ (填“合格”或“不合格”).15.已知点P(-10,3a+8)不在任何象限内,则a的值为______ .16.如图,正方形ABCD关于x轴、y轴均成轴对称,若这个正方形的面积为4,则点C的坐标为______ .17.阅读下列信息:①它的图象是不经过第二象限的一条直线且与y轴的交点P到原点O的距离为3,②当x的值为2时,函数y的值为0,则y随x的增大而______ ,此直线与坐标轴所围成的三角形面积为______ .18.如图所示,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为______ .三、解答题(本大题共6小题,共48.0分)19.计算:(1)--(2)(-)÷.20.在平面直角坐标系中,顺次连接下列各点,并画出图形.(-5,2),(-1,4),(-5,6),(-3,4),(-5,2)(1)不改变这些点的纵坐标,将它们的横坐标都乘以-1.写出新的点的坐标;(2)在同一坐标系中,描出这些新点,并顺次连接起来;(3)新图形与原图形有什么关系?21.已知点P是一次函数y=-2x+8的图象上的一点,如果图象与x轴交于Q点,且△OPQ的面积等于8,求点P的坐标.22.正方形网格中,小格的顶点叫做格点,小华按下列要求作图:①在正方形网格的三条不同实线上各取一个格点,使其中任意两点不在同一实线上;②连结三个格点,使之构成直角三角形,小华在下边的正方形网格中作出了Rt△ABC.请你按照同样的要求,在下面的两个正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等.23.某电信公司手机的A类收费标准如下:不管通话时间多长,每部手机每月必须交月租费12元,另外,通话费按0.2元/min计算.(1)写出每月应缴费用y(元)与通话时间x(min)之间的关系式;(2)某手机用户这个月通话时间为180min,他应缴费多少元;(3)如果该手机用户本月预缴了100元的话费,那么该用户本月可通话多长时间?24.如图,一幢居民楼与马路平行且相距9米,在距离载重汽车41米处(图中B点位置)就会受到噪音影响,试求在马路上以4米/秒速度行驶的载重汽车,给这幢居民楼带来多长时间的噪音影响?若影响时间超过25秒,则此路禁止该车通行,那么载重汽车可以在这条路上通行吗?答案和解析1.【答案】D【解析】解:∵(-2)2=4,而2或-2的平方等于4,∴(-2)2的平方根是±2.故选D.首先根据平方的定义求出(-2)2的结果,然后利用平方根的定义求解即可.此题主要考查了平方根的定义,注意一个正数的平方根有2个,它们互为相反数.2.【答案】B【解析】解:如图所示的直角三角形中,∵m==5,m==5,m==8,m==9,∴m的值为5的有2个,故选B.根据勾股定理即可得到结论.本题考查了勾股定理,熟练掌握勾股定理是解题的关键.3.【答案】A【解析】解:点A(2,-1)关于x轴对称的点B的坐标为:(2,1).故选:A.关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,进而得到答案.此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律.4.【答案】B【解析】解:根据函数定义,如果在某变化过程中,有两个变量x 、y ,并且对于x 在某个范围内的每一个确定的值,按照对应法则,y 都有唯一确定的值和它对应.而B 中的y 的值不具有唯一性,所以不是函数图象.故选B .函数的定义:在某变化过程中,有两个变量x 、y ,并且对于x 在某个范围内的每一个确定的值,按照对应法则,y 都有唯一确定的值和它对应,则x 叫自变量,y 是x 的函数.根据定义再结合图象观察就可以得出结论.本题考查函数的定义,要熟练掌握函数的定义.5.【答案】B【解析】解:作AD ⊥BC 于D ,∵AB=AC ,∴BD=BC=8cm ,∴AD==6cm , ∴=48cm 2,故选B .等腰三角形ABC ,AB=AC ,要求三角形的面积,可以先作出BC 边上的高AD ,则在Rt △ADB 中,利用勾股定理就可以求出高AD ,就可以求出三角形的面积. 本题主要运用了等腰三角形的性质:三线合一的性质,勾股定理.6.【答案】D【解析】解:A 、原式=6,所以A 选项得计算正确;B 、原式=3-2=,所以B 选项的计算正确;C 、原式==1,所以C 选项的计算正确;D 、原式=3-2+2=5-2,所以D 选项的计算错误.故选D .根据二次根式的乘除法则对A、C进行判断;根据二次根式的加减法对B进行判断;根据完全平方公式对D进行判断.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.7.【答案】B【解析】解:∵每个小正方形的面积为2,∴每个小正方形的边长为,∴AB=2,CD==4,EF==2,GH==,∴四条线段中长度是无理数理数的线段是AB、GH;故选:B.由小正方形的面积得出小正方形的边长,由勾股定理求出AB、CD、EF、GH,即可得出结果本题考查了正方形的性质、勾股定理、实数、有理数;熟练掌握正方形的性质和勾股定理,并能进行推理计算是解决问题的关键.8.【答案】C【解析】解:由题意,得正偶数是a2,下一个偶数是(a2+2),与这个正偶数相邻的下一个正偶数的算术平方根是,故选:C.根据乘方运算,可得被开方数,根据相邻偶数间的关系,可得被开方数,根据开方运算,可得答案.本题考查了算术平方根,利用了乘方运算,开方运算.9.【答案】A【解析】【分析】本题主要考查了二次根式和绝对值的性质与化简.特别因为a.b都是数轴上的实数,注意符号的变换.根据二次根式和绝对值的性质,化简解答.【解答】解:根据二次根式和绝对值的性质,化简得,=a-(-b-a)=2a+b.故选A.10.【答案】A【解析】解:若a>0,b>0,则y=ax+b经过一、二、三象限,y=abx经过一、三象限,若a>0,b<0,则y=ax+b经过一、三、四象限,y=abx经过二、四象限,若a<0,b<0则y=ax+b经过二、三、四象限,y=abx经过一、三象限,若a<0,b>0则y=ax+b经过一、二、四象限,y=abx经过二、四象限,故选(A)将a、b与0进行比较,然后分情况讨论其图象的位置.本题考查一次函数的性质,解题的关键是正确待定系数k与b的作用,本题属于基础题型.11.【答案】3排25号【解析】解:根据题意,10排28号记为(10,28),则(3,25)表示3排25号,故答案为:3排25号.根据题意知第一个数字表示排数、第2个数字表示号数,由此解答可得.本题考查了坐标确定位置:平面直角坐标系中,点与有序实数对一一对应.12.【答案】2【解析】解:==2.故答案为:2.直接利用二次根式的性质将原式变形进而化简即可.此题主要考查了二次根式的乘法运算,正确化简是解题关键.13.【答案】84【解析】解:∵a是9的算术平方根,∴a=3,又∵b的算术平方根是9,∴b=81,∴a+b=3+81=84.故答案为:84.先根据算术平方根的定义求出a、b的值,然后算出a+b即可.本题考查了算术平方根的概念,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.14.【答案】合格【解析】解:∵=68cm,∴这个桌面合格,故答案为:合格.只要算出桌面的长为60cm,宽为32cm,对角线为68cm是否符合勾股定理即可,根据勾股定理直接解答.本题考查的是勾股定理在实际中的应用,需要同学们结合实际掌握勾股定理.15.【答案】-【解析】解:由题意,得3a+8=0,解得a=-,故答案为:-.根据纵坐标等于零的点在x轴上,可得答案.本题考查了点的坐标,利用坐标轴上的点的纵坐标等于零得出方程是解题关键.16.【答案】(-1,-1)【解析】解:如图,点E、F、G、H是正方形与坐标轴的交点.∵正方形的面积为4,∴正方形的边长为2,∵正方形ABCD关于x轴、y轴均成轴对称,∴CF=BF=BH=AH=AE=DE=CG=DG=1,∴C(-1,-1),故答案为(-1,-1).如图,点E、F、G、H是正方形与坐标轴的交点,只要证明CF=BF=BH=AH=AE=DE=CG=DG=1,即可解决问题.本题考查正方形的性质、轴对称的性质等知识,解题的关键是灵活运用轴对称的性质,证明CF=CG=1,属于中考基础题.17.【答案】增大;【解析】解:设该直线的解析式为y=kx+b(k≠0),∵该直线不经过第二象限,∴k>0,b<0.∵该直线与y轴的交点P到原点O的距离为3,∴点P(0,-3),b=-3.∵当x的值为2时,函数y的值为0,∴0=2k+b,解得:k=,∴yy随x的增大而增大.设该直线与x轴的交点为Q,则点Q的坐标为(,0),∴S△OPQ=OP•OQ=××3=.设该直线的解析式为y=kx+b(k≠0),由直线不过第二象限可得出k>0、b<0,结合OP的长度可得出点P的坐标以及b的值,将点(2,0)代入函数解析式中可求出k值,进而可得出y随x的增大而增大,再根据三角形的面积公式即可求出此直线与坐标轴所围成的三角形面积.本题考查了一次函数的性质、待定系数法求一次函数解析式以及一次函数图象与系数的关系,根据点的坐标,利用待定系数法求出函数解析式是解题的关键.18.【答案】45°【解析】解:如图,连接AC.根据勾股定理可以得到:AC=BC=,AB=,∵()2+()2=()2,即AC2+BC2=AB2,∴△ABC是等腰直角三角形.∴∠ABC=45°.故答案为:45°.分别在格点三角形中,根据勾股定理即可得到AB,BC,AC的长度,继而可得出∠ABC的度数.本题考查了勾股定理,判断△ABC是等腰直角三角形是解决本题的关键,注意在格点三角形中利用勾股定理.19.【答案】解:(1)--,=3--,=2-2;(2)(-)÷,=-,=-,=2-,=.【解析】(1)先约分,把二次根式化简,再合并同类二次根式;(2)先将除法化为乘法,再根据乘法分配律进行计算.本题考查了二次根式的混合运算:先进行二次根式的乘除运算,再把各二次根式化为最简二次根式,然后进行二次根式的加减运算.20.【答案】解:(1)不改变这些点的纵坐标,将它们的横坐标都乘以-1,新的点的坐标为(5,2),(1,4),(5,6),(3,4);(2)在同一坐标系中描出这些点,并连成的图形:(3)所得的图案与原图案关于y轴对称.【解析】(1)横坐标乘以-1,即可得出新的点的坐标的横坐标,进而得出坐标;(2)先在坐标系上描出四点,再依次连接即可.(3)通过观察图象即可发现新图形与原图形的关系.本题综合考查了直角坐标系的知识和轴对称图形的性质.正确得出对应点位置是解题关键.21.【答案】解:当y=0时,-2x+8=0,解得x=4,则Q(4,0),设P(x,-2x+8),所以•4•|-2x+8|=8,解得x=2或x=6,所以P点坐标为(2,4)或(6,-4).【解析】先求出Q点坐标,根据一次函数图象上点的坐标特征设P(x,-2x+8),则根据三角形面积公式得到•4•|-2x+8|=8,然后解方程求出x即可得到P点坐标.本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b 为常数)的图象是一条直线.它与x轴的交点坐标是(-,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.22.【答案】解:如图所示:.【解析】本题中得出直角三角形的方法如图:如果设AE=x,BE=4-x,如果∠FEG=90°,△AFE∽△GBE,AF•BG=AE•BE=x(4-x),当x=1时,AF•BG=3,AF=1,BG=3或AF=3,BG=1,当x=2时,AF•BG=4,AF=1,BG=4或AF=2,BG=2或AF=4,BG=1,当x=3时,AF•BG=3,AF=1,BG=3或AF=3,BG=1(同x=1时),由此可画出另两种图形.本题中借助了勾股定理,相似三角形的判定和性质等知识来得出有可能的直角三角形的情况,要学会对已学知识点的运用.23.【答案】解:(1)y=0.2x+12;(2)当x=180时,y=0.2×180+12=48(元);(3)当y=100时,0.2x+12=100,解得:x=440.【解析】(1)根据每月应缴的费用是月租费+通话费,即可写出解析式;(2)在解析式中,令x=180,求得y的值即可;(3)在解析式中令y=100,求得x即可.本题考查了一次函数的解析式以及求值,正确理解收费标准,列出函数解析式是关键.24.【答案】解:如图,过点A作AC⊥BD于点C,∵由题意得AC=9,AB=AD=41,AC⊥BD,∴Rt△ACB中,BC=,Rt△ACD中,DC=,∴BD=80,∴80÷4=20(s),∴受影响时间为20s;∵20<25,∴可以通行.【解析】先根据勾股定理求出BC及DC的长,进而可得出BD的长,根据载重汽车的速度是4m/s即可得出受噪音影响的时间,与25秒相比较即可得出结论.本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.。

2019-2020陕西省初二期中考试数学试题 (无答案)

2019-2020陕西省初二期中考试数学试题 (无答案)

