高三数学导数压轴题
(完整版)高三导数压轴题题型归纳

导数压轴题题型1. 高考命题回顾例1已知函数f(x)=e x -ln(x +m).(2013全国新课标Ⅱ卷)(1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.(1)解 f (x )=e x -ln(x +m )⇒f ′(x )=e x -1x +m ⇒f ′(0)=e 0-10+m=0⇒m =1,定义域为{x |x >-1},f ′(x )=e x-1x +m=e x x +1-1x +1,显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增.(2)证明 g (x )=e x -ln(x +2),则g ′(x )=e x -1x +2(x >-2).h (x )=g ′(x )=e x -1x +2(x >-2)⇒h ′(x )=e x +1x +22>0,所以h (x )是增函数,h (x )=0至多只有一个实数根,又g ′(-12)=1e -132<0,g ′(0)=1-12>0,所以h (x )=g ′(x )=0的唯一实根在区间⎝⎛⎭⎫-12,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t -1t +2=0⎝⎛⎭⎫-12<t <0, 所以,e t =1t +2⇒t +2=e -t ,当x ∈(-2,t )时,g ′(x )<g ′(t )=0,g (x )单调递减; 当x ∈(t ,+∞)时,g ′(x )>g ′(t )=0,g (x )单调递增; 所以g (x )min =g (t )=e t -ln(t +2)=1t +2+t =1+t 2t +2>0,当m ≤2时,有ln(x +m )≤ln(x +2),所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0. 例2已知函数)(x f 满足2121)0()1(')(x x f ef x f x +-=-(2012全国新课标) (1)求)(x f 的解析式及单调区间;(2)若b ax x x f ++≥221)(,求b a )1(+的最大值。
函数与导数压轴题题型与解题方法(高考必备)

函数与导数压轴题题型与解题方法(高考必备)题型与方法(选择、填空题)一、函数与导数1、抽象函数与性质主要知识点:定义域、值域(最值)、单调性、奇偶性、周期性、对称性、趋势线(渐近线)对策与方法:赋值法、特例法、数形结合例1:已知定义在$[0,+\infty)$上的函数$f(x)$,当$x\in[0,1]$时,$f(x)=\frac{2}{3}-4x$;当$x>1$时,$f(x)=af(x-1)$,$a\in R$,$a$为常数。
下列有关函数$f(x)$的描述:①当$a=2$时,$f(\frac{3}{2})=4$;②当$a<\frac{1}{2}$时,函数$f(x)$的值域为$[-2,2]$;③当$a>\frac{1}{2}$时,不等式$f(x)\leq 2a$恒成立;④当$-\frac{1}{2}<a<\frac{1}{2}$时,函数$f(x)$的图像与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$。
其中描述正确的个数有(。
)【答案】C分析:根据题意,当$x>1$时,$f(x)$的值由$f(x-1)$决定,因此可以考虑特例法。
当$a=2$时,$f(x)$的值域为$[0,4]$,因此①正确。
当$a\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此不等式$f(x)\leq 2a$恒成立,③正确。
当$-\frac{1}{2}<a<\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此$f(x)$与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$,④正确。
因此,答案为$\boxed{\textbf{(C) }2}$。
导数压轴小题精选80题(含答案解析)

专治学霸不服——导数压轴小题1. 已知函数f(x)=xe x−m2x2−mx,则函数f(x)在[1,2]上的最小值不可能为( )A. e−32m B. −12mln2m C. 2e2−4m D. e2−2m2. 已知函数f(x)=sinxx ,若π3<a<b<2π3,则下列结论正确的是( )A. f(a)<f(√ab)<f(a+b2) B. f(√ab)<f(a+b2)<f(b)C. f(√ab)<f(a+b2)<f(a) D. f(b)<f(a+b2)<f(√ab)3. 已知e为自然对数的底数,对任意的x1∈[0,1],总存在唯一的x2∈[−1,1],使得x1+x22e x2−a=0成立,则实数a的取值范围是( )A. [1,e]B. (1,e]C. (1+1e ,e] D. [1+1e,e]4. 若存在正实数x,y,z满足z2≤x≤ez且zln yz=x,则ln yx的取值范围为( )A. [1,+∞)B. [1,e−1]C. (−∞,e−1]D. [1,12+ln2]5. 已知方程ln∣x∣−ax2+32=0有4个不同的实数根,则实数a的取值范围是( )A. (0,e 22) B. (0,e22] C. (0,e23) D. (0,e23]6. 设函数f(x)=e x(sinx−cosx)(0≤x≤2016π),则函数f(x)的各极小值之和为( )A. −e 2π(1−e2016π)1−e2πB. −e2π(1−e1008π)1−eπC. −e 2π(1−e1008π)1−e2πD. −e2π(1−e2014π)1−e2π7. 若函数f(x)满足f(x)=x(fʹ(x)−lnx),且f(1e )=1e,则ef(e x)<fʹ(1e)+1的解集为( )A. (−∞,−1)B. (−1,+∞)C. (0,1e)D. (1e,+∞)8. 已知 f (x ),g (x ) 都是定义在 R 上的函数,且满足以下条件:① f (x )=a x ⋅g (x )(a >0,且 a ≠1);② g (x )≠0;③ f (x )⋅gʹ(x )>fʹ(x )⋅g (x ).若f (1)g (1)+f (−1)g (−1)=52,则 a 等于 ( )A. 12B. 2C. 54D. 2 或 129. 已知函数 f (x )=1+lnx x,若关于 x 的不等式 f 2(x )+af (x )>0 有两个整数解,则实数 a 的取值范围是 ( ) A. (−1+ln22,−1+ln33) B. (1+ln33,1+ln22) C. (−1+ln22,−1+ln33] D. (−1,−1+ln33]10. 已知函数 f (x )=x +xlnx ,若 m ∈Z ,且 f (x )−m (x −1)>0 对任意的 x >1 恒成立,则 m 的最大值为 ( ) A. 2B. 3C. 4D. 511. 已知函数 f (x )={xln (1+x )+x 2,x ≥0−xln (1−x )+x 2,x <0,若 f (−a )+f (a )≤2f (1),则实数 a 的取值范围是 ( )高中数学资料共享群QQ 群号:734924357A. (−∞,−1]∪[1,+∞)B. [−1,0]C. [0,1]D. [−1,1]12. 已知 fʹ(x ) 是定义在 (0,+∞) 上的函数 f (x ) 的导函数,若方程 fʹ(x )=0 无解,且 ∀x ∈(0,+∞),f [f (x )−log 2016x ]=2017,设 a =f (20.5),b =f (log π3),c =f (log 43),则 a ,b ,c 的大小关系是 ( )A. b >c >aB. a >c >bC. c >b >aD. a >b >c13. 已知函数 f (x )={lnx,x ≥11−x 2,x <1,若 F (x )=f [f (x )+1]+m 有两个零点 x 1,x 2,则 x 1⋅x 2 的取值范围是 ( ) A. [4−2ln2,+∞) B. (√e,+∞)C. (−∞,4−2ln2]D. (−∞,√e)14. 已知函数 f (x ) 是定义在 R 上的奇函数,当 x <0 时,f (x )=(x +1)e x , 则对任意的 m ∈R ,函数 F (x )=f(f (x ))−m 的零点个数至多有 ( )A. 3 个B. 4 个C. 6 个D. 9 个15. 设 f (x )=∣lnx∣,若函数 g (x )=f (x )−ax 在区间 (0,3] 上有三个零点,则实数 a 的取值范围是 ( )A. (0,1e ) B. (ln33,e) C. (0,ln33] D. [ln33,1e)16. 已知 f (x ) 是定义在 R 上的偶函数,其导函数为 fʹ(x ),若 fʹ(x )<f (x ),且 f (x +1)=f (3−x ),f (2015)=2,则不等式 f (x )<2e x−1 的解集为 ( )高中数学资料共享群QQ 群号:734924357A. (1,+∞)B. (e,+∞)C. (−∞,0)D. (−∞,1e)17. 设函数 f (x ) 的导函数为 fʹ(x ),对任意 x ∈R 都有 fʹ(x )>f (x ) 成立,则 ( ) A. 3f (ln2)>2f (ln3) B. 3f (ln2)=2f (ln3) C. 3f (ln2)<2f (ln3)D. 3f (ln2) 与 2f (ln3) 的大小不确定18. 已知函数 f (x )=x 33+12ax 2+2bx +c ,方程 fʹ(x )=0 两个根分别在区间 (0,1) 与 (1,2) 内,则 b−2a−1的取值范围为 ( )A. (14,1)B. (−∞,14)∪(1,∞)C. (−1,−14)D. (14,2)19. 已知 f (x )=∣xe x ∣,又 g (x )=f 2(x )−tf (x )(t ∈R ),若满足 g (x )=−1 的 x 有四个,则 t 的取值范围是 ( )A. (−∞,−e 2+1e) B. (e 2+1e,+∞) C. (−e 2+1e,−2) D. (2,e 2+1e)20. 已知 f (x ) 是定义在 (0,+∞) 上的单调函数,且对任意的 x ∈(0,+∞),都有 f [f (x )−log 2x ]=3,则方程 f (x )−fʹ(x )=2 的解所在的区间是 ( ) A. (0,12)B. (12,1)C. (1,2)D. (2,3)21. 已知函数 f (x )={√1+9x 2,x ≤01+xe x−1,x >0,点 A ,B 是函数 f (x ) 图象上不同两点,则 ∠AOB (O 为坐标原点)的取值范围是 ( )A. (0,π4) B. (0,π4] C. (0,π3) D. (0,π3]22. 定义:如果函数 f (x ) 在 [a,b ] 上存在 x 1,x 2 (0<x 1<x 2<a) 满足 fʹ(x 1)=f (b )−f (a )b−a ,fʹ(x 2)=f (b )−f (a )b−a,则称函数 f (x ) 是 [a,b ] 上的“双中值函数”.已知函数 f (x )=x 3−x 2+a 是 [0,a ] 上的“双中值函数”,则实数 a 的取值范围是 ( )高中数学资料共享群QQ 群号:734924357 A. (13,12)B. (32,3)C. (12,1)D. (13,1)23. 已知函数 f (x )=2mx 2−2(4−m )x +1,g (x )=mx ,若对于任意实数 x ,函数 f (x ) 与 g (x ) 的值至少有一个为正值,则实数 m 的取值范围是 ( )A. (2,8)B. (0,2)C. (0,8)D. (−∞,0)24. 已知 a,b ∈R ,且 e x+1≥ax +b 对 x ∈R 恒成立,则 ab 的最大值是( )A. 12e 3B. √22e 3 C.√32e 3 D. e 325. 函数 f (x ) 是定义在区间 (0,+∞) 上的可导函数 , 其导函数为 fʹ(x ),且满足 xfʹ(x )+2f (x )>0,则不等式 (x+2016)f (x+2016)5<5f (5)x+2016的解集为 ( ) A. {x >−2011} B. {x ∣x <−2011} C. {x ∣−2011<x <0}D. {x∣∣−2016<x <−2011}26. 设 D =√(x −a )2+(lnx −a 24)2+a 24+1(a ∈R ),则 D 的最小值为( ) A. √22B. 1C. √2D. 227. 已知定义在 R 上的函数 y =f (x ) 满足:函数 y =f (x +1) 的图象关于直线 x =−1 对称,且当 x ∈(−∞,0) 时,f (x )+xfʹ(x )<0 成立(fʹ(x ) 是函数 f (x ) 的导函数),若 a =0.76f (0.76),b =log 1076f (log 1076),c =60.6f (60.6),则 a ,b ,c 的大小关系是 ( )A. a >b >cB. b >a >cC. c >a >bD. a >c >b28. 对任意的正数 x ,都存在两个不同的正数 y ,使 x 2(lny −lnx )−ay 2=0 成立,则实数 a 的取值范围为 ( )A. (0,12e ) B. (−∞,12e ) C. (12e ,+∞) D. (12e,1)29. 已知函数 f (x )=x 3−6x 2+9x ,g (x )=13x 3−a+12x 2+ax −13(a >1) 若对任意的 x 1∈[0,4],总存在 x 2∈[0,4],使得 f (x 1)=g (x 2),则实数 a 的取值范围为 ( )高中数学资料共享群QQ 群号:734924357 A. (1,94]B. [9,+∞)C. (1,94]∪[9,+∞)D. [32,94]∪[9,+∞)30. 定义在 R 上的偶函数 f (x ) 满足 f (2−x )=f (x ),且当 x ∈[1,2] 时,f (x )=lnx −x +1,若函数g (x )=f (x )+mx 有 7 个零点,则实数 m 的取值范围为 ( )A. (1−ln28,1−ln26)∪(ln2−16,ln2−18)B. (ln2−16,ln2−18) C. (1−ln28,1−ln26) D. (1−ln28,ln2−16)31. 已知函数 f (x )={e x ,x ≥0ax,x <0,若方程 f (−x )=f (x ) 有五个不同的根,则实数 a 的取值范围为 ( ) A. (−∞,−e )B. (−∞,−1)C. (1,+∞)D. (e,+∞)32. 已知 fʹ(x ) 是奇函数 f (x ) 的导函数,f (−1)=0,当 x >0 时,xfʹ(x )−f (x )>0,则使得 f (x )>0 成立的 x 的取值范围是 ( ) A. (−∞,−1)∪(0,1) B. (−1,0)∪(1,+∞) C. (−1,0)∪(0,1)D. (−∞,−1)∪(1,+∞)33. 已知函数 f (x ) 在定义域 R 上的导函数为 fʹ(x ),若方程 fʹ(x )=0 无解,且 f [f (x )−2017x ]=2017,当 g (x )=sinx −cosx −kx 在 [−π2,π2] 上与 f (x ) 在 R 上的单调性相同时,则实数 k 的取值范围是 ( )A. (−∞,−1]B. (−∞,√2]C. [−1,√2]D. [√2,+∞)34. 已知函数 f (x )=e x ∣x∣,关于 x 的方程 f 2(x )−2af (x )+a −1=0(a ∈R )有 3 个相异的实数根,则 a 的取值范围是 ( ) A. (e 2−12e−1,+∞)B. (−∞,e 2−12e−1) C. (0,e 2−12e−1) D. {e 2−12e−1}35. 函数 y =f (x ) 图象上不同两点 A (x 1,y 1),B (x 2,y 2) 处的切线的斜率分别是 k A ,k B ,规定 φ(A,B )=∣k A −k B ∣∣AB∣叫做曲线在点 A 与点 B 之间的“弯曲度”.设曲线 y =e x 上不同的两点 A (x 1,y 1),B (x 2,y 2),且 x 1−x 2=1,若 t ⋅φ(A,B )<3 恒成立,则实数 t 的取值范围是 ( )A. (−∞,3]B. (−∞,2]C. (−∞,1]D. [1,3]36. 已知函数 f (x )=ax 3+3x 2+1,若至少存在两个实数 m ,使得 f (−m ),f (1),f (m +2) 成等差数列,则过坐标原点作曲线 y =f (x ) 的切线可以作 ( ) A. 3 条B. 2 条C. 1 条D. 0 条37. 已知整数对排列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),⋯,则第 60 个整数对是 ( ) A. (5,7)B. (4,8)C. (5,8)D. (6,7)38. 已知函数 f (x )={∣log 3x ∣,0<x <3,−cos (π3x),3≤x ≤9.若存在实数 x 1,x 2,x 3,x 4,当 x 1<x 2<x 3<x 4 时,满足 f (x 1)=f (x 2)=f (x 3)=f (x 4),则 x 1⋅x 2⋅x 3⋅x 4 的取值范围是 ( ) A. (7,294)B. (21,1354) C. [27,30)D. (27,1354)39. 已知函数 f (x )=e 2x ,g (x )=lnx +12的图象分别与直线 y =b 交于 A ,B 两点,则 ∣AB∣ 的最小值为 ( )A. 1B. e 12C. 2+ln22D. e −ln3240. 设 A ,B 分别为双曲线 C :x 2a 2−y 2b 2=1(a >0,b >0) 的左、右顶点,P ,Q 是双曲线 C 上关于 x 轴对称的不同两点,设直线 AP ,BQ 的斜率分别为 m ,n ,则2b a+a b+12∣mn∣+ln ∣m ∣+ln ∣n ∣ 取得最小值时,双曲线 C 的离心率为 ( ) A. √2B. √3C. √6D. √6241. 已知 f (x ),g (x ) 都是定义在 R 上的函数,且满足以下条件:① f (x )=a x ⋅g (x )(a >0,a ≠1);② g (x ) ≠0;③ f (x )⋅gʹ(x )>fʹ(x )⋅g (x ).若 f (1)g (1)+f (−1)g (−1)=52,则使 log a x >1 成立的 x 的取值范围是 ( )A. (0,12)∪(2,+∞)B. (0,12)C. (−∞,12)∪(2,+∞)D. (2,+∞)42. 已知函数 f (x )=∣sinx ∣(x ∈[−π,π]),g (x )=x −2sinx (x ∈[−π,π]),设方程 f(f (x ))=0,f(g (x ))=0,g(g (x ))=0 的实根的个数分别为 m ,n ,t ,则 m +n +t = ( )A. 9B. 13C. 17D. 2143. 设 f (x ) 是定义在 R 上的奇函数,且 f (2)=0,当 x >0 时,有xfʹ(x )−f (x )x 2<0 恒成立,则不等式 x 2f (x )>0 的解集是 ( )A. (−2,0)∪(2,+∞)B. (−∞,−2)∪(0,2)C. (−∞,−2)∪(2,+∞)D. (−2,0)∪(0,2)44. 已知函数 f (x )={−x 2+2x,x ≤0ln (x +1),x >0,若 ∣f (x )∣≥ax ,则 a 的取值范围是 ( ) A. (−∞,0]B. (−∞,1]C. [−2,1]D. [−2,0]45. 已知函数 f (x )(x ∈R ) 满足 f (−x )=2−f (x ),若函数 y =x+1x与 y =f (x ) 图象的交点为 (x 1,y 1),(x 2,y 2),⋯,(x m ,y m ),则 ∑(x i +m i=1y i )= ( )A. 0B. mC. 2mD. 4m46. 若函数 f (x )=x −13sin2x +asinx 在 (−∞,+∞) 单调递增,则 a 的取值范围是 ( )高中数学资料共享群QQ 群号:734924357 A. [−1,1]B. [−1,13]C. [−13,13]D. [−1,−13]47. 已知两曲线 y =x 3+ax 和 y =x 2+bx +c 都经过点 P (1,2),且在点 P处有公切线,则当 x ≥12 时,log bax 2−c 2x的最小值为 ( )A. −1B. 1C. 12D. 048. 直线 y =m 分别与 y =2x +3 及 y =x +lnx 交于 A ,B 两点,则 ∣AB∣的最小值为 ( ) A. 1B. 2C. 3D. 449. 设函数 f (x )=x 2−2x +1+alnx 有两个极值点 x 1,x 2,且 x 1<x 2,则 f (x 2) 的取值范围是 ( ) A. (0,1+2ln24) B. (1−2ln24,0)C. (1+2ln24,+∞) D. (−∞,1−2ln24)50. 设直线 l 1,l 2 分别是函数 f (x )={−lnx,0<x <1,lnx,x >1,图象上点 P 1,P 2处的切线,l 1 与 l 2 垂直相交于点 P ,且 l 1,l 2 分别与 y 轴相交于点 A ,B ,则 △PAB 的面积的取值范围是 ( )A. (0,1)B. (0,2)C. (0,+∞)D. (1,+∞)51. 已知定义在 R 上的奇函数 f (x ),其导函数为 fʹ(x ),对任意正实数 x 满足 xfʹ(x )>2f (−x ),若 g (x )=x 2f (x ),则不等式 g (x )<g (1−3x ) 的解集是 ( ) A. (14,+∞)B. (−∞,14)C. (0,14)D. (−∞,14)∪(14,+∞)52. 已知函数 f (x )=x (lnx −ax ) 有两个极值点,则实数 a 的取值范围是( )A. (−∞,0)B. (0,12)C. (0,1)D. (0,+∞)53. 已知函数 f (x )=x +xlnx ,若 m ∈Z ,且 (m −2)(x −2)<f (x ) 对任意的 x >2 恒成立,则 m 的最大值为 ( ) A. 4B. 5C. 6D. 854. 已知函数 f (x )=a x+xlnx ,g (x )=x 3−x 2−5,若对任意的 x 1,x 2∈[12,2],都有 f (x 1)−g (x 2)≥2 成立,则 a 的取值范围是 ( )A. (0,+∞)B. [1,+∞)C. (−∞,0)D. (−∞,−1]55. 设函数 f (x )=e x (2x −1)−ax +a ,其中 a <1,若存在唯一的整数x 0 使得 f (x 0)<0,则 a 的取值范围是 ( )A. [−32e,1) B. [−32e ,34) C. [32e ,34)D. [32e,1)56. 函数 f (x )={(x −a )2+e,x ≤2xlnx+a +10,x >2(e 是自然对数的底数),若 f (2) 是函数 f (x ) 的最小值,则 a 的取值范围是 ( ) A. [−1,6]B. [1,4]C. [2,4]D. [2,6]57. f (x ),g (x )(g (x )≠0) 分别是定义在 R 上的奇函数和偶函数,当 x <0时,fʹ(x )g (x )<f (x )gʹ(x ),且 f (−3)=0,f (x )g (x )<0 的解集为 ( )A. (−∞,−3)∪(3,+∞)B. (−3,0)∪(0,3)C. (−3,0)∪(3,+∞)D. (−∞,−3)∪(0,3)58. 已知函数 f (x )=x 3+bx 2+cx +d (b ,c ,d 为常数),当 x ∈(0,1) 时 f (x ) 取得极大值,当 x ∈(1,2) 时 f (x ) 取得极小值,则 (b +12)2+(c −3)2的取值范围是 ( )高中数学资料共享群QQ 群号:734924357 A. (√372,5) B. (√5,5)C. (374,25)D. (5,25)59. 若关于 x 的方程 ∣x 4−x 3∣=ax 在 R 上存在 4 个不同的实根,则实数a 的取值范围为 ( ) A. (0,427)B. (0,427]C. (427,23)D. (427,23]60. 设函数 f (x ) 在 R 上存在导函数 fʹ(x ),若对 ∀x ∈R ,有 f (−x )+f (x )=x 2,且当 x ∈(0,+∞) 时,fʹ(x )>x .若 f (2−a )−f (a )≥2−2a ,则 a 的取值范围是 ( )A. (−∞,1]B. [1,+∞)C. (−∞,2]D. [2,+∞)61. 已知 e 为自然对数的底数,若对任意的 x ∈[1e,1],总存在唯一的 y ∈[−1,1],使得 lnx −x +1+a =y 2e y 成立,则实数 a 的取值范围是 ( ) A. [1e ,e]B. (2e,e]C. (2e,+∞)D. (2e ,e +1e)62. 设函数 f (x )={2x +1,x >0,0,x =0,2x −1,x <0.若不等式 f (x −1)+f (mx)>0 对任意x >0 恒成立,则实数 m 的取值范围是 ( ) A. (−14,14)B. (0,14)C. (14,+∞)D. (1,+∞)63. 若 0<x 1<x 2<1,则 ( )A. e x 2−e x 1>lnx 2−lnx 1B. e x 1−e x 2<lnx 2−lnx 1C. x 2e x 1>x 1e x 2D. x 2e x 1<x 1e x 264. 函数f(x)在定义域R内可导,若f(x)=f(2−x),且(x−1)fʹ(x)<0,若a=f(0),b=f(12),c=f(3),则a,b,c的大小关系是( )A. a>b>cB. b>a>cC. c>b>aD. a>c>b65. 已知函数f(x)=x−4+9x+1,x∈(0,4).当x=a时,f(x)取得最小值b,则函数g(x)=(1a )∣x+b∣的图象为( )A. B.C. D.66. f(x)是定义在(0,+∞)上的单调函数,且对∀x∈(0,+∞)都有f(f(x)−lnx)=e+1,则方程f(x)−fʹ(x)=e的实数解所在的区间是( )高中数学资料共享群QQ群号:734924357A. (0,1e ) B. (1e,1) C. (1,e) D. (e,3)67. 已知R上的奇函数f(x)满足fʹ(x)>−2,则不等式f(x−1)<x2(3−2lnx)+3(1−2x)的解集是( )A. (0,1e) B. (0,1) C. (1,+∞) D. (e,+∞)68. 