2019-2020学年度第一学期期中试题(卷)初二数学全卷120分 考试时间120分钟一、选择题(每小题3分,计30分)1.在实数0.3,0,2π,0.123456…中,无理数的个数是( ).A .2B .3C .4D .52.根据下列表述,能确定位置的是( ).A .某电影院2排B .大桥南路C .北偏东30︒D .东经118︒,北纬40︒3.下列运算中错误的有( ).4=67=±3=-,④3=.A .4个B .3个C .2个D .1个4.下列四个图象中,哪个不是是y 关于x 的函数( ).A .B .C .D .5.有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是( ).A .4BC .D .6.已知点()11,x y 、()22,x y 都在直线122y x =-+上,若12x x <,则1y ,2y 的大小关系是(). A .12y y > B .12y y = C .12y y < D .不能比较7.直线1:l y kx b =+与直线2:l y bx k =+在同一坐标系中的大致位置是( ).A .B .C .D .8.把ABC △各点的横坐标都乘以-1,纵坐标都乘以-1,符合上述要求的图是( ).A .B .C .D .9.若直角三角形的两边长分别为a ,b ,且满足269|4|0a a b -++-=,则该直角三角形的第三边长的平方为( ).A .25B .7C .25或7D .25或1610.甲、乙两人在直线跑道上同起点、同终点,同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y (米)与乙出发的时间t (秒)之间的关系如图所示,给出以下结论:①8a =;②92b =;③123c =.其中正确的是( ).A .②③B .①②C .①③D .①②③二、填空题(每小题3分,计12分)11的平方根是 .12.如图x 在数轴上表示数的点的位置,则化简|3|x +的结果是 .13.如果点1(,3)P a -和2(1,)P b 关于y 轴对称,则经过原点和点(,)A a b 的直线的函数关系式为 .14.如图,已知圆柱底面的周长为4dm ,圆柱高为2dm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为 .三、解答题(共计78分)15.计算(1)101(3.14)2π-⎛⎫+- ⎪⎝⎭(2)+ 16.解方程组:2(1)61x y x y +-=⎧⎨=-⎩.17.在数轴上作出18.如图所示,在半面直角坐标系中,已知(0,1)A 、(2,0)B 、(4,3)C .(1)在平面直角坐标系中画出ABC △,则ABC △的面积是 ;(2)若点D 与点C 关于y 轴对称,则点D 的坐标为 ;(3)已知P 为x 轴上一点,若ABP △的面积为4,求点P 的坐标.19.已知关于x ,y 的方程组354522x y ax by -=⎧⎨+=-⎩和2348x y ax by +=-⎧⎨-=⎩有相同解,求()b a -值.20,等的式子,其实我们还可以将其进1==-,以比这种化简的步骤叫做分母有理化.(1; (2++++….21.已知正数x 的两个不同的平方根分别是3a +和215a -4=.求22x y -+的值.22.书写23.海水养殖是莱州经济产业的亮丽名片之一,某养殖场响应国家加快新旧动能转的号召,今年采用新技术投资养殖了200万笼扇贝,并且全部被订购,已知每笼扇贝的成本是40元,售价是100元,打捞出售过程中发现,一部分扇贝生长情况不合要求,最后只能按照25元一笼出售,如果纯收入为y 万元,不合要求的扇贝有x 万笼.(1)求纯收入y 关于x 的关系式;(2)当x 为何值时,养殖场不赔不赚?24.如图,折叠长方形的一边AD ,使点D 落在BC 边上的点F 处,10BC =,8AB =.求FC 的长.25.直线3y kx =+和x 轴、y 轴的交点分别为B 、C ,30OBC ∠=︒,点A 的坐标是(,另一条直线经过点A 、C .(1)求点B 的坐标及k 的值;(2)求证:AC BC ⊥.26.平面直角坐标系中,直线1y kx b =+经过点(2,2)P 和点(0,2)Q -,与x 轴交于点A ,与直线2y mx n =+交于点P .(1)求出直线1y kx b =+的解析式;(2)求出点A 的坐标;(3)直线2y mx n =+绕着点P 任意旋转,与x 轴交于点B ,当PAB △是等腰三角形时,点B 有几种位置?请你分别求出点B 的坐标.。

2019-2020学年八年级上学期期中考试数学试卷附参考答案

2019-2020学年八年级上学期期中考试数学试卷附参考答案

2019-2020学年八年级上学期期中考试数学试卷一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项符合题目要求1.若分式的值不存在,则x的取值是()A.x=﹣2 B.x≠﹣2 C.x=3 D.x≠32.若分式的值等于0,则x的取值是()A.x=0 B.x=3 C.x=﹣3 D.x=3或x=﹣3 3.下列式子变形,正确的是()A.=B.=﹣C.=D.=4.下列分式中,是最简分式的是()A.B.C.D.5.用科学记数法表示:0.00002018是()A.2.018×10﹣5B.2.018×10﹣4C.201.8×10﹣7D.2018×10﹣56.计算:()﹣3的结果是()A.﹣B.C.D.﹣7.如图,图中三角形的个数共有()A.3个B.4个C.5个D.6个8.如图,CD是△ABC的角平分线,∠A=30°,∠B=66°,则∠BDC的度数是()A.96°B.84°C.76°D.72°9.下列语句:①你叫什么名字;②负数的绝对值等于它的相反数;③相等的角是对顶角;④明天下雨吗?属于命题的是()A.①②B.②③C.③④D.①②③④10.在△ABC和△DEF中,下列条件不能判断这两个三角形全等的是()A.AB=DE,AC=DF,∠A=∠D B.∠A=∠D,∠B=∠E,AB=DEC.AC=DF,BC=EF,∠B=∠E D.AB=DE,AC=DF,BC=EF11.如图,∠CAB=60°,CD垂直平分AB,垂足为点D,∠CAB的平分线交CD于点E,连接EB,则∠BEC的度数是()A.120°B.110°C.100°D.90°12.如图,∠ADB=∠ACB=90°,AC与BD相交于点O,且OA=OB,下列结论:①AD=BC;②AC=BD;③∠CDA=∠DCB;④CD∥AB,其中正确的有()A.1个B.2个C.3个D.4个二、填空题:本大题共6小题,每小题3分,共18分13.若分式的值为0,则x的值是.14.分式,,的最简公分母是.15.若3x=10,3y=5,则3x﹣y=.16.命题“等腰三角形的两个底角相等”的逆命题是.17.如图,在△ABC中,AC=BC,∠B=70°,EF是AC边的垂直平分线,垂足为E,交BC 于点F,则∠AFE的度数等于.18.已知ab=1,m=+,则﹣m2018的值等于.三、解答题:本大题共8小题,满分66分,解答应写出文字说明、证明过程或演算步骤19.先约分,再求值:,其中x=﹣2,y=﹣.20.计算:(1)•(2)÷(3)()2(4)()321.计算(1)()3•()2•()2(2)()4•()3÷()522.计算:(1)+﹣(2)﹣﹣23.如图,已知AB∥ED,CD∥BF,AE=CF.求证:AB=ED.24.如图,AB=CD,AD=BC,E、F分别是AC上的点,且AE=CF(1)求证:AB∥CD;(2)求证:BE=DF.25.如图,已知AD∥BC,点E是CD上一点,AE平分∠BAD,BF平分∠ABC,延长BE交AD 的延长线于点F(1)求证:△ABE≌△AFE;(2)若AD=2,BC=6,求AB的长.26.甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用的时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水.(1)分别求甲、乙两种污水处理器的污水处理效率;(2)若某厂每天同时开甲、乙两种污水处理器处理污水共4小时,且甲、乙两种污水处理器处理污水每吨需要的费用分别30元和50元,问该厂每个月(以30天计)需要污水处理费多少?参考答案与试题解析一.选择题(共12小题)1.若分式的值不存在,则x的取值是()A.x=﹣2 B.x≠﹣2 C.x=3 D.x≠3【分析】直接利用分式有意义的条件得出x的值,进而得出答案.【解答】解:∵分式的值不存在,∴2x+4=0,解得:x=﹣2,则x的取值是:﹣2.2.若分式的值等于0,则x的取值是()A.x=0 B.x=3 C.x=﹣3 D.x=3或x=﹣3 【分析】直接利用分式的值为零则分子为零分母不为零,进而得出答案.【解答】解:∵分式的值等于0,∴|x|﹣3=0,2x﹣6≠0,解得:x=﹣3,故选:C.3.下列式子变形,正确的是()A.=B.=﹣C.=D.=【分析】根据分式的基本性质解答.【解答】解:A、原式=,故本选项错误;B、原式=﹣,故本选项正确;C、原式=,故本选项错误;D、原式=,故本选项错误;故选:B.4.下列分式中,是最简分式的是()A.B.C.D.【分析】根据最简分式的标准是分子,分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,然后对每一选项进行整理,即可得出答案.【解答】解:A.=,不符合题意;B.=,不符合题意;C.=,不符合题意;D.是最简分式,符合题意;5.用科学记数法表示:0.00002018是()A.2.018×10﹣5B.2.018×10﹣4C.201.8×10﹣7D.2018×10﹣5【分析】根据科学记数法的形式选择即可.【解答】解:0.00002018=2.018×10﹣5,故选:A.6.计算:()﹣3的结果是()A.﹣B.C.D.﹣【分析】先根据负整数指数幂的定义进行变形,再求出即可.【解答】解:()﹣3=()3=,故选:B.7.如图,图中三角形的个数共有()A.3个B.4个C.5个D.6个【分析】根据三角形的定义,找出图中所有的三角形,数出其个数即可得出结论.【解答】解:图中是三角形的有:△AOC、△BOD、△AOB、△ABC、△ABD.