已知函数f(x)=sinxx,给出下面三个结论:①函数f(x)在区间(−π2,0)上单调递增,在区间(0,π2)上单调递减;②函数f(x)没有最大值,而有最小值;③函数f(x)在区间(0,π)上不存在零点,也不存在极值点.其中,所有正确结论的序号是( )A. ①②B. ①③C. ②③D. ①②③69. 已知函数 f (x ) 是定义在 R 上的可导函数,fʹ(x ) 为其导函数,若对于任意实数 x ,有 f (x )−fʹ(x )>0,则 A. ef (2015)>f (2016) B. ef (2015)<f (2016) C. ef (2015)=f (2016)D. ef (2015) 与 f (2016) 大小不能确定70. 若存在正实数 m ,使得关于 x 的方程 x +a (2x +2m −4ex )[ln (x +m )−lnx ]=0 有两个不同的根,其中 e 为自然对数的底数,则实数 a 的取值范围是 ( ) A. (−∞,0)B. (0,12e )C. (−∞,0)∪(12e ,+∞)D. (12e ,+∞)71. 定义在 (0,π2) 上的函数 f (x ),fʹ(x ) 是它的导函数,且恒有 f (x )⋅tanx <fʹ(x ) 成立,则 ( ) A. √3f (π4)>√2f (π3)B. f (1)<2f (π6)sin1C. √2f (π6)>f (π4) D. √3f (π6)<f (π3)72. 已知函数 f (x )=x 3+ax 2+bx +c ,下列结论中错误的是 ( )A. ∃x 0∈R ,f (x 0)=0B. 函数 y =f (x ) 的图象是中心对称图形C. 若 x 0 是 f (x ) 的极小值点,则 f (x ) 在区间 (−∞,x 0) 单调递减D. 若 x 0 是 f (x ) 的极值点,则 fʹ(x 0)=073. 已知函数 f (x )=ln x2+12,g (x )=e x−2,若 g (m )=f (n ) 成立,则 n −m 的最小值为 ( )A. 1−ln2B. ln2C. 2√e −3D. e 2−374. 设函数 f (x )=e x (x 3−3x +3)−ae x −x (x ≥−2),若不等式 f (x )≤0有解.则实数 a 的最小值为 ( )A. 2e −1 B. 2−2eC. 1+2e2D. 1−1e75. 设函数f(x)=2lnx−12mx2−nx,若x=2是f(x)的极大值点,则m 的取值范围为( )A. (−12,+∞) B. (−12,0)C. (0,+∞)D. (−∞,−12)∪(0,+∞)76. 已知函数f(x)=ax3+bx2−2(a≠0)有且仅有两个不同的零点x1,x2,则( )A. 当a<0时,x1+x2<0,x1x2>0B. 当a<0时,x1+x2>0,x1x2<0C. 当a>0时,x1+x2<0,x1x2>0D. 当a>0时,x1+x2>0,x1x2<077. 已知函数f(x)=ax3−3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围为( )A. (2,+∞)B. (1,+∞)C. (−∞,−2)D. (−∞,−1)78. 设f(x)、g(x)是定义域为R的恒大于零的可导函数,且fʹ(x)g(x)−f(x)gʹ(x)<0,则当a<x<b时,有( )A. f(x)g(x)>f(b)g(b)B. f(x)g(a)>f(a)g(x)C. f(x)g(b)>f(b)g(x)D. f(x)g(x)>f(a)g(a)79. 设函数fʹ(x)是函数f(x)(x∈R)的导函数,f(0)=1,且3f(x)=fʹ(x)−3,则4f(x)>fʹ(x)的解集为( )A. (ln43,+∞) B. (ln23,+∞) C. (√32,+∞) D. (√e3,+∞)80. 下列关于函数f(x)=(2x−x2)e x的判断正确的是( )①f(x)>0的解集是{x∣0<x<2};②f(−√2)是极小值,f(√2)是极大值;③f(x)没有最小值,也没有最大值;④f(x)有最大值,没有最小值.A. ①③B. ①②③C. ②④D. ①②④参考答案,仅供参考啊1. D 【解析】fʹ(x)=e x+xe x−m(x+1)=(x+1)(e x−m),因为1≤x≤2,所以e≤e x≤e2,①当m≤e时,e x−m≥0,由x≥1,可得fʹ(x)≥0,此时函数f(x)单调递增.高中数学资料共享群QQ群号:734924357所以当x=1时,函数f(x)取得最小值,f(1)=e−32m.②当m≥e2时,e x−m≤0,由x≥1,可得fʹ(x)≤0,此时函数f(x)单调递减.所以当x=2时,函数f(x)取得最小值,f(2)=2e2−4m.③当e2>m>e时,由e x−m=0,解得x=lnm.当1≤x<lnm时,fʹ(x)<0,此时函数f(x)单调递减;当lnm<x≤1时,fʹ(x)>0,此时函数f(x)单调递增.所以当x=lnm时,函数f(x)取得极小值即最小值,f(lnm)=−m2ln2m.2. D 【解析】fʹ(x)=xcosx−sinxx2(0<x<π).(i)当x=π2时,fʹ(x)=−4π2<0;(ii)当0<x<π,且x≠π2时,fʹ(x)=xcosx−sinxx2=cosx(x−tanx)x2.①当0<x<π2时,根据三角函数线的性质,得x<tanx,又cosx>0,所以fʹ(x)<0;②当π2<x<π时,tanx<0,则x−tanx>0,又cosx<0,所以fʹ(x)< 0.综合(i)(ii),当0<x<π时,fʹ(x)<0.所以f(x)在(0,π)上是减函数.若π3<a<b<2π3,则π3<a<√ab<a+b2<b<2π3,所以f(a)>f(√ab)>f(a+b2)>f(b).3. C 【解析】令f(x1)=a−x1,则f(x1)=a−x1在x1∈[0,1]上单调递减,且f(0)=a,f(1)=a−1.令g(x2)=x22e x2,则gʹ(x2)=2x2e x2+x22e x2=x2e x2(x2+2),且g(0)=0,g(−1)=1e,g(1)=e.若对任意的x1∈[0,1],总存在唯一的x2∈[−1,1],使得x1+x22e x2−a=0成立,即f(x1)=g(x2),则f(x1)=a−x1的最大值不能大于g(x2)的最大值,即f(0)=a≤e,因为g(x2)在[−1,0]上单调递减,在(0,1]上单调递增,所以当g(x2)∈(0,1e]时,有两个x2使得f(x1)=g(x2).若只有唯一的x2∈[−1,1],使得f(x1)=g(x2),则f(x1)的最小值要比1e大,所以f(1)=a−1>1e,所以a>1+1e,故实数a的取值范围是(1+1e,e].4. B 【解析】zln yz=x,所以xz=lny−lnz,所以lny=xz+lnz,所以ln yx =lny−lnx=xz+lnz−lnx=xz+ln zx,令zx =t,则ln yx=1t+lnt,又因为z2≤x≤ez,所以12≤xz≤e,即t∈[1e ,2],令ln yx=1t+lnt=f(t),则fʹ(t)=t−1t2,令fʹ(t)=0即t=1,又因为1e≤t≤2,所以t∈[1e,1]时fʹ(t)<0,f(t)单调减,t∈[1,2]时fʹ(t)>0,f(t)单调增,所以t=1时f(t)取极小值,即f(1)=1,f(2)=12+ln2,f(1e)=e+ln1e=e−1f(1e )−f(2)=e−ln2−32>e−lne−32=e−52>0,所以f(t)最大值为e−1,所以f(t)∈[1,e−1],高中数学资料共享群QQ群号:734924357所以ln yx∈[1,e−1].5. A【解析】由ln∣x∣−ax2+32=0得ax2=ln∣x∣+32,因为x≠0,所以方程等价为a=ln∣x∣+32x2,设f(x)=ln∣x∣+32x2,则函数f(x)是偶函数,当x>0时,f(x)=lnx+32x2,则fʹ(x)=1x⋅x2−(lnx+32)⋅2xx4=x−2xlnx−3xx4=−2x(1+lnx)x4,由fʹ(x)>0得−2x(1+lnx)>0,得1+lnx<0,即lnx<−1,得0<x<1e,此时函数单调递增,由fʹ(x)<0得−2x(1+lnx)<0,得1+lnx>0,即lnx>−1,得x>1e,此时函数单调递减,即当 x >0 时,x =1e 时,函数 f (x ) 取得极大值 f (1e)=ln 1e +32(1e)2=(−1+32)e 2=12e 2, 作出函数f (x ) 的图象如图:要使 a =ln∣x∣+32x 2,有 4 个不同的交点,则满足 0<a <12e 2.6. D 【解析】提示:令 fʹ(x )=2sinx ⋅e x =0,得 x =kπ,易知当 x =2kπ(k ∈Z ),1≤k ≤1007 时 f (x ) 取到极小值,故各极小值之和为f (2π)+f (4π)+⋯+f (2014π)=−(e 2π+e 4π+⋯+e 2014π)=−e 2π(1−e 2014π)1−e 2π.7. A 【解析】因为 f (x )=x (fʹ(x )−lnx ), 所以 xfʹ(x )−f (x )=xlnx , 所以xfʹ(x )−f (x )x 2=lnx x,所以 [f (x )x]ʹ=lnxx,令 F (x )=f (x )x ,则 Fʹ(x )=lnx x,f (x )=xF (x ),所以 fʹ(x )=F (x )+xFʹ(x )=F (x )+lnx , 所以 fʺ(x )=Fʹ(x )+1x=lnx+1x,因为 x ∈(0,1e ),fʺ(x )<0,fʹ(x ) 单减,x ∈(1e ,+∞),fʺ(x )>0,fʹ(x ) 单增,所以 fʹ(x )≥fʹ(1e )=F (1e )+ln 1e =ef (1e )−1=0,所以 fʹ(x )≥0,所以 f (x ) 在 (0,+∞) 上单增,因为 e ⋅f (e x )<fʹ(1e )+1,fʹ(1e )=−1+e ⋅f (1e )=0, 所以 e ⋅f (e x )<1, 所以 f (e x )<1e ,所以 f (e x )<f (1e ), 所以 0<e x <1e ,所以不等式的解集为 x <−1. 8. A 9. C 【解析】因为 fʹ(x )=1−(1+lnx )x 2=−lnx x 2,所以 f (x ) 在 (0,1) 上单调递增,在 (1,,+∞) 上单调递减,当 a >0 时,f 2(x )+af (x )>0⇔f (x )<−a 或 f (x )>0,此时不等式 f 2(x )+af (x )>0 有无数个整数解,不符合题意;当 a =0 时,f 2(x )+af (x )>0⇔f (x )≠0,此时不等式 f 2(x )+af (x )>0 有无数个整数解,不符合题意;当 a <0 时,f 2(x )+af (x )>0⇔f (x )<0 或 f (x )>−a ,要使不等式 f 2(x )+af (x )>0 恰有两个整数解,必须满足 f (3)≤−a <f (2),得 −1+ln22<a ≤−1+ln33.10. B【解析】因为 f (x )=x +xlnx ,所以 f (x )−m (x −1)>0 对任意 x >1 恒成立,即 m (x −1)<x +xlnx , 因为 x >1,也就是 m <x⋅lnx+x x−1对任意 x >1 恒成立.令 ℎ(x )=x⋅lnx+x x−1,则 ℎʹ(x )=x−lnx−2(x−1)2,令 φ(x )=x −lnx −2(x >1),则 φʹ(x )=1−1x=x−1x>0,所以函数 φ(x ) 在 (1,+∞) 上单调递增.因为 φ(3)=1−ln3<0,φ(4)=2−2ln2>0,所以方程 φ(x )=0 在 (1,+∞) 上存在唯一实根 x 0,且满足 x 0∈(3,4). 当 1<x <x 0 时,φ(x )<0,即 ℎʹ(x )<0, 当 x >x 0 时,φ(x )>0,即 ℎʹ(x )>0,所以函数 ℎ(x ) 在 (1,x 0) 上单调递减,在 (x 0,+∞) 上单调递增. 所以 [ℎ(x )]min =ℎ(x 0)=x 0(1+x 0−2)x 0−1=x 0∈(3,4).所以 m <[g (x )]min =x 0,因为 x 0∈(3,4),故整数 m 的最大值是 3. 11. D 【解析】函数 f (x )={xln (1+x )+x 2,x ≥0−xln (1−x )+x 2,x <0, 将 x 换为 −x ,函数值不变,即有 f (x ) 图象关于 y 轴对称,即 f (x ) 为偶函数,有 f (−x )=f (x ),当 x ≥0 时,f (x )=xln (1+x )+x 2 的导数为 fʹ(x )=ln (1+x )+x 1+x+2x ≥0,则 f (x ) 在 [0,+∞) 递增,f (−a )+f (a )≤2f (1),即为 2f (a )≤2f (1), 可得 f (∣a∣)≤f (1),可得 ∣a∣≤1,解得 −1≤a ≤1.12. D 【解析】由题意,可知 f (x )−log 2016x 是定值,不妨令 t =f (x )−log 2016x ,则 f (x )=log 2016x +t ,又 f (t )=2017,所以 log 2016t +t =2017⇒t =2016,即 f (x )=log 2016x +2016,则 fʹ(x )=1xln2016,显然当x ∈(0,+∞) 时,有 fʹ(x )>0,即函数 f (x ) 在 (0,+∞) 上为单调递增,又 20.5>1>log π3>log 43,所以 f (20.5)>f (log π3)>f (log 43). 13. D 【解析】当 x ≥1 时,f (x )=lnx ≥0, 所以 f (x )+1≥1,所以 f [f (x )+1]=ln (f (x )+1),当 x <1,f (x )=1−x2>12,f (x )+1>32,f [f (x )+1]=ln (f (x )+1),综上可知:F[f(x)+1]=ln(f(x)+1)+m=0,则f(x)+1=e−m,f(x)=e−m−1,有两个根x1,x2,(不妨设x1<x2),当x≥1是,lnx2=e−m−1,当x<1时,1−x12=e−m−1,令t=e−m−1>12,则lnx2=t,x2=e t,1−x12=t,x1=2−2t,所以x1x2=e t(2−2t),t>12,设g(t)=e t(2−2t),t>12,求导gʹ(t)=−2te t,t∈(12,+∞),gʹ(t)<0,函数g(t)单调递减,所以g(t)<g(12)=√e,所以g(x)的值域为(−∞,√e),所以x1x2取值范围为(−∞,√e).14. A 【解析】当x<0时,f(x)=(x+1)e x,可得fʹ(x)=(x+2)e x,可知x∈(−∞,−2),函数是减函数,x∈(−2,0)函数是增函数,f(−2)=−1e2,f(−1)=0,且x→0时,f(x)→1,又f(x)是定义在R上的奇函数,f(0)=0,而x∈(−∞,−1)时,f(x)<0,所以函数的图象如图:令t=f(x)则f(t)=m,由图象可知:当t∈(−1,1)时,方程f(x)=t至多3个根,当t∉(−1,1)时,方程没有实数根,而对于任意m∈R,方程f(t)=m至多有一个根,t∈(−1,1),从而函数F(x)=f(f(x))−m的零点个数至多有3个.15. D【解析】函数g(x)=f(x)−ax在区间(0,3]上有三个零点即函数f(x)=∣lnx∣与y=ax在区间(0,3]上有三个交点.画图如下.当 a ≤0 时,显然,不合乎题意,当 a >0 时,由图知,当 x ∈(0,1] 时,存在一个交点,当 x >1 时,f (x )=lnx ,可得 g (x )=lnx −ax (x ∈(1,3]),gʹ(x )=1x−a =1−ax x,若 gʹ(x )<0,可得 x >1a,g (x ) 为减函数,若 gʹ(x )>0,可得 x <1a,g (x ) 为增函数,此时 y =f (x ) 与 y =ax 必须在 [1,3] 上有两个交点,即 y =g (x ) 在 [1,3] 上有两个零点,所以 {g (1a)>0,g (3)≤0,g (1)≤0,解得ln33≤a <1e,故函数 g (x )=f (x )−ax 在区间 (0,3] 上有三个零点时,ln33≤a <1e.16. A 【解析】因为函数 f (x ) 是偶函数, 所以 f (x +1)=f (3−x )=f (x −3).所以 f (x +4)=f (x ),即函数 f (x ) 是周期为 4 的周期函数. 因为 f (2015)=f (4×504−1)=f (−1)=f (1)=2, 所以 f (1)=2. 设 g (x )=f (x )e x,则 gʹ(x )=fʹ(x )e x −f (x )e xe 2x=fʹ(x )−f (x )e x<0,所以 g (x ) 在 R 上单调递减. 不等式 f (x )<2e x−1 等价于 f (x )e x<2e,即 g (x )<g (1),所以 x >1,所以不等式 f (x )<2e x−1 的解集为 (1,+∞). 17. C 【解析】构造函数 g (x )=f (x )e x,则函数求导得 gʹ(x )=fʹ(x )−f (x )e x.由已知 fʹ(x )>f (x ),所以 gʹ(x )>0,即 g (x ) 在实数范围内单调递增, 所以 g (ln2)<g (ln3),即f (ln2)e ln2<f (ln3)e ln3,解得 3f (ln2)<2f (ln3).18. A 【解析】由题意,fʹ(x )=x 2+ax +2b ,因为 fʹ(x ) 是开口朝上的二次函数,所以 {fʹ(0)>0fʹ(1)<0fʹ(2)>0,得 {b >0,a +a +2b <0,2+a +b >0, 由此可画出可行域,如图,b−2a−1表示可行域内的点 (a,b ) 和点 P (1,2) 连线的斜率,显然 PA 的斜率最小,PC 的斜率最大.19. B 【解析】令 y =xe x ,则 yʹ=(1+x )e x ,由 yʹ=0,得 x =−1,当 x ∈(−∞,−1) 时,yʹ<0,函数 y 单调递减,当 x ∈(−1,∞) 时,yʹ>0 函数单调递增.做出 y =xe x 图象,利用图象变换得 f (x )=∣xe x ∣ 图象(如图),令 f (x )=m ,则关于 m 方程 ℎ(m )=m 2−tm +1=0 两根分别在 (0,1e ),(1e ,+∞) 时(如图),满足 g (x )=−1 的 x 有 4 个,由 ℎ(1e )=1e 2−1e t +1<0 解得 t >e 2+1e.20. C【解析】根据题意,对任意的x∈(0,+∞),都有f[f(x)−log2x]=3,又由f(x)是定义在(0,+∞)上的单调函数,则f(x)−log2x为定值,设t=f(x)−log2x,则f(x)=log2x+t,又由f(t)=3,即log2t+t=3,解可得,t=2;则f(x)=log2x+2,fʹ(x)=1ln2⋅x,将f(x)=log2x+2,fʹ(x)=1ln2⋅x代入f(x)−fʹ(x)=2,可得log2x+2−1ln2⋅x=2,即log2x−1ln2⋅x=0,令ℎ(x)=log2x−1ln2⋅x,分析易得ℎ(1)=−1ln2<0,ℎ(2)=1−12ln2>0,则ℎ(x)=log2x−1ln2⋅x的零点在(1,2)之间,则方程log2x−1ln2⋅x=0,即f(x)−fʹ(x)=2的根在(1,2)上.21. A 【解析】当x≤0时,由y=√1+9x2得y2−9x2=1(x≤0),此时对应的曲线为双曲线,双曲线的渐近线为y=−3x,此时渐近线的斜率k1=−3,当x>0时,f(x)=1+xe x−1,当过原点的直线和f(x)相切时,设切点为(a,1+ae a−1),函数的导数fʹ(x)=e x−1+xe x−1=(x+1)e x−1,则切线斜率k2=fʹ(a)=(a+1)e a−1,则对应的切线方程为y−(1+ae a−1)=(1+a)e a−1(x−a),即y=(1+a)e a−1(x−a)+1+ae a−1,当x=0,y=0时,(1+a)e a−1(−a)+1+ae a−1=0,即a2e a−1+ae a−1=1+ae a−1,即a2e a−1=1,得a=1,此时切线斜率k2=2,则切线和y=−3x的夹角为θ,则tanθ=∣∣−3−21−2×3∣∣=55=1,则θ=π4,故∠AOB(O为坐标原点)的取值范围是(0,π4).22. C 【解析】由题意可知,因为 f (x )=x 3−x 2+a 在区间 [0,a ] 存在 x 1,x 2 (a <x 1<x 2<b),满足 fʹ(x 1)=fʹ(x 2)=f (a )−f (0)a=a 2−a ,因为 f (x )=x 3−x 2+a , 所以 fʹ(x )=3x 2−2x ,所以方程 3x 2−2x =a 2−a 在区间 (0,a ) 有两个不相等的解. 令 g (x )=3x 2−2x −a 2+a ,(0<x <a ). 则 {Δ=4−12(−a 2+a )>0,g (0)=−a 2+a >0,g (a )=2a 2−a >0,0<16<a. 解得:12<a <1.所以实数 a 的取值范围是 (12,1). 23. C 【解析】当 m <0 时,函数 f (x ) 的图象为开口向下的抛物线,所以在 x >0 时,f (x )>0 不恒成立. 函数 g (x )=mx 当 x >0 时,g (x )<0. 所以不满足题意.当 m =0 时,f (x )=−8x +1,g (x )=0,不满足题意. 当 m >0 时,需 f (x )>0 在 x <0 时恒成立,所以令 Δ<0 或 {Δ≥0,−b2a ≥0,f (0)>0,即 4(4−m )2−8m <0 或 {4(4−m )2−8m ≥0,4−m 2m≥0.解得 2<m <8 或 0<m ≤2.综合得:0<m <8.24. A 【解析】若 a <0,由于一次函数 y =ax +b 单调递减,不能满足且 e x+1≥ax +b 对 x ∈R 恒成立,则 a ≥0. 若 a =0,则 ab =0.若 a >0,由 e x+1≥ax +b 得 b ≤e x+1−ax ,则 ab ≤ae x+1−a 2x . 设函数 f (x )=ae x+1−a 2x ,所以 fʹ(x )=ae x+1−a 2=a (e x+1−a ),令 fʹ(x )=0 得 e x+1−a =0,解得 x =lna −1,因为 x <lna −1 时,x +1<lna ,则 e x+1<a ,则 e x+1−a <0, 所以 fʹ(x )<0,所以函数 f (x ) 递减;同理,x >lna −1 时,fʹ(x )>0,所以函数 f (x ) 递增;所以当 x =lna −1 时,函数取最小值,f (x ) 的最小值为 f (lna −1)=2a 2−a 2lna .设 g (a )=2a 2−a 2lna (a >0),gʹ(a )=a (3−2lna )(a >0),由 gʹ(a )=0 得 a =e 32,不难得到 a <e 32时,gʹ(a )>0;a >e 32时,gʹ(a )<0;所以函数 g (a ) 先增后减,所以 g (a ) 的最大值为 g (e 32)=12e 3,即 ab 的最大值是 12e 3,此时 a=e 32,b =12e 32.25. D【解析】构造函数 g (x )=x 2f (x ),gʹ(x )=x(2f (x )+xfʹ(x )), 当 x >0 时,因为 2f (x )+xfʹ(x )>0, 所以 gʹ(x )>0,所以g(x)在(0,+∞)上单调递增,因为不等式(x+2016)f(x+2016)5<5f(5)x+2016,所以x+2016>0时,即x>−2016时,(x+2016)2f(x+2016)<52f(5),所以g(x+2016)<g(5),所以x+2016<5,所以−2016<x<−2011.26. C 【解析】S=(x−a)2+(lnx−a24)2(a∈R),其几何意义为:两点(x,lnx),(a,a 24)的距离的平方,由y=lnx的导数为yʹ=1x,所以k=1x1,点(a,a24)在曲线y=14x2上,所以yʹ=12x,所以k=12x2,令f(x)=lnx,g(x)=14x2,则D(x)=√(x1−x2)2+[f(x1)−g(x2)]2+g(x2)+1,而g(x2)+1是抛物线y=14x2上的点到准线y=−1的距离,即抛物线y=14x2上的点到焦点(0,1)的距离,则D可以看作抛物线上的点(x2,g(x2))到焦点距离和到f(x)=lnx上的点的距离的和,即∣AF∣+∣AB∣,由两点之间线段最短,得D最小值是点F(0,1)到f(x)=lnx上的点的距离的最小值,由点到直线上垂线段最短,这样就最小,即取B(x0,lnx0),则fʹ(x0)⋅lnx0−1x0=−1,垂直,则 lnx 0−1=−x 02,解得 x 0=1,所以 F 到 B (1,0) 的距离就是点 F (0,1) 到 f (x )=lnx 上的点的距离的最小值, 所以 D 的最小值为 ∣DF ∣=√2.27. D 【解析】定义在 R 上的函数 y =f (x ) 满足:函数 y =f (x +1) 的图象关于直线 x =−1 对称,可知函数 f (x ) 是偶函数, 所以 y =xf (x ) 是奇函数,又因为当 x ∈(−∞,0) 时,f (x )+xfʹ(x )<0 成立(fʹ(x ) 是函数 f (x ) 的导函数),所以函数 y =xf (x ) 在 R 上既是奇函数又是减函数; 0.76∈(0,1),60.6<912∈(2,4),log 1076≈log 1.56∈(4,6).所以 a >c >b .28. A 【解析】由 x 2(lny −lnx )−ay 2=0(x,y >0),可得:a =ln y x (y x)2,令y x=t >0,所以 a =lnt t2,设 g (t )=lnt t2,gʹ(t )=1t×t 2−2tlnt t 4=1−2lnt t 3.令 gʹ(t )>0.解得 0<t <√e ,此时函数 g (t ) 单调递增; 令 gʹ(t )<0.解得 t >√e ,此时函数 g (t ) 单调递减.又t>1时,g(t)>0;1>t>0时,g(t)<0.可得函数g(t)的图象.因此当a∈(0,12e )时,存在两个正数,使得a=lntt2成立,即对任意的正数x,都存在两个不同的正数y,使x2(lny−lnx)−ay2=0成立.29. C 【解析】函数f(x)=x3−6x2+9x,导数为f′(x)=3x2−12x+9=3(x−1)(x−3),可得f(x)的极值点为1,3,由f(0)=0,f(1)=4,f(3)=0,f(4)=4,可得f(x)在[0,4]的值域为[0,4];g(x)=13x3−a+1 2x2+ax−13(a>1),导数为g′(x)=x2−(a+1)x+a=(x−1)(x−a),当1<x<a时,g′(x)<0,g(x)递减;当x<1或x>a时,g′(x)> 0,g(x)递增.由g(0)=−13,g(1)=12(a−1),g(a)=−16a3−12a2−13>−13,g(4)=13−4a,当3≤a≤4时,13−4a≤12(a−1),g(x)在[0,4]的值域为[−13,12(a−1)],由对任意的x1∈[0,4],总存在x2∈[0,4],使得f(x1)=g(x2),可得[0,4]⊆[−13,12(a−1)],即有4≤12(a−1),解得a≥9不成立;当1<a<3时,13−4a>12(a−1),g(x)在[0,4]的值域为[−13,13−4a],由题意可得[0,4]⊆[−13,13−4a],即有4≤13−4a,解得a≤94,即为1<a≤94;当 a >4 时,可得 g (1) 取得最大值,g (4)<−3 为最小值,即有 [0,4]⊆[13−4a,12(a −1)],可得 13−4a ≤0,4≤12(a −1),即 a ≥134,且 a ≥9,解得 a ≥9.综上可得,a 的取值范围是 (1,94]∪[9,+∞).30. A【解析】因为函数 f (2−x )=f (x ) 可得图象关于直线 x =1 对称,且函数为偶函数则其周期为 T =2, 又因为 fʹ(x )=1x −1=1−x x,当 x ∈[1,2] 时有 fʹ(x )≤0,则函数在 x ∈[1,2]为减函数,作出其函数图象如图所示:其中 k OA =ln2−16,k OB =ln2−18,当 x <0 时 , 要使符合题意则 m ∈(ln2−16,ln2−18),根据偶函数的对称性,当 x >0 时,要使符合题意则 m ∈(1−ln28,1−ln26).综上所述,实数 m 的取值范围为 (1−ln28,1−ln26)∪(ln2−16,ln2−18).31. A 【解析】因为 f (x )={e x ,x ≥0ax,x <0,所以 f (−x )={−ax,x >01,x =0e −x ,x <0. 显然 x =0 是方程 f (−x )=f (x ) 的一个根, 当 x >0 时,e x =−ax, ⋯⋯① 当 x <0 时,e −x =ax, ⋯⋯②显然,若 x 0 为方程 ① 的解,则 −x 0 为方程 ② 的解, 即方程 ①,② 含有相同个数的解, 因为方程 f (−x )=f (x ) 有五个不同的根, 所以方程 ① 在 (0,+∞) 上有两解,。