故选:C.8.如图,CD是△ABC的角平分线,∠A=30°,∠B=66°,则∠BDC的度数是()A.96°B.84°C.76°D.72°【分析】根据三角形内角和定理求出∠ACB的度数,再根据CD是△ABC的角平分线,即可求出∠ACD的度数;再根据三角形内角和外角的关系即可求出∠BDC的度数.【解答】解:∵∠A=30°,∠B=66°,∴∠ACB=180°﹣30°﹣66°=84°,∵CD是△ABC的角平分线,∴∠ACD=∠ACB=×84°=42°.∴∠BDC=∠A+∠ACD=30°+42°=72°.故选:D.9.下列语句:①你叫什么名字;②负数的绝对值等于它的相反数;③相等的角是对顶角;④明天下雨吗?属于命题的是()A.①②B.②③C.③④D.①②③④【分析】根据命题是判断性语句,可得答案.【解答】解:①你叫什么名字,没有作出判断,不是命题;②负数的绝对值等于它的相反数,正确,是命题;③相等的角是对顶角,正确,是命题;④明天下雨吗?是疑问句,不是命题,故选:B.10.在△ABC和△DEF中,下列条件不能判断这两个三角形全等的是()A.AB=DE,AC=DF,∠A=∠D B.∠A=∠D,∠B=∠E,AB=DEC.AC=DF,BC=EF,∠B=∠E D.AB=DE,AC=DF,BC=EF【分析】根据题意画出图形,再由全等三角形的判定定理对各选项进行逐一判断即可.【解答】解:如图所示,A、AB=DE,AC=DF,∠A=∠D,符合SAS定理,∴△ABC≌△DEF,故本选项正确;B、∠A=∠D,∠B=∠E,AB=DE,符合ASA定理,∴△ABC≌△DEF,故本选项正确;C、∵AC=DF,BC=EF,∠B=∠E,不符合全等三角形的判定定理,故本选项错误;D、∵AB=DE,AC=DF,BC=EF,符合SSS定理,∴△ABC≌△EFD,故本选项正确.故选:C.11.如图,∠CAB=60°,CD垂直平分AB,垂足为点D,∠CAB的平分线交CD于点E,连接EB,则∠BEC的度数是()A.120°B.110°C.100°D.90°【分析】根据三角形的外角的性质可知:∠BEC=∠B+∠EDB,想办法求出∠B,∠EDB即可解决问题;【解答】解:∵AE平分∠CAB,∠CAB=60°,∴∠EAD=∠CAB=30°,∵CD垂直平分线段AB,∴EA=EB,∠EDB=90°,∴∠B=∠EAD=30°,∴∠BEC=∠EDB+∠B=90°+30°=120°,故选:A.12.如图,∠ADB=∠ACB=90°,AC与BD相交于点O,且OA=OB,下列结论:①AD=BC;②AC=BD;③∠CDA=∠DCB;④CD∥AB,其中正确的有()A.1个B.2个C.3个D.4个【分析】由△ABC≌△BAD(AAS),推出AD=BC,AC=BD,故①②正确,再证明CO=OD,可得∠CDA=∠DCB,故③正确,由∠CDO=∠OAB,可得CD∥AB,故④正确;【解答】解:∵OA=OB,∴∠DAB=∠CBA,∵∠ACB=∠BDA=90°,AB=BA,∴△ABC≌△BAD(AAS),∴AD=BC,AC=BD,故①②正确,∵BC=AD,BO=AO,∴CO=OD,∴∠CDA=∠DCB,故③正确,∵∠COD=∠AOB,∴∠CDO=∠OAB,∴CD∥AB,故④正确,故选:D.二.填空题(共6小题)13.若分式的值为0,则x的值是0 .【分析】分式值为零的条件是分子等于零且分母不等于零.【解答】解:∵分式的值为0,∴x=0.将x=0代入x+1=1≠0.当x=0时,分式分式的值为0.故答案为:0.14.分式,,的最简公分母是12a2b2c.【分析】根据确定最简公分母的方法:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式确定;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:因为三分式中的常数项系数的最小公倍数是12,a的最高次幂是2,b的最高次幂是2,c的最高次幂是1,所以三分式的最简公分母是12a2b2c.故答案为:12a2b2c.15.若3x=10,3y=5,则3x﹣y= 2 .【分析】先根据同底数幂的除法进行变形,再代入求出即可.【解答】解:∵3x=10,3y=5,∴3x﹣y=3x÷3y=10÷5=2,故答案为:2.16.命题“等腰三角形的两个底角相等”的逆命题是两个角相等三角形是等腰三角形.【分析】先找到原命题的题设和结论,再将题设和结论互换,即可而得到原命题的逆命题.【解答】解:因为原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,所以命题“等腰三角形的两个底角相等”的逆命题是“两个角相等三角形是等腰三角形”.17.如图,在△ABC中,AC=BC,∠B=70°,EF是AC边的垂直平分线,垂足为E,交BC 于点F,则∠AFE的度数等于50°.【分析】根据等腰三角形的性质得到∠CAB=∠B=70°,根据三角形的内角和得到∠C =180°﹣∠CAB﹣∠B=40°,根据线段垂直平分线的性质得到CF=AF,EF⊥AC,于是得到结论.【解答】解:∵AC=BC,∠B=70°,∴∠CAB=∠B=70°,∴∠C=180°﹣∠CAB﹣∠B=40°,∵EF是AC边的垂直平分线,∴CF=AF,EF⊥AC,∴∠EAF=∠C=40°,∴∠AFE=90°﹣40°=50°,故答案为:50°.18.已知ab=1,m=+,则﹣m2018的值等于﹣1 .【分析】先利用异分母分式的加减法法则,计算m的值,再求出﹣m2018的值.【解答】解:m=+==∵ab=1,∴m==1∴﹣m2018=﹣12018=﹣1故答案为:﹣1三.解答题(共8小题)19.先约分,再求值:,其中x=﹣2,y=﹣.【分析】先把分子分母因式分解,再约分得到原式=,然后把x、y的值代入计算即可.【解答】解:原式==,当x=﹣2,y=﹣时,原式==.20.计算:(1)•(2)÷(3)()2(4)()3【分析】(1)先分解因式,再根据分式的乘法法则求出即可;(2)先把除法变成乘法,再根据分式的乘法法则求出即可;(3)根据分式的乘方法则求出即可;(4)根据分式的乘方法则求出即可.【解答】解:(1)•=•=﹣2x(x+1)=﹣2x2﹣2x;(2)原式=•=;(3)()2=;(4)()3=﹣=﹣.21.计算(1)()3•()2•()2(2)()4•()3÷()5【分析】(1)先算乘方,再算乘法即可;(2)先算乘方,把除法变成乘法,再算乘法即可.【解答】解:(1)原式=••=;(2)原式=••=﹣.22.计算:(1)+﹣(2)﹣﹣【分析】(1)直接通分进而利用分时加减运算法则计算得出答案;(2)直接通分进而利用分时加减运算法则计算得出答案.【解答】解:(1)+﹣=+﹣=;(2)﹣﹣=﹣﹣==﹣.23.如图,已知AB∥ED,CD∥BF,AE=CF.求证:AB=ED.【分析】根据平行线性质得到∠A=∠DEC,∠C=∠AFB,根据全等三角形的性质即可得到结论.【解答】证明:∵AB∥ED,CD∥BF,∴∠A=∠DEC,∠C=∠AFB,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ABF与△EDC中,∴△ABF≌△EDC,(ASA),∴AB=ED.24.如图,AB=CD,AD=BC,E、F分别是AC上的点,且AE=CF(1)求证:AB∥CD;(2)求证:BE=DF.【分析】(1)由全等三角形的判定定理SSS证得△ABD≌△CDB,则该全等三角形的对应角相等,即∠ABD=∠CDB,故AB∥CD;(2)欲证明BE=DF,只需推知△ABE≌△CDF即可.【解答】证明:(1)在△ABD与△CDB中,,∴△ABD≌△CDB(SSS),∴∠ABD=∠CDB,∴AB∥CD;(2)由(1)知,AB∥CD,∴∠BAE=∠DCF,又AB=CD,AE=CF,∴△ABE≌△CDF(SAS),∴BE=DF.25.如图,已知AD∥BC,点E是CD上一点,AE平分∠BAD,BF平分∠ABC,延长BE交AD 的延长线于点F(1)求证:△ABE≌△AFE;(2)若AD=2,BC=6,求AB的长.【分析】(1)根据角平分线的定义可得∠BAE=∠EAF,∠ABF=∠EBC,再根据两直线平行,内错角相等可得∠EBC=∠F,然后求出∠ABF=∠F,再利用“角角边”证明△ABE 和△AFE全等即可;(2)根据全等三角形对应边相等可得BE=FE,然后利用“角边角”证明△BCE和△FDE 全等,根据全等三角形对应边相等可得BC=DF,然后根据AD+BC整理即可得证.【解答】证明:(1)∵AE、BE分别平分∠DAB、∠CBA,∴∠BAE=∠EAF,∠ABF=∠EBC,∵AD∥BC,∴∠EBC=∠F,∠ABF=∠F,在△ABE和△AFE中,,∴△ABE≌△AFE(AAS);(2)∵△ABE≌△AFE,∴BE=EF,在△BCE和△FDE中,,∴△BCE≌△FDE(ASA),∴BC=DF,∴AD+BC=AD+DF=AF=AB,即AD+BC=AB.∵AD=2,BC=6,∴AB=8.26.甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用的时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水.(1)分别求甲、乙两种污水处理器的污水处理效率;(2)若某厂每天同时开甲、乙两种污水处理器处理污水共4小时,且甲、乙两种污水处理器处理污水每吨需要的费用分别30元和50元,问该厂每个月(以30天计)需要污水处理费多少?【分析】(1)首先设甲种污水处理器每小时处理污水x吨,则设乙种污水处理器每小时处理污水(x+20)吨,根据题意可得等量关系:甲种污水处理器处理25吨的污水=乙种污水处理器处理35吨的污水所用时间,根据等量关系,列出方程,再解即可.(2)根据题意列出计算式解答即可.【解答】解:(1)设甲种污水处理器每小时处理污水x吨,由题意得,,解之得,x=50,经检验,x=50是原方程的解,所以x=50,x+20=70,答,甲种污水处理器每小时处理污水50吨,乙种污水处理器每小时处理污水70吨.(2)30×4×50×30+30×4×70×50=180000+420000=600000(元),答:该厂每个月(以30天计)需要污水处理费600000元.。