2017-2019年高考真题导数压轴题全集(含详细解析)

2017-2019年高考真题导数压轴题全集(含详细解析)1.(2019•全国)已知函数2())f x x ax -. (1)当1a =时,求()f x 的单调区间;(2)若()f x 在区间[0,2]的最小值为23-,求a .2.(2019•新课标Ⅲ)已知函数32()2f x x ax b =-+. (1)讨论()f x 的单调性;(2)是否存在a ,b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出a ,b 的所有值;若不存在,说明理由.3.(2019•新课标Ⅲ)已知函数32()22f x x ax =-+. (1)讨论()f x 的单调性;(2)当03a <<时,记()f x 在区间[0,1]的最大值为M ,最小值为m ,求M m -的取值范围.4.(2019•浙江)已知实数0a ≠,设函数()f x alnx =0x >. (Ⅰ)当34a =-时,求函数()f x 的单调区间;(Ⅱ)对任意21[x e ∈,)+∞均有()f x …,求a 的取值范围. 注: 2.71828e =⋯为自然对数的底数.5.(2019•新课标Ⅱ)已知函数()(1)1f x x lnx x =---.证明: (1)()f x 存在唯一的极值点;(2)()0f x =有且仅有两个实根,且两个实根互为倒数.6.(2019•江苏)设函数()()()()f x x a x b x c =---,a ,b ,c R ∈,()f x '为()f x 的导函数. (1)若a b c ==,f (4)8=,求a 的值;(2)若a b ≠,b c =,且()f x 和()f x '的零点均在集合{3-,1,3}中,求()f x 的极小值; (3)若0a =,01b <…,1c =,且()f x 的极大值为M ,求证:427M …. 7.(2019•天津)设函数()(1)x f x lnx a x e =--,其中a R ∈. (Ⅰ)若0a …,讨论()f x 的单调性; (Ⅱ)若10a e<<,()i 证明()f x 恰有两个零点;()ii 设0x 为()f x 的极值点,1x 为()f x 的零点,且10x x >,证明0132x x ->.8.(2019•天津)设函数()cos x f x e x =,()g x 为()f x 的导函数. (Ⅰ)求()f x 的单调区间; (Ⅱ)当[4x π∈,]2π时,证明()()()02f xg x x π+-…; (Ⅲ)设n x 为函数()()1u x f x =-在区间(24n ππ+,2)2n ππ+内的零点,其中n N ∈,证明20022sin cos n n e n x x x πππ-+-<-.9.(2019•新课标Ⅰ)已知函数()2sin cos f x x x x x =--,()f x '为()f x 的导数. (1)证明:()f x '在区间(0,)π存在唯一零点; (2)若[0x ∈,]π时,()f x ax …,求a 的取值范围. 10.(2019•新课标Ⅱ)已知函数1()1x f x lnx x +=--. (1)讨论()f x 的单调性,并证明()f x 有且仅有两个零点;(2)设0x 是()f x 的一个零点,证明曲线y lnx =在点0(A x ,0)lnx 处的切线也是曲线x y e =的切线.11.(2019•北京)已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2x ∈-,4]时,求证:6()x f x x -剟;(Ⅲ)设()|()()|()F x f x x a a R =-+∈,记()F x 在区间[2-,4]上的最大值为M (a ).当M (a )最小时,求a 的值.12.(2019•新课标Ⅰ)已知函数()sin (1)f x x ln x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.13.(2018•北京)设函数2()[(41)43]x f x ax a x a e =-+++.(Ⅰ)若曲线()y f x =在点(1,f (1))处的切线与x 轴平行,求a ; (Ⅱ)若()f x 在2x =处取得极小值,求a 的取值范围. 14.(2018•北京)设函数2()[(31)32]x f x ax a x a e =-+++.(Ⅰ)若曲线()y f x =在点(2,f (2))处的切线斜率为0,求a ; (Ⅱ)若()f x 在1x =处取得极小值,求a 的取值范围.15.(2018•新课标Ⅲ)已知函数2()(2)(1)2f x x ax ln x x =+++-. (1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求a .16.(2018•新课标Ⅰ)已知函数()1x f x ae lnx =--.(1)设2x =是()f x 的极值点,求a ,并求()f x 的单调区间; (2)证明:当1a e…时,()0f x ….17.(2018•新课标Ⅲ)已知函数21()xax x f x e +-=.(1)求曲线()y f x =在点(0,1)-处的切线方程; (2)证明:当1a …时,()0f x e +….18.(2018•新课标Ⅱ)已知函数2()x f x e ax =-. (1)若1a =,证明:当0x …时,()1f x …; (2)若()f x 在(0,)+∞只有一个零点,求a .19.(2018•浙江)已知函数()f x lnx .(Ⅰ)若()f x 在1x x =,212()x x x ≠处导数相等,证明:12()()882f x f x ln +>-;(Ⅱ)若342a ln -…,证明:对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点. 20.(2018•天津)已知函数()x f x a =,()log a g x x =,其中1a >. (Ⅰ)求函数()()h x f x xlna =-的单调区间;(Ⅱ)若曲线()y f x =在点1(x ,1())f x 处的切线与曲线()y g x =在点2(x ,2())g x 处的切线平行,证明122()lnlnax g x lna+=-; (Ⅲ)证明当1ea e …时,存在直线l ,使l 是曲线()y f x =的切线,也是曲线()y g x =的切线. 21.(2018•江苏)记()f x ',()g x '分别为函数()f x ,()g x 的导函数.若存在0x R ∈,满足00()()f x g x =且00()()f x g x '=',则称0x 为函数()f x 与()g x 的一个“S 点”. (1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()g x lnx =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,()xbe g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由. 22.(2018•新课标Ⅱ)已知函数321()(1)3f x x a x x =-++.(1)若3a =,求()f x 的单调区间; (2)证明:()f x 只有一个零点. 23.(2018•新课标Ⅰ)已知函数1()f x x alnx x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点1x ,2x ,证明:1212()()2f x f x a x x -<--.24.(2017•全国)已知函数32()3(1)12f x ax a x x =-++. (1)当0a >时,求()f x 的极小值;(Ⅱ)当0a …时,讨论方程()0f x =实根的个数. 25.(2017•新课标Ⅰ)已知函数2()()x x f x e e a a x =--. (1)讨论()f x 的单调性; (2)若()0f x …,求a 的取值范围.26.(2017•天津)设a Z ∈,已知定义在R 上的函数432()2336f x x x x x a =+--+在区间(1,2)内有一个零点0x ,()g x 为()f x 的导函数. (Ⅰ)求()g x 的单调区间;(Ⅱ)设[1m ∈,00)(x x ⋃,2],函数0()()()()h x g x m x f m =--,求证:0()()0h m h x <; (Ⅲ)求证:存在大于0的常数A ,使得对于任意的正整数p ,q ,且[1pq∈,00)(x x ⋃,2],满足041||p x q Aq-…. 27.(2017•新课标Ⅱ)设函数2()(1)x f x x e =-. (1)讨论()f x 的单调性;(2)当0x …时,()1f x ax +…,求a 的取值范围. 28.(2017•山东)已知函数2()2cos f x x x =+,()(cos sin 22)x g x e x x x =-+-,其中2.71828e ≈⋯是自然对数的底数.(Ⅰ)求曲线()y f x =在点(π,())f π处的切线方程;(Ⅱ)令()h x g =()x a -()()f x a R ∈,讨论()h x 的单调性并判断有无极值,有极值时求出极值.29.(2017•天津)设a ,b R ∈,||1a ….已知函数32()63(4)f x x x a a x b =---+,()()x g x e f x =. (Ⅰ)求()f x 的单调区间;(Ⅱ)已知函数()y g x =和x y e =的图象在公共点0(x ,0)y 处有相同的切线, ()i 求证:()f x 在0x x =处的导数等于0;()ii 若关于x 的不等式()x g x e …在区间0[1x -,01]x +上恒成立,求b 的取值范围.30.(2017•江苏)已知函数32()1(0,)f x x ax bx a b R =+++>∈有极值,且导函数()f x '的极值点是()f x 的零点.(Ⅰ)求b 关于a 的函数关系式,并写出定义域; (Ⅱ)证明:23b a >;(Ⅲ)若()f x ,()f x '这两个函数的所有极值之和不小于72-,求实数a 的取值范围.31.(2017•北京)已知函数()cos x f x e x x =-. (1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)求函数()f x 在区间[0,]2π上的最大值和最小值.32.(2017•新课标Ⅱ)已知函数2()f x ax ax xlnx =--,且()0f x …. (1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220()2e f x --<<.33.(2017•浙江)已知函数1()(()2x f x x e x -=….(1)求()f x 的导函数;(2)求()f x 在区间1[2,)+∞上的取值范围.34.(2017•新课标Ⅲ)已知函数2()(21)f x lnx ax a x =+++. (1)讨论()f x 的单调性; (2)当0a <时,证明3()24f x a--…. 35.(2017•新课标Ⅰ)已知函数2()(2)x x f x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. 36.(2017•新课标Ⅲ)已知函数()1f x x alnx =--. (1)若()0f x …,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222n m ++⋯+<,求m 的最小值.37.(2017•山东)已知函数3211()32f x x ax =-,a R ∈,(1)当2a =时,求曲线()y f x =在点(3,f (3))处的切线方程;(2)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值.38.(2016•山东)设2()(21)f x xlnx ax a x =-+-,a R ∈. (1)令()()g x f x =',求()g x 的单调区间;(2)已知()f x 在1x =处取得极大值,求正实数a 的取值范围. 39.(2016•天津)设函数3()f x x ax b =--,x R ∈,其中a ,b R ∈. (1)求()f x 的单调区间;(2)若()f x 存在极值点0x ,且10()()f x f x =,其中10x x ≠,求证:1020x x +=; (3)设0a >,函数()|()|g x f x =,求证:()g x 在区间[1-,1]上的最大值不小于14. 40.(2016•新课标Ⅲ)设函数()1f x lnx x =-+. (1)讨论()f x 的单调性; (2)证明当(1,)x ∈+∞时,11x x lnx-<<; (3)设1c >,证明当(0,1)x ∈时,1(1)x c x c +->. 41.(2016•北京)设函数32()f x x ax bx c =+++. (1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)设4a b ==,若函数()f x 有三个不同零点,求c 的取值范围; (3)求证:230a b ->是()f x 有三个不同零点的必要而不充分条件.42.(2016•新课标Ⅲ)设函数()cos2(1)(cos 1)f x a x a x =+-+,其中0a >,记|()|f x 的最大值为A .(Ⅰ)求()f x '; (Ⅱ)求A ;(Ⅲ)证明:|()|2f x A '….43.(2016•山东)已知221()()x f x a x lnx x -=-+,a R ∈. ()I 讨论()f x 的单调性;()II 当1a =时,证明3()()2f x f x >'+对于任意的[1x ∈,2]成立. 44.(2016•四川)设函数2()f x ax a lnx =--,1()x eg x x e=-,其中a R ∈, 2.718e ⋯=为自然对数的底数. (1)讨论()f x 的单调性; (2)证明:当1x >时,()0g x >;(3)确定a 的所有可能取值,使得()()f x g x >在区间(1,)+∞内恒成立. 45.(2016•江苏)已知函数()(0x x f x a b a =+>,0b >,1a ≠,1)b ≠. (1)设2a =,12b =. ①求方程()2f x =的根;②若对于任意x R ∈,不等式(2)()6f x mf x -…恒成立,求实数m 的最大值; (2)若01a <<,1b >,函数()()2g x f x =-有且只有1个零点,求ab 的值. 46.(2016•新课标Ⅱ)已知函数()(1)(1)f x x lnx a x =+--. (Ⅰ)当4a =时,求曲线()y f x =在(1,f (1))处的切线方程; (Ⅱ)若当(1,)x ∈+∞时,()0f x >,求a 的取值范围. 47.(2016•新课标Ⅱ)(Ⅰ)讨论函数2()2xx f x e x -=+的单调性,并证明当0x >时,(2)20x x e x -++>;(Ⅱ)证明:当[0a ∈,1)时,函数2()(0)x e ax a g x x x--=>有最小值.设()g x 的最小值为h (a ),求函数h (a )的值域.48.(2016•北京)设函数()a x f x xe bx -=+,曲线()y f x =在点(2,f (2))处的切线方程为(1)4y e x =-+, (Ⅰ)求a ,b 的值;(Ⅱ)求()f x 的单调区间.49.(2016•新课标Ⅰ)已知函数2()(2)(1)x f x x e a x =-+-有两个零点. (Ⅰ)求a 的取值范围;(Ⅱ)设1x ,2x 是()f x 的两个零点,证明:122x x +<. 50.(2016•新课标Ⅰ)已知函数2()(2)(1)x f x x e a x =-+-. (Ⅰ)讨论()f x 的单调性;(Ⅱ)若()f x 有两个零点,求a 的取值范围.2017-2019年高考真题导数压轴题全集(含详细解析)参考答案与试题解析一.解答题(共50小题)1.(2019•全国)已知函数2())f x x ax -. (1)当1a =时,求()f x 的单调区间;(2)若()f x 在区间[0,2]的最小值为23-,求a .【解答】解:(1)当1a =时,2())f x x x =-, 则5322()(0)f x x x x '=-…,令()0f x '=,则35x =, ∴当305x <<时,()0f x '<;当35x >时,()0f x '>. ()f x ∴的单调递减区间为3(0,)5,单调递增区间为3(,)5+∞;(2)312253()(02)22f x x ax x '=-剟,令()0f x '=,则35a x =, 当0a …时,()0f x '>,()f x ∴在[0,2]上单调递增,∴2()(0)03min f x f ==≠-,不符合条件; 当1003a <…时,3025a <…,则当305a x <<时,()0f x '<;当325ax <<时,()0f x >,()f x ∴在3(0,)5a 上单调递减,在3(,2)5a上单调递增,∴53223332()()()()5553min a a a f x f a ==-=-,53a ∴=,符合条件;当103a >时,1023>,则当02x <<时,()0f x '<,()f x ∴在(0,2)上单调递减,∴2()(2)2)3min f x f a ==-=-,2a ∴=,不符合条件.()f x ∴在区间[0,2]的最小值为23-,a 的值为53.2.(2019•新课标Ⅲ)已知函数32()2f x x ax b =-+. (1)讨论()f x 的单调性;(2)是否存在a ,b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出a ,b 的所有值;若不存在,说明理由.【解答】解:(1)2()626()3af x x ax x x '=-=-.令()6()03a f x x x '=-=,解得0x =,或3a.①0a =时,2()60f x x '=…,函数()f x 在R 上单调递增. ②0a >时,函数()f x 在(,0)-∞,(3a,)+∞上单调递增,在(0,)3a 上单调递减.③0a <时,函数()f x 在(,)3a -∞,(0,)+∞上单调递增,在(3a,0)上单调递减.(2)由(1)可得:①0a …时,函数()f x 在[0,1]上单调递增.则(0)1f b ==-,f (1)21a b =-+=,解得1b =-,0a =,满足条件.②0a >时,函数()f x 在[0,]3a上单调递减.13a…,即3a …时,函数()f x 在[0,1]上单调递减.则(0)1f b ==,f (1)21a b =-+=-,解得1b =,4a =,满足条件. ③013a <<,即03a <<时,函数()f x 在[0,)3a 上单调递减,在(3a,1]上单调递增.则最小值32()2()()1333a a af a b =⨯-⨯+=-,化为:3127a b -+=-.而(0)f b =,f (1)2a b =-+,∴最大值为b 或2a b -+.若:3127a b -+=-,1b =,解得3a =,矛盾,舍去.若:3127a b -+=-,21a b -+=,解得a =±0,矛盾,舍去.综上可得:存在a ,b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1.a ,b 的所有值为:01a b =⎧⎨=-⎩,或41a b =⎧⎨=⎩. 3.(2019•新课标Ⅲ)已知函数32()22f x x ax =-+. (1)讨论()f x 的单调性;(2)当03a <<时,记()f x 在区间[0,1]的最大值为M ,最小值为m ,求M m -的取值范围.【解答】解:(1)2()622(3)f x x ax x x a '=-=-, 令()0f x '=,得0x =或3ax =.若0a >,则当(x ∈-∞,0)(,)3a +∞时,()0f x '>;当(0,)3ax ∈时,()0f x '<. 故()f x 在(,0)-∞,(,)3a+∞上单调递增,在(0,)3a 上单调递减;若0a =,()f x 在(,)-∞+∞上单调递增;若0a <,则当(x ∈-∞,)(03a ⋃,)+∞时,()0f x '>;当(3ax ∈,0)时,()0f x '<.故()f x 在(,)3a -∞,(0,)+∞上单调递增,在(3a,0)上单调递减;(2)当03a <<时,由(1)知,()f x 在(0,)3a 上单调递减,在(3a,1)上单调递增,()f x ∴在区间[0,1]的最小值为3()2327a a f =-+,最大值为(0)2f =或f (1)4a =-.于是,3227a m =-+,4,022,23a a M a -<<⎧=⎨<⎩….332,0227,2327a a a M m a a ⎧-+<<⎪⎪∴-=⎨⎪<⎪⎩…. 当02a <<时,可知3227a a -+单调递减,M m ∴-的取值范围是8(,2)27;当23a <…时,327a 单调递增,M m ∴-的取值范围是8[27,1).综上,M m -的取值范围8[27,2).4.(2019•浙江)已知实数0a ≠,设函数()f x alnx =0x >. (Ⅰ)当34a =-时,求函数()f x 的单调区间;(Ⅱ)对任意21[x e∈,)+∞均有()f x …,求a 的取值范围. 注: 2.71828e =⋯为自然对数的底数.【解答】解:(1)当34a =-时,3()4f x lnx =-+0x >,3()4f x x '=-+=, ∴函数()f x 的单调递减区间为(0,3),单调递增区间为(3,)+∞.(2)由f (1)12a…,得0a <…,当04a <…时,()f x…20lnx -…,令1t a=,则t …设()22g t t lnx =-,t …,则2()2g t t lnx=--,()i 当1[7x ∈,)+∞则()2g x g lnx =…,记()p x lnx =,17x …,则1()p x x '=-==,列表讨论:()p x p ∴…(1)0=,()2()2()0g t g p x p x ∴==厖.()ii 当211[,)7x e ∈时,()g t g =…,令()(1)q x x =++,21[x e ∈,1]7, 则()10q x'=+>,故()q x 在21[e ,1]7上单调递增,1()()7q x q ∴…,由()i 得11()()77q p p =<(1)0=,()0q x ∴<,()0g t g ∴=>…,由()()i ii 知对任意21[x e∈,)+∞,t ∈,)+∞,()0g t …,即对任意21[x e ∈,)+∞,均有()f x …,综上所述,所求的a 的取值范围是(0. 5.(2019•新课标Ⅱ)已知函数()(1)1f x x lnx x =---.证明: (1)()f x 存在唯一的极值点;(2)()0f x =有且仅有两个实根,且两个实根互为倒数. 【解答】证明:(1)函数()(1)1f x x lnx x =---. ()f x ∴的定义域为(0,)+∞, 11()1x f x lnx lnx x x-'=+-=-, y lnx =单调递增,1y x=单调递减,()f x ∴'单调递增, 又f '(1)10=-<,f '(2)1412022ln ln -=-=>, ∴存在唯一的0(1,2)x ∈,使得0()0f x '=.当0x x <时,()0f x '<,()f x 单调递减, 当0x x >时,()0f x '>,()f x 单调递增, ()f x ∴存在唯一的极值点.(2)由(1)知0()f x f <(1)2=-, 又22()30f e e =->,()0f x ∴=在0(x ,)+∞内存在唯一的根x a =,由01a x >>,得011x a<<, 1111()()(1)10f a f ln a a a a a=---=-=, ∴1a是()0f x =在0(0,)x 的唯一根, 综上,()0f x =有且仅有两个实根,且两个实根互为倒数.6.(2019•江苏)设函数()()()()f x x a x b x c =---,a ,b ,c R ∈,()f x '为()f x 的导函数. (1)若a b c ==,f (4)8=,求a 的值;(2)若a b ≠,b c =,且()f x 和()f x '的零点均在集合{3-,1,3}中,求()f x 的极小值; (3)若0a =,01b <…,1c =,且()f x 的极大值为M ,求证:427M ….