陕西省西安市 八年级(上)期中数学试卷-(含答案)

陕西省西安市  八年级(上)期中数学试卷-(含答案)

八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.的算术平方根为()A. 9B.C. 3D.2.下列各数是有理数的是()A. B. C. D.3.若点A(-2,m)在正比例函数y=-x的图象上,则m的值是()A. B. C. 1 D.4.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()A. B. C. D.5.一个数的平方根等于它本身的数是()A. B. 0 C. D. 或06.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A. B. C. D.7.若点A(m,2)在y轴上,则点B(m-1,m+1)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限8.在平面直角坐标系中,过点(-2,3)的直线l经过一、二、三象限,若点(0,a),(-1,b),(c,-1)都在直线l上,则下列判断正确的是()A. B. C. D.9.若式子+(k-1)0有意义,则一次函数y=(k-1)x+1-k的图象可能是()A. B.C. D.10.如图,在平面直角坐标系上有个点A(-1,0),点A第1次向上跳动一个单位至点A1(-1,1),紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点A第2015次跳动至点A2015的坐标是()A. B. C. D.二、填空题(本大题共6小题,共18.0分)11.已知点A(2,1),线段AB∥x轴,且AB=3,则点B的坐标为______.12.若点A(m+2,3)与点B(-4,n+5)关于x轴对称,则m+n= ______ .13.如果点P(m+3,m+1)在第二象限的角平分线上,则点P的坐标为______.14.若一次函数y=(3-k)x-2k2+18的图象经过原点,则k= ______ .15.已知a是小于的整数,且,那么a的所有可能值是______ .16.如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC上,以AD为折痕△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是______.三、解答题(本大题共8小题,共64.0分)17.计算(1)-(1-)2(2)(2-)0-3-(-)-1-|-2|18.解方程组:(1)(2).19.已知y=+9,求代数式的值.20.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(-4,5),(-1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A1B1C1;(3)写出点B1的坐标;(4)求△ABC的面积.21.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),点D是OA的中点,点E在线段AB上,当△CDE的周长最小时,求点E的坐标.22.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶时间x(小时)之间的函数关系如图所示,根据图象提供的信息,解决下列问题:(1)A,B两城相距多少千米?(2)分别求甲、乙两车离开A城的距离y与x的关系式.(3)求乙车出发后几小时追上甲车?(4)求甲车出发几小时的时候,甲、乙两车相距50千米?23.量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和4张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?(2)由于原材料价格上涨,每张餐桌和餐椅的进价都上涨了10元,按照(1)中获得最大利润的方案购进餐桌和餐椅,在调整成套销售量而不改变销售价格的情况下,实际全部售出后,所得利润比(1)中的最大利润少了2250元.请问本次成套的销售量为多少?24.如图,已知一次函数y=-x+3的图象与x轴、y轴分别交于点A、B.(1)求点A,B两点的坐标.(2)点M为一次函数y=x+3的图象上一点,若△ABM与△ABO的面积相等,求点M的坐标.(3)点Q为y轴上的一点,若△ABQ为等腰三角形,请直接写出Q点坐标.答案和解析1.【答案】C【解析】解:∵=9,32=9∴的算术平方根为3.故选:C.直接根据算术平方根的定义进行解答即可.本题考查的是算术平方根的定义,即一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.2.【答案】A【解析】解:3=3×3=9,故A符合题意;故选:A.根据有理数的定义,可得答案.本题考查了实数,无理数是无限不循环小数,有理数是有限小数或无限不循环小数.3.【答案】C【解析】解:∵点A(-2,m)在正比例函数y=-x的图象上,∴m=-×(-2)=1,故选:C.利用待定系数法代入正比例函数y=-x可得m的值.此题主要考查了一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能满足解析式.4.【答案】D【解析】解:由题意可得出方程组,解得:,那么此一次函数的解析式为:y=-x+10.故选:D.设一次函数解析式为y=kx+b,根据两直线平行问题得到k=-1,然后把(8,2)代入y=-x+b求出b,即可得到一次函数解析式.考查了两条直线平行或相交的问题,由一次函数的一般表达式,根据已知条件,列出方程组,求出未知数的值从而求得其解析式;求直线平移后的解析式时要注意平移时k的值不变,只有b发生变化.5.【答案】B【解析】解:∵02=0,∴0的平方根是0.∴平方根等于它本身的数是0.故选B.根据平方根的定义即可求出平方根等于它本身的数.本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.6.【答案】A【解析】解:∵a+b=14∴(a+b)2=196∴2ab=196-(a2+b2)=96∴ab=24.故选:A.要求Rt△ABC的面积,只需求出两条直角边的乘积.根据勾股定理,得a2+b2=c2=100.根据勾股定理就可以求出ab的值,进而得到三角形的面积.这里不要去分别求a,b的值,熟练运用完全平方公式的变形和勾股定理.7.【答案】B【解析】解:∵点A(m,2)在y轴上,∴m=0,∴点B(m-1,m+1)为(-1,1),∴点B在第二象限.故选B.根据y轴上点的横坐标为0判断出m=0,然后求出点B的坐标,再根据各象限内点的坐标特征解答.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8.【答案】D【解析】解:设一次函数的解析式为y=kx+t(k≠0),∵直线l过点(-2,3).点(0,a),(-1,b),(c,-1),∴斜率k===,即k==b-3=,∵直线l经过一、二、三象限,∴k>0,∴a>3,b>3,c<-2.故选D.设一次函数的解析式为y=kx+b(k≠0),根据直线l过点(-2,3).点(0,a),(-1,b),(c,-1)得出斜率k的表达式,再根据经过一、二、三象限判断出k的符号,由此即可得出结论.本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.9.【答案】B【解析】解:∵式子+(k-1)0有意义,∴k-1≥0,且k-1≠0,解得k>1,∴k-1>0,1-k<0,∴一次函数y=(k-1)x+1-k的图象如图所示:故选:B.首先根据二次根式中的被开方数是非负数,以及a0=1(a≠0),判断出k的取值范围,然后判断出k-1、1-k的正负,再根据一次函数的图象与系数的关系,判断出一次函数y=(k-1)x+1-k的图象可能是哪个即可.此题主要考查了一次函数的图象与系数的关系,零指数幂定义以及二次根式有意义的条件;解答此题的关键是要明确:当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.10.【答案】A【解析】解:设第n次跳动至点A n,观察发现:A(-1,0),A1(-1,1),A2(1,1),A3(1,2),A4(-2,2),A5(-2,3),A6(2,3),A7(2,4),A8(-3,4),A9(-3,5),…,∴A4n(-n-1,2n),A4n+1(-n-1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数).∵2015=503×4+3,∴A2015(503+1,503×2+2),即(504,1008).故选A.设第n次跳动至点A n,根据部分点A n坐标的变化找出变化规律“A4n(-n-1,2n),A4n+1(-n-1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数)”,依此规律结合2015=503×4+3即可得出点A2015的坐标.本题考查了规律型中点的坐标,根据部分点A n坐标的变化找出变化规律“A4n (-n-1,2n),A4n+1(-n-1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数)”是解题的关键.11.【答案】(-1,1)或(5,1)【解析】解:∵AB∥x轴,点A的坐标为(2,1),∴A、B两点纵坐标都是1,又∵AB=3,∴当B点在A点左边时,B的坐标为(-1,1),当B点在A点右边时,B的坐标为(5,1).故答案为:(-1,1)或(5,1).AB∥x轴,可得A、B两点纵坐标相等,由AB的长为3,分B点在A点左边和右边,分别求B点坐标即可.本题考查了坐标与图形的性质,解决本题的关键是进行分类讨论.12.【答案】-14【解析】解:由题意,得m+2=-4,n+5=-3,解得m=-6,n=-8.m+n=-14.故答案为:-14.根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得m、n 的值,再计算m+n即可.本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.13.【答案】(1,-1)【解析】【分析】本题考查了点的坐标,利用第二象限角平分线上的点的横坐标与纵坐标互为相反数得出方程是解题关键.根据第二象限角平分线上的点的横坐标与纵坐标互为相反数,可得答案.【解答】解:由题意,得m+3+m+1=0,解得m=-2,点P的坐标为(1,-1),故答案为(1,-1).14.【答案】-3【解析】解:∵一次函数y=(3-k)x-2k2+18的图象经过原点,∴0=-2k2+18,且k-3≠0,解得k=3或k=-3,故答案为-3.把原点坐标代入函数解析式可求得k的值.本题主要考查函数图象上的点的坐标与函数解析式的关系,掌握函数图象上的点的坐标满足函数解析式是解题的关键.15.【答案】5,4,3,2【解析】解:∵4<5<9,∴2<<3,∴5<3+<9,∵a是小于的整数,∴a≤5,∵=a-2,∴2-a≤0,解得a≥2,∴2≤a≤5,∴a的所有可能值是5,4,3,2.故答案为:5,4,3,2.先根据题意估算出3+的取值范围,再根据得出a的取值范围,进而可得出结论.本题考查的是估算无理数的大小,先根据题意估算出3+的取值范围是解答此题的关键.16.【答案】2或5【解析】解:∵Rt△ABC纸片中,∠C=90°,AC=6,BC=8,∴AB=10,∵以AD为折痕△ABD折叠得到△AB′D,∴BD=DB′,AB′=AB=10.如图1所示:当∠B′DE=90°时,过点B′作B′F⊥AF,垂足为F.设BD=DB′=x,则AF=6+x,FB′=8-x.在Rt△AFB′中,由勾股定理得:AB′2=AF2+FB′2,即(6+x)2+(8-x)2=102.解得:x1=2,x2=0(舍去).∴BD=2.如图2所示:当∠B′ED=90°时,C与点E重合.∵AB′=10,AC=6,∴B′E=4.设BD=DB′=x,则CD=8-x.在Rt△′BDE中,DB′2=DE2+B′E2,即x2=(8-x)2+42.解得:x=5.∴BD=5.综上所述,BD的长为2或5.故答案为:2或5.先依据勾股定理求得AB的长,然后由翻折的性质可知:AB′=10,DB=DB′,接下来分为∠B′DE=90°和∠B′ED=90°,两种情况画出图形,设DB=DB′=x,然后依据勾股定理列出关于x的方程求解即可.本题主要考查的是翻折的性质、勾股定理的应用,根据勾股定理列出关于x 的方程是解题的关键.17.【答案】解:(1)原式=-(4-2)=6-4+2=2+2;(2)原式=1+4+4-(2-)=1+4+4-2+=7+.【解析】(1)先算乘方,再算加减即可;(2)先根据0指数幂及负整数指数幂的计算法则、数的开方法则及绝对值的性质分别计算出各数,再根据实数的加减法则进行计算即可.本题考查了二次根式的混合运算,是二次根式乘法、除法及加减法运算法则的综合运用.学习二次根式的混合运算应注意:与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.18.【答案】解:(1),由②得:3x-2y=6③,①-③得:-3y=-3,解得:y=1,把y=1代入①得:x=,则原方程组的解是:.(2)①②③,①+②得:y=8④,③-②得:x-y=-2⑤,④+⑤得:x=6,把x=6,y=8代入①得:z=3,则原方程组的解为:.【解析】(1)先把②去掉分母,再①-③求出y的值,然后代入①求出x的值,从而得出方程组的解;(2)先①+②求出y的值,再③-②得出x-y=-2,求出x的值,然后把x、y的值代入①求出z的值,即可得出方程组的解.本题考查了解二元一次方程组和三元一次方程组,解三元一次方程组先转化为二元一次方程组,求出二元一次方程组的解,再求出第三个未知数的值.19.【答案】解:由题意可得,x-4≥0,4-x≥0,解得,x=4,则y=9,则==2-3=-1.【解析】根据二次根式中的被开方数必须是非负数列出不等式,求出x的值,代入原式求出y的值,代入代数式根据算术平方根的概念计算即可.本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.20.【答案】解:(1)根据题意可作出如图所示的坐标系;(2)如图,△A1B1C1即为所求;(3)由图可知,B1(2,1);(4)S△ABC=3×4-×2×4-×2×1-×2×3=12-4-1-3=4.【解析】(1)根据A点坐标建立平面直角坐标系即可;(2)作出各点关于y轴的对称点,再顺次连接即可;(3)根据点B1在坐标系中的位置写出其坐标即可;(4)利用矩形的面积减去三个顶点上三角形的面积即可.本题考查的是作图-轴对称变换,熟知轴对称的性质是解答此题的关键.21.【答案】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=-x+4,∴x=3时,y=,∴点E坐标(3,).【解析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.本题考查矩形的性质、坐标与图形的性质、轴对称-最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.22.【答案】解:(1)由图可知,A、B两城相距300千米;(2)设甲对应的函数解析式为:y=kx,300=5k解得,k=60,即甲对应的函数解析式为:y=60x,设乙对应的函数解析式为y=mx+n,,解得,,即乙对应的函数解析式为y=100x-100,(3)解,解得2.5-1=1.5,即乙车出发后1.5小时追上甲车;(4)由题意可得,当乙出发前甲、乙两车相距50千米,则50=60x,得x=,当乙出发后到乙到达终点的过程中,则60x-(100x-100)=±50,解得,x=1.25或x=3.75,当乙到达终点后甲、乙两车相距50千米,则300-50=60x,得x=,即小时、1.25小时、3.75小时、小时时,甲、乙两车相距50千米.【解析】(1)根据函数图象可以解答本题;(2)根据图象中的信息分别求出甲乙两车对应的函数解析式,(3)根据(2)甲乙两车对应的函数解析式,然后令它们相等即可解答本题;(4)根据(2)中的函数解析式,可知它们相遇前和相遇后两种情况相距50千米,从而可以解答本题.本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23.【答案】解:(1)设购进餐桌x张,则购进餐椅(5x+20)张,销售利润为W元.由题意得:x+5x+20≤200,解得:x≤30.∵a=150,∴餐桌的进价为150元/张,餐椅的进价为40元/张.依题意可知:W=x•(500-150-4×40)+x•(270-150)+(5x+20-x•4)•(70-40)=245x+600,∵k=245>0,∴W关于x的函数单调递增,∴当x=30时,W取最大值,最大值为7950.故购进餐桌30张、餐椅170张时,才能获得最大利润,最大利润是7950元.(2)涨价后每张餐桌的进价为160元,每张餐椅的进价为50元,设本次成套销售量为m套.依题意得:(500-160-4×50)m+(30-m)×(270-160)+(170-4m)×(70-50)=7950-2250,即6700-50m=5700,解得:m=20.答:本次成套的销售量为20套.【解析】(1)设购进餐桌x张,餐椅(5x+20)张,销售利润为W元.根据购进总数量不超过200张,得出关于x的一元一次不等式,解不等式即可得出x的取值范围,再根据“总利润=成套销售的利润+零售餐桌的利润+零售餐椅的利润”即可得出W关于x的一次函数,根据一次函数的性质即可解决最值问题;(2)设本次成套销售量为m套,先算出涨价后每张餐桌及餐椅的进价,再根据利润间的关系找出关于m的一元一次方程,解方程即可得出结论.本题考查了一次函数的应用、解一元一次不等式、一次函数的性质及解一元一次方程,解题的关键是:(1)根据数量关系找出W关于x的函数解析式;(2)根据数量关系找出关于m的一元一次方程.本题属于中档题,难度不大,但较繁琐,解决该题型题目时,根据数量关系找出函数关系式(方程或方程组)是关键.24.【答案】解:(1)对于直线y=-x+3,令x=0得到y=3,令=0得到x=6,∴A(6,0),B(0,3).(2)如图1中,作OM∥AB交直线y=x+3于M,∵OM∥AB,∴S△ABM=S△ABO,∵直线AB的解析式为y=-x+3,∴直线OM的解析式为y=-x,由,解得,∴点M的坐标为(-2,1).当BM=BM′时,△ABM′与△ABM的面积相等,此时M′(2,5),∴满足条件的点M的坐标为(-2,1)或(2,5).(3)如图2中,在Rt△ABO中,AB==3,当BA=BQ时,点Q的坐标为(0,3+3)或(0,3-3),当AB=AQ时,点Q的坐标为(0,-3),当QB=QA时,设QA=QB=a,在Rt△AOQ中,∵OA2+OQ2=AQ2,∴(a-3)2+62=a2,解得a=,∴OQ=BQ-OB=,∴点Q的坐标为(0,-).综上所述,满足条件的点Q的坐标为(0,3+3)或(0,3-3)或(0,-3)或(0,-).【解析】(1)对于直线y=-x+3,令x=0得到y=3,令=0得到x=6,可得A(6,0),B(0,3).(2)如图1中,作OM∥AB交直线y=x+3于M,求出直线OM的解析式,利用方程组可得点M的坐标,再利用中线的性质求出M′的坐标即可.(3)分种情形分别讨论即可解决问题.本题考查一次函数综合题、三角形的面积、平行线的性质、等腰三角形的判定和性质等知识,今天的关键是灵活运用所学知识,学会用分类讨论的思想思考问题,学会构建一次函数,利用方程组确定两个函数的交点坐标,属于中考压轴题.。