【解答】解:(1)a b c ==,3()()f x x a ∴=-, f (4)8=,3(4)8a ∴-=, 42a ∴-=,解得2a =.(2)a b ≠,b c =,设2()()()f x x a x b =--. 令2()()()0f x x a x b =--=,解得x a =,或x b =.2()()2()()()(32)f x x b x a x b x b x b a '=-+--=---. 令()0f x '=,解得x b =,或23a bx +=. ()f x 和()f x '的零点均在集合{3A =-,1,3}中,若:3a =-,1b =,则2615333a b A +-+==-∉,舍去. 1a =,3b =-,则2231333a b A +-==-∉,舍去. 3a =-,3b =,则263133a b A +-+==-∉,舍去.. 3a =,1b =,则2617333a b A ++==∉,舍去. 1a =,3b =,则2533a b A +=∉,舍去. 3a =,3b =-,则263133a b A +-==∈,. 因此3a =,3b =-,213a bA +=∈, 可得:2()(3)(3)f x x x =-+. ()3[(3)](1)f x x x '=---.可得1x =时,函数()f x 取得极小值,f (1)22432=-⨯=-. (3)证明:0a =,01b <…,1c =, ()()(1)f x x x b x =--.2()()(1)(1)()3(22)f x x b x x x x x b x b x b '=--+-+-=-++. △22214(1)124444()332b b b b b =+-=-+=-+….令2()3(22)0f x x b x b '=-++=.解得:11(0,]3x =,2x =.12x x <,12223b x x ++=,123b x x =,可得1x x =时,()f x 取得极大值为M ,2111()3(22)0f x x b x b '=-++=,可得:2111[(22)]3x b x b =+-,1111()()(1)M f x x x b x ==--222211111111(22)1()()()()[(21)2]33b x b x b x x x b x b x b x b +-=--=--=--+2222111(22)11[(21)2][(222)]339b x b b b x b b b x b b +-=--+=-+-++, 22132222()022b b b -+-=---<,M ∴在1(0x ∈,1]3上单调递减,2221222524()932727b b b b M b b -+-+-∴++=剟. 427M ∴…. 7.(2019•天津)设函数()(1)x f x lnx a x e =--,其中a R ∈. (Ⅰ)若0a …,讨论()f x 的单调性; (Ⅱ)若10a e<<, ()i 证明()f x 恰有两个零点;()ii 设0x 为()f x 的极值点,1x 为()f x 的零点,且10x x >,证明0132x x ->.【解答】()I 解:211()[(1)]x x xax e f x ae a x e x x-'=-+-=,(0,)x ∈+∞.0a …时,()0f x '>,∴函数()f x 在(0,)x ∈+∞上单调递增.()II 证明:()i 由()I 可知:21()xax e f x x-'=,(0,)x ∈+∞. 令2()1x g x ax e =-,10a e<<,可知:()g x 在(0,)x ∈+∞上单调递减,又g (1)10ae =->.且221111()1()1()0g ln a ln ln a a a a =-=-<,()g x ∴存在唯一解01(1,)x ln a∈.即函数()f x 在0(0,)x 上单调递增,在0(x ,)+∞单调递减. 0x ∴是函数()f x 的唯一极值点.令()1h x lnx x =-+,(0)x >,1()xh x x-'=, 可得()h x h …(1)0=,1x ∴>时,1lnx x <-.111111()()(1)()(1)0ln a f ln ln ln a ln e ln ln ln a a a a a=--=--<.0()f x f >(1)0=.∴函数()f x 在0(x ,)+∞上存在唯一零点.又函数()f x 在0(0,)x 上有唯一零点1. 因此函数()f x 恰有两个零点;()ii 由题意可得:0()0f x '=,1()0f x =,即0201x ax e =,111(1)x lnx a x e =-, 1011201x x x lnx ex --∴=,即1020111x x x lnx e x -=-, 1x >,可得1lnx x <-.又101x x >>, 故10220101(1)1x x x x ex x --<=-,取对数可得:100022(1)x x lnx x -<<-, 化为:0132x x ->.8.(2019•天津)设函数()cos x f x e x =,()g x 为()f x 的导函数. (Ⅰ)求()f x 的单调区间; (Ⅱ)当[4x π∈,]2π时,证明()()()02f xg x x π+-…; (Ⅲ)设n x 为函数()()1u x f x =-在区间(24n ππ+,2)2n ππ+内的零点,其中n N ∈,证明20022sin cos n n e n x x x πππ-+-<-.【解答】(Ⅰ)解:由已知,()(cos sin )x f x e x x '=-,因此, 当(24x k ππ∈+,52)()4k k Z ππ+∈时,有sin cos x x >,得()0f x '<,()f x 单调递减;当3(24x k ππ∈-,2)()4k k Z ππ+∈时,有sin cos x x <,得()0f x '>,()f x 单调递增. ()f x ∴的单调增区间为3[24k ππ-,2]()4k k Z ππ+∈,单调减区间为[,52]()4k k Z ππ+∈; (Ⅱ)证明:记()()()()2h x f x g x x π=+-,依题意及(Ⅰ), 有()(cos sin )x g x e x x =-,从而()()()()()(1)()()022h x f x g x x g x g x x ππ'='+'-+-='-<.因此,()h x 在区间[4π,]2π上单调递减,有()()()022h x h f ππ==….∴当[4x π∈,]2π时,()()()02f xg x x π+-…; (Ⅲ)证明:依题意,()()10n n u x f x =-=,即cos 1n x n e x =.记2n n y x n π=-,则(,)42n y ππ∈,且22()cos cos(2)()n n y x n n n n n f y e y e x n e x N πππ--==-=∈.由20()1()n n f y e f y π-==…及(Ⅰ),得0n y y …,由(Ⅱ)知,当(4x π∈,)2π时,()0g x '<,()g x ∴在[4π,]2π上为减函数,因此,0()()()04n g y g y g π<=…, 又由(Ⅱ)知,()()()02n n n f y g y y π+-…,故0222200000()2()()()sin cos (sin cos )n n n n n n y n n f y e e e e y g y g y g y x x e y y πππππ------=--=<--剟. 20022sin cos n n e n x x x πππ-∴+-<-.9.(2019•新课标Ⅰ)已知函数()2sin cos f x x x x x =--,()f x '为()f x 的导数. (1)证明:()f x '在区间(0,)π存在唯一零点; (2)若[0x ∈,]π时,()f x ax …,求a 的取值范围. 【解答】解:(1)证明:()2sin cos f x x x x x =--,()2cos cos sin 1cos sin 1f x x x x x x x x ∴'=-+-=+-,令()cos sin 1g x x x x =+-,则()sin sin cos cos g x x x x x x x '=-++=,当(0,)2x π∈时,cos 0x x >,当(,)2x ππ∈时,cos 0x x <,∴当2x π=时,极大值为()1022g ππ=->, 又(0)0g =,()2g π=-,()g x ∴在(0,)π上有唯一零点,即()f x '在(0,)π上有唯一零点;(2)由(1)知,()f x '在(0,)π上有唯一零点0x , 使得0()0f x '=,且()f x '在0(0,)x 为正,在0(x ,)π为负, ()f x ∴在[0,0]x 递增,在0[x ,]π递减,结合(0)0f =,()0f π=,可知()f x 在[0,]π上非负, 令()h x ax =,()()f x h x …,根据()f x 和()h x 的图象可知,0a ∴…, a ∴的取值范围是(-∞,0].10.(2019•新课标Ⅱ)已知函数1()1x f x lnx x +=--. (1)讨论()f x 的单调性,并证明()f x 有且仅有两个零点;(2)设0x 是()f x 的一个零点,证明曲线y lnx =在点0(A x ,0)lnx 处的切线也是曲线x y e =的切线.【解答】解析:(1)函数1()1x f x lnx x +=--.定义域为:(0,1)(1⋃,)+∞; 212()0(1)f x x x '=+>-,(0x >且1)x ≠, ()f x ∴在(0,1)和(1,)+∞上单调递增,①在(0,1)区间取值有21e,1e 代入函数,由函数零点的定义得, 21()0f e <,1()0f e >,211()()0f f e e<, ()f x ∴在(0,1)有且仅有一个零点,②在(1,)+∞区间,区间取值有e ,2e 代入函数,由函数零点的定义得,又f (e )0<,2()0f e >,f (e )2()0f e <,()f x ∴在(1,)+∞上有且仅有一个零点,故()f x 在定义域内有且仅有两个零点; (2)0x 是()f x 的一个零点,则有00011x lnx x +=-, 曲线y lnx =,则有1y x'=; 由直线的点斜式可得曲线的切线方程,曲线y lnx =在点0(A x ,0)lnx 处的切线方程为:0001()y lnx x x x -=-, 即:0011y x lnx x =-+,将00011x lnx x +=-代入, 即有:00121y x x x =+-, 而曲线x y e =的切线中,在点01(ln x ,1)x 处的切线方程为:00000011111()y x ln x lnx x x x x x -=-=+, 将00011x lnx x +=-代入化简,即:00121y x x x =+-, 故曲线y lnx =在点0(A x ,0)lnx 处的切线也是曲线x y e =的切线. 故得证.11.(2019•北京)已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2x ∈-,4]时,求证:6()x f x x -剟;(Ⅲ)设()|()()|()F x f x x a a R =-+∈,记()F x 在区间[2-,4]上的最大值为M (a ).当M (a )最小时,求a 的值. 【解答】解:(Ⅰ)23()214f x x x '=-+, 由()1f x '=得8()03x x -=,得1280,3x x ==. 又(0)0f =,88()327f =,y x ∴=和88273y x -=-,即y x =和6427y x =-; (Ⅱ)证明:欲证6()x f x x -剟, 只需证6()0f x x --剟, 令321()()4g x f x x x x =-=-,[2x ∈-,4], 则2338()2()443g x x x x x '=-=-, 可知()g x '在[2-,0]为正,在8(0,)3为负,在8[,4]3为正,()g x ∴在[2-,0]递增,在[0,8]3递减,在8[,4]3递增,又(2)6g -=-,(0)0g =,864()6327g =->-,g (4)0=,6()0g x ∴-剟, 6()x f x x ∴-剟;(Ⅲ)由(Ⅱ)可得, ()|()()|F x f x x a =-+ |()|f x x a =-- |()|g x a =-在[2-,4]上,6()0g x -剟, 令()t g x =,()||h t t a =-,则问题转化为当[6t ∈-,0]时,()h t 的最大值M (a )的问题了,①当3a -…时,M (a )(0)||h a a ===-,此时3a -…,当3a =-时,M (a )取得最小值3; ②当3a -…时,M (a )(6)|6||6|h a a =-=--=+,63a +…,M ∴(a )6a =+,也是3a =-时,M (a )最小为3. 综上,当M (a )取最小值时a 的值为3-.12.(2019•新课标Ⅰ)已知函数()sin (1)f x x ln x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.【解答】证明:(1)()f x 的定义域为(1,)-+∞, 1()cos 1f x x x'=-+,21()sin (1)f x x x ''=-++, 令21()sin (1)g x x x =-++,则32()cos 0(1)g x x x '=--<+在(1,)2π-恒成立,()f x ∴''在(1,)2π-上为减函数, 又(0)1f ''=,21()11102(1)2f ππ''=-+<-+=+,由零点存在定理可知, 函数()f x ''在(1,)2π-上存在唯一的零点0x ,结合单调性可得,()f x '在0(1,)x -上单调递增,在0(x ,)2π上单调递减,可得()f x '在区间(1,)2π-存在唯一极大值点;(2)由(1)知,当(1,0)x ∈-时,()f x '单调递增,()(0)0f x f '<'=,()f x 单调递减; 当0(0,)x x ∈时,()f x '单调递增,()(0)0f x f '>'=,()f x 单调递增;由于()f x '在0(x ,)2π上单调递减,且0()0f x '>,1()0212f ππ'=-<+, 由零点存在定理可知,函数()f x '在0(x ,)2π上存在唯一零点1x ,结合单调性可知,当0(x x ∈,1)x 时,()f x '单调递减,1()()0f x f x '>'=,()f x 单调递增; 当1(,)2x x π∈时,()f x '单调递减,1()()0f x f x '<'=,()f x 单调递减.当(2x π∈,)π时,cos 0x <,101x -<+,于是1()cos 01f x x x'=-<+,()f x 单调递减,其中 3.2()1(1)1(1)1 2.610222f ln ln ln lne ππ=-+>-+=->-=,()(1)30f ln ln ππ=-+<-<.于是可得下表:结合单调性可知,函数()f x 在(1-,]2π上有且只有一个零点0,由函数零点存在性定理可知,()f x 在(2π,)π上有且只有一个零点2x ,当[x π∈,)+∞时,()sin (1)1(1)130f x x ln x ln ln π=-+<-+<-<,因此函数()f x 在[π,)+∞上无零点.综上,()f x 有且仅有2个零点.13.(2018•北京)设函数2()[(41)43]x f x ax a x a e =-+++.(Ⅰ)若曲线()y f x =在点(1,f (1))处的切线与x 轴平行,求a ; (Ⅱ)若()f x 在2x =处取得极小值,求a 的取值范围. 【解答】解:(Ⅰ)函数2()[(41)43]x f x ax a x a e =-+++的导数为2()[(21)2]x f x ax a x e '=-++.由题意可得曲线()y f x =在点(1,f (1))处的切线斜率为0, 可得(212)0a a e --+=,且f (1)30e =≠, 解得1a =;(Ⅱ)()f x 的导数为2()[(21)2](2)(1)x x f x ax a x e x ax e '=-++=--, 若0a =则2x <时,()0f x '>,()f x 递增;2x >,()0f x '<,()f x 递减. 2x =处()f x 取得极大值,不符题意;若0a >,且12a =,则21()(2)02x f x x e '=-…,()f x 递增,无极值; 若12a >,则12a <,()f x 在1(a,2)递减;在(2,)+∞,1(,)a -∞递增, 可得()f x 在2x =处取得极小值; 若102a <<,则12a >,()f x 在1(2,)a 递减;在1(a,)+∞,(,2)-∞递增, 可得()f x 在2x =处取得极大值,不符题意;若0a <,则12a <,()f x 在1(a,2)递增;在(2,)+∞,1(,)a -∞递减, 可得()f x 在2x =处取得极大值,不符题意. 综上可得,a 的范围是1(2,)+∞.14.(2018•北京)设函数2()[(31)32]x f x ax a x a e =-+++.(Ⅰ)若曲线()y f x =在点(2,f (2))处的切线斜率为0,求a ; (Ⅱ)若()f x 在1x =处取得极小值,求a 的取值范围. 【解答】解:(Ⅰ)函数2()[(31)32]x f x ax a x a e =-+++的导数为2()[(1)1]x f x ax a x e '=-++.曲线()y f x =在点(2,f (2))处的切线斜率为0, 可得2(4221)0a a e --+=, 解得12a =; (Ⅱ)()f x 的导数为2()[(1)1](1)(1)x x f x ax a x e x ax e '=-++=--, 若0a =则1x <时,()0f x '>,()f x 递增;1x >,()0f x '<,()f x 递减. 1x =处()f x 取得极大值,不符题意;若0a >,且1a =,则2()(1)0x f x x e '=-…,()f x 递增,无极值; 若1a >,则11a<,()f x 在1(a ,1)递减;在(1,)+∞,1(,)a -∞递增,可得()f x 在1x =处取得极小值; 若01a <<,则11a >,()f x 在1(1,)a递减;在1(a ,)+∞,(,1)-∞递增,可得()f x 在1x =处取得极大值,不符题意; 若0a <,则11a<,()f x 在1(a ,1)递增;在(1,)+∞,1(,)a -∞递减,可得()f x 在1x =处取得极大值,不符题意. 综上可得,a 的范围是(1,)+∞.15.(2018•新课标Ⅲ)已知函数2()(2)(1)2f x x ax ln x x =+++-. (1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求a .【解答】(1)证明:当0a =时,()(2)(1)2f x x ln x x =++-,(1)x >-. ()(1)1xf x ln x x '=+-+,2()(1)x f x x ''=+,可得(1,0)x ∈-时,()0f x ''…,(0,)x ∈+∞时,()0f x ''… ()f x ∴'在(1,0)-递减,在(0,)+∞递增, ()(0)0f x f ∴''=…,()(2)(1)2f x x ln x x ∴=++-在(1,)-+∞上单调递增,又(0)0f =.∴当10x -<<时,()0f x <;当0x >时,()0f x >.(2)解:由2()(2)(1)2f x x ax ln x x =+++-,得222(12)(1)(1)()(12)(1)211x ax ax x ax x ln x f x ax ln x x x ++-++++'=+++-=++, 令2()(12)(1)(1)h x ax x ax x ln x =-++++, ()4(421)(1)h x ax ax a ln x '=++++.当0a …,0x >时,()0h x '>,()h x 单调递增, ()(0)0h x h ∴>=,即()0f x '>,()f x ∴在(0,)+∞上单调递增,故0x =不是()f x 的极大值点,不符合题意.当0a <时,12()84(1)1ah x a aln x x -''=++++, 显然()h x ''单调递减, ①令(0)0h ''=,解得16a =-.∴当10x -<<时,()0h x ''>,当0x >时,()0h x ''<,()h x ∴'在(1,0)-上单调递增,在(0,)+∞上单调递减, ()(0)0h x h ∴''=…,()h x ∴单调递减,又(0)0h =,∴当10x -<<时,()0h x >,即()0f x '>,当0x >时,()0h x <,即()0f x '<,()f x ∴在(1,0)-上单调递增,在(0,)+∞上单调递减, 0x ∴=是()f x 的极大值点,符合题意;②若106a -<<,则(0)160h a ''=+>,161644(1)(21)(1)0a a aah ea e++-''-=--<,()0h x ∴''=在(0,)+∞上有唯一一个零点,设为0x ,∴当00x x <<时,()0h x ''>,()h x '单调递增,()(0)0h x h ∴'>'=,即()0f x '>,()f x ∴在0(0,)x 上单调递增,不符合题意;③若16a <-,则(0)160h a ''=+<,221(1)(12)0h a e e''-=->,()0h x ∴''=在(1,0)-上有唯一一个零点,设为1x ,∴当10x x <<时,()0h x ''<,()h x '单调递减,()(0)0h x h ∴'>'=,()h x ∴单调递增, ()(0)0h x h ∴<=,即()0f x '<,()f x ∴在1(x ,0)上单调递减,不符合题意. 综上,16a =-.16.(2018•新课标Ⅰ)已知函数()1x f x ae lnx =--.(1)设2x =是()f x 的极值点,求a ,并求()f x 的单调区间; (2)证明:当1a e…时,()0f x ….【解答】解:(1)函数()1x f x ae lnx =--. 0x ∴>,1()x f x ae x'=-, 2x =是()f x 的极值点,f ∴'(2)2102ae =-=,解得212a e=, 21()12x f x e lnx e ∴=--,211()2x f x e e x∴'=-,当02x <<时,()0f x '<,当2x >时,()0f x '>, ()f x ∴在(0,2)单调递减,在(2,)+∞单调递增.(2)证明:当1a e …时,()1x e f x lnx e --…,设()1x e g x lnx e =--,则1()x e g x e x '=-,由1()0x e g x e x'=-=,得1x =,当01x <<时,()0g x '<, 当1x >时,()0g x '>, 1x ∴=是()g x 的最小值点,故当0x >时,()g x g …(1)0=,∴当1a e…时,()0f x ….17.(2018•新课标Ⅲ)已知函数21()xax x f x e +-=.(1)求曲线()y f x =在点(0,1)-处的切线方程; (2)证明:当1a …时,()0f x e +….【解答】解:(1)22(21)(1)(1)(2)()()x x x xax e ax x e ax x f x e e +-+-+-'==-. (0)2f ∴'=,即曲线()y f x =在点(0,1)-处的切线斜率2k =,∴曲线()y f x =在点(0,1)-处的切线方程方程为(1)2y x --=.即210x y --=为所求.(2)证明:函数()f x 的定义域为:R ,可得22(21)(1)(1)(2)()()x x x xax e ax x e ax x f x e e +-+-+-'==-. 令()0f x '=,可得1212,0x x a==-<,当1(,)x a ∈-∞-时,()0f x '<,1(,2)x a ∈-时,()0f x '>,(2,)x ∈+∞时,()0f x '<.()f x ∴在1(,)a -∞-,(2,)+∞递减,在1(a-,2)递增,注意到1a …时,函数2()1g x ax x =+-在(2,)+∞单调递增,且g (2)410a =+> 函数()f x 的图象如下:1a …,∴1(0,1]a∈,则11()a f e e a -=--…,1()aminf x e e ∴=--…,∴当1a …时,()0f x e +….18.(2018•新课标Ⅱ)已知函数2()x f x e ax =-.(1)若1a =,证明:当0x …时,()1f x …; (2)若()f x 在(0,)+∞只有一个零点,求a . 【解答】证明:(1)当1a =时,函数2()x f x e x =-. 则()2x f x e x '=-,令()2x g x e x =-,则()2x g x e '=-, 令()0g x '=,得2x ln =.当(0,2)x ln ∈时,()0g x '<,当(2,)x ln ∈+∞时,()0g x '>,2()(2)222220ln g x g ln e ln ln ∴=-=->…, ()f x ∴在[0,)+∞单调递增,()(0)1f x f ∴=…, 解:(2)方法一、,()f x 在(0,)+∞只有一个零点⇔方程20x e ax -=在(0,)+∞只有一个根,2xe a x⇔=在(0,)+∞只有一个根,即函数y a =与2()xe G x x=的图象在(0,)+∞只有一个交点.3(2)()x e x G x x-'=, 当(0,2)x ∈时,()0G x '<,当(2,)∈+∞时,()0G x '>, ()G x ∴在(0,2)递减,在(2,)+∞递增,当0→时,()G x →+∞,当→+∞时,()G x →+∞,()f x ∴在(0,)+∞只有一个零点时,a G =(2)24e =.方法二:①当0a …时,2()0x f x e ax =->,()f x 在(0,)+∞没有零点..②当0a >时,设函数2()1x h x ax e -=-.()f x 在(0,)+∞只有一个零点()h x ⇔在(0,)+∞只有一个零点.()(2)x h x ax x e -'=-,当(0,2)x ∈时,()0h x '<,当(2,)x ∈+∞时,()0h x '>, ()h x ∴在(0,2)递减,在(2,)+∞递增,∴24()(2)1min ah x h e ==-,(0)x …. 当h (2)0<时,即24e a >,由于(0)1h =,当0x >时,2x e x >,可得33342241616161(4)11110()(2)a a a a a h a e e a a=-=->-=->.()h x 在(0,)+∞有2个零点当h (2)0>时,即24e a <,()h x 在(0,)+∞没有零点,当h (2)0=时,即24e a =,()h x 在(0,)+∞只有一个零点,综上,()f x 在(0,)+∞只有一个零点时,24e a =.19.(2018•浙江)已知函数()f x lnx .(Ⅰ)若()f x 在1x x =,212()x x x ≠处导数相等,证明:12()()882f x f x ln +>-;(Ⅱ)若342a ln -…,证明:对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点. 【解答】证明:(Ⅰ)函数()f x lnx =, 0x ∴>,1()f x x'=-, ()f x 在1x x =,212()x x x ≠处导数相等,∴1211x x =, 12x x ≠,∴12=,12x x ≠,12256x x ∴>,由题意得121212()()()f x f x lnx lnx ln x x +=,设()g x lnx,则1()4)4g x x'=, ∴列表讨论:()g x ∴在[256,)+∞上单调递增, 12()(256)882g x x g ln ∴>=-, 12()()882f x f x ln ∴+>-.(Ⅱ)令(||)a k m e -+=,2||1()1a n k+=+, 则()||0f m km a a k k a -->+--…,。
高中数学导数大题压轴高考题选

函数与导数高考压轴题选一.选择题共2小题1.2013安徽已知函数fx=x3+ax2+bx+c有两个极值点x1,x2,若fx1=x1<x2,则关于x的方程3fx2+2afx+b=0的不同实根个数为A.3 B.4 C.5 D.62.2012福建函数fx在a,b上有定义,若对任意x1,x2∈a,b,有则称fx在a,b上具有性质P.设fx在1,3上具有性质P,现给出如下命题:①fx在1,3上的图象是连续不断的;②fx2在1,上具有性质P;③若fx在x=2处取得最大值1,则fx=1,x∈1,3;④对任意x1,x2,x3,x4∈1,3,有fx1+fx2+fx3+fx4其中真命题的序号是A.①②B.①③C.②④D.③④二.选择题共1小题3.2012新课标设函数fx=的最大值为M,最小值为m,则M+m=.三.选择题共23小题4.2014陕西设函数fx=lnx+,m∈R.Ⅰ当m=ee为自然对数的底数时,求fx的极小值;Ⅱ讨论函数gx=f′x﹣零点的个数;Ⅲ若对任意b>a>0,<1恒成立,求m的取值范围.5.2013新课标Ⅱ已知函数fx=e x﹣lnx+mΙ设x=0是fx的极值点,求m,并讨论fx的单调性;Ⅱ当m≤2时,证明fx>0.6.2013四川已知函数,其中a是实数,设Ax1,fx1,Bx2,fx2为该函数图象上的点,且x1<x2.Ⅰ指出函数fx的单调区间;Ⅱ若函数fx的图象在点A,B处的切线互相垂直,且x2<0,求x2﹣x1的最小值;Ⅲ若函数fx的图象在点A,B处的切线重合,求a的取值范围.7.2013湖南已知函数fx=.Ⅰ求fx的单调区间;Ⅱ证明:当fx1=fx2x1≠x2时,x1+x2<0.8.2013辽宁已知函数fx=1+xe﹣2x,gx=ax++1+2xcosx,当x∈0,1时,I求证:;II若fx≥gx恒成立,求实数a的取值范围.9.2013陕西已知函数fx=e x,x∈R.Ⅰ若直线y=kx+1与f x的反函数gx=lnx的图象相切,求实数k的值;Ⅱ设x>0,讨论曲线y=f x 与曲线y=mx2m>0公共点的个数.Ⅲ设a<b,比较与的大小,并说明理由.10.2013湖北设n是正整数,r为正有理数.Ⅰ求函数fx=1+x r+1﹣r+1x﹣1x>﹣1的最小值;Ⅱ证明:;Ⅲ设x∈R,记x为不小于x的最小整数,例如.令的值.参考数据:.11.2012辽宁设fx=lnx+1++ax+ba,b∈R,a,b为常数,曲线y=fx与直线y=x在0,0点相切.I求a,b的值;II证明:当0<x<2时,fx<.12.2012福建已知函数fx=axsinx﹣a∈R,且在上的最大值为,1求函数fx的解析式;2判断函数fx在0,π内的零点个数,并加以证明.13.2012湖北设函数fx=ax n1﹣x+bx>0,n为正整数,a,b为常数,曲线y=fx在1,f1处的切线方程为x+y=1Ⅰ求a,b的值;Ⅱ求函数fx的最大值;Ⅲ证明:fx<.14.2012湖南已知函数fx=e x﹣ax,其中a>0.1若对一切x∈R,fx≥1恒成立,求a的取值集合;2在函数fx的图象上取定点Ax1,fx1,Bx2,fx2x1<x2,记直线AB的斜率为K,证明:存在x0∈x1,x2,使f′x0=K恒成立.15.2012四川已知a为正实数,n为自然数,抛物线与x轴正半轴相交于点A,设fn为该抛物线在点A处的切线在y轴上的截距.Ⅰ用a和n表示fn;Ⅱ求对所有n都有成立的a的最小值;Ⅲ当0<a<1时,比较与的大小,并说明理由.16.2011四川已知函数fx=x+,hx=.Ⅰ设函数Fx=fx﹣hx,求Fx的单调区间与极值;Ⅱ设a∈R,解关于x的方程log4fx﹣1﹣=log2ha﹣x﹣log2h4﹣x;Ⅲ试比较f100h100﹣与的大小.17.2011陕西设函数fx定义在0,+∞上,f1=0,导函数f′x=,gx=fx+f′x.Ⅰ求gx的单调区间和最小值;Ⅱ讨论gx与的大小关系;Ⅲ是否存在x0>0,使得|gx﹣gx0|<对任意x>0成立若存在,求出x0的取值范围;若不存在请说明理由.18.2011四川已知函数fx=x+,hx=.Ⅰ设函数Fx=18fx﹣x2hx2,求Fx的单调区间与极值;Ⅱ设a∈R,解关于x的方程lg fx﹣1﹣=2lgha﹣x﹣2lgh4﹣x;Ⅲ设n∈N n,证明:fnhn﹣h1+h2+…+hn≥.19.2010四川设,a>0且a≠1,gx是fx的反函数.Ⅰ设关于x的方程求在区间2,6上有实数解,求t的取值范围;Ⅱ当a=e,e为自然对数的底数时,证明:;Ⅲ当0<a≤时,试比较||与4的大小,并说明理由.20.2010全国卷Ⅱ设函数fx=1﹣e﹣x.Ⅰ证明:当x>﹣1时,fx≥;Ⅱ设当x≥0时,fx≤,求a的取值范围.21.2010陕西已知函数fx=,gx=alnx,a∈R,Ⅰ若曲线y=fx与曲线y=gx相交,且在交点处有共同的切线,求a的值和该切线方程;Ⅱ设函数hx=fx﹣gx,当hx存在最小值时,求其最小值φa的解析式;Ⅲ对Ⅱ中的φa和任意的a>0,b>0,证明:φ′≤≤φ′.22.2009全国卷Ⅱ设函数fx=x2+aln1+x有两个极值点x1、x2,且x1<x2,Ⅰ求a的取值范围,并讨论fx的单调性;Ⅱ证明:fx2>.23.2009湖北在R上定义运算:b、c∈R是常数,已知f1x=x2﹣2c,f2x=x﹣2b,fx=f1xf2x.①如果函数fx在x=1处有极值,试确定b、c的值;②求曲线y=fx上斜率为c的切线与该曲线的公共点;③记gx=|f′x|﹣1≤x≤1的最大值为M,若M≥k对任意的b、c恒成立,试求k的取值范围.参考公式:x3﹣3bx2+4b3=x+bx﹣2b224.2009湖北已知关于x的函数fx=﹣x3+bx2+cx+bc,其导函数为f′x.令gx=|f′x|,记函数gx 在区间﹣1、1上的最大值为M.Ⅰ如果函数fx在x=1处有极值﹣,试确定b、c的值:Ⅱ若|b|>1,证明对任意的c,都有M>2Ⅲ若M≧K对任意的b、c恒成立,试求k的最大值.25.2008江苏请先阅读:在等式cos2x=2cos2x﹣1x∈R的两边求导,得:cos2x′=2cos2x﹣1′,由求导法则,得﹣sin2x2=4cosx ﹣sinx,化简得等式:sin2x=2cosxsinx.1利用上题的想法或其他方法,结合等式1+x n=C n0+C n1x+C n2x2+…+C n n x n x∈R,正整数n≥2,证明:.2对于正整数n≥3,求证:i;ii;iii.26.2008天津已知函数fx=x4+ax3+2x2+bx∈R,其中a,b∈R.Ⅰ当时,讨论函数fx的单调性;Ⅱ若函数fx仅在x=0处有极值,求a的取值范围;Ⅲ若对于任意的a∈﹣2,2,不等式fx≤1在﹣1,1上恒成立,求b的取值范围.四.解答题共4小题27.2008福建已知函数fx=ln1+x﹣x1求fx的单调区间;2记fx在区间0,nn∈N上的最小值为b n令a n=ln1+n﹣b ni如果对一切n,不等式恒成立,求实数c的取值范围;ii求证:.28.2007福建已知函数fx=e x﹣kx,1若k=e,试确定函数fx的单调区间;2若k>0,且对于任意x∈R,f|x|>0恒成立,试确定实数k的取值范围;3设函数Fx=fx+f﹣x,求证:F1F2…Fn>n∈N.29.2006四川已知函数,fx的导函数是f′x.对任意两个不相等的正数x1、x2,证明:Ⅰ当a≤0时,;Ⅱ当a≤4时,|f′x1﹣f′x2|>|x1﹣x2|.30.2006辽宁已知f0x=x n,其中k≤nn,k∈N+,设Fx=C n0f0x2+C n1f1x2+…+C n n f n x2,x∈﹣1,1.1写出f k1;2证明:对任意的x1,x2∈﹣1,1,恒有|Fx1﹣Fx2|≤2n﹣1n+2﹣n﹣1.函数与导数高考压轴题选参考答案与试题解析一.选择题共2小题1.2013安徽已知函数fx=x3+ax2+bx+c有两个极值点x1,x2,若fx1=x1<x2,则关于x的方程3fx2+2afx+b=0的不同实根个数为A.3 B.4 C.5 D.6解答解:∵函数fx=x3+ax2+bx+c有两个极值点x1,x2,∴f′x=3x2+2ax+b=0有两个不相等的实数根,∴△=4a2﹣12b>0.解得=.∵x1<x2,∴,.而方程3fx2+2afx+b=0的△1=△>0,∴此方程有两解且fx=x1或x2.不妨取0<x1<x2,fx1>0.①把y=fx向下平移x1个单位即可得到y=fx﹣x1的图象,∵fx1=x1,可知方程fx=x1有两解.②把y=fx向下平移x2个单位即可得到y=fx﹣x2的图象,∵fx1=x1,∴fx1﹣x2<0,可知方程fx=x2只有一解.综上①②可知:方程fx=x1或fx=x2.只有3个实数解.即关于x的方程3fx2+2afx+b=0的只有3不同实根.故选:A.2.2012福建函数fx在a,b上有定义,若对任意x1,x2∈a,b,有则称fx在a,b上具有性质P.设fx在1,3上具有性质P,现给出如下命题:①fx在1,3上的图象是连续不断的;②fx2在1,上具有性质P;③若fx在x=2处取得最大值1,则fx=1,x∈1,3;④对任意x1,x2,x3,x4∈1,3,有fx1+fx2+fx3+fx4其中真命题的序号是A.①②B.①③C.②④D.③④解答解:在①中,反例:fx=在1,3上满足性质P,但fx在1,3上不是连续函数,故①不成立;在②中,反例:fx=﹣x在1,3上满足性质P,但fx2=﹣x2在1,上不满足性质P,故②不成立;在③中:在1,3上,f2=f≤,∴,故fx=1,∴对任意的x1,x2∈1,3,fx=1,故③成立;在④中,对任意x1,x2,x3,x4∈1,3,有=≤≤=fx1+fx2+fx3+fx4,∴fx1+fx2+fx3+fx4,故④成立.故选D.二.选择题共1小题3.2012新课标设函数fx=的最大值为M,最小值为m,则M+m=2.解答解:函数可化为fx==,令,则为奇函数,∴的最大值与最小值的和为0.∴函数fx=的最大值与最小值的和为1+1+0=2.即M+m=2.故答案为:2.三.选择题共23小题4.2014陕西设函数fx=lnx+,m∈R.Ⅰ当m=ee为自然对数的底数时,求fx的极小值;Ⅱ讨论函数gx=f′x﹣零点的个数;Ⅲ若对任意b>a>0,<1恒成立,求m的取值范围.解答解:Ⅰ当m=e时,fx=lnx+,∴f′x=;∴当x∈0,e时,f′x<0,fx在0,e上是减函数;当x∈e,+∞时,f′x>0,fx在e,+∞上是增函数;∴x=e时,fx取得极小值为fe=lne+=2;Ⅱ∵函数gx=f′x﹣=﹣﹣x>0,令gx=0,得m=﹣x3+xx>0;设φx=﹣x3+xx>0,∴φ′x=﹣x2+1=﹣x﹣1x+1;当x∈0,1时,φ′x>0,φx在0,1上是增函数,当x∈1,+∞时,φ′x<0,φx在1,+∞上是减函数;∴x=1是φx的极值点,且是极大值点,∴x=1是φx的最大值点,∴φx的最大值为φ1=;又φ0=0,结合y=φx的图象,如图;可知:①当m>时,函数gx无零点;②当m=时,函数gx有且只有一个零点;③当0<m<时,函数gx有两个零点;④当m≤0时,函数gx有且只有一个零点;综上,当m>时,函数gx无零点;当m=或m≤0时,函数gx有且只有一个零点;当0<m<时,函数gx有两个零点;Ⅲ对任意b>a>0,<1恒成立,等价于fb﹣b<fa﹣a恒成立;设hx=fx﹣x=lnx+﹣xx>0,则hb<ha.∴hx在0,+∞上单调递减;∵h′x=﹣﹣1≤0在0,+∞上恒成立,∴m≥﹣x2+x=﹣+x>0,∴m≥;对于m=,h′x=0仅在x=时成立;∴m的取值范围是,+∞.5.2013新课标Ⅱ已知函数fx=e x﹣lnx+mΙ设x=0是fx的极值点,求m,并讨论fx的单调性;Ⅱ当m≤2时,证明fx>0.解答Ⅰ解:∵,x=0是fx的极值点,∴,解得m=1.所以函数fx=e x﹣lnx+1,其定义域为﹣1,+∞.∵.设gx=e x x+1﹣1,则g′x=e x x+1+e x>0,所以gx在﹣1,+∞上为增函数,又∵g0=0,所以当x>0时,gx>0,即f′x>0;当﹣1<x<0时,gx<0,f′x<0.所以fx在﹣1,0上为减函数;在0,+∞上为增函数;Ⅱ证明:当m≤2,x∈﹣m,+∞时,lnx+m≤lnx+2,故只需证明当m=2时fx>0.当m=2时,函数在﹣2,+∞上为增函数,且f′﹣1<0,f′0>0.故f′x=0在﹣2,+∞上有唯一实数根x0,且x0∈﹣1,0.当x∈﹣2,x0时,f′x<0,当x∈x0,+∞时,f′x>0,从而当x=x0时,fx取得最小值.由f′x0=0,得,lnx0+2=﹣x0.故fx≥=>0.综上,当m≤2时,fx>0.6.2013四川已知函数,其中a是实数,设Ax1,fx1,Bx2,fx2为该函数图象上的点,且x1<x2.Ⅰ指出函数fx的单调区间;Ⅱ若函数fx的图象在点A,B处的切线互相垂直,且x2<0,求x2﹣x1的最小值;Ⅲ若函数fx的图象在点A,B处的切线重合,求a的取值范围.解答解:I当x<0时,fx=x+12+a,∴fx在﹣∞,﹣1上单调递减,在﹣1,0上单调递增;当x>0时,fx=lnx,在0,+∞单调递增.II∵x1<x2<0,∴fx=x2+2x+a,∴f′x=2x+2,∴函数fx在点A,B处的切线的斜率分别为f′x1,f′x2,∵函数fx的图象在点A,B处的切线互相垂直,∴,∴2x1+22x2+2=﹣1.∴2x1+2<0,2x2+2>0,∴=1,当且仅当﹣2x1+2=2x2+2=1,即,时等号成立.∴函数fx的图象在点A,B处的切线互相垂直,且x2<0,求x2﹣x1的最小值为1.III当x1<x2<0或0<x1<x2时,∵,故不成立,∴x1<0<x2.当x1<0时,函数fx在点Ax1,fx1,处的切线方程为,即.当x2>0时,函数fx在点Bx2,fx2处的切线方程为,即.函数fx的图象在点A,B处的切线重合的充要条件是,由①及x1<0<x2可得﹣1<x1<0,由①②得=.∵函数,y=﹣ln2x1+2在区间﹣1,0上单调递减,∴ax1=在﹣1,0上单调递减,且x1→﹣1时,ln2x1+2→﹣∞,即﹣ln2x1+2→+∞,也即ax1→+∞.x1→0,ax1→﹣1﹣ln2.∴a的取值范围是﹣1﹣ln2,+∞.7.2013湖南已知函数fx=.Ⅰ求fx的单调区间;Ⅱ证明:当fx1=fx2x1≠x2时,x1+x2<0.解答解:Ⅰ易知函数的定义域为R.==,当x<0时,f′x>0;当x>0时,f′x<0.∴函数fx的单调递增区间为﹣∞,0,单调递减区间为0,+∞.Ⅱ当x<1时,由于,e x>0,得到fx>0;同理,当x>1时,fx<0.当fx1=fx2x1≠x2时,不妨设x1<x2.由Ⅰ可知:x1∈﹣∞,0,x2∈0,1.下面证明:x∈0,1,fx<f﹣x,即证<.此不等式等价于.令gx=,则g′x=﹣xe﹣x e2x﹣1.当x∈0,1时,g′x<0,gx单调递减,∴gx<g0=0.即.∴x∈0,1,fx<f﹣x.而x2∈0,1,∴fx2<f﹣x2.从而,fx1<f﹣x2.由于x1,﹣x2∈﹣∞,0,fx在﹣∞,0上单调递增,∴x1<﹣x2,即x1+x2<0.8.2013辽宁已知函数fx=1+xe﹣2x,gx=ax++1+2xcosx,当x∈0,1时,I求证:;II若fx≥gx恒成立,求实数a的取值范围.解答I证明:①当x∈0,1时,1+xe﹣2x≥1﹣x1+xe﹣x≥1﹣xe x,令hx=1+xe﹣x﹣1﹣xe x,则h′x=xe x﹣e﹣x.当x∈0,1时,h′x≥0,∴hx在0,1上是增函数,∴hx≥h0=0,即fx≥1﹣x.②当x∈0,1时,e x≥1+x,令ux=e x﹣1﹣x,则u′x=e x﹣1.当x∈0,1时,u′x≥0,∴ux在0,1单调递增,∴ux≥u0=0,∴fx.综上可知:.II解:设Gx=fx﹣gx=≥=.令Hx=,则H′x=x﹣2sinx,令Kx=x﹣2sinx,则K′x=1﹣2cosx.当x∈0,1时,K′x<0,可得H′x是0,1上的减函数,∴H′x≤H′0=0,故Hx在0,1单调递减,∴Hx≤H0=2.∴a+1+Hx≤a+3.∴当a≤﹣3时,fx≥gx在0,1上恒成立.下面证明当a>﹣3时,fx≥gx在0,1上不恒成立.fx﹣gx≤==﹣x.令vx==,则v′x=.当x∈0,1时,v′x≤0,故vx在0,1上是减函数,∴vx∈a+1+2cos1,a+3.当a>﹣3时,a+3>0.∴存在x0∈0,1,使得vx0>0,此时,fx0<gx0.即fx≥gx在0,1不恒成立.综上实数a的取值范围是﹣∞,﹣3.9.2013陕西已知函数fx=e x,x∈R.Ⅰ若直线y=kx+1与f x的反函数gx=lnx的图象相切,求实数k的值;Ⅱ设x>0,讨论曲线y=f x 与曲线y=mx2m>0公共点的个数.Ⅲ设a<b,比较与的大小,并说明理由.解答解:I函数fx=e x的反函数为gx=lnx,∴.设直线y=kx+1与gx的图象相切于点Px0,y0,则,解得,k=e﹣2, ∴k=e﹣2.II当x>0,m>0时,令fx=mx2,化为m=,令hx=,则,则x∈0,2时,h′x<0,hx单调递减;x∈2,+∞时,h′x>0,hx单调递增.∴当x=2时,hx取得极小值即最小值,.∴当时,曲线y=f x 与曲线y=mx2m>0公共点的个数为0;当时,曲线y=f x 与曲线y=mx2m>0公共点的个数为1;当时,曲线y=f x 与曲线y=mx2m>0公共点个数为2.Ⅲ===,令gx=x+2+x﹣2e x x>0,则g′x=1+x﹣1e x.g′′x=xe x>0,∴g′x在0,+∞上单调递增,且g′0=0,∴g′x>0,∴gx在0,+∞上单调递增,而g0=0,∴在0,+∞上,有gx>g0=0.∵当x>0时,gx=x+2+x﹣2e x>0,且a<b,∴,即当a<b时,.10.2013湖北设n是正整数,r为正有理数.Ⅰ求函数fx=1+x r+1﹣r+1x﹣1x>﹣1的最小值;Ⅱ证明:;Ⅲ设x∈R,记x为不小于x的最小整数,例如.令的值.参考数据:.解答解;Ⅰ由题意得f'x=r+11+x r﹣r+1=r+11+x r﹣1,令f'x=0,解得x=0.当﹣1<x<0时,f'x<0,∴fx在﹣1,0内是减函数;当x>0时,f'x>0,∴fx在0,+∞内是增函数.故函数fx在x=0处,取得最小值为f0=0.Ⅱ由Ⅰ,当x∈﹣1,+∞时,有fx≥f0=0,即1+x r+1≥1+r+1x,且等号当且仅当x=0时成立,故当x>﹣1且x≠0,有1+x r+1>1+r+1x,①在①中,令这时x>﹣1且x≠0,得.上式两边同乘n r+1,得n+1r+1>n r+1+n r r+1,即,②当n>1时,在①中令这时x>﹣1且x≠0,类似可得,③且当n=1时,③也成立.综合②,③得,④Ⅲ在④中,令,n分别取值81,82,83, (125)得,,,…,将以上各式相加,并整理得.代入数据计算,可得由S的定义,得S=211.11.2012辽宁设fx=lnx+1++ax+ba,b∈R,a,b为常数,曲线y=fx与直线y=x在0,0点相切.I求a,b的值;II证明:当0<x<2时,fx<.解答I解:由y=fx过0,0,∴f0=0,∴b=﹣1∵曲线y=fx与直线在0,0点相切.∴y′|x=0=∴a=0;II证明:由I知fx=lnx+1+由均值不等式,当x>0时,,∴①令kx=lnx+1﹣x,则k0=0,k′x=,∴kx<0∴lnx+1<x,②由①②得,当x>0时,fx<记hx=x+6fx﹣9x,则当0<x<2时,h′x=fx+x+6f′x﹣9<<=∴hx在0,2内单调递减,又h0=0,∴hx<0∴当0<x<2时,fx<.12.2012福建已知函数fx=axsinx﹣a∈R,且在上的最大值为,1求函数fx的解析式;2判断函数fx在0,π内的零点个数,并加以证明.解答解:I由已知得f′x=asinx+xcosx,对于任意的x∈0,,有sinx+xcosx>0,当a=0时,fx=﹣,不合题意;当a<0时,x∈0,,f′x<0,从而fx在0,单调递减,又函数在上图象是连续不断的,故函数在上上的最大值为f0=﹣,不合题意;当a>0时,x∈0,,f′x>0,从而fx在0,单调递增,又函数在上图象是连续不断的,故函数在上上的最大值为f==,解得a=1,综上所述,得II函数fx在0,π内有且仅有两个零点.证明如下:由I知,,从而有f0=﹣<0,f=>0,又函数在上图象是连续不断的,所以函数fx在0,内至少存在一个零点,又由I知fx在0,单调递增,故函数fx在0,内仅有一个零点.当x∈,π时,令gx=f′x=sinx+xcosx,由g=1>0,gπ=﹣π<0,且gx在,π上的图象是连续不断的,故存在m∈,π,使得gm=0.由g′x=2cosx﹣xsinx,知x∈,π时,有g′x<0,从而gx在,π上单调递减.当x∈,m,gx>gm=0,即f′x>0,从而fx在,m内单调递增故当x∈,m时,fx>f=>0,从而x在,m内无零点;当x∈m,π时,有gx<gm=0,即f′x<0,从而fx在,m内单调递减.又fm>0,fπ<0且fx在m,π上的图象是连续不断的,从而fx在m,π内有且仅有一个零点.综上所述,函数fx在0,π内有且仅有两个零点.13.2012湖北设函数fx=ax n1﹣x+bx>0,n为正整数,a,b为常数,曲线y=fx在1,f1处的切线方程为x+y=1Ⅰ求a,b的值;Ⅱ求函数fx的最大值;Ⅲ证明:fx<.解答解:Ⅰ因为f1=b,由点1,b在x+y=1上,可得1+b=1,即b=0.因为f′x=anx n﹣1﹣an+1x n,所以f′1=﹣a.又因为切线x+y=1的斜率为﹣1,所以﹣a=﹣1,即a=1,故a=1,b=0.Ⅱ由Ⅰ知,fx=x n1﹣x,则有f′x=n+1x n﹣1﹣x,令f′x=0,解得x=在0,上,导数为正,故函数fx是增函数;在,+∞上导数为负,故函数fx是减函数;故函数fx在0,+∞上的最大值为f=n1﹣=,Ⅲ令φt=lnt﹣1+,则φ′t=﹣=t>0在0,1上,φ′t<0,故φt单调减;在1,+∞,φ′t>0,故φt单调增;故φt在0,+∞上的最小值为φ1=0,所以φt>0t>1则lnt>1﹣,t>1,令t=1+,得ln1+>,即ln1+n+1>lne所以1+n+1>e,即<由Ⅱ知,fx≤<,故所证不等式成立.14.2012湖南已知函数fx=e x﹣ax,其中a>0.1若对一切x∈R,fx≥1恒成立,求a的取值集合;2在函数fx的图象上取定点Ax1,fx1,Bx2,fx2x1<x2,记直线AB的斜率为K,证明:存在x0∈x1,x2,使f′x0=K恒成立.解答解:1f′x=e x﹣a,令f′x=0,解可得x=lna;当x<lna,f′x<0,fx单调递减,当x>lna,f′x>0,fx单调递增,故当x=lna时,fx取最小值,flna=a﹣alna,对一切x∈R,fx≥1恒成立,当且仅当a﹣alna≥1,①令gt=t﹣tlnt,则g′t=﹣lnt,当0<t<1时,g′t>0,gt单调递增,当t>1时,g′t<0,gt单调递减,故当t=1时,gt取得最大值,且g1=1,因此当且仅当a=1时,①式成立,综上所述,a的取值的集合为{1}.2根据题意,k==﹣a,令φx=f′x﹣k=e x﹣,则φx1=﹣﹣x2﹣x1﹣1,φx2=﹣x1﹣x2﹣1,令Ft=e t﹣t﹣1,则F′t=e t﹣1,当t<0时,F′t<0,Ft单调递减;当t>0时,F′t>0,Ft单调递增,则Ft的最小值为F0=0,故当t≠0时,Ft>F0=0,即e t﹣t﹣1>0,从而﹣x2﹣x1﹣1>0,且>0,则φx1<0,﹣x1﹣x2﹣1>0,>0,则φx2>0,因为函数y=φx在区间x1,x2上的图象是连续不断的一条曲线,所以存在x0∈x1,x2,使φx0=0, 即f′x0=K成立.15.2012四川已知a为正实数,n为自然数,抛物线与x轴正半轴相交于点A,设fn为该抛物线在点A处的切线在y轴上的截距.Ⅰ用a和n表示fn;Ⅱ求对所有n都有成立的a的最小值;Ⅲ当0<a<1时,比较与的大小,并说明理由.解答解:Ⅰ∵抛物线与x轴正半轴相交于点A,∴A对求导得y′=﹣2x∴抛物线在点A处的切线方程为,∴∵fn为该抛物线在点A处的切线在y轴上的截距,∴fn=a n;Ⅱ由Ⅰ知fn=a n,则成立的充要条件是a n≥2n3+1即知,a n≥2n3+1对所有n成立,特别的,取n=2得到a≥当a=,n≥3时,a n>4n=1+3n≥1+=1+2n3+>2n3+1当n=0,1,2时,∴a=时,对所有n都有成立∴a的最小值为;Ⅲ由Ⅰ知fk=a k,下面证明:首先证明:当0<x<1时,设函数gx=xx2﹣x+1,0<x<1,则g′x=xx﹣当0<x<时,g′x<0;当时,g′x>0故函数gx在区间0,1上的最小值gx min=g=0∴当0<x<1时,gx≥0,∴由0<a<1知0<a k<1,因此,从而=≥=>=16.2011四川已知函数fx=x+,hx=.Ⅰ设函数Fx=fx﹣hx,求Fx的单调区间与极值;Ⅱ设a∈R,解关于x的方程log4fx﹣1﹣=log2ha﹣x﹣log2h4﹣x;Ⅲ试比较f100h100﹣与的大小.解答解:Ⅰ由Fx=fx﹣hx=x+﹣x≥0知,F′x=,令F′x=0,得x=.当x∈0,时,F′x<0;当x∈,+∞时,F′x>0.