北师大版初中数学八年级上册期中试卷(2019-2020学年陕西省西安市碑林区西北工大附中

北师大版初中数学八年级上册期中试卷(2019-2020学年陕西省西安市碑林区西北工大附中

2019-2020学年陕西省西安市碑林区西北工大附中八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.(3分)5的平方根是()A.B.﹣C.±D.±252.(3分)下列各组数为边长的三角形中,能够成直角三角形的是()A.2,3,4B.5,12,13C.D.,,3.(3分)下列计算结果正确的是()A.+=B.3﹣=3C.2×3=6D.÷=2 4.(3分)在平面直角坐标系中,若点A(a﹣1,3+a)在y轴上,则点A的坐标为()A.(0,﹣4)B.(0,﹣2)C.(0,4)D.(4,0)5.(3分)若点P(m,n)满足正比例函数y=﹣x,则下列各式正确的是()A.2m+3n=0B.2m﹣3n=0C.3m+2n=0D.3m﹣2n=0 6.(3分)如图,某自动感应门的正上方A处装着一个感应器,离地AB=2.5米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生CD正对门,缓慢走到离门1.2米的地方时(BC=1.2米),感应门自动打开,则人头顶离感应器的距离AD等于()A.1.2米B.1.5米C.2.0米D.2.5米7.(3分)已知点(x1,y1),(x2,y2)在一次函数y=kx+k的图象上,当x1<x2时,y1>y2,则一次函数y=kx+k的图象大致是()A.B.C.D.8.(3分)一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动.快车离乙地的路程y1(km)与行驶的时间x(h)之间的函数关系,如图中线段AB所示,慢车离乙地的路程y2(km)与行驶的时间x(h)之间的函数关系,如图中线段OC所示,则快、慢车相距225km时,行驶的时间x是()A.1h B.3h C.1h或3h D.2h或4h9.(3分)如图是放在地面上的一个长方体盒子,其中AB=9cm,BC=6cm,BF=5cm,点M在棱AB上,且AM=3cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为()A.10cm B.cm C.(6+)cm D.9cm10.(3分)如图,在平面直角坐标系中,一次函数y=2x﹣2的图象分别交x、y轴于点A、B,直线BC与轴正半轴交于点C,若∠ABC=45°,则直线BC的函数表达式是()A.y=3x﹣2B.y=x﹣2C.y=x﹣2D.y=﹣x﹣2二、填空题(共6小题,每小题3分,计18分)11.(3分)在实数中,无理数是.12.(3分)如果点A(x,y)满足+|y﹣3|=0,则点A在第象限.13.(3分)若直线l经过点(0,4),且与直线y=3x+1平行,则直线l的表达式为.14.(3分)已知关于x、y的方程x a﹣3﹣2y a+b﹣3=5是二元一次方程,则2a﹣b的立方根是.15.(3分)如图,长方形纸片ABCD中,AB=3,AD=9,将此长方形纸片折叠,使点D 与点B重合,折痕为EF,求△BEF的面积为:.16.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,点E是△ABC内一点,且∠BEC=90°,连接AE,则线段AE的最小值为.三、解答题(共7小题,计52分,解答要写出过程)17.(6分)计算:(1);(2).18.解下列方程组:(1);(2).19.(6分)△ABC在平面直角坐标系中如图所示.(1)作出△ABC关于y轴对称的△A1B1C1,并写出点B1的坐标.(2)作出△ABC向右平移6个单位后的△A2B2C2,并写出A2的坐标.(3)作出△A1B1C1和△A2B2C2的对称轴l,并写出l与x轴的交点坐标.20.(7分)如图,在四边形ABCD中,AB=AD,∠BAD=∠ACD=90°,BE⊥AC于E.(1)求证:BE=AC;(2)若AB=10,CD=6,求四边形ABCD的面积.21.(8分)每年“双11”天猫商城都会推出各种优惠活动进行促销,今年,王阿姨在“双11”到来之前准备在两家天猫店铺中选择一家购买原价均为1000元/条的被子2条和原价均为600元/个的颈椎枕若干个,已知两家店铺在活动期间分别给子以下优惠;A店铺:“双11”当天购买所有商品可以享受8折优惠;B店铺:买2条被子,可赠送1个颈椎枕.同时“双11”当天下单,还可立减160元;设购买颈椎枕x(个)若王阿姨在“双11”当天下单,A,B两个店铺优惠后所付金额分别为y A(元)、y B(元).(1)试分别表示y A、y B与x的函数关系式;(2)王阿姨准备在“双11”当天购买4个颈椎枕,通过计算说明在哪家店铺购买更省钱?22.(9分)如图,在平面直角坐标系中,过点B(0,4)的直线AB与直线OC相交于点C (4,).(1)分别求出直线OC、直线AB的表达式;(2)在直线BC上是否存在一点P,使得S△OCP=S△OCB?若存在,求出此时点P的坐标,若不存在,请说明理由.23.(10分)在平面直角坐标系中,直线y=﹣x+3分别与x轴,y轴交于A,B两点,C 为AB中点.(1)如图1,点A的坐标为,点B的坐标为,∠OAB=;(2)如图2,若D是经过点A,且与y轴平行的直线上的一动点,求OD+CD的最小值;(3)如图3,M是线段AB上一动点,以OM为边在OM下方作等边△OMN,连接CN,求ON+CN的最小值.2019-2020学年陕西省西安市碑林区西北工大附中八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.(3分)5的平方根是()A.B.﹣C.±D.±25【分析】利用平方根定义即可得到结果.【解答】解:5的平方根是±,故选:C.【点评】此题考查了平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.熟练掌握定义是解本题的关键.2.(3分)下列各组数为边长的三角形中,能够成直角三角形的是()A.2,3,4B.5,12,13C.D.,,【分析】根据勾股定理的逆定理,只需验证两小边的平方和是否等于最长边的平方即可.【解答】解:A、∵22+32=13≠42,∴不能构成直角三角形,故本选项不符合题意;B、∵52+122=169=132,∴能够构成直角三角形,故本选项符合题意;C、∵()2+()2=7≠()2,∴不能构成直角三角形,故本选项不符合题意;D、∵()2+()2=≠()2,∴不能构成直角三角形,故本选项不符合题意.故选:B.【点评】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.(3分)下列计算结果正确的是()A.+=B.3﹣=3C.2×3=6D.÷=2【分析】根据二次根式的运算法则即可求出答案.【解答】解:(A)与不是同类二次根式,故不能合并,故A不正确.(B)原式=2,故B错误.(C)原式=6×2=12,故C错误.(D)原式==2,故D正确.故选:D.【点评】本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.4.(3分)在平面直角坐标系中,若点A(a﹣1,3+a)在y轴上,则点A的坐标为()A.(0,﹣4)B.(0,﹣2)C.(0,4)D.(4,0)【分析】首先由已知点A(a﹣1,3+a)在y轴上,则横坐标为0,即a﹣1=0,求出a,再代入3+a,求出纵坐标.【解答】解:已知点A(a﹣1,3+a)在y轴上,∴a﹣1=0,解得a=1,∴3+a=3+1=4,所以点A的坐标为(0,4).故选:C.【点评】此题考查的知识点是点的坐标,关键是由已知明确横坐标为0,求出a,再求出纵坐标.5.(3分)若点P(m,n)满足正比例函数y=﹣x,则下列各式正确的是()A.2m+3n=0B.2m﹣3n=0C.3m+2n=0D.3m﹣2n=0【分析】将点P的坐标代入解析式后变形即可确定正确的选项.【解答】解:∵点P(m,n)满足正比例函数y=﹣x,∴n=﹣m,两边同时乘以3得:3n=﹣2m,移项得:3n+2m=0,故选:A.【点评】本题考查了正比例函数的性质,解题的关键是代入后正确的变形,难度不大.6.(3分)如图,某自动感应门的正上方A处装着一个感应器,离地AB=2.5米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生CD正对门,缓慢走到离门1.2米的地方时(BC=1.2米),感应门自动打开,则人头顶离感应器的距离AD等于()A.1.2米B.1.5米C.2.0米D.2.5米【分析】过点D作DE⊥AB于点E,构造Rt△ADE,利用勾股定理求得AD的长度即可.【解答】解:如图,过点D作DE⊥AB于点E,∵AB=2.5米,BE=CD=1.6米,ED=BC=1.2米,∴AE=AB﹣BE=2.5﹣1.6=0.9(米).在Rt△ADE中,由勾股定理得到:AD===1.5(米)故选:B.【点评】本题考查了勾股定理的应用,解题的关键是作出辅助线,构造直角三角形,利用勾股定理求得线段AD的长度.7.(3分)已知点(x1,y1),(x2,y2)在一次函数y=kx+k的图象上,当x1<x2时,y1>y2,则一次函数y=kx+k的图象大致是()A.B.C.D.【分析】由当x1<x2时,y1>y2可得出y随x的增大而减小,利用一次函数的性质可得出k<0,再利用一次函数图象与系数的关系可得出一次函数y=kx+k的图象经过第二、三、四象限,对照四个选项即可得出结论.【解答】解:∵当x1<x2时,y1>y2,∴y随x的增大而减小,∴k<0,∴一次函数y=kx+k的图象经过第二、三、四象限.故选:D.【点评】本题考查了一次函数的性质以及一次函数图象与系数的关系,牢记“k<0,b<0⇔y=kx+b的图象在二、三、四象限”是解题的关键.8.(3分)一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动.快车离乙地的路程y1(km)与行驶的时间x(h)之间的函数关系,如图中线段AB所示,慢车离乙地的路程y2(km)与行驶的时间x(h)之间的函数关系,如图中线段OC所示,则快、慢车相距225km时,行驶的时间x是()A.1h B.3h C.1h或3h D.2h或4h【分析】根据题意结合图象可分别求出快车与慢车的速度,再根据题意列方程解答即可.【解答】解:由题意可知,甲乙两地的距离为450千米,快车的速度为:450÷3=150(km/h),慢车的速度为:450÷6=75(km/h),由题意得:(150+75)x=450﹣225或75x=225,解得x=1或3.故选:C.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.9.(3分)如图是放在地面上的一个长方体盒子,其中AB=9cm,BC=6cm,BF=5cm,点M在棱AB上,且AM=3cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为()A.10cm B.cm C.(6+)cm D.9cm【分析】利用平面展开图有两种情况,画出图形利用勾股定理求出MN的长即可.【解答】解:如图1,∵AB=9cm,BC=6cm,BF=5cm,∴BM=9﹣3=6,BN=5+3=8,∴MN==10;如图2,∵AB=9cm,BC=GF=6cm,BF=5cm,∴PM=9﹣3+3=9,NP=5,∴MN==,∵10<,∴蚂蚁沿长方体表面爬到米粒处的最短距离为10.故选:A.【点评】此题主要考查了平面展开图的最短路径问题和勾股定理的应用,利用展开图有两种情况分析得出是解题关键.10.(3分)如图,在平面直角坐标系中,一次函数y=2x﹣2的图象分别交x、y轴于点A、B,直线BC与轴正半轴交于点C,若∠ABC=45°,则直线BC的函数表达式是()A.y=3x﹣2B.y=x﹣2C.y=x﹣2D.y=﹣x﹣2【分析】根据已知条件得到A(1,0),B(0,﹣2),求得OA=1,OB=2,过A作AF ⊥AB交BC于F,过F作FE⊥x轴于E,得到AB=AF,根据全等三角形的性质得到AE =OB=1,EF=OA=1,求得F(3,﹣1),设直线BC的函数表达式为:y=kx+b,解方程组即可得到结论.【解答】解:∵一次函数y=2x﹣2的图象分别交x、y轴于点A、B,∴令x=0,得y=﹣2,令y=0,则x=1,∴A(1,0),B(0,﹣2),∴OA=1,OB=2,如图,过A作AF⊥AB交BC于F,过F作FE⊥x轴于E,∵∠ABC=45°,∴△ABF是等腰直角三角形,∴AB=AF,∵∠OAB+∠ABO=∠OAB+∠EAF=90°,∴∠ABO=∠EAF,∴△ABO≌△F AE(AAS),∴AE=OB=2,EF=OA=1,∴F(3,﹣1),设直线BC的函数表达式为:y=kx+b,,∴,∴直线BC的函数表达式为:y=x﹣2,故选:B.