故x∈0,时,Fx是减函数;故x∈,+∞时,Fx是增函数.Fx在x=处有极小值且F=.Ⅱ原方程可化为log4x﹣1+log2 h4﹣x=log2ha﹣x,即log2x﹣1+log2=log2,①当1<a≤4时,原方程有一解x=3﹣;②当4<a<5时,原方程有两解x=3;③当a=5时,原方程有一解x=3;④当a≤1或a>5时,原方程无解.Ⅲ设数列{a n}的前n项和为s n,且s n=fngn﹣从而有a1=s1=1.当2<k≤100时,a k=s k﹣s k﹣1=,a k﹣=4k﹣3﹣4k﹣1==>0.即对任意的2<k≤100,都有a k>.又因为a1=s1=1,所以a1+a2+a3+…+a100>=h1+h2+…+h100.故f100h100﹣>.17.2011陕西设函数fx定义在0,+∞上,f1=0,导函数f′x=,gx=fx+f′x.Ⅰ求gx的单调区间和最小值;Ⅱ讨论gx与的大小关系;Ⅲ是否存在x0>0,使得|gx﹣gx0|<对任意x>0成立若存在,求出x0的取值范围;若不存在请说明理由.解答解:Ⅰ由题设易知fx=lnx,gx=lnx+,∴g′x=,令g′x=0,得x=1,当x∈0,1时,g′x<0,故gx的单调递减区间是0,1,当x∈1,+∞时,g′x>0,故gx的单调递增区间是1,+∞,因此x=1是gx的唯一极值点,且为极小值点,从而是最小值点,∴最小值为g1=1;Ⅱ=﹣lnx+x,设hx=gx﹣=2lnx﹣x+,则h′x=,当x=1时,h1=0,即gx=,当x∈0,1∪1,+∞时,h′x<0,h′1=0,因此,hx在0,+∞内单调递减,当0<x<1,时,hx>h1=0,即gx>,当x>1,时,hx<h1=0,即gx<,Ⅲ满足条件的x0 不存在.证明如下:证法一假设存在x0>0, 使|gx﹣gx0|<成立,即对任意x>0,有,但对上述x0,取时, 有Inx1=gx0,这与左边不等式矛盾,因此,不存在x0>0,使|gx﹣gx0|<成立.证法二假设存在x0>0,使|gx﹣gx0|成<立.由Ⅰ知,的最小值为gx=1.又>Inx,而x>1 时,Inx 的值域为0,+∞,∴x≥1 时,gx 的值域为1,+∞,从而可取一个x1>1,使gx1≥gx0+1,即gx1﹣gx0≥1,故|gx1﹣gx0|≥1>,与假设矛盾.∴不存在x0>0,使|gx﹣gx0|<成立.18.2011四川已知函数fx=x+,hx=.Ⅰ设函数Fx=18fx﹣x2hx2,求Fx的单调区间与极值;Ⅱ设a∈R,解关于x的方程lg fx﹣1﹣=2lgha﹣x﹣2lgh4﹣x;Ⅲ设n∈N n,证明:fnhn﹣h1+h2+…+hn≥.解答解:ⅠFx=18fx﹣x2hx2=﹣x3+12x+9x≥0所以F′x=﹣3x2+12=0,x=±2且x∈0,2时,F′x>0,当x∈2,+∞时,F′x<0所以Fx在0,2上单调递增,在2,+∞上单调递减.故x=2时,Fx有极大值,且F2=﹣8+24+9=25.Ⅱ原方程变形为lgx﹣1+2lg=2lg,,①当1<a<4时,原方程有一解x=3﹣,②当4<a<5时,原方程有两解x=3±,③当a=5时,原方程有一解x=3,④当a≤1或a>5时,原方程无解.Ⅲ由已知得h1+h2+…+hn=,fnhn﹣=,从而a1=s1=1,当k≥2时,a n=s n﹣s n﹣1=,又===>0即对任意的k≥2,有,又因为a1=1=,所以a1+a2+…+a n≥,则s n≥h1+h2+…+hn,故原不等式成立.19.2010四川设,a>0且a≠1,gx是fx的反函数.Ⅰ设关于x的方程求在区间2,6上有实数解,求t的取值范围;Ⅱ当a=e,e为自然对数的底数时,证明:;Ⅲ当0<a≤时,试比较||与4的大小,并说明理由.解答解:1由题意,得a x=>0故gx=,x∈﹣∞,﹣1∪1,+∞由得t=x﹣127﹣x,x∈2,6则t′=﹣3x2+18x﹣15=﹣3x﹣1x﹣5列表如下:x 2 2,5 5 5,6 6t' + ﹣t 5 递增极大值32 递减25所以t最小值=5,t最大值=32所以t的取值范围为5,325分Ⅱ=ln=﹣ln令uz=﹣lnz2﹣=﹣2lnz+z﹣,z>0则u′z=﹣=1﹣2≥0所以uz在0,+∞上是增函数又因为>1>0,所以u>u1=0即ln>0即9分3设a=,则p≥1,1<f1=≤3,当n=1时,|f1﹣1|=≤2<4,当n≥2时,设k≥2,k∈N时,则fk=,=1+所以1<fk≤1+,从而n﹣1<≤n﹣1+=n+1﹣<n+1,所以n<<f1+n+1≤n+4,综上所述,总有|﹣n|<4.20.2010全国卷Ⅱ设函数fx=1﹣e﹣x.Ⅰ证明:当x>﹣1时,fx≥;Ⅱ设当x≥0时,fx≤,求a的取值范围.解答解:1当x>﹣1时,fx≥当且仅当e x≥1+x令gx=e x﹣x﹣1,则g'x=e x﹣1当x≥0时g'x≥0,gx在0,+∞是增函数当x≤0时g'x≤0,gx在﹣∞,0是减函数于是gx在x=0处达到最小值,因而当x∈R时,gx≥g0时,即e x≥1+x 所以当x>﹣1时,fx≥2由题意x≥0,此时fx≥0当a<0时,若x>﹣,则<0,fx≤不成立;当a≥0时,令hx=axfx+fx﹣x,则fx≤当且仅当hx≤0因为fx=1﹣e﹣x,所以h'x=afx+axf'x+f'x﹣1=afx﹣axfx+ax﹣fxi当0≤a≤时,由1知x≤x+1fxh'x≤afx﹣axfx+ax+1fx﹣fx=2a﹣1fx≤0,hx在0,+∞是减函数,hx≤h0=0,即fx≤ii当a>时,由i知x≥fxh'x=afx﹣axfx+ax﹣fx≥afx﹣axfx+afx﹣fx=2a﹣1﹣axfx当0<x<时,h'x>0,所以h'x>0,所以hx>h0=0,即fx>综上,a的取值范围是0,21.2010陕西已知函数fx=,gx=alnx,a∈R,Ⅰ若曲线y=fx与曲线y=gx相交,且在交点处有共同的切线,求a的值和该切线方程;Ⅱ设函数hx=fx﹣gx,当hx存在最小值时,求其最小值φa的解析式;Ⅲ对Ⅱ中的φa和任意的a>0,b>0,证明:φ′≤≤φ′.解答解:Ⅰf'x=,g'x=有已知得解得:a=,x=e2∴两条曲线的交点坐标为e2,e切线的斜率为k=f'e2=∴切线的方程为y﹣e=x﹣e2Ⅱ由条件知hx=﹣alnxx>0,∴h′x=﹣=,①当a>0时,令h′x=0,解得x=4a2.∴当0<x<4a2时,h′x<0,hx在0,4a2上单调递减;当x>4a2时,h′x>0,hx在4a2,+∞上单调递增.∴x=4a2是hx在0,+∞上的惟一极值点,且是极小值点,从而也是hx的最小值点.∴最小值φa=h4a2=2a﹣aln4a2=2a1﹣ln 2a.②当a≤0时,h′x=>0,hx在0,+∞上单调递增,无最小值.故hx的最小值φa的解析式为φa=2a1﹣ln 2aa>0.Ⅲ证明:由Ⅱ知φ′a=﹣2ln2a对任意的a>0,b>0=﹣=﹣ln4ab,①φ′=﹣2ln2×=﹣lna+b2≤﹣ln4ab,②φ′=﹣2ln2×=﹣2ln=﹣ln4ab,③故由①②③得φ′≤≤φ′.22.2009全国卷Ⅱ设函数fx=x2+aln1+x有两个极值点x1、x2,且x1<x2,Ⅰ求a的取值范围,并讨论fx的单调性;Ⅱ证明:fx2>.解答解:I令gx=2x2+2x+a,其对称轴为.由题意知x1、x2是方程gx=0的两个均大于﹣1的不相等的实根,其充要条件为,得1当x∈﹣1,x1时,f'x>0,∴fx在﹣1,x1内为增函数;2当x∈x1,x2时,f'x<0,∴fx在x1,x2内为减函数;3当x∈x2,+∞时,f'x>0,∴fx在x2,+∞内为增函数;II由Ig0=a>0,∴,a=﹣2x22+2x2∴fx2=x22+aln1+x2=x22﹣2x22+2x2ln1+x2设hx=x2﹣2x2+2xln1+x,﹣<x<0则h'x=2x﹣22x+1ln1+x﹣2x=﹣22x+1ln1+x1当时,h'x>0,∴hx在单调递增;2当x∈0,+∞时,h'x<0,hx在0,+∞单调递减.∴故.23.2009湖北在R上定义运算:b、c∈R是常数,已知f1x=x2﹣2c,f2x=x﹣2b,fx=f1xf2x.①如果函数fx在x=1处有极值,试确定b、c的值;②求曲线y=fx上斜率为c的切线与该曲线的公共点;③记gx=|f′x|﹣1≤x≤1的最大值为M,若M≥k对任意的b、c恒成立,试求k的取值范围.参考公式:x3﹣3bx2+4b3=x+bx﹣2b2解答解:①依题意,解得或.若,,′x=﹣x2+2x﹣1=﹣x﹣12≤0fx在R上单调递减,在x=1处无极值;若,,f′x=﹣x2﹣2x+3=﹣x﹣1x+3,直接讨论知,fx在x=1处有极大值,所以为所求.②解f′t=c得t=0或t=2b,切点分别为0,bc、,相应的切线为y=cx+bc或.解得x=0或x=3b;解即x3﹣3bx2+4b3=0得x=﹣b或x=2b.综合可知,b=0时,斜率为c的切线只有一条,与曲线的公共点只有0,0,b≠0时,斜率为c的切线有两条,与曲线的公共点分别为0,bc、3b,4bc和、.③gx=|﹣x﹣b2+b2+c|.若|b|>1,则f′x在﹣1,1是单调函数,M=max{|f′﹣1|,|f′1|}={|﹣1+2b+c|,|﹣1﹣2b+c|},因为f′1与f′﹣1之差的绝对值|f′1﹣f′﹣1|=|4b|>4,所以M>2.若|b|≤1,f′x在x=b∈﹣1,1取极值,则M=max{|f′﹣1|,|f′1|,|f′b|},f′b﹣f′±1=b12.若﹣1≤b<0,f′1≤f′﹣1≤f′b;若0≤b≤1,f′﹣1≤f′1≤f′b,M=max{|f′﹣1|,|f′b|}=.当b=0,时,在﹣1,1上的最大值.所以,k的取值范围是.24.2009湖北已知关于x的函数fx=﹣x3+bx2+cx+bc,其导函数为f′x.令gx=|f′x|,记函数gx 在区间﹣1、1上的最大值为M.Ⅰ如果函数fx在x=1处有极值﹣,试确定b、c的值:Ⅱ若|b|>1,证明对任意的c,都有M>2Ⅲ若M≧K对任意的b、c恒成立,试求k的最大值.解答Ⅰ解:∵f'x=﹣x2+2bx+c,由fx在x=1处有极值可得解得,或若b=1,c=﹣1,则f'x=﹣x2+2x﹣1=﹣x﹣12≤0,此时fx没有极值;若b=﹣1,c=3,则f'x=﹣x2﹣2x+3=﹣x+3x﹣1当x变化时,fx,f'x的变化情况如下表:x ﹣∞,﹣3 ﹣3 ﹣3,1 11,+∞f'x ﹣0 + 0 ﹣↘fx ↘极小值﹣12 ↗极大值∴当x=1时,fx有极大值,故b=﹣1,c=3即为所求.Ⅱ证法1:gx=|f'x|=|﹣x﹣b2+b2+c|当|b|>1时,函数y=f'x的对称轴x=b位于区间﹣之外.∴f'x在﹣1,1上的最值在两端点处取得故M应是g﹣1和g1中较大的一个,∴2M≥g1+g﹣1=|﹣1+2b+c|+|﹣1﹣2b+c|≥|4b|>4,即M>2证法2反证法:因为|b|>1,所以函数y=f'x的对称轴x=b位于区间﹣1,1之外,∴f'x在﹣1,1上的最值在两端点处取得.故M应是g﹣1和g1中较大的一个假设M≤2,则M=maxg{﹣1,g1,gb}将上述两式相加得:4≥|﹣1﹣2b+c|+|﹣1+2b+c|≥4|b|>4,导致矛盾,∴M>2Ⅲ解法1:gx=|f'x|=|﹣x﹣b2+b2+c|1当|b|>1时,由Ⅱ可知f'b﹣f'±1=b12≥0;2当|b|≤1时,函数y=f'x的对称轴x=b位于区间﹣1,1内,此时M=max{g﹣1,g1,gb}由f'1﹣f'﹣1=4b,有f'b﹣f'±1=b12≥0①若﹣1≤b≤0,则f'1≤f'﹣1≤f'b,∴g﹣1≤max{g1,gb},于是②若0<b≤1,则f'﹣1≤f'1≤f'b,∴g1≤maxg﹣1,gb于是综上,对任意的b、c都有而当时,在区间﹣1,1上的最小值故M≥k对任意的b、c恒成立的k的最大值为.解法2:gx=|f'x|=|﹣x﹣b2+b2+c|1当|b|>1时,由Ⅱ可知M>22当|b|≤1y=f'x时,函数的对称轴x=b位于区间﹣1,1内,此时M=max{g﹣1,g1,gb}4M≥g﹣1+g1+2gb=|﹣1﹣2b+c|+|﹣1+2b+c|+2|b2+c|≥|﹣1﹣2b+c+﹣1+2b+c﹣2b2+c|=|2b2+2|≥2, 即下同解法125.2008江苏请先阅读:在等式cos2x=2cos2x﹣1x∈R的两边求导,得:cos2x′=2cos2x﹣1′,由求导法则,得﹣sin2x2=4cosx ﹣sinx,化简得等式:sin2x=2cosxsinx.1利用上题的想法或其他方法,结合等式1+x n=C n0+C n1x+C n2x2+…+C n n x n x∈R,正整数n≥2,证明:.2对于正整数n≥3,求证:i;ii;iii.解答证明:1在等式1+x n=C n0+C n1x+C n2x2+…+C n n x n两边对x求导得n1+x n﹣1=C n1+2C n2x+…+n ﹣1C n n﹣1x n﹣2+nC n n x n﹣1移项得2i在式中,令x=﹣1,整理得所以ii由1知n1+x n﹣1=C n1+2C n2x+…+n﹣1C n n﹣1x n﹣2+nC n n x n﹣1,n≥3两边对x求导,得nn﹣11+x n﹣2=2C n2+32C n3x+…+nn﹣1C n n x n﹣2在上式中,令x=﹣1,得0=2C n2+32C n3﹣1+…+nn﹣1C n2﹣1n﹣2即,亦即 1又由i知 2由1+2得iii将等式1+x n=C n0+C n1x+C n2x2+…+C n n x n两边在0,1上对x积分由微积分基本定理,得所以26.2008天津已知函数fx=x4+ax3+2x2+bx∈R,其中a,b∈R.Ⅰ当时,讨论函数fx的单调性;Ⅱ若函数fx仅在x=0处有极值,求a的取值范围;Ⅲ若对于任意的a∈﹣2,2,不等式fx≤1在﹣1,1上恒成立,求b的取值范围.解答解:Ⅰf'x=4x3+3ax2+4x=x4x2+3ax+4.当时,f'x=x4x2﹣10x+4=2x2x﹣1x﹣2.令f'x=0,解得x1=0,,x3=2.当x变化时,f'x,fx的变化情况如下表:x ﹣∞,0 02 2,+∞0,,2f′x ﹣0 + 0 ﹣0 +fx ↘极小值↗极大值↘极小值↗所以fx在,2,+∞内是增函数,在﹣∞,0,内是减函数.Ⅱf'x=x4x2+3ax+4,显然x=0不是方程4x2+3ax+4=0的根.为使fx仅在x=0处有极值,必须4x2+3ax+4≥0成立,即有△=9a2﹣64≤0.解些不等式,得.这时,f0=b是唯一极值.因此满足条件的a的取值范围是.Ⅲ由条件a∈﹣2,2,可知△=9a2﹣64<0,从而4x2+3ax+4>0恒成立.当x<0时,f'x<0;当x>0时,f'x>0.因此函数fx在﹣1,1上的最大值是f1与f﹣1两者中的较大者.为使对任意的a∈﹣2,2,不等式fx≤1在﹣1,1上恒成立,当且仅当,即,在a∈﹣2,2上恒成立.所以b≤﹣4,因此满足条件的b的取值范围是﹣∞,﹣4.四.解答题共4小题27.2008福建已知函数fx=ln1+x﹣x1求fx的单调区间;2记fx在区间0,nn∈N上的最小值为b n令a n=ln1+n﹣b ni如果对一切n,不等式恒成立,求实数c的取值范围;ii求证:.解答解:1因为fx=ln1+x﹣x,所以函数定义域为﹣1,+∞,且f′x=﹣1=.由f′x>0得﹣1<x<0,fx的单调递增区间为﹣1,0;由f’x<0得x>0,fx的单调递减区间为0,+∞.2因为fx在0,n上是减函数,所以b n=fn=ln1+n﹣n,则a n=ln1+n﹣b n=ln1+n﹣ln1+n+n=n.i因为对n∈N恒成立.所以对n∈N恒成立.则对n∈N恒成立.设,n∈N,则c<gn对n∈N恒成立.考虑.因为=0,所以gx在1,+∞内是减函数;则当n∈N时,gn随n的增大而减小,又因为=1.所以对一切n∈N,gn>1因此c≤1,即实数c的取值范围是﹣∞,1.ⅱ由ⅰ知.下面用数学归纳法证明不等式n∈N+①当n=1时,左边=,右边=,左边<右边.不等式成立.②假设当n=k时,不等式成立.即.当n=k+1时,<===,即n=k+1时,不等式成立综合①、②得,不等式成立.所以,所以+<+…+=﹣1.即.28.2007福建已知函数fx=e x﹣kx,1若k=e,试确定函数fx的单调区间;2若k>0,且对于任意x∈R,f|x|>0恒成立,试确定实数k的取值范围;3设函数Fx=fx+f﹣x,求证:F1F2…Fn>n∈N.解答解:Ⅰ由k=e得fx=e x﹣ex,所以f'x=e x﹣e.由f'x>0得x>1,故fx的单调递增区间是1,+∞,由f'x<0得x<1,故fx的单调递减区间是﹣∞,1.Ⅱ由f|﹣x|=f|x|可知f|x|是偶函数.于是f|x|>0对任意x∈R成立等价于fx>0对任意x≥0成立.由f'x=e x﹣k=0得x=lnk.①当k∈0,1时,f'x=e x﹣k>1﹣k≥0x>0.此时fx在0,+∞上单调递增.故fx≥f0=1>0,符合题意.②当k∈1,+∞时,lnk>0.当x变化时f'x,fx的变化情况如下表:x 0,lnk lnk lnk,+∞f′x ﹣0 +fx 单调递减极小值单调递增由此可得,在0,+∞上,fx≥flnk=k﹣klnk.依题意,k﹣klnk>0,又k>1,∴1<k<e.综合①,②得,实数k的取值范围是0<k<e.Ⅲ∵Fx=fx+f﹣x=e x+e﹣x,∴Fx1Fx2=,∴F1Fn>e n+1+2,F2Fn﹣1>e n+1+2,FnF1>e n+1+2.由此得,F1F2Fn2=F1FnF2Fn﹣1FnF1>e n+1+2n故,n∈N.29.2006四川已知函数,fx的导函数是f′x.对任意两个不相等的正数x1、x2,证明:Ⅰ当a≤0时,;Ⅱ当a≤4时,|f′x1﹣f′x2|>|x1﹣x2|.解答解:证明:Ⅰ由得=而①又x1+x22=x12+x22+2x1x2>4x1x2∴②∵∴∵a≤0,aln≥aln③由①、②、③得x12+x22++aln>2++aln, 即.Ⅱ证法一:由,得∴=下面证明对任意两个不相等的正数x1,x2,有恒成立即证成立∵设,则,令u′x=0得,列表如下:tu′t ﹣0 +□ut □极小值∴∴对任意两个不相等的正数x1,x2,恒有|f'x1﹣f'x2|>|x1﹣x2|证法二:由,得∴=∵x1,x2是两个不相等的正数∴设,ut=2+4t3﹣4t2t>0则u′t=4t3t﹣2,列表:tu′t ﹣0 +□ut □极小值∴即∴即对任意两个不相等的正数x1,x2,恒有|f′x1﹣f′x2|>|x1﹣x2|30.2006辽宁已知f0x=x n,其中k≤nn,k∈N+,设Fx=C n0f0x2+C n1f1x2+…+C n n f n x2,x∈﹣1,1.1写出f k1;2证明:对任意的x1,x2∈﹣1,1,恒有|Fx1﹣Fx2|≤2n﹣1n+2﹣n﹣1.解答解:1由已知推得f k x=n﹣k+1x n﹣k,从而有f k1=n﹣k+12证法1:当﹣1≤x≤1 时,Fx=x2n+nc n1x2n﹣1+n﹣1c n2x2n﹣2+…+n﹣k+1c n k x2n﹣k+…+2c n n﹣1x2+1 当x>0时,F′x>0所以Fx在0,1上为增函数因函数Fx为偶函数,所以Fx在﹣1,0上为减函数所以对任意的x1,x2∈﹣1,1,|Fx1﹣Fx2|≤F1﹣F0F1﹣F0=C n0+nc n1+n﹣1c n2+…+n﹣k+1c n k+…+2c n n﹣1=nc n n﹣1+n﹣1c n n﹣2+…+n﹣k+1c n n﹣k+…+2c n1+c n0∵n﹣k+1c n n﹣k=n﹣kc n n﹣k+c n k=nc n﹣1k+c n k k=1,2,3,…,n﹣1F﹣F0=nc n﹣11+c n﹣12+…+c n﹣1k﹣1+c n1+c n2+…+c n n﹣1+c n0=n2n﹣1﹣1+2n﹣1=2n﹣1n+2﹣n﹣1因此结论成立.证法2:当﹣1≤x≤1 时,Fx=x2n+nc n1x2n﹣1+n﹣1c n2x2n﹣2+…+n﹣k+1c n k x2n﹣k+…+2c n n﹣1x2+1 当x>0时,F′x>0所以Fx在0,1上为增函数因函数Fx为偶函数所以Fx在﹣1,0上为减函数所以对任意的x1,x2∈﹣1,1,|Fx1﹣Fx2|≤F﹣F0F﹣F0=c n0+nc n1+n﹣1c n2+…+n﹣k+1c n k+…+2c n n﹣1又因F1﹣F0=2c n1+3c n2+…+kc n k﹣1+…+nc n n﹣1+c n0所以2F1﹣F0=n+2c n1+c n2+…+c n k﹣1+…+c n n﹣1+2c n0F1﹣F0=c n1+c n2+…+c n k﹣1+…+c n n﹣1+c n0=因此结论成立.证法3:当﹣1≤x≤1时,Fx=x2n+nc n1x2n﹣1+n﹣1c n2x2n﹣2+…+n﹣k+1c n k x2n﹣k+…+2c n n﹣1x2+1 当x>0时,F′x>0所以Fx在0,1上为增函数因函数Fx为偶函数所以Fx在﹣1,0上为减函数所以对任意的x1,x2∈﹣1,1,|Fx1﹣Fx2|≤F﹣F0F﹣F0=c n0+nc n1+n﹣1c n2+…+n﹣k+1c n k+…+2c n n﹣1由x1+x n﹣x n=xc n1x n﹣1+c n2x n﹣2+…+c n k x n﹣k+…+c n n﹣1+1=c n1x n+c n2x n﹣1+…+c n k x n﹣k+1+…+c n n﹣1x2+x对上式两边求导得1+x n﹣x n+nx1+x n﹣1﹣nx n=nc n1x n﹣1+n﹣1c n2x n﹣2+…+n﹣k+1c n k x n﹣k+…+2c n n﹣1x+1Fx=1+x2n+nx21+x2n﹣1﹣nx2n∴F1﹣F0=2n+n2n﹣1﹣n﹣1=n+22n﹣1﹣n﹣1.因此结论成立.。
高中数学导数压轴题专题训练

高中数学导数尖子生辅导填选压轴一.选择题共30小题1.2013文昌模拟如图是fx=x3+bx2+cx+d的图象,则x12+x22的值是A.B.C.D.考点:利用导数研究函数的极值;函数的图象与图象变化.专题:计算题;压轴题;数形结合.分析:先利用图象得:fx=xx+1x﹣2=x3﹣x2﹣2x,求出其导函数,利用x1,x2是原函数的极值点,求出x1+x2=,,即可求得结论.解答:解:由图得:fx=xx+1x﹣2=x3﹣x2﹣2x,∴f'x=3x2﹣2x﹣2∵x1,x2是原函数的极值点所以有x1+x2=,,故x12+x22=x1+x22﹣2x1x2==.故选D.点评:本题主要考查利用函数图象找到对应结论以及利用导数研究函数的极值,是对基础知识的考查,属于基础题.2.2013乐山二模定义方程fx=f′x的实数根x0叫做函数fx的“新驻点”,若函数gx=x,hx=lnx+1,φx=x3﹣1的“新驻点”分别为α,β,γ,则α,β,γ的大小关系为A.α>β>γB.β>α>γC.γ>α>βD.β>γ>α考点:导数的运算.专题:压轴题;新定义.分析:分别对gx,hx,φx求导,令g′x=gx,h′x=hx,φ′x=φx,则它们的根分别为α,β,γ,即α=1,lnβ+1=,γ3﹣1=3γ2,然后分别讨论β、γ的取值范围即可.解答:解:∵g′x=1,h′x=,φ′x=3x2,由题意得:α=1,lnβ+1=,γ3﹣1=3γ2,①∵lnβ+1=,∴β+1β+1=e,当β≥1时,β+1≥2,∴β+1≤<2,∴β<1,这与β≥1矛盾,∴0<β<1;②∵γ3﹣1=3γ2,且γ=0时等式不成立,∴3γ2>0∴γ3>1,∴γ>1.∴γ>α>β.故选C.点评:函数、导数、不等式密不可分,此题就是一个典型的代表,其中对对数方程和三次方程根的范围的讨论是一个难点.3.2013山东抛物线C1:的焦点与双曲线C2:的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p=A.B.C.D.考点:利用导数研究曲线上某点切线方程;双曲线的简单性质.专题:压轴题;圆锥曲线的定义、性质与方程.分析:由曲线方程求出抛物线与双曲线的焦点坐标,由两点式写出过两个焦点的直线方程,求出函数在x取直线与抛物线交点M的横坐标时的导数值,由其等于双曲线渐近线的斜率得到交点横坐标与p的关系,把M点的坐标代入直线方程即可求得p的值.解答:解:由,得x2=2pyp>0,所以抛物线的焦点坐标为F.由,得,.所以双曲线的右焦点为2,0.则抛物线的焦点与双曲线的右焦点的连线所在直线方程为,即①.设该直线交抛物线于M,则C1在点M处的切线的斜率为.由题意可知,得,代入M点得M把M点代入①得:.解得p=.故选D.点评:本题考查了双曲线的简单几何性质,考查了利用导数研究曲线上某点的切线方程,函数在曲线上某点处的切线的斜率等于函数在该点处的导数,是中档题.4.2013安徽已知函数fx=x3+ax2+bx+c有两个极值点x1,x2,若fx1=x1<x2,则关于x的方程3fx2+2afx+b=0的不同实根个数为A.3B.4C.5D.6考点:利用导数研究函数的极值;根的存在性及根的个数判断.专题:压轴题;导数的综合应用.分析:由函数fx=x3+ax2+bx+c有两个极值点x1,x2,可得f′x=3x2+2ax+b=0有两个不相等的实数根,必有△=4a2﹣12b >0.而方程3fx2+2afx+b=0的△1=△>0,可知此方程有两解且fx=x1或x2.再分别讨论利用平移变换即可解出方程fx=x1或fx=x2解得个数.解答:解:∵函数fx=x3+ax2+bx+c有两个极值点x1,x2,∴f′x=3x2+2ax+b=0有两个不相等的实数根,∴△=4a2﹣12b>0.解得=.∵x1<x2,∴,.而方程3fx2+2afx+b=0的△1=△>0,∴此方程有两解且fx=x1或x2.不妨取0<x1<x2,fx1>0.①把y=fx向下平移x1个单位即可得到y=fx﹣x1的图象,∵fx1=x1,可知方程fx=x1有两解.②把y=fx向下平移x2个单位即可得到y=fx﹣x2的图象,∵fx1=x1,∴fx1﹣x2<0,可知方程fx=x2只有一解.综上①②可知:方程fx=x1或fx=x2.只有3个实数解.即关于x的方程3fx2+2afx+b=0的只有3不同实根.故选A.点评:本题综合考查了利用导数研究函数得单调性、极值及方程解得个数、平移变换等基础知识,考查了数形结合的思想方法、推理能力、分类讨论的思想方法、计算能力、分析问题和解决问题的能力.5.2013湖北已知a为常数,函数fx=xlnx﹣ax有两个极值点x1,x2x1<x2A.B.C.D.考点:利用导数研究函数的极值;函数在某点取得极值的条件.专题:压轴题;导数的综合应用.分析:先求出f′x,令f′x=0,由题意可得lnx=2ax﹣1有两个解x1,x2函数gx=lnx+1﹣2ax有且只有两个零点g′x在0,+∞上的唯一的极值不等于0.利用导数与函数极值的关系即可得出.解答:解:∵=lnx+1﹣2ax,x>0令f′x=0,由题意可得lnx=2ax﹣1有两个解x1,x2函数gx=lnx+1﹣2ax有且只有两个零点g′x在0,+∞上的唯一的极值不等于0..①当a≤0时,g′x>0,f′x单调递增,因此gx=f′x至多有一个零点,不符合题意,应舍去.②当a>0时,令g′x=0,解得x=,∵x,g′x>0,函数gx单调递增;时,g′x<0,函数gx单调递减.∴x=是函数gx的极大值点,则>0,即>0,∴ln2a<0,∴0<2a<1,即.∵,f′x1=lnx1+1﹣2ax1=0,f′x2=lnx2+1﹣2ax2=0.且fx1=x1lnx1﹣ax1=x12ax1﹣1﹣ax1=x1ax1﹣1<x1﹣ax1=<0,fx2=x2lnx2﹣ax2=x2ax2﹣1>=﹣..故选D.点评:熟练掌握利用导数研究函数极值的方法是解题的关键.6.2013辽宁设函数fx满足x2f′x+2xfx=,f2=,则x>0时,fxA.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值D.既无极大值也无极小值考点:函数在某点取得极值的条件;导数的运算.专题:压轴题;导数的综合应用.分析:先利用导数的运算法则,确定fx的解析式,再构造新函数,确定函数的单调性,即可求得结论.解答:解:∵函数fx满足,∴∴x>0时,dx∴∴令gx=,则令g′x=0,则x=2,∴x∈0,2时,g′x<0,函数单调递减,x∈2,+∞时,g′x>0,函数单调递增∴gx在x=2时取得最小值∵f2=,∴g2==0∴gx≥g2=0∴≥0即x>0时,fx单调递增∴fx既无极大值也无极小值故选D.点评:本题考查导数知识的运用,考查函数的单调性与极值,考查学生分析解决问题的能力,难度较大.7.2013安徽若函数fx=x3+ax2+bx+c有极值点x1,x2,且fx1=x1,则关于x的方程3fx2+2afx+b=0的不同实根个数是A.3B.4C.5D.6考点:函数在某点取得极值的条件;根的存在性及根的个数判断.专题:综合题;压轴题;导数的综合应用.分析:求导数f′x,由题意知x1,x2是方程3x2+2ax+b=0的两根,从而关于fx的方程3fx2+2afx+b=0有两个根,作出草图,由图象可得答案.解答:解:f′x=3x2+2ax+b,x1,x2是方程3x2+2ax+b=0的两根,不妨设x2>x1,由3fx2+2afx+b=0,则有两个fx使等式成立,x1=fx1,x2>x1=fx1,如下示意图象:如图有三个交点,故选A.点评:考查函数零点的概念、以及对嵌套型函数的理解,考查数形结合思想.8.2014海口二模设fx是定义在R上的奇函数,且f2=0,当x>0时,有恒成立,则不等式x2fx>0的解集是A.﹣2,0∪2,+∞B.﹣2,0∪0,2 C.﹣∞,﹣2∪2,+∞D.﹣∞,﹣2∪0,2考点:函数的单调性与导数的关系;奇偶函数图象的对称性;其他不等式的解法.专题:综合题;压轴题.分析:首先根据商函数求导法则,把化为′<0;然后利用导函数的正负性,可判断函数y=在0,+∞内单调递减;再由f2=0,易得fx在0,+∞内的正负性;最后结合奇函数的图象特征,可得fx在﹣∞,0内的正负性.则x2fx>0fx>0的解集即可求得.解答:解:因为当x>0时,有恒成立,即′<0恒成立,所以在0,+∞内单调递减.因为f2=0,所以在0,2内恒有fx>0;在2,+∞内恒有fx<0.又因为fx是定义在R上的奇函数,所以在﹣∞,﹣2内恒有fx>0;在﹣2,0内恒有fx<0.又不等式x2fx>0的解集,即不等式fx>0的解集.所以答案为﹣∞,﹣2∪0,2.故选D.点评:本题主要考查函数求导法则及函数单调性与导数的关系,同时考查了奇偶函数的图象特征.9.2014重庆三模对于三次函数fx=ax3+bx2+cx+da≠0,给出定义:设f′x是函数y=fx的导数,f″x是f′x的导数,若方程f′′x=0有实数解x0,则称点x0,fx0为函数y=fx的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数gx=,则g+=A.2011 B.2012 C.2013 D.2014考点:导数的运算;函数的值;数列的求和.专题:压轴题;导数的概念及应用.分析:正确求出对称中心,利用对称中心的性质即可求出.解答:解:由题意,g′x=x2﹣x+3,∴g″x=2x﹣1,令g″x=0,解得,又,∴函数gx的对称中心为.∴,,…∴g+=2012.故选B.点评:正确求出对称中心并掌握对称中心的性质是解题的关键.10.2014上海二模已知fx=alnx+x2a>0,若对任意两个不等的正实数x1,x2,都有>2恒成立,则a的取值范围是A.0,1 B.1,+∞C.0,1 D.1,+∞考点:导数的几何意义;利用导数研究函数的单调性.专题:计算题;压轴题.分析:先将条件“对任意两个不等的正实数x1,x2,都有>2恒成立”转换成当x>0时,f'x≥2恒成立,然后利用参变量分离的方法求出a的范围即可.解答:解:对任意两个不等的正实数x1,x2,都有>2恒成立则当x>0时,f'x≥2恒成立f'x=+x≥2在0,+∞上恒成立则a≥2x﹣x2max=1故选D.点评:本题主要考查了导数的几何意义,以及函数恒成立问题,同时考查了转化与划归的数学思想,属于基础题.11.2012桂林模拟已知在﹣∞,+∞上是增函数,则实数a的取值范围是A.﹣∞,1 B.﹣1,4 C.﹣1,1 D.﹣∞,1考点:利用导数研究函数的单调性.专题:计算题;压轴题.分析:要是一个分段函数在实数上是一个增函数,需要两段都是增函数且两个函数的交点处要满足递增,当x小于0时,要使的函数是一个减函数,求导以后导函数横小于0,注意两个端点处的大小关系.解答:解:∵要是一个分段函数在实数上是一个增函数.需要两段都是增函数且两个函数的交点处要满足递增,当x<0时,y′=3x2﹣a﹣1>0恒成立,∴a﹣1<3x2∴a﹣1≤0∴a≤1,当x=0时,a2﹣3a﹣4≤0∴﹣1≤a≤4,综上可知﹣1≤a≤1故选C.点评:本题考查函数的单调性,分段函数的单调性,解题的关键是在两个函数的分界处,两个函数的大小关系一定要写清楚.12.2012河北模拟定义在1,+∞上的函数fx满足:①f2x=cfxc为正常数;②当2≤x≤4时,fx=1﹣x﹣32,若函数fx的图象上所有极大值对应的点均落在同一条直线上,则c等于A.1B.2C.1或2 D.4或2考点:利用导数研究函数的极值;抽象函数及其应用.专题:计算题;压轴题.分析:由已知可得分段函数fx的解析式,进而求出三个函数的极值点坐标,根据三点共线,则任取两点确定的直线斜率相等,可以构造关于c的方程,解方程可得答案.解答:解:∵当2≤x≤4时,fx=1﹣x﹣32当1≤x<2时,2≤2x<4,则fx=f2x=1﹣2x﹣32此时当x=时,函数取极大值当2≤x≤4时,fx=1﹣x﹣32此时当x=3时,函数取极大值1当4<x≤8时,2<x≤4则fx=cf x=c1﹣x﹣32,此时当x=6时,函数取极大值c∵函数的所有极大值点均落在同一条直线上,即点,,3,1,6,c共线,∴解得c=1或2.故选C点评:本题考查的知识点是三点共线,函数的极值,其中根据已知分析出分段函数fx的解析式,进而求出三个函数的极值点坐标,是解答本题的关键.13.2012桂林模拟设a∈R,函数fx=e x+ae﹣x的导函数是f′x,且f′x是奇函数.若曲线y=fx的一条切线的斜率是,则切点的横坐标为A.l n2 B.﹣ln2 C.D.考点:简单复合函数的导数.专题:压轴题.分析:已知切线的斜率,要求切点的横坐标必须先求出切线的方程,我们可从奇函数入手求出切线的方程.解答:解:对fx=e x+ae﹣x求导得f′x=e x﹣ae﹣x又f′x是奇函数,故f′0=1﹣a=0解得a=1,故有f′x=e x﹣e﹣x,设切点为x0,y0,则,得或舍去,得x0=ln2.点评:熟悉奇函数的性质是求解此题的关键,奇函数定义域若包含x=0,则一定过原点.14.2012太原模拟已知定义在R上的函数y=fx﹣1的图象关于点1,0对称,且x∈﹣∞,0时,fx+xf′x<0成立,其中f′x是fx的导函数,a=f,b=logπ3.flogπ3,则a,b,c的大小关系是A.a>b>c B.c>b>a C.c>a>b D.a>c>b考点:利用导数研究函数的单调性;函数单调性的性质;导数的乘法与除法法则.专题:计算题;压轴题.分析:由“当x∈﹣∞,0时不等式fx+xf′x<0成立”知xfx是减函数,要得到a,b,c的大小关系,只要比较的大小即可.解答:解:∵当x∈﹣∞,0时不等式fx+xf′x<0成立即:xfx′<0,∴xfx在﹣∞,0上是减函数.又∵函数y=fx﹣1的图象关于点1,0对称,∴函数y=fx的图象关于点0,0对称,∴函数y=fx是定义在R上的奇函数∴xfx是定义在R上的偶函数∴xfx在0,+∞上是增函数.又∵=﹣2,2=.∴>f>logπ3flogπ3即>f>logπ3flogπ3即:c>a>b故选C.点评:本题考查的考点与方法有:1所有的基本函数的奇偶性;2抽象问题具体化的思想方法,构造函数的思想;3导数的运算法则:uv′=u′v+uv′;4指对数函数的图象;5奇偶函数在对称区间上的单调性:奇函数在对称区间上的单调性相同;偶函数在对称区间上的单调性相反.本题结合已知构造出hx是正确解答的关键所在.15.2012广东模拟已知fx为定义在﹣∞,+∞上的可导函数,且fx<f′x对于x∈R恒成立,且e为自然对数的底,则A.f1>ef0,f2012>e2012f0 B.f1<ef0,f2012>e2012f0C.f1>ef0,f2012<e2012f0 D.f1<ef0,f2012<e2012f0考点:导数的运算.专题:计算题;压轴题.分析:构造函数y=的导数形式,并判断增减性,从而得到答案.解答:解:∵fx<f'x 从而f'x﹣fx>0 从而>0即>0,所以函数y=单调递增,故当x>0时,=f0,整理得出fx>e x f0当x=1时f1>ef0,当x=2012时f2012>e2012f0.故选A.点评:本题主要考查函数的单调性与其导函数的关系,函数单调性的关系,考查转化、构造、计算能力.16.2012无为县模拟已知定义在R上的函数fx、gx满足,且f′xgx<fxg′x,,若有穷数列n∈N的前n项和等于,则n等于A.4B.5C.6D.7考点:导数的运算;数列的求和.专题:压轴题.分析:利用导数研究函数的单调性得到a的范围,再利用等比数列前n项和公式即可得出.解答:解:∵=,f′xgx<fxg′x,∴=<0,即函数单调递减,∴0<a<1.又,即,即,解得a=2舍去或.∴,即数列是首项为,公比的等比数列,∴==,由解得n=5,故选B.点评:熟练掌握导数研究函数的单调性、等比数列前n项和公式是解题的关键.17.2012福建函数fx在a,b上有定义,若对任意x1,x2∈a,b,有则称fx在a,b上具有性质P.设fx在1,3上具有性质P,现给出如下命题:①fx在1,3上的图象是连续不断的;②fx2在1,上具有性质P;③若fx在x=2处取得最大值1,则fx=1,x∈1,3;④对任意x1,x2,x3,x4∈1,3,有fx1+fx2+fx3+fx4其中真命题的序号是A.①②B.①③C.②④D.③④考点:利用导数求闭区间上函数的最值;抽象函数及其应用;函数的连续性.专题:压轴题;新定义.分析:根据题设条件,分别举出反例,说明①和②都是错误的;同时证明③和④是正确的.解答:解:在①中,反例:fx=在1,3上满足性质P,但fx在1,3上不是连续函数,故①不成立;在②中,反例:fx=﹣x在1,3上满足性质P,但fx2=﹣x2在1,上不满足性质P,故②不成立;在③中:在1,3上,f2=f≤,∴,故fx=1,∴对任意的x1,x2∈1,3,fx=1,故③成立;在④中,对任意x1,x2,x3,x4∈1,3,有=≤≤=fx1+fx2+fx3+fx4,∴fx1+fx2+fx3+fx4,故④成立.故选D.点评:本题考查的知识点为函数定义的理解,说明一个结论错误时,只需举出反例即可.说明一个结论正确时,要证明对所有的情况都成立.18.2013文昌模拟设动直线x=m与函数fx=x3,gx=lnx的图象分别交于点M、N,则|MN|的最小值为A.B.C.D.l n3﹣1考点:利用导数求闭区间上函数的最值.专题:计算题;压轴题.分析:构造函数Fx=fx﹣gx,求出导函数,令导函数大于0求出函数的单调递增区间,令导函数小于0求出函数的单调递减区间,求出函数的极小值即最小值.解答:解:画图可以看到|MN|就是两条曲线间的垂直距离.设Fx=fx﹣gx=x3﹣lnx,求导得:F'x=.令F′x>0得x>;令F′x<0得0<x<,所以当x=时,Fx有最小值为F=+ln3=1+ln3,故选A点评:求函数的最值时,先利用导数求出函数的极值和区间的端点值,比较在它们中求出最值.19.2011枣庄二模设f′x是函数fx的导函数,有下列命题:①存在函数fx,使函数y=fx﹣f′x为偶函数;②存在函数fxf′x≠0,使y=fx与y=f′x的图象相同;③存在函数fxf′x≠0使得y=fx与y=f′x的图象关于x轴对称.其中真命题的个数为A.0B.1C.2D.3考点:导数的运算;函数奇偶性的判断.专题:计算题;压轴题.分析:对于三个命题分别寻找满足条件的函数,三个函数分别是fx=0,fx=e x,fx=e﹣x,从而得到结论.解答:解:存在函数fx=0,使函数y=fx﹣f′x=0为偶函数,故①正确存在函数fx=e x,使y=fx与y=f′x的图象相同,故②正确存在函数fx=e﹣x使得y=fx与y=f′x的图象关于x轴对称,故③正确.故选D.点评:本题主要考查了函数的奇偶性以及函数图象的对称性,解题的关键就是寻找满足条件的函数,属于基础题.20.2011武昌区模拟已知fx是定义域为R的奇函数,f﹣4=﹣1,fx的导函数f′x的图象如图所示.若两正数a,b满足fa+2b<1,则的取值范围是A.B.C.﹣1,10 D.﹣∞,﹣1考点:函数的单调性与导数的关系;斜率的计算公式.专题:计算题;压轴题;数形结合.分析:先由导函数f′x是过原点的二次函数入手,再结合fx是定义域为R的奇函数求出fx;然后根据a、b的约束条件画出可行域,最后利用的几何意义解决问题.解答:解:由fx的导函数f′x的图象,设f′x=mx2,则fx=+n.∵fx是定义域为R的奇函数,∴f0=0,即n=0.又f﹣4=m×﹣64=﹣1,∴fx=x3=.且fa+2b=<1,∴<1,即a+2b<4.又a>0,b>0,则画出点b,a的可行域如下图所示.而可视为可行域内的点b,a与点M﹣2,﹣2连线的斜率.又因为k AM=3,k BM=,所以<<3.故选B.点评:数形结合是数学的基本思想方法:遇到二元一次不定式组要考虑线性规划,遇到的代数式要考虑点x,y 与点a,b连线的斜率.这都是由数到形的转化策略.21.2011雅安三模下列命题中:①函数,fx=sinx+x∈0,π的最小值是2;②在△ABC中,若sin2A=sin2B,则△ABC是等腰或直角三角形;③如果正实数a,b,c满足a + b>c则+>;④如果y=fx是可导函数,则f′x0=0是函数y=fx在x=x0处取到极值的必要不充分条件.其中正确的命题是A.①②③④B.①④C.②③④D.②③考点:函数在某点取得极值的条件;不等关系与不等式;三角函数中的恒等变换应用.专题:常规题型;压轴题.分析:根据基本不等式和三角函数的有界性可知真假,利用题设等式,根据和差化积公式整理求得cosA+B=0或sinA ﹣B=0,推断出A+B=或A=B,则三角形形状可判断出.构造函数y=,根据函数的单调性可证得结论;由函数极值点与导数的关系,我们易判断对错.解答:解:①fx=sinx+≥2,当sinx=时取等号,而sinx的最大值是1,故不正确;②∵sin2A=sin2B∴sin2A﹣sin2B=cosA+BsinA﹣B=0∴cosA+B=0或sinA﹣B=0∴A+B=或A=B∴三角形为直角三角形或等腰三角形,故正确;③可构造函数y=,该函数在0.+∞上单调递增,a+b>c则+>,故正确;④∵fx是定义在R上的可导函数,当f′x0=0时,x0可能fx极值点,也可能不是fx极值点,当x0为fx极值点时,f′x0=0一定成立,故f′x0=0是x0为fx极值点的必要不充分条件,故④正确;故选C.点评:考查学生会利用基本不等式解题,注意等号成立的条件,同时考查了极值的有关问题,属于综合题.22.2011万州区一模已知fx=2x3﹣6x2+mm为常数在﹣2,2上有最大值3,那么此函数在﹣2,2上的最小值是A.﹣37 B.﹣29 C.﹣5 D.以上都不对考点:利用导数求闭区间上函数的最值.专题:常规题型;压轴题.分析:先求导数,根据单调性研究函数的极值点,在开区间﹣2,2上只有一极大值则就是最大值,从而求出m,通过比较两个端点﹣2和2的函数值的大小从而确定出最小值,得到结论.解答:解:∵f′x=6x2﹣12x=6xx﹣2,∵fx在﹣2,0上为增函数,在0,2上为减函数,∴当x=0时,fx=m最大,∴m=3,从而f﹣2=﹣37,f2=﹣5.∴最小值为﹣37.故选:A点评:本题考查了利用导数求闭区间上函数的最值,求函数在闭区间a,b上的最大值与最小值是通过比较函数在a,b 内所有极值与端点函数fa,fb 比较而得到的,属于基础题.23.2010河东区一模已知定义在R上的函数fx是奇函数,且f2=0,当x>0时有,则不等式x2fx>0的解集是A.﹣2,0∪2,+∞B.﹣∞,﹣2∪0,2 C.﹣2,0∪0,2 D.﹣2,2∪2,+∞考点:函数的单调性与导数的关系;函数单调性的性质.专题:计算题;压轴题.分析:首先根据商函数求导法则,把化为′<0;然后利用导函数的正负性,可判断函数y=在0,+∞内单调递减;再由f2=0,易得fx在0,+∞内的正负性;最后结合奇函数的图象特征,可得fx在﹣∞,0内的正负性.则x2fx>0fx>0的解集即可求得.解答:解:因为当x>0时,有恒成立,即′<0恒成立,所以在0,+∞内单调递减.因为f2=0,所以在0,2内恒有fx>0;在2,+∞内恒有fx<0.又因为fx是定义在R上的奇函数,所以在﹣∞,﹣2内恒有fx>0;在﹣2,0内恒有fx<0.又不等式x2fx>0的解集,即不等式fx>0的解集.所以答案为﹣∞,﹣2∪0,2.故选B.点评:本题主要考查函数求导法则及函数单调性与导数的关系,同时考查了奇偶函数的图象特征.24.2010惠州模拟给出定义:若函数fx在D上可导,即f′x存在,且导函数f′x在D上也可导,则称fx在D上存在二阶导函数,记f″x=f′x′,若f″x<0在D上恒成立,则称fx在D上为凸函数.以下四个函数在上不是凸函数的是A.f x=sinx+cosx B.f x=lnx﹣2x C.f x=﹣x3+2x﹣1 D.f x=﹣xe﹣x考点:利用导数研究函数的单调性.专题:压轴题.分析:对ABCD分别求二次导数,逐一排除可得答案.解答:解:对于fx=sinx+cosx,f′x=cosx﹣sinx,f″x=﹣sinx﹣cosx,当x∈时,f″x<0,故为凸函数,排除A;对于fx=lnx﹣2x,f′x=,f″x=﹣,当x∈时,f″x<0,故为凸函数,排除B;对于fx=﹣x3+2x﹣1,f′x=﹣3x2+2,f″x=﹣6x,当x∈时,f″x<0,故为凸函数,排除C;故选D.点评:本题主要考查函数的求导公式.属基础题.25.2010黄冈模拟已知fx为定义在﹣∞,+∞上的可导函数,且fx<f′x对于x∈R恒成立,则A.f2>e2f0,f2010>e2010f0 B.f2<e2f0,f2010>e2010f0C.f2>e2f0,f2010<e2010f0 D.f2<e2f0,f2010<e2010f0考点:利用导数研究函数的单调性.专题:压轴题.分析:先转化为函数y=的导数形式,再判断增减性,从而得到答案.解答:解:∵fx<f'x 从而f'x﹣fx>0 从而>0从而>0 从而函数y=单调递增,故x=2时函数的值大于x=0时函数的值,即所以f2>e2f0.同理f2010>e2010f0;故选A.点评:本题主要考查函数的单调性与其导函数的正负情况之间的关系,即导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.26.2010龙岩二模已知fx、gx都是定义在R上的函数,f′xgx+fxg′x<0,fxgx=a x,f1g1+f﹣1g﹣1=.在区间﹣3,0上随机取一个数x,fxgx的值介于4到8之间的概率是A.B.C.D.考点:利用导数研究函数的单调性;几何概型.专题:计算题;压轴题.分析:根据函数积的导数公式,可知函数fxgx在R上是减函数,根据fxgx=a x,f1g1+f﹣1g﹣1=.我们可以求出函数解析式,从而可求出fxgx的值介于4到8之间时,变量的范围,利用几何概型的概率公式即可求得.解答:解:由题意,∵f'xgx+fxg'x<0,∴fxgx'<0,∴函数fxgx在R上是减函数∵fxgx=a x,∴0<a<1∵f1g1+f﹣1g﹣1=.∴∴∵fxgx的值介于4到8∴x∈﹣3,﹣2∴在区间﹣3,0上随机取一个数x,fxgx的值介于4到8之间的概率是故选A.点评:本题的考点是利用导数确定函数的单调性,主要考查积的导数的运算公式,考查几何概型,解题的关键是确定函数的解析式,利用几何概型求解.27.2010成都一模已知函数在区间1,2内是增函数,则实数m的取值范围是A.B.C.0,1 D.考点:利用导数研究函数的单调性.专题:压轴题.分析:首先求出函数的导数,然后根据导数与函数增减性的关系求出m的范围.解答:解:由题得f′x=x2﹣2mx﹣3m2=x﹣3mx+m,∵函数在区间1,2内是增函数,∴f′x>0,当m≥0时,3m≤1,∴0≤m≤,当m<0时,﹣m≤1,∴﹣1≤m<0,∴m∈﹣1,.故选D.点评:掌握函数的导数与单调性的关系.28.2009安徽设函数fx=x3+x2+tanθ,其中θ∈0,,则导数f′1的取值范围是A.﹣2,2 B.,C.,2 D.,2考点:导数的运算.专题:压轴题.分析:利用基本求导公式先求出f′x,然后令x=1,求出f′1的表达式,从而转化为三角函数求值域问题,求解即可.解答:解:∵f′x=sinθx2+cosθx,∴f′1=sinθ+cosθ=2sinθ+.∵θ∈0,,∴θ+∈,.∴sinθ+∈,1.∴2sinθ+∈,2.故选D.点评:本题综合考查了导数的运算和三角函数求值域问题,熟记公式是解题的关键.29.2009天津设函数fx在R上的导函数为f′x,且2fx+xf′x>x2,下面的不等式在R内恒成立的是A.f x>0 B.f x<0 C.f x>x D.f x<x考点:导数的运算.专题:压轴题.分析:对于这类参数取值问题,针对这些没有固定套路解决的选择题,最好的办法就是排除法.解答:解:∵2fx+xf′x>x2,令x=0,则fx>0,故可排除B,D.如果fx=x2+,时已知条件2fx+xf′x>x2成立,但fx>x 未必成立,所以C也是错的,故选A故选A.点评:本题考查了运用导数来解决函数单调性的问题.通过分析解析式的特点,考查了分析问题和解决问题的能力.30.2009陕西设曲线y=x n+1n∈N在点1,1处的切线与x轴的交点的横坐标为x n,则x1x2…x n的值为A.B.C.D.1考点:利用导数研究曲线上某点切线方程;直线的斜率.专题:计算题;压轴题.分析:欲判x1x2…x n的值,只须求出切线与x轴的交点的横坐标即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.解答:解:对y=x n+1n∈N求导得y′=n+1x n,令x=1得在点1,1处的切线的斜率k=n+1,在点1,1处的切线方程为y﹣1=kx n﹣1=n+1x n﹣1,不妨设y=0,则x1x2x3…x n=××,故选B.点评:本小题主要考查直线的斜率、利用导数研究曲线上某点切线方程、数列等基础知识,考查运算求解能力、化归与转化思想.属于基础题.高中数学导数尖子生辅导解答题一.解答题共30小题1.2014遵义二模设函数fx=x2+aln1+x有两个极值点x1、x2,且x1<x2,Ⅰ求a的取值范围,并讨论fx的单调性;Ⅱ证明:fx2>.考点:利用导数研究函数的极值;利用导数研究函数的单调性;不等式的证明.专题:计算题;证明题;压轴题.分析:1先确定函数的定义域然后求导数fˊx,令gx=2x2+2x+a,由题意知x1、x2是方程gx=0的两个均大于﹣1的不相等的实根,建立不等关系解之即可,在函数的定义域内解不等式fˊx>0和fˊx<0,求出单调区间;2x2是方程gx=0的根,将a用x2表示,消去a得到关于x2的函数,研究函数的单调性求出函数的最大值,即可证得不等式.解答:解:I令gx=2x2+2x+a,其对称轴为.由题意知x1、x2是方程gx=0的两个均大于﹣1的不相等的实根,其充要条件为,得1当x∈﹣1,x1时,f'x>0,∴fx在﹣1,x1内为增函数;2当x∈x1,x2时,f'x<0,∴fx在x1,x2内为减函数;3当x∈x2,+∞时,f'x>0,∴fx在x2,+∞内为增函数;II由Ig0=a>0,∴,a=﹣2x22+2x2∴fx2=x22+aln1+x2=x22﹣2x22+2x2ln1+x2设,则h'x=2x﹣22x+1ln1+x﹣2x=﹣22x+1ln1+x1当时,h'x>0,∴hx在单调递增;2当x∈0,+∞时,h'x<0,hx在0,+∞单调递减.∴故.点评:本题主要考查了利用导数研究函数的单调性,以及利用导数研究函数的极值等有关知识,属于基础题.2.2014武汉模拟己知函数fx=x2e﹣xⅠ求fx的极小值和极大值;Ⅱ当曲线y=fx的切线l的斜率为负数时,求l在x轴上截距的取值范围.考点:利用导数研究函数的极值;根据实际问题选择函数类型;利用导数研究曲线上某点切线方程.专题:综合题;压轴题;转化思想;导数的综合应用.分析:Ⅰ利用导数的运算法则即可得出f′x,利用导数与函数单调性的关系及函数的极值点的定义,即可求出函数的极值;Ⅱ利用导数的几何意义即可得到切线的斜率,得出切线的方程,利用方程求出与x轴交点的横坐标,再利用导数研究函数的单调性、极值、最值即可.解答:解:Ⅰ∵fx=x2e﹣x,∴f′x=2xe﹣x﹣x2e﹣x=e﹣x2x﹣x2,令f′x=0,解得x=0或x=2,令f′x>0,可解得0<x<2;令f′x<0,可解得x<0或x>2,故函数在区间﹣∞,0与2,+∞上是减函数,在区间0,2上是增函数.∴x=0是极小值点,x=2极大值点,又f0=0,f2=.故fx的极小值和极大值分别为0,.II设切点为,则切线方程为y﹣=x﹣x0,令y=0,解得x==,因为曲线y=fx的切线l的斜率为负数,∴<0,∴x0<0或x0>2,。
高中数学导数压轴30题(PDF)