【点评】本题考查了一次函数图象与几何变换,待定系数法求函数的解析式,全等三角形的判定和性质,正确的作出辅助线是解题的关键.二、填空题(共6小题,每小题3分,计18分)11.(3分)在实数中,无理数是.【分析】根据有理数包括整数和分数,无理数包括无限不循环小数和开方开不尽的数,找出其中无理数即可解答.【解答】解:0,,是整数,属于有理数;是分数,属于有理数;3.14是有限小数,属于有理数;无理数有.故答案为:.【点评】本题主要考查了无理数,掌握无理数包括无限不循环小数和开方开不尽的数,能快速准确的找出无理数.12.(3分)如果点A(x,y)满足+|y﹣3|=0,则点A在第二象限.【分析】直接利用非负数的性质得出x,y的值,再利用点的坐标特点得出答案.【解答】解:∵+|y﹣3|=0,∴x+2=0,y﹣3=0,解得:x=﹣2,y=3,故A(﹣2,3)在第二象限.故答案为:二.【点评】此题主要考查了非负数的性质以及点的坐标,正确得出x,y的值是解题关键.13.(3分)若直线l经过点(0,4),且与直线y=3x+1平行,则直线l的表达式为y=3x+4.【分析】根据两平行直线的解析式的k值相等求出k,再把经过的点的坐标代入函数解析式计算求出b,从而得解.【解答】解:设直线l的函数解析式为一次函数y=kx+b,∵它的图象平行于直线y=3x+1,∴k=3,∵直线l经过点(0,4),∴b=4,∴这个一次函数的解析式为y=3x+4.故答案为:y=3x+4.【点评】本题考查了两直线平行的问题,熟记两平行直线的解析式的k值相等是解题的关键.14.(3分)已知关于x、y的方程x a﹣3﹣2y a+b﹣3=5是二元一次方程,则2a﹣b的立方根是2.【分析】根据二元一次方程的定义,可得x和y的指数分别都为1,列关于a、b的方程组,再求出a和b的值,代入可得到2a﹣b的值,最后根据立方根的定义可得结果.【解答】解:由题意,得,解得,∴2a﹣b=2×4﹣0=8,∵,∴2a﹣b的立方根是2.故答案为:2.【点评】本题考查了立方根以及二元一次方程的定义,二元一次方程必须符合以下三个条件:方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程.15.(3分)如图,长方形纸片ABCD中,AB=3,AD=9,将此长方形纸片折叠,使点D与点B重合,折痕为EF,求△BEF的面积为:7.5.【分析】由将此长方形纸片折叠,使点D与点B重合,折痕为EF,易得△BEF是等腰三角形,即BE=BF=DE,然后设BF=x,由勾股定理得方程32+(9﹣x)2=x2,继而求得答案.【解答】解:∵长方形纸片ABCD中,AD∥BC,∴∠DEF=∠BFE,∵将此长方形纸片折叠,使点D与点B重合,折痕为EF,∴BE=DE,∠DEF=∠BEF,∴∠BEF=∠BFE,∴BE=BF,设BF=x,则BE=DE=BF=x,∵AB=3,AD=9,∴AE=AD﹣DE=x﹣9,在Rt△ABE中,AB2+AE2=BE2,∴32+(9﹣x)2=x2,解得:x=5,∴S△BEF=BF•AB=×5×3=7.5.故答案为:7.5.【点评】此题考查了折叠的性质、矩形的性质以及勾股定理的应用.注意利用方程思想求解是关键.16.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,点E是△ABC内一点,且∠BEC=90°,连接AE,则线段AE的最小值为﹣2.【分析】找到BC的中点D,连结AD交BC为直径的圆于E,AE的长即为所求中点线段AE的最小值,先根据直角三角形斜边上的中线的性质可求DE,再根据勾股定理可求AD,再相减即可求解.【解答】解:找到BC的中点D,连结AD交BC为直径的圆于E,在Rt△ABC中,∠ABC=90°,BC=4,∴BD=DE=BC=2,在Rt△ABD中,∠ABD=90°,AB=3,BD=2,∴AD===,∴DE=BC=2,∴线段AE的最小值为﹣2.故答案为:﹣2.【点评】考查了勾股定理,直角三角形斜边上的中线的性质,关键是理解找到BC的中点D,连结AD交BC为直径的圆于E,AE的长即为所求中点线段AE的最小值.三、解答题(共7小题,计52分,解答要写出过程)17.(6分)计算:(1);(2).【分析】(1)首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.(2)应用乘法分配律,求出算式的值是多少即可.【解答】解:(1)=2﹣3+4﹣1﹣3=2﹣3.(2)=5+10﹣4=5+6.【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.解下列方程组:(1);(2).【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),把①代入②得:x+2x=6,解得:x=2,把x=2代入①得:y=4,则方程组的解为;(2),①×4+②得:7x=7,解得:x=1,把x=1代入①得:y=0,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.(6分)△ABC在平面直角坐标系中如图所示.(1)作出△ABC关于y轴对称的△A1B1C1,并写出点B1的坐标(2,2).(2)作出△ABC向右平移6个单位后的△A2B2C2,并写出A2的坐标(6,4).(3)作出△A1B1C1和△A2B2C2的对称轴l,并写出l与x轴的交点坐标(3,0).【分析】(1)利用轴对称的性质,即可得到△ABC关于y轴对称的△A1B1C1;(2)依据平移的方向和距离,即可得到△ABC向右平移6个单位后的△A2B2C2;(3)依据轴对称的性质,即可得到△A1B1C1和△A2B2C2的对称轴l.【解答】解:(1)如图所示,△A1B1C1即为所求,点B1的坐标为(2,2);(2)如图所示,△A2B2C2即为所求,点A2的坐标为(6,4);(3)如图所示,直线l即为所求,l与x轴的交点坐标为(3,0).故答案为:(2,2);(6,4);(3,0).【点评】本题主要考查了轴对称变换,平移变换等知识,平移作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.20.(7分)如图,在四边形ABCD中,AB=AD,∠BAD=∠ACD=90°,BE⊥AC于E.(1)求证:BE=AC;(2)若AB=10,CD=6,求四边形ABCD的面积.【分析】(1)根据AAS可证△AEB≌△DCA,再根据全等三角形的性质即可求解;(2)根据已知条件可求AD,再根据勾股定理可求AC,进一步得到BE,再根据三角形面积公式可求四边形ABCD的面积.【解答】(1)证明:∵BE⊥AC,∴∠AEB=90°,∴∠ABE+∠BAE=90°,∵∠BAD=90°,∴∠DAE+∠BAE=90°,∴∠DAC=∠ABE,在△AEB与△DCA中,,∴△AEB≌△DCA(AAS),∴BE=AC;(2)∵AB=10,∴AD=AB=10,在Rt△ACD中,AC===8,∴BE=AC=8,∴四边形ABCD的面积=×AC×CD+×AC×BE=×8×6+×8×8=56.【点评】考查了全等三角形的判定与性质,勾股定理,关键是根据AAS证明△AEB≌△DCA.21.(8分)每年“双11”天猫商城都会推出各种优惠活动进行促销,今年,王阿姨在“双11”到来之前准备在两家天猫店铺中选择一家购买原价均为1000元/条的被子2条和原价均为600元/个的颈椎枕若干个,已知两家店铺在活动期间分别给子以下优惠;A店铺:“双11”当天购买所有商品可以享受8折优惠;B店铺:买2条被子,可赠送1个颈椎枕.同时“双11”当天下单,还可立减160元;设购买颈椎枕x(个)若王阿姨在“双11”当天下单,A,B两个店铺优惠后所付金额分别为y A(元)、y B(元).(1)试分别表示y A、y B与x的函数关系式;(2)王阿姨准备在“双11”当天购买4个颈椎枕,通过计算说明在哪家店铺购买更省钱?【分析】(1)根据两个店铺的优惠方案即可得出y A、y B与x的函数关系式;(2)把x=4代入(1)的结论解答即可.【解答】解:(1)由题意得:y A=1000×2×0.8+0.8×600x=480x+1600;y B=1000×2+600(x﹣1)﹣160=600x+1240;(2)当x=4时,y A=480×4+1600=3520;y B=600×4+1240=3640;∵3520<3640,∴在A店铺购买更省钱.【点评】本题主要考查了一次函数的应用,理清题意,正确写出y A、y B与x的函数关系式是解答本题的关键.22.(9分)如图,在平面直角坐标系中,过点B(0,4)的直线AB与直线OC相交于点C (4,).(1)分别求出直线OC、直线AB的表达式;(2)在直线BC上是否存在一点P,使得S△OCP=S△OCB?若存在,求出此时点P的坐标,若不存在,请说明理由.【分析】(1)利用待定系数法即可得出结论;(2)先求出△OCB和△AOC的面积,进而求出△OCP的面积,根据S△OCP=S△OP A﹣S或S△OCP=S△OP A+S△OAC即可求出点P的纵坐标,再代入直线解析式中即可得出结△OAC论.【解答】解:(1)设直线OC的解析式为y=kx,把C(4,)代入得,=4k,解得k=,∴直线OC的解析式为y=x;设直线AB的解析式为y=mx+n,∵点C(4,)B(0,4)在直线AB上,∴,解得,∴k=﹣1,∴直线AB的解析式为y=﹣x+4;(2)存在,理由如下:由(1)知,直线AB的解析式为y=﹣x+4,令y=0,∴﹣x+4=0,∴x=6,∴A(6,0),∴S△OAC=OA•y C==4,S△OBC=OB•x C==8,∵S△OCP=S△OCB,∴S△OCP=×8=,设P的纵坐标为m,∴S△OP A=OA•|m|=3|m|,∴S△OCP=S△OP A﹣S△OAC或S△OCP=S△OP A+S△OAC,∴=3m﹣4或=﹣3m+4,解得m=或m=﹣,把y=代入y=﹣x+4得,=﹣x+4,解得x=﹣,把y=﹣代入y=﹣x+4得,﹣=﹣x+4,解得x=,∴点P的坐标为(﹣,)或(,﹣).【点评】本题考查了用待定系数法求一次函数的解析式和一次函数图象上点的坐标特征,能正确求出直线BC的解析式是解此题的关键.23.(10分)在平面直角坐标系中,直线y=﹣x+3分别与x轴,y轴交于A,B两点,C 为AB中点.(1)如图1,点A的坐标为(,0),点B的坐标为(0,3),∠OAB=60°;(2)如图2,若D是经过点A,且与y轴平行的直线上的一动点,求OD+CD的最小值;(3)如图3,M是线段AB上一动点,以OM为边在OM下方作等边△OMN,连接CN,求ON+CN的最小值.【分析】(1)对于直线y=﹣x+3,令x=0,则y=3,令y=0,即0=﹣x+3,解得x=,即可求解;(2)设经过点A且与y轴平行的直线为直线l,过点C作直线l的对称点C′(,),连接OC′交直线l于点D,则点D为所求点,进而求解;(3)如图2中,以OA为边在x轴下方作等边△OAG,连接GN.证明△OMA≌△ONG (SAS),推出∠OGN=∠OAM=45°,即点N在y轴与OG夹角为45°的直线GN上运动,作OH⊥OC交CA的延长线于H,连接NH.GH,想办法证明O,H关于GN对称即可解决问题.【解答】解:(1)对于直线y=﹣x+3,令x=0,则y=3,令y=0,即0=﹣x+3,解得x=,故点A、B的坐标分别为(,0),(0,3),在Rt△AOB中,OA=,OB=3,则AB==2=2OA,故∠OBA=30°,则∠OAB=60°,故答案为:(,0),(0,3),60°;(2)在Rt△AOB中,点C是AB的中点,则点C(,)且∠ACO=∠BAO=60°,如图1,设经过点A且与y轴平行的直线为直线l,过点C作直线l的对称点C′(,),连接OC′交直线l于点D,则点D为所求点,此时OD+CD的最小值=OD+C′D=C′O为最小,OC′==3,故OD+CD的最小值为3;(3)如图2中,以OA为边在x轴下方作等边△OAG,连接GN.∵∠MON=∠AOG=60°,∴∠MOA=∠NOG,∵OM=ON,OA=OG,∴△OMA≌△ONG(SAS),∴∠OGN=∠OAM=45°,即点N在y轴与OG夹角为45°的直线GN上运动,作OH⊥OC交CA的延长线于H,连接NH.GH.由(2)可知∠ACO=60°,在四边形ACOG中,∠COG=360°﹣60°﹣60°﹣45°﹣60°=135°,∴OC∥NG,∵OC⊥OH,∴OH⊥NG,∵∠OHC=30°=∠AGO,∴点G在以G为圆心GO为半径的⊙G上,∴GO=GA,∴NH垂直平分线段OH,∴O,H关于GN对称,∴ON+NC=NH+NC≥CH,∵CH=2OC=2,∴ON+NC≥2,∴ON+CN的最小值为2.【点评】本题属于一次函数综合题,考查了全等三角形的判定和性质,轴对称最短问题,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

陕西省西安市2019-2020学年八年级(上)期中数学试卷 ( 解析版)

陕西省西安市2019-2020学年八年级(上)期中数学试卷  ( 解析版)

2019-2020学年八年级(上)期中数学试卷一、选择题(共10小题,每小题3分)1.下列各数,π,,﹣,2.010010001(相邻两个1之间依次多个0)中,无理数的个数为()A.2 B.3 C.4 D.52.点P(3,﹣5)关于x轴对称的点的坐标为()A.(﹣3,﹣5)B.(5,3)C.(﹣3,5)D.(3,5)3.一次函数y=ax+b,b>0,且y随x的增大而减小,则其图象可能是()A.B.C.D.4.下列计算正确的是()A.2×3=6B.+=C.2﹣=2 D.2﹣=5.在平面直角坐标系中,函数y=﹣3x+5的图象经过()A.一、二、三象限B.二、三、四象限C.一、三、四象限D.一、二、四象限6.如图,小方格都是边长为1的正方形,则四边形ABCD的面积是()A.25 B.12.5 C.9 D.8.57.某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是()A.中位数是4,平均数是3.75B.众数是4,平均数是3.75C.中位数是4,平均数是3.8D.众数是2,平均数是3.88.正比例函数y=kx(k≠0)的图象经过点(﹣1,2),并且点A(x1,y1),B(x2,y2)也在该正比例函数图象上,若x1﹣x2=3,则y1﹣y2的值为()A.3 B.﹣3 C.6 D.﹣69.一次函数y=﹣2x+3的图象和y=kx﹣b的图象相交于点A(m,1),则关于x,y的二元一次方程的解为()A.B.C.D.10.平面直角坐标系中,过点(﹣2,3)的直线l经过第一、二、三象限,若点(0,a),(﹣1,b),(c,﹣1)都在直线L上,则下列判断正确的是()A.a<b B.a<3 C.b<3 D.c<﹣2二、填空题(每小题3分)11.若a,b为两个连续的正整数a<2<b,则a+b=.12.若一个正数的平方根是﹣a+2和2a﹣1,则这个正数是.13.如图,已知圆柱的底面直径BC=,高AB=3,小虫在圆柱表面爬行,从点C爬到点A,然后在沿另一面爬回点C,则小虫爬行的最短路程为.14.如图,点P,Q是直线y=﹣上的两点,P在Q的左侧,且满足OP=OQ,OP⊥OQ,则点P的坐标是.三、解答题(共7小题,共计58分)15.计算(1)(2)(3)(4)16.如图,方格纸中每个小正方形的边长均为1,建立如图所示的直角坐标系,已知两点A(0,2),B(4,1)(1)请在x轴上画出一点P,使得PA+PB的值最小;(2)请直接写出:点P的坐标(,0);PA+PB的最小值为 5 .17.如图所示,△ABC是等腰直角三角形,∠A=90°,AB=AC,D是斜边BC的中点,E,F分别是AB、AC边上的点,且DE⊥DF,若BE=15,CF=8,求△AEF的面积.18.列方程组解应用题:在首届“一带一路”国际合作高峰论坛举办之后,某公司准备生产甲、乙两种商品销往“一带一路”沿线国家和地区,原计划生产甲商品和乙商品共210吨,采用新技术后,实际产量为230吨,其中甲商品超产5%,乙商品超产15%,求该公司实际生产甲、乙两种商品各多少吨?19.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A处受噪音影响的时间为多少?20.如图,已知在平面直角坐标系xOy中,正比例函数y=kx与一次函数y=﹣x+b的图象相交于点A(4,3),过点P(2,0)作x轴的垂线,分别交正比例函数的图象于点B,交一次函数的图象与点C,连接OC.(1)求这两个函数解析式;(2)求△OBC的面积.21.已知A、B两地相距300千米,甲、乙两车同时从A地出发,以各自的速度匀速向B地行驶.甲车先到达B地,停留1小时后,速度不变,按原路返回.设两车行驶的时间是x小时,离开A地的距离是y千米,如图是y与x的函数图象.(1)甲车的速度是,乙车的速度是;(2)甲车在返程途中,两车相距20千米时,求乙车行驶的时间.参考答案与试题解析一.选择题(共10小题)1.下列各数,π,,﹣,2.010010001(相邻两个1之间依次多个0)中,无理数的个数为()A.2 B.3 C.4 D.5【分析】根据无理数的定义(无理数是指无限不循环小数)判断即可.【解答】解:,∴,﹣是有理数,无理数有:π,,2.010010001(相邻两个1之间依次多个0)共3个.故选:B.2.点P(3,﹣5)关于x轴对称的点的坐标为()A.(﹣3,﹣5)B.(5,3)C.(﹣3,5)D.(3,5)【分析】已知点P(m,n)关于x轴对称点的坐标P′(m,﹣n),从而求解.【解答】解:根据轴对称的性质,得点P(3,﹣5)关于y轴对称的点的坐标为(3,5).故选:D.3.一次函数y=ax+b,b>0,且y随x的增大而减小,则其图象可能是()A.B.C.D.【分析】由已知条件“一次函数y=ax+b,b>0,且y随x的增大而减小”可以推知该直线从左往右下降,与y轴交于正半轴,从而可以判断该函数经过第一、二、四象限.【解答】解:∵一次函数y=ax+b的图象是y随x的增大而减小,∴直线从左往右下降,又∵b>0,∴直线与y轴交于正半轴,∴一次函数y=ax+b的图象经过第一、二、四象限.故选:C.4.下列计算正确的是()A.2×3=6B.+=C.2﹣=2 D.2﹣=【分析】直接利用二次根式的混合运算法则分别计算判断得出答案.【解答】解:A、2×3=6,故此选项不合题意;B、+,无法计算,故此选项不合题意;C、2﹣=,故此选项不合题意;D、2﹣=,正确,符合题意.故选:D.5.在平面直角坐标系中,函数y=﹣3x+5的图象经过()A.一、二、三象限B.二、三、四象限C.一、三、四象限D.一、二、四象限【分析】根据一次函数的性质,可以得到.函数y=﹣3x+5的图象经过哪几个象限,从而可以解答本题.【解答】解:函数y=﹣3x+5,k=﹣3,b=5,∴该函数的图象经过第一、二、四象限,故选:D.6.如图,小方格都是边长为1的正方形,则四边形ABCD的面积是()A.25 B.12.5 C.9 D.8.5【分析】根据求差法,让大正方形面积减去周围四个直角三角形的面积即可解答.【解答】解:如图:小方格都是边长为1的正方形,∴四边形EFGH是正方形,S□EFGH=EF•FG=5×5=25S△AED=DE•AE=×1×2=1,S△DCH=•CH•DH=×2×4=4,S△BCG=BG•GC=×2×3=3,S△AFB=FB•AF=×3×3=4.5.S四边形ABCD=S□EFGH﹣S△AED﹣S△DCH﹣S△BCG﹣S△AFB=25﹣1﹣4﹣3﹣4.5=12.5.故选:B.7.某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是()A.中位数是4,平均数是3.75B.众数是4,平均数是3.75C.中位数是4,平均数是3.8D.众数是2,平均数是3.8【分析】根据众数、平均数和中位数的概念求解.【解答】解:这组数据中4出现的次数最多,众数为4,∵共有5个人,∴第3个人的劳动时间为中位数,故中位数为:4,平均数为:=3.8.故选:C.8.正比例函数y=kx(k≠0)的图象经过点(﹣1,2),并且点A(x1,y1),B(x2,y2)也在该正比例函数图象上,若x1﹣x2=3,则y1﹣y2的值为()A.3 B.﹣3 C.6 D.﹣6【分析】首先利用待定系数法求得k的值;然后将点A、B的坐标分别代入该函数解析式并分别求得y1、y2的值.【解答】解:∵正比例函数y=kx(k≠0)的图象经过点(﹣1,2),∴2=﹣k,即k=﹣2,∴该正比例函数的解析式是y=﹣2x.又∵点A(x1,y1),B(x2,y2)也在该正比例函数图象上,∴y1=﹣2x1,①y2=﹣2x2,②由①﹣②,得y1﹣y2=﹣2(x1﹣x2)=﹣2×3=﹣6.故选:D.9.一次函数y=﹣2x+3的图象和y=kx﹣b的图象相交于点A(m,1),则关于x,y的二元一次方程的解为()A.B.C.D.【分析】首先利用函数解析式y=﹣2x+3计算出a点坐标中m的值,进而可得a的坐标,然后可得二元一次方程的解.【解答】解:∵一次函数y=﹣2x+3的图象和y=kx﹣b的图象相交于点A(m,1),∴1=﹣2m+3,解得:m=1,∴A(1,1),∴二元一次方程的解为,故选:C.10.平面直角坐标系中,过点(﹣2,3)的直线l经过第一、二、三象限,若点(0,a),(﹣1,b),(c,﹣1)都在直线L上,则下列判断正确的是()A.a<b B.a<3 C.b<3 D.c<﹣2【分析】设出一次函数解析式为y=mx+n,根据图象经过的象限确定m>0,把(﹣2,3)代入解析式,得到用m表示的函数关系式,把三个点代入解析式,判断各个选项是否正确.【解答】解:设直线l的解析式为y=mx+n由于直线l经过第一、二、三象限,所以m>0.由于点(﹣2,3)在直线l上所以3=﹣2m+n,即n=2m+3,所以一次函数解析式为:y=mx+2m+3当x=0时,a=2m+3∵m>0,∴a=2m+3>3,故选项B错误;当x=﹣1时,b=﹣m+2m+3=m+3∵m>0,∴b=m+3>3,故选项C错误∴2m+3>m+3,即a>b,故选项A错误;当y=﹣1时,cm+2m+3=﹣1即(c+2)m=﹣4因为m>0.所以c+2<0,即c<﹣2.故选项D正确.故选:D.二.填空题(共4小题)11.若a,b为两个连续的正整数a<2<b,则a+b=7 .【分析】首先根据3<2<4,则a=3,b=4,可得a+b.【解答】解:∵3<2<4,∴a=3,b=4,∴a+b=7.故答案为:7.12.若一个正数的平方根是﹣a+2和2a﹣1,则这个正数是9 .【分析】一个正数的平方根由两个,且互为相反数,所以﹣a+2+2a﹣1=0,求出a的值即可.【解答】解:由题意可知:(﹣a+2)+(2a﹣1)=0,∴a=﹣1∴﹣a+2=3,∴该正数为32=9,故答案为9.13.如图,已知圆柱的底面直径BC=,高AB=3,小虫在圆柱表面爬行,从点C爬到点A,然后在沿另一面爬回点C,则小虫爬行的最短路程为6.【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【解答】解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在RT△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=3,所以AC=3,∴从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为2AC=6,故答案为:6,14.如图,点P,Q是直线y=﹣上的两点,P在Q的左侧,且满足OP=OQ,OP⊥OQ,则点P的坐标是(﹣,).【分析】证明△PMO≌△ONQ(AAS),则PM=ON,OM=QN,设点P(m,﹣m+2),则点Q (﹣m+2,﹣m),即可求解.【解答】解:分别过点P、Q作x轴的垂线交于点M、N,∵OP⊥OQ,∴∠POM+∠QON=90°,而∠QON+∠OQN=90°,∴∠OQN=∠MOP,OP=OQ,∠PMO=∠ONQ=90°,∴△PMO≌△ONQ(AAS),∴PM=ON,OM=QN,设点P(m,﹣m+2),则点Q(﹣m+2,﹣m),将点Q的坐标代入y=﹣得:﹣m=﹣(﹣m+2)+2,解得:m=﹣,故点P(﹣,),故答案为:(﹣,).三、解答题15.计算(1)(2)(3)(4)【考点】79:二次根式的混合运算;98:解二元一次方程组.【专题】11:计算题;43:换元法;514:二次根式;521:一次方程(组)及应用;66:运算能力.【分析】(1)根据二次根式的除法运算法则计算,再合并同类二次根式即可;(2)根据二次根式的乘法运算法则计算,再合并同类二次根式即可;(3)加减消元法求解即可:①+②×2,解出x的值,再代入原方程,求得y即可;(4)利用换元法,设x+y=m,x﹣y=n,先解关于m和n的二元一次方程组,再解得x 和y的值.【解答】解:(1)=﹣=﹣=﹣=﹣(2)=×+×﹣6=+6﹣=6(3)①+②×2得:7x=21∴x=3 ③将③代入②得:2×3﹣y=8∴y=﹣2∴方程组的解为.(4)设x+y=m,x﹣y=n,原方程组可化为:①﹣②×6得:﹣4n﹣n=4﹣6∴n=③将③代入②得:+=1∴m=∴∴.16.如图,方格纸中每个小正方形的边长均为1,建立如图所示的直角坐标系,已知两点A(0,2),B(4,1)(1)请在x轴上画出一点P,使得PA+PB的值最小;(2)请直接写出:点P的坐标(,0);PA+PB的最小值为 5 .【考点】D5:坐标与图形性质;N3:作图—复杂作图;PA:轴对称﹣最短路线问题.【专题】13:作图题;64:几何直观.【分析】(1)作A点关于x轴的对称点A′,连结BA′交x轴于P点,利用对称的性质得到PA=PA′,则PA+PB=PA′+PB=BA′,于是利用两点之间线段最短可判断P点满足条件;(2)先写出点A′的坐标为(0,﹣2),再利用待定系数法求出直线BA′的解析式为y =x﹣2,然后解方程x﹣2=0得P点坐标,然后利用两点间的距离公式求出BA′即可.【解答】解:(1)如图,点P为所作;(2)A点关于x轴对称的点A′的坐标为(0,﹣2),设直线BA′的解析式为y=kx+b,把A′(0,﹣2),B(4,1)得,解得,∴直线BA′的解析式为y=x﹣2,当y=0时,x﹣2=0,解得x=,∴P点坐标为(,0),PA+PB的最小值==5.故答案为(,0),5.17.如图所示,△ABC是等腰直角三角形,∠A=90°,AB=AC,D是斜边BC的中点,E,F分别是AB、AC边上的点,且DE⊥DF,若BE=15,CF=8,求△AEF的面积.【考点】KD:全等三角形的判定与性质;KP:直角三角形斜边上的中线;KW:等腰直角三角形.【专题】553:图形的全等;554:等腰三角形与直角三角形;67:推理能力.【分析】由“ASA”可证△AED≌△CFD,可得AE=CF=8,可得AF=BE=15,即可求解.【解答】解:∵在Rt△ABC中,AB=AC,AD为BC边的中线,∴∠DAC=∠BAD=∠C=45°,AD⊥BC,AD=DC,又∵DE⊥DF,AD⊥DC,∴∠EDA+∠ADF=∠CDF+∠FDA=90°,∴∠EDA=∠CDF在△AED与△CFD中,,∴△AED≌△CFD(ASA).∴AE=CF=8,∴AB﹣AE=AC﹣CF,∴AF=BE=15,∵∠EAF=90°,∴S△AEF=×AE×AF=60.18.列方程组解应用题:在首届“一带一路”国际合作高峰论坛举办之后,某公司准备生产甲、乙两种商品销往“一带一路”沿线国家和地区,原计划生产甲商品和乙商品共210吨,采用新技术后,实际产量为230吨,其中甲商品超产5%,乙商品超产15%,求该公司实际生产甲、乙两种商品各多少吨?【考点】8A:一元一次方程的应用;9A:二元一次方程组的应用.【专题】11:计算题;521:一次方程(组)及应用;66:运算能力;69:应用意识.【分析】设公司计划生产甲商品x吨,乙商品y吨,根据题意可得方程组,再求出实际生产两种商品的吨数即可.【解答】解:设公司计划生产甲商品x吨,乙商品y吨,根据题意可得:,解得:,则115×(1+5%)=120.75(吨),95×(1+15%)=109.25(吨),答:公司实际生产甲商品120.75吨、乙两种商品109.25吨.19.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A处受噪音影响的时间为多少?【考点】KU:勾股定理的应用.【分析】过点A作AC⊥ON,利用锐角三角函数的定义求出AC的长与200m相比较,发现受到影响,然后过点A作AD=AB=200m,求出BD的长即可得出居民楼受噪音影响的时间.【解答】解:如图:过点A作AC⊥ON,AB=AD=200米,∵∠QON=30°,OA=240米,∴AC=120米,当火车到B点时对A处产生噪音影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵72千米/小时=20米/秒,∴影响时间应是:320÷20=16秒.答:A处受噪音影响的时间为16秒.20.如图,已知在平面直角坐标系xOy中,正比例函数y=kx与一次函数y=﹣x+b的图象相交于点A(4,3),过点P(2,0)作x轴的垂线,分别交正比例函数的图象于点B,交一次函数的图象与点C,连接OC.(1)求这两个函数解析式;(2)求△OBC的面积.【考点】FA:待定系数法求一次函数解析式;FF:两条直线相交或平行问题.【专题】533:一次函数及其应用;65:数据分析观念.【分析】(1)将点A的坐标分别代入正比例函数、一函数表达式,即可求解;(2)点P(2,0),则点B(2,)、点C(2,5),△OBC的面积=×BC×OP,即可求解.【解答】解:(1)将点A的坐标代入正比例函数y=kx得:3=4k,解得:k=,则正比例函数的表达式为:y=x,将点A的坐标代入一次函数y=﹣x+b的表达式得:3=﹣4+b,解得:b=7,故一次函数的表达式为:y=﹣x+7;(2)点P(2,0),则点B(2,)、点C(2,5),则BC=5﹣=,△OBC的面积=×BC×OP=××2=.21.已知A、B两地相距300千米,甲、乙两车同时从A地出发,以各自的速度匀速向B地行驶.甲车先到达B地,停留1小时后,速度不变,按原路返回.设两车行驶的时间是x小时,离开A地的距离是y千米,如图是y与x的函数图象.(1)甲车的速度是100千米/小时,乙车的速度是60千米/小时;(2)甲车在返程途中,两车相距20千米时,求乙车行驶的时间.【考点】FH:一次函数的应用.【专题】533:一次函数及其应用.【分析】(1)图象可得甲车3小时行驶300公里,乙车5小时行驶300公里,即可求速度;(2)由图象可求乙车的函数关系式y乙=60x,甲车返回时的函数关系式:y甲=﹣100x+700(4≤x≤7),即可求两车相距20千米时,乙车行驶的时间.【解答】解:(1)根据题意可得:甲车速度为:=100千米/小时,乙车速度为:=60千米/小时故答案为100千米/小时,60千米/小时(2)由图象可得乙车表示的函数图象关系式为y乙=60x甲车返回时的函数图象关系式为y甲=﹣100x+700(4≤x≤7)∵甲,乙两车相距20千米∴|y甲﹣y乙|=20∴﹣100x+700﹣60x=20或﹣100x+700﹣60x=﹣20解得:x=或x=∴乙车行驶的时间为小时或小时.。

陕西省 西安市 八年级(上)期中数学试卷-(含答案)

陕西省 西安市 八年级(上)期中数学试卷-(含答案)

八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列实数中,是有理数的为()A. B. C. D. 02.如果点A(a,b)在第二象限,则点B(b,a)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.下列一组数是勾股数的是()A. 6,7,8B. 5,12,13C. ,,D. 10,15,184.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A. 2B.C. 4D.5.下列说法中,①任意一个数都有两个平方根.②的平方根是±3.③-125的立方根是±5.④是一个分数.⑤是一个无理数.其中正确的有()个.A. 2B. 3C. 4D. 56.下列函数①y=πx,②y=2x-1,③,④y=2-1-3x,⑤y=x2-1中,是一次函数的有()A. 4个B. 3个C. 2个D. 1个7.如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为()A.B.C.D.8.以为解的二元一次方程组是()A. B. C. D.9.函数y=kx-k(k<0)的图象是()A. B.C. D.10.已知关于x,y的方程组的解是二元一次方程-3x+4y=51的解,则m的值是()A. 1B. 2C. 3D. 4二、填空题(本大题共8小题,共24.0分)11.已知点P(3,a)关于y轴的对称点为Q(b,2),则ab=______.12.1的相反数是______ ,绝对值是______ .13.请写出二元一次方程2x+y=5的一个正整数解______ .14.已知等边三角形ABC的两个顶点坐标分别是A(-4,0);B(2,0),则顶点C的坐标是______.15.点P1(x1,y1),点P2(x2,y2)是一次函数y=-4x+b的图象上的两个点,且x1<x2,则y1,y2的大小关系是______ .16.如图,正方形网格中每个小正方形的边长都是1,则在△ABC中,长度为无理数的边及边长是______ .17.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为______cm2.18.已知直角三角形的周长是2+,斜边长2,则这个直角三角形的面积为______ .三、计算题(本大题共2小题,共12.0分)19.解方程(组)①(c-1)2=81②.20.计算①(+2)(-2)②-3+.四、解答题(本大题共5小题,共40.0分)21.如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.22.在一次春游中,小明、小亮等同学随家人一同到江郎山旅游,成人票40元/张,学生按成人票五折优惠.团体票(14人及以上)按成人票六折优惠.下面是购买门票时,小明与他爸爸的对话.爸爸:大人门票每张40元,学生票五折优惠,我们共11人,需要360元.小明:爸爸等一下,让我算一算,更换一个方式买票是否可以更省钱!(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式买票更省钱?并说明理由.23.已知在平面直角坐标系中,A(0,4),B(7,3).(1)点P在x轴上,且PA=PB,求P的坐标.(2)点Q在x轴上,且QA+QB最短,求QA+QB的最小值.24.L1反应了某公司产品的销售收入与销售量的关系,L2反应了该公司产品的销售成本与销售量的关系,根据图中信息填空:(1)当销售量为2吨时,销售收入= ______ 元,销售成本= ______ 元,(2)当销售量为6吨时,销售收入= ______ 元,销售成本= ______ 元;(3)当销售量等于______ 时,销售收入等于销售成本;(4)当销售量______ 时,该公司盈利(收入大于成本);当销售量______ 时,该公司亏损(收入小于成本);(5)L1对应的函数表达式是______ ,L2对应的函数表达式是______ .25.如图,一次函数的图象l经过点A(2,5),B(-4,-1)两点.(1)求一次函数表达式.(2)求直线与x轴的交点C和与y轴的交点D的坐标.(3)若点E在x轴上,且E(2,0),求△CDE的面积.(4)你能求出点E到直线l的距离吗?答案和解析1.【答案】D【解析】解:是无理数,A不正确;是无理数,B不正确;π是无理数,C不正确;0是有理数,D正确;故选:D.根据有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数进行判断即可.此题主要考查了无理数和有理数的区别,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.2.【答案】D【解析】解:∵点A(a,b)在第二象限,∴a<0,b>0,∴点B(b,a)在第四象限.故选D.根据第二象限内点的横坐标是负数,纵坐标是正数判断出a、b的正负情况,再根据各象限内点的坐标特征解答.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.【答案】B【解析】解:A、∵62+72≠82,∴此选项不符合题意;B、∵52+122=132,∴此选项符合题意;C、∵0.32+0.42=0.52,但不是正整数,∴此选项不符合题意;D、∵102+152≠182,∴此选项不符合题意.故选:B.欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.本题考查了勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数.一组勾股数必须同时满足两个条件:①三个数都是正整数,②两个较小正整数的平方和等于最大的正整数的平方,这两个条件同时成立,缺一不可.4.【答案】B【解析】解:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=-2,故选:B.直接根据正比例函数的性质和待定系数法求解即可.本题考查了正比例函数的性质:正比例函数y=kx(k≠0)的图象为直线,当k>0时,图象经过第一、三象限,y值随x的增大而增大;当k<0时,图象经过第二、四象限,y值随x的增大而减小.5.【答案】A【解析】解:①负数没有个平方根,故①不符合题意;②的平方根是±3,故②符合题意;③-125的立方根是-5,故③不符合题意;④是一个无理数,故④不符合题意;⑤是一个无理数,故⑤符合题意;故选:A.根据平方根、立方根的意义,无理数的意义,可得答案.本题考查了实数,利用平方根、立方根的意义,无理数的意义是解题关键.6.【答案】B【解析】解:①y=πx是一次函数;②y=2x-1是一次函数;③y=,自变量次数不为1,不是一次函数;④y=2-1-3x是一次函数;⑤y=x2-1,自变量次数不为1,不是一次函数.故选:B.根据一次函数的定义条件进行逐一分析即可.本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.7.【答案】B【解析】解:设一次函数的解析式y=kx+b(k≠0),一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,在直线y=-x中,令x=-1,解得:y=1,则B的坐标是(-1,1).把A(0,2),B(-1,1)的坐标代入一次函数的解析式y=kx+b得:,解得,该一次函数的表达式为y=x+2.故选B.首先设出一次函数的解析式y=kx+b(k≠0),根据图象确定A和B的坐标,代入求出k和b的值即可.本题要注意利用一次函数的特点,列出方程,求出未知数.8.【答案】C【解析】解:将代入各个方程组,可知刚好满足条件.所以答案是.故选:C.所谓“方程组”的解,指的是该数值满足方程组中的每一方程.在求解时,可以将代入方程.同时满足的就是答案.本题不难,只要利用反向思维就可以了.9.【答案】A【解析】解:因为k<0,所以-k>0,所以可很一次函数y=kx-k(常数k<0)的图象一定经过第二、一、四象限,故选A一次函数y=kx-k(常数k<0)的图象一定经过第二、一、四象限,不经过第四象限.本题主要考查了函数图象上的点与图象的关系,图象上的点满足解析式,满足解析式的点在函数图象上.并且本题还考查了一次函数的性质,都是需要熟记的内容.10.【答案】C【解析】解:,把②代入①得:x+4m=m,即x=-3m,把x=-3m,y=2m代入方程得:9m+8m=51,解得:m=3,故选C求出方程组的解表示出x与y,代入已知方程计算即可求出m的值.此题考查了二元一次方程组的解,及二元一次方程的解,方程组的解即为能使方程组中两方程都成立的未知数的值.11.【答案】-6【解析】解:∵点P(3,a)关于y轴的对称点为Q(b,2),∴a=2,b=-3,∴ab=-6,故答案为:-6.根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a=2,b=-3,进而可得答案.此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.12.【答案】-1;-1【解析】解:1-的相反数是-1,绝对值是-1.故答案为:-1,-1.根据只有符号不同的两个数互为相反数解答;根据绝对值的性质解答.本题考查了实数的性质,是基础题,熟练掌握相反数的定义,绝对值的性质是解题的关键.13.【答案】【解析】解:方程2x+y=5,解得:y=-2x+5,当x=1时,y=3,则方程的一个正整数解为,故答案为:把x看做已知数求出y,即可确定出一个正整数解.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.14.【答案】(-1,3)或(-1,-3)【解析】解:作CH⊥AB于H.∵A(-4,0),B(2,0),∴AB=6.∵△ABC是等边三角形,∴AH=BH=3.根据勾股定理,得CH=3.∴C(-1,3);同理,当点C在第三象限时,C(-1,-3).故C点坐标为:C(-1,3)或(-1,-3),故答案为:(-1,3)或(-1,-3);作CH⊥AB于H.根据点A和B的坐标,得AB=6.根据等腰三角形的三线合一的性质,得AH=BH=3,再根据勾股定理求得CH=3,从而写出点C的坐标;此题综合运用了等边三角形的性质和勾股定理,熟练运用三角形的面积公式.x轴上两点间的距离等于两点的横坐标的差的绝对值.15.【答案】y1>y2【解析】解:根据题意,k=-4<0,则y随x的增大而减小,因为x1<x2,所以y1>y2.故答案为:y1>y2.根据一次函数y=-4x+b,当k<0时,y随x的增大而减小解答即可.本题考查了一次函数图象上点的坐标特征以及一次函数的性质;熟练掌握一次函数的性质是解决问题的关键.16.【答案】AB=,AC=2,BC=【解析】解:由勾股定理得:AB==,AC==2,BC==,长度为无理数的边及边长是AB=,AC=2,BC=;故答案为:AB=,AC=2,BC=.根据图中所示,利用勾股定理求出每个边长,然后根据无理数的定义即可得出答案.此题考查了勾股定理的应用.要注意格点三角形的三边的求解方法:借助于直角三角形,用勾股定理求解.17.【答案】400【解析】解:设一个小长方形的长为xcm,宽为ycm,则可列方程组解得则一个小长方形的面积=40cm×10cm=400cm2.故答案为:400.由题意可知本题存在两个等量关系,即小长方形的长+小长方形的宽=50cm,小长方形的长+小长方形宽的4倍=小长方形长的2倍,根据这两个等量关系可列出方程组,进而求出小长方形的长与宽,最后求得小长方形的面积.解答本题关键是弄清题意,看懂图示,找出合适的等量关系,列出方程组.并弄清小长方形的长与宽的关系.18.【答案】【解析】解:设直角三角形的两直角边为a、b,则a+b+2=2+,a2+b2=22=4,所以a+b=,(a+b)2-2ab=4,解得:ab=1,所以这个直角三角形的面积为ab=,故答案为:.设直角三角形的两直角边为a、b,根据题意和勾股定理得出a+b+2=2+,a2+b2=22=4,求出ab的值,即可求出答案.本题考查了勾股定理和三角形的面积的应用,能根据已知和勾股定理求出ab 的值是解此题的关键.19.【答案】解:①开方得:c-1=9或c-1=-9,解得:c=10或c=-8;②,①+②×2得:7x=14,解得:x=2,把x=2代入②得:y=3,则方程组的解为.【解析】①方程利用平方根定义开方即可求出解;②方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,以及平方根,熟练掌握方程组的解法是解本题的关键.20.【答案】解:①原式=23-2=21;②原式=4-+=.【解析】①利用平方差公式计算;②先把各二次根式化简为最简二次根式,然后合并即可.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.21.【答案】解:连接AC,如图所示:∵∠B=90°,∴△ABC为直角三角形,又∵AB=3,BC=4,∴根据勾股定理得:AC==5,又∵CD=12,AD=13,∴AD2=132=169,CD2+AC2=122+52=144+25=169,∴CD2+AC2=AD2,∴△ACD为直角三角形,∠ACD=90°,则S四边形ABCD=S△ABC+S△ACD=AB•BC+AC•CD=×3×4+×5×12=36.故四边形ABCD的面积是36.【解析】连接AC,在直角三角形ABC中,由AB及BC的长,利用勾股定理求出AC 的长,再由AD及CD的长,利用勾股定理的逆定理得到三角形ACD为直角三角形,根据四边形ABCD的面积=直角三角形ABC的面积+直角三角形ACD的面积,即可求出四边形的面积.此题考查了勾股定理,以及勾股定理的逆定理,熟练掌握勾股定理及勾股定理的逆定理是解本题的关键.22.【答案】解:(1)设小明他们一共去了x个成人,y个学生.根据题意得:,解得:.答:小明他们一共去了7个成人,4个学生;(2)购买团体票更省钱,理由如下:若按14人购买团体票,则共需:14×40×60%=336(元),∵360>336,∴购买团体票更省钱.【解析】(1)设小明他们一共去了x个成人,y个学生,根据总人数为11人结合总费用=40×成人数+40×0.5×学生数,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)依照购买团体票总费用=14×40×0.6,即可求出购买14张票的价钱,与原费用比较后即可得出结论.本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系列出关于x、y的二元一次方程组;(2)求出按14人购买团体票的总钱数.23.【答案】解:(1)如图1,连接AB,作AB的垂直平分线交x轴于P,则PA=PB,∵A(0,4),B(7,3),∴直线AB的解析式为:y=-x+4,AB的中点坐标为(3.5,3.5),设AB的垂直平分线的解析式为y=7x+b,把(3.5,3.5)代入y=7x+b得,b=21,∴AB的垂直平分线的解析式为y=7x-21,当y=0时,x=3,∴P(3,0);(2)作A关于x轴的对称点A′,连接A′B交x轴于Q,则A′B=QA+QB的最小值,过B作BH⊥AA′于H,∴A′H=7,BH=7,∴A′B=7,∴QA+QB的最小值是7.【解析】(1)如图1,连接AB,作AB的垂直平分线交x轴于P,则PA=PB,根据已知条件得到直线AB的解析式为:y=-x+4,AB的中点坐标为(3.5,3.5),得到AB 的垂直平分线的解析式为y=7x-21,于是得到结论;(2)作A关于x轴的对称点A′,连接A′B交x轴于Q,则A′B=QA+QB的最小值,过B作BH⊥AA′于H,解直角三角形即可得到结论.本题考查了轴对称-最短路线问题,线段垂直平分线的性质,勾股定理,关键是找出P,Q点的位置,题目比较好,难度适中.24.【答案】2000;3000;6000;5000;4;x>4;x<4;y1=1000x;y2=500x+2000 【解析】解:(1)当x=2时对应的与与l1的交点是2000元,l2的交点的纵坐标是3000元;故答案为:2000,3000;(2)通过图象观察可以得出,当x=6时,对应的与l1的交点是(6,6000),与l2的交点是(6,5000),故当销售量为6吨时,销售收入6000元,销售成本为5000元,故答案为:6000,5000;(3)从图象观察可以得出:l1与l2的交点坐标是(4,4000),则当销售量是4吨时,销售成本=销售收入为4000元.故答案为:4;(4)从图象观察可以得出:l1与l2的交点坐标是(4,4000),当销售量x>4时,该公司盈利,当销售量x<4时,该公司亏损;故答案为:x>4,x<4.(5)设l1的解析式为y1=k1x,由图象,得4000=4k1,解得:k1=1000,故l1的解析式为:y1=1000x,设l2的解析式为y2=k2x+b2,由图象,得,解得:,故l2的解析式为:y2=500x+2000,故答案为:y1=1000x,y2=500x+2000.(1)通过图象观察当x=2时对应的与l2的交点的纵坐标是3000元,与l1的交点是2000元,就可以得出销售收入和销售成本;(2)通过图象观察当x=6时对应的与l2的交点的纵坐标是3000元,与l1的交点是2000元,就可以得出销售收入和销售成本;(3)从图象可以看出l1与l2的交点坐标为(4,4000),就有可以求出结论;(4)从图象可以看出l1与l2的交点坐标为(4,4000),利用函数图象,就有可以求出结论;(5)设l1的解析式为y1=k1x+b1,l2的解析式为y2=k2x+b2,利用图象上的坐标就可以求出结论.此题考查了一次函数的应用、运用待定系数法求函数的解析式的运用,识别函数图象和会分析函数图象的能力及一次函数与一元一次方程的结合的运用,搞清楚交点意义和图象的相对位置是关键.25.【答案】解:(1)设一次函数表达式y=kx+b,将A(2,5),B(-4,-1)代入组成方程组,,解得:,∴一次函数表达式为:y=x+3;(2)令y=0,则0=x+3,∴x=-3,∴C点坐标为(-3,0);令x=0,y=3;∴D点坐标为(0,3);(3)连接DE,△ y D=|2-(-3)|×3=;(4)∵△ACE的面积为:5=;|AC|==5,∴点E到直线l的距离为:=.【解析】(1)设一次函数表达式y=kx+b,将A(2,5),B(-4,-1)代入组成方程组,解得k,b可得解析式;(2)利用(1)的解析式,令y=0可得C点坐标;令x=0可得y的坐标;(3)连接DE,由三角形的面积公式可得:y D;(4)利用△ACE的面积公式可得点E到直线l的距离.本题主要考查了待定系数法求一次函数的解析式及一次函数图象上点的坐标特征,利用面积法求得点到直线的距离是解答此题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档