高中数学导数压轴30题(解答题)解答题(共30小题)1.设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.),其对称轴为其充要条件为,得设)在故2.己知函数f(x)=x2e﹣x(Ⅰ)求f(x)的极小值和极大值;(Ⅱ)当曲线y=f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.,.)设切点为(﹣=x=,(<令则=.当)单调递增;当时,3.已知函数f(x)=lnx+x2.(Ⅰ)若函数g(x)=f(x)﹣ax在其定义域内为增函数,求实数a的取值范围;(Ⅱ)在(Ⅰ)的条件下,若a>1,h(x)=e3x﹣3ae x x∈[0,ln2],求h(x)的极小值;(Ⅲ)设F(x)=2f(x)﹣3x2﹣kx(k∈R),若函数F(x)存在两个零点m,n(0<m<n),且2x0=m+n.问:函数F(x)在点(x0,F(x0))处的切线能否平行于x轴?若能,求出该切线方程;若不能,请说明理由.恒成立,即(Ⅱ)由(Ⅰ)知证得函数,,,当且仅当∴,可得,或∵若∴当)取得极小值,极小值为结合题意,有得所以得所以4.已知函数f(x)=+cx+d(a,c,d∈R)满足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.(1)求a,c,d的值;(2)若,解不等式f′(x)+h(x)<0;(3)是否存在实数m,使函数g(x)=f′(x)﹣mx在区间[m,m+2]上有最小值﹣5?若存在,请求出实数m的值;若不存在,请说明理由.∴,有=a是二次函数即,即a=,.∴,即即,即当时,解集为(,<时,解集为(,)b=,∴∴使函数5.已知函数f(x)=(2﹣a)(x﹣1)﹣2lnx,g(x)=xe1﹣x.(a∈R,e为自然对数的底数)(Ⅰ)当a=1时,求f(x)的单调区间;(Ⅱ)若函数f(x)在上无零点,求a的最小值;(Ⅲ)若对任意给定的x0∈(0,e],在(0,e]上总存在两个不同的x i(i=1,2),使得f(x i)=g(x0)成立,求a的取值范围.,,﹣,故要使函数只要对任意的恒成立,即对令,则再令则)在在所以故要使)在6.已知函数f(x)=alnx﹣ax﹣3(a∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数在区间(t,3)上总不是单调函数,求m的取值范围;(Ⅲ)求证:.(Ⅱ)∴∴所以有:∴7.已知函数f(x)=plnx+(p﹣1)x2+1.(1)讨论函数f(x)的单调性;(2)当P=1时,f(x)≤kx恒成立,求实数k的取值范围;(3)证明:1n(n+1)<1+…+(n∈N+).,利用导数求函数=,则得到,x x,)上单调递增,在≥,,则=08.已知函数f(x)=x2+ax﹣lnx,a∈R.(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;(2)令g(x)=f(x)﹣x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由;(3)当x∈(0,e]时,证明:.,再令),有得得,=,(舍当)在上单调递减,在∴当,(舍令,∴∴,即>(9.已知函数g(x)=,f(x)=g(x)﹣ax.(1)求函数g(x)的单调区间;(2)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值;(3)若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a,求实数a的取值范围.进行讨论:和,分别求出由===a==∴当∴,得,故的最小值为时,,则时,有当则,故,10.已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.=,a|==时,=,11.已知函数f(x)=x﹣alnx,g(x)=﹣,(a∈R).(Ⅰ)若a=1,求函数f(x)的极值;(Ⅱ)设函数h(x)=f(x)﹣g(x),求函数h(x)的单调区间;(Ⅲ)若在[1,e](e=2.718…)上存在一点x0,使得f(x0)<g(x0)成立,求a的取值范围.,(Ⅱ)即函数12.已知函数f(x)=ax3+bx2﹣3x(a,b∈R)在点(1,f(1))处的切线方程为y+2=0.(1)求函数f(x)的解析式;(2)若对于区间[﹣2,2]上任意两个自变量的值x1,x2都有|f(x1)﹣f(x2)|≤c,求实数c的最小值;(3)若过点M(2,m)(m≠2)可作曲线y=f(x)的三条切线,求实数m的取值范围.根据题意,得即解得3=13.已知函数f(x)=ax﹣1﹣lnx(a∈R).(1)讨论函数f(x)在定义域内的极值点的个数;(2)若函数f(x)在x=1处取得极值,对∀x∈(0,+∞),f(x)≥bx﹣2恒成立,求实数b的取值范围;(3)当x>y>e﹣1时,求证:.Ⅰ),,令)上单调递增,由此能够证明得,得)在上递减,在)在∴令∴,即.(Ⅲ)证明:令14.已知函数f(x)=(a+)e n,a,b为常数,a≠0.(Ⅰ)若a=2,b=1,求函数f(x)在(0,+∞)上的单调区间;(Ⅱ)若a>0,b>0,求函数f(x)在区间[1,2]的最小值;(Ⅲ)若a=1,b=﹣2时,不等式f(x)≤lnx•e n恒成立,判断代数式[(n+1)!]2与(n+1)e n﹣2(n∈N*)的大小.a+e))=)或因为,(,)单调递增区间为(﹣又因为﹣﹣恒成立,15.已知函数f(x)=(a+1)lnx+ax2+,a∈R.(1)当a=﹣时,求f(x)的最大值;(2)讨论函数f(x)的单调性;(3)如果对任意x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|恒成立,求实数a的取值范围.﹣lnx﹣x+﹣时,求=﹣,定义域为(=,…=+2ax=x=,(,)上单调递增;在(4=≥16.已知函数f(x)=x3+x2+ax+b(a,b为常数),其图象是曲线C.(1)当a=﹣2时,求函数f(x)的单调减区间;(2)设函数f(x)的导函数为f′(x),若存在唯一的实数x0,使得f(x0)=x0与f′(x0)=0同时成立,求实数b的取值范围;(3)已知点A为曲线C上的动点,在点A处作曲线C的切线l1与曲线C交于另一点B,在点B处作曲线C的切线l2,设切线l1,l2的斜率分别为k1,k2.问:是否存在常数λ,使得k2=λk1?若存在,求出λ的值;若不存在,请说明理由.x<,)则+xx﹣或﹣,x,),﹣)﹣时,﹣;﹣﹣,﹣)∪(﹣+x)17.(2014•惠州模拟)已知函数f(x)=ln(x+)+,g(x)=lnx(1)求函数f(x)的单调区间;(2)如果关于x的方程g(x)=x+m有实数根,求实数m的取值集合;(3)是否存在正数k,使得关于x的方程f(x)=kg(x)有两个不相等的实数根?如果存在,求k满足的条件;如果不存在,说明理由.=﹣,令﹣﹣x+﹣x+(>﹣,且=﹣=﹣(﹣,)的单调递增区间是(﹣,﹣=lnx=﹣﹣x﹣,18.设函数f(x)=x﹣ae x﹣1.(Ⅰ)求函数f(x)单调区间;(Ⅱ)若f(x)≤0对x∈R恒成立,求a的取值范围;(Ⅲ)对任意n的个正整数a1,a2,…a n记A=(1)求证:(i=1,2,3…n)(2)求证:A.恒成立,故∴)知:,,≤故19.已知函数f(x)=lnx﹣,g(x)=f(x)+ax﹣6lnx,其中a∈R(1)当a=1时,判断f(x)的单调性;(2)若g(x)在其定义域内为增函数,求正实数a的取值范围;(3)设函数h(x)=x2﹣mx+4,当a=2时,若∃x1∈(0,1),∀x2∈[1,2],总有g(x1)≥h(x2)成立,求实数m的取值范围.﹣,+=﹣,==,﹣﹣﹣=a+﹣=>=∵≤(>.﹣﹣﹣)﹣,令,20.已知函数f(x)=+lnx﹣2,g(x)=lnx+2x.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)试问过点(2,5)可作多少条直线与曲线y=g(x)相切?请说明理由.,=∴∴令∴(21.f(x)=|x﹣a|﹣lnx(a>0).(1)若a=1,求f(x)的单调区间及f(x)的最小值;(2)若a>0,求f(x)的单调区间;(3)试比较++…+与的大小.(n∈N*且n≥2),并证明你的结论.﹣=﹣﹣﹣﹣﹣22.已知函数(1)试判断函数f(x)的单调性;(2)设m>0,求f(x)在[m,2m]上的最大值;(3)试证明:对∀n∈N*,不等式.。
高中数学《导数》压轴小题精练100(含答案)

A. 22-1 , 1
C.
-
∞,
1-2 2
∪
2-1 2
,
+
∞
B.
-1
,
1-2 2
D. - ∞ , -1 ∪ 1, + ∞
(
)
答案 D
-1 -2 + 22
≤∃
kl2
<
0
试题6.12 【 导 数 的 切 线 法 】 已 知 实 数 ,则
满足
,实数
的 最 小 值 为(
满足 )
A. 1
B. 2
C. 3
试题25.11 【图像法 + 转化法 + 零点】函数 f x
= l-nx- xx>x0≤ 0
与 gx
=
1 2
x
+
a
+1
的图象
上存在关于 y 轴对称的点,则实数 a 的取值范围是
A. - ∞ , 3 - 2ln2 B. 3 - 2ln2, + ∞ C. e , + ∞
D. - ∞ , -e
(
)
B
画出
D. 0
B
试题12.12 【利用对称中心破题】已知函数 f x
=
x+12+ln1+9x2 -3xcosx x2+ 1
,且
f
2017
=
2016,则 f -2017 =
(2015
C. -2016
D. -2017
A
试题13.12 【利用对称中心破题】已知函数 f x
= lnx - x2与 gx
D. 4
A 【距离模型 + 转化法】
高考导数的压轴题汇编

导数高考压轴题汇编1、已知x R ∈,函数()32f x ax bx cx d =+++在0x =处取得极值,曲线()y f x =过原点()0,0O 和点()1,2P -.若曲线()y f x =在点P 处的切线l 与直线2y x =的夹角为045,且直线l 的倾斜角,.2πθπ⎛⎫∈ ⎪⎝⎭2((34存在一点 0x ,使 0()1f x e >+ 成立,求 m 的取值范围; (Ⅲ)求证:当 1m =- 时,对任意 ()12,0,1x x ∈,12x x ≠,有2121()()13f x f x x x -<-.5、设()()0,,32132231>∈∙+⎪⎭⎫ ⎝⎛+-+=a R b a x x x b x a x f x λλ(1)若2,121==λλ,设21,x x 是()x f 的两个极值点。
①若2121<<<x x ,求证:3)1('>-f②若时,且且)(222121x x x x x a ∈=-≥,函数())(2)(2x x x f x g -+'=的最小值为()a h ,求()a h 的最大值。
(6f ((7(f ((9、已知函数()()||0,1x xf x a a a a=+>≠,(1)若1a >,且关于x 的方程()f x m =有两个不同的正数解,求实数m 的取值范围;(2)设函数()()[),2,g x f x x =-∈-+∞,()g x 满足如下性质:若存在最大(小)值,则最大(小)值与a 无关.试求a 的取值范围.10、某同学在研究函数()(1,)y f x x x =∈R ≥的性质,他已经正确地证明了函数()f x 满足:(3)3()f x f x =,并且当13()1|2|x f x x =--≤≤时,,这样对任意1x ≥,他都可以求()f x 的值了,比如888(8)333121333f f f ⎡⎤⎛⎫⎛⎫=⨯==--= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,3354(54)3273f f ⎛⎫== ⎪⎝⎭, 请你根据以上信息,求出集合{|()(99)}M x f x f ==中最小的元素是 .11、12 13f 140,15()y f x =的图象在点处的切线在轴上的截距为n .(1)求数列{n a }的通项公式; (2)若数列2{}n n n b a a λ-的项仅5255b a a λ-最小,求λ的取值范围;(3)令函数2121()[()()]1x g x f x f x x --=+⋅+,01x <<,数列{}n x 满足:112x =,01n x <<,且1()n n x g x +=,其中n N *∈.证明:2223212112231()()()516n n n n x x x x x x x x x x x x ++---+++<.16.已知函数321(0)()31(0)x x mx x f x e x ⎧+≤⎪=⎨⎪->⎩(1)讨论函数f (x )的极值情况;1718列 (((19、已知二次函数.((2)若对且,,试证明使成立。
2023高考数学-导数压轴题

(2)若f(x)有两个零点,求a的取值范围.
7.已知函数 .
(1)讨论 的单调性;
(2)若 存在两个极值点 ,证明: .
8.(12分)
已知函数 , 为 的导数.证明:
(1) 在区间 存在唯一极大值点;
(2) 有且仅有2个零点.
9.(12分)
已知函数f(x)=2sinx-xcosx-x,f ′(x)为f(x)的导数.
(3)当 时,证明:对任意 ,函数 有两个不同的零点 , ,满足 .(注: 是自然对数的底数)
18.(12分)设函数f(x)=aexlnx+ ,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.
(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.
19.已知函数 .
(1)讨论函数 的单调性;
(1)证明:f ′(x)在区间(0,π)存在唯一零点;
(2)若x∈[0,π]时,f(x)≥ax,求a的取值范围.
10.已知函数 .
(1)当a=1时,讨论f(x)的单调性;
(2)当x≥0时,f(x)≥ x3+1,求a的取值范围.
11.已知函数f(x)=sin2xsin2x.
(1)讨论f(x)在区间(0,π)的单调性;
(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.
5.(12分)已知函数f(x)=(x﹣2)ex+a(x﹣1)2有两个零点.
(Ⅰ)求a的取值范围;
(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.
6.(12分)(2017•新课标Ⅰ)已知函数f(x)=ae2x+(a﹣2)ex﹣x.
高考数学函数与导数相结合压轴题精选(含具体解答)

高考数学函数与导数相结合压轴题精选11、已知)0()(23>+++=a d cx bx ax x f 为连续、可导函数,如果)(x f 既有极大值M ,又有极小值N ,求证:.N M >证明:由题设有),)((323)(212x x x x a c bx ax x f --=++='不仿设21x x <,则由时当时当时当知),(,0)(),(,0)(),(:02211+∞∈<'∈>'-∞∈>x x x f x x x x f x x a1)(,0)(x x f x f 在故>'处取极大值,在x 2处取极小值,)()()()()(212221323121x x c x x b x x a x f x f -+-+-=-])()()[(212122121c x x b x ax x x a x x +++-+-=)]3(92)[(]3232)32()[(22121ac b ax x c abb ac a a b a x x ---=+-⋅+⋅--⋅-=由方程0232=++c bx ax 有两个相异根,有,0)3(412)2(22>-=-=∆ac b ac b又)()(,0)()(,0,0212121x f x f x f x f a x x >>-∴><-即,得证. 12、已知函数ax x x f +-=3)(在(0,1)上是增函数. (1)求实数a 的取值集合A ;(2)当a 取A 中最小值时,定义数列}{n a 满足:)(21n n a f a =+,且b b a )(1,0(1=为常数),试比较n n a a 与1+的大小;(3)在(2)的条件下,问是否存在正实数C ,使20<-+<ca ca n n 对一切N n ∈恒成立?(1)设))(()()(,10222121122121a x x x x x x x f x f x x -++-=-<<<则由题意知:0)()(21<-x f x f ,且012>-x x)3,0(,222121222121∈++<++∴x x x x a x x x x 则}3|{,3≥=≥∴a a A a 即 (4分)(注:法2:)1,0(,03)(2∈>+-='x a x x f 对恒成立,求出3≥a ).(2)当a =3时,由题意:)1,0(,2321131∈=+-=+b a a a a n n n 且以下用数学归纳法证明:*∈∈N n a n 对),1,0(恒成立.①当n=1时,)1,0(1∈=b a 成立;②假设n =k 时,)1,0(∈k a 成立,那么当1+=k n 时,k k k a a a 232131+-=+,由①知)3(21)(3x x x g +-=在(0,1)上单调递增,10)1()()0(1<<<<∴+k k a g a g g 即,由①②知对一切*∈N n 都有)1,0(∈n a (7分)而0)1(212121231>-=+-=-+n n n n n n a a a a a a n n a a >∴+1 (9分) (3)若存在正实数c ,使20<-+<ca ca n n 恒成立 (10分令),(,21+∞-+=-+=c cx cc x c x y 在上是减函数, n n n a ca ca 随着-+∴增大,而小, 又}{n a 为递增数列,所以要使20<-+<ca ca n n 恒成立,只须30,30201111bc a c c a ca c a <<<<∴⎪⎩⎪⎨⎧<-+>-即 (14分) 13、已知)(22)(2R x x ax x f ∈+-=在区间[-1,1]上是增函数. (1)求实数a 的值所组成的集合A. (2)设关于x 的方程xx f 1)(=的两根为1x 、2x ,试问:是否存在实数m ,使得不等式 ||1212x x tm m -≥++对任意]1,1[-∈∈t A a 及恒成立?若存在,求出m 的取值范围;若不存在,请说明理由(1)222)2()2(2)(+---='x ax x x f ]1,1[)(-在x f 是是增函数 ]1,1[,0)(-∈≥'∴x x f 对恒成立.设110)1(0)1(,2)(2≤≤-⇔⎩⎨⎧≤-≤--=a ax x x ϕϕϕ则有)(],1,1[x f x -∈对 是连续函数,且只有当0)1(,1=-'=f a 时,以及当}11|{,0)1(,1≤≤-=∴='-=a a A f a 时 (2)由02,12222=--=+-ax x xx a x 得 212,,08x x a ∴>+=∆ 是方程022=--ax x 的两实根.⎩⎨⎧-==+∴22121x x ax x 从而84)(||22122121+=-+=-a x x x x x x 38||11221≤+=-∴≤≤-a x x a要使不等式||1212x x tm m -≥++对任意]1,1[-∈∈t A a 及恒成立, 当且仅当]1,1[312-∈≥++t tm m 对任意恒成立, 即022≥-+tm m 对任意]1,1[-∈t 恒成立. 设22)(22-+=-+=m mt tm m t g则有2202)1(02)1(22-≤≥∴⎪⎩⎪⎨⎧≥-+=≥--=-m m m m g m m g 或∴存在m ,其范围为}22|{-≤≥m m m 或14、已知二次函数y=g(x )的图象过原点和点(m ,0)与点(m+1, m+1),(1)求y=g(x )的表达式;(2)设)(x f =(x -n)g(x )(m>n>0)且)(x f 在x =a 和x =b(b<a )处取到极值, ①求证:b<n<a <m ;②若m+n=22,则过原点且与曲线y=)(x f 相切的两条直线能否互相垂直?若能,则给出证明;若不能,请说明理由?(文科生做....)设常数a >0, a ≠1,函数55log )(+-=x x x f a , (1)讨论)(x f 在区间(-∞,-5)上的单调性,并予以证明; (2)设g(x )=1+log a (x -3),如果)(x f =g(x )有实数根,求a 的取值范围.(理科生做....)解:(1)设g(x )=ax 2+b x +c(a ≠0),由题意得.)(.0,,1,1)1(,0,022mx x x g c m b a b m a bm am c -=∴⎪⎩⎪⎨⎧=-==⎪⎩⎪⎨⎧=++=+=解得…………………………3分 (2)∵f (x )=(x -n)g(x )=x (x -m)(x -n)=x 3-(m+n)x 2+mn x , ∴f ′(x )=3x 2-2(m+n)x +mn.…………… 5分①由题意知,a ,b 为方程f ′(x )=0的两个实根,又f ′(0)=m ·n>0, f ′(n)=n(n -m)<0, f ′(m)=m(m -n)>0,∴两根x =b ,x =a 分布在(0,n ),(n ,m )内.又b<a ,∴b<n<a <m.…………9分 ②设两切点的横坐标分别为x 1, x 2,则切线l 1的方程为y -f (x 1)=[321x -2(m+n)x 1+mn](x -x 1). 又l 1过原点,∴-x 1(x 1-m)(x 1-n)= [321x -2(m+n)x 1+mn](-x 1) 解得x 1=0, 或x 1=2n m +,同理x 2=0或x 2=2n m +.∴x 1=0, x 2=2n m +.……………………12分 两切线的斜率分别为k 1=mn ,k 2=22.)(412=+++-n m mn n m 又, 若两切线相互垂直,则k 1k 2=-1,即mn ])22(41[2n m ⋅+-=-1,得mn=1.解方程组⎪⎩⎪⎨⎧-=+=⎩⎨⎧==+.12,12,122n m mn n m 得 故存在过原点且与曲线y=f (x )相切的两条直线互相垂直.………………14分 (文科生做....)解:(1))5101(log )(+-=x x f a .利用定义可以证明当a <1时,f (x )是 (-∞,-5)上的增函数;当0<a <1时,f (x )是(-∞,-5)上的减函数(证明略)……………………6分 (2)∵g(x )=1+log a (x -3), f (x )=g(x )有实根,即log a55+-x x =1+log a (x -3)有实根, 则实根大于5.又因为1+log a (x -3)=log a [a (x -3)],原方程有大于5的实根,即 方程55+-x x =a (x -3)有大于5的实数根.…………………………………………9分 由此解得a =)3)(5(5-+-x x x (a >0).1254112201)05(201252522+≤++=>=-++=-+-=tt t x t t t x x x 令 当且仅当.16530.525,52-≤<∴+==a x t 时取等号即………………14分15、已知函数).,()(23R b a b ax x x f ∈++-= (1)若1=a ,函数)(x f 的图象能否总在直线b y =的下方?说明理由;(2)若函数)(x f 在[0,2]上是增函数,2=x 是方程)(x f =0的一个根,求证:2)1(-≤f ;(3)若函数)(x f 图象上任意不同的两点连线斜率小于1,求实数a 的取值范围.解:(1)不能,取,11)1(,1b b f x >++=--=则即存在点(-1,2+b )在函数图象上,且在直线b y =的上方; (3分)(2)由2=x 是方程0)(=x f 的一个根,得,048)2(=++-=b a f 即a b 48-= (4分)又.32,0.023,0)(,23)(2122a x x ax x x f ax x x f ===+-='+-='得即令又函数)(x f 在[0,2]上是增函数,3,2322≥≥=∴a a x 即, (7分)2374811)1(-≤-=-++-=++-=a a a b a f (9分)(3)设任意不同的两点21222111),,(),,(x x y x P y x P ≠且,则.12121<--x x y y )14(3334,043)3(3)12(04230)1(4)(01)(1)(,12222222222222212221221212221212122322131分故分即即<<-∴<-++--∴<-++-<-+-+-=∆∈<-+--+-∴<++---<--++∴a a a a a x a ax x ax x x a R x ax x x x a x x x a x x x x x x ax x ax x16、(理)设e ex ax x f x()1()(2-⋅-+=为自然对数的底,a 为常数且R x a ∈<,0),)(x f 取极小值时,求x 的值. (文)函数a x x a ax x f (3)1(23)(23--+=为常数且R x a ∈≥,0)取极小值时,求x 的值. 理)解:)1()1()12()(2-⋅⋅-++⋅+='--x xe x ax e ax x f)2)(1(-+⋅-=-x ax ez………………2分 令210)(或ax x f -=⇒='………………4分(1)0121<<->-a 即当,由表)(,1xf ax 时-=∴取极小值.………………7分(2)0)2(21)(,21212≤-⋅⋅-='-==--x e x f a a x 时即当无极值.………………9分(3)121-<<-a 即当时,由表取极小值时时当综上取极小值时)(,1,021,.)(,2x f ax a x f x -=<<--=∴ 取极小值时时当)(,2,21x f x a -=-<)(,21x f a 时当-=无极小值. ………………12分)(x f ∴无极小值.………………6分(二)由表或令时当110)()1)(1(3)(,0-=⇒='+-='>x x f x x a x f a )(,x f ax 时当=∴取极小值综上,当)(,1,0x f ax a 时时=>取极小值当)(,0x f a 时=无极小值.………………12分17、已知0,1>->c b ,函数b x x f +=)(的图象与函数c bx x x g ++=2)(的图象相切. (1)求b 与c 的关系式。
专题11 导数中的极值偏移问题(全题型压轴题)(教师版)-2024年高考数学压轴专题复习

当1
x 1
x 2
时,不等式
x1
x2
2 显然成立;
当 0 x1 1, x2 2 时,不等式 x1 x2 2 显然成立;
当 0 x1 1, 0 x2 2 时,由(1)知 f (x) 在( 0, 1) 内单调递减,因为存在 x1 x2 ,使得 f x1 f x2 ,所以
1 x2 2 , 要证 x1 x2 2 ,只要证 x1 2 x2 , 因为1 x2 2 ,所以 0 2 x2 1,又 f (x) 在( 0, 1) 内单调递减,
所以 f x 有一个零点,故 B 错误;
对于 C,因为 f x 在 0, 单调递增,所以 x 0 时, f x f 0 1 ,
所以 k 1,故 C 错误;
对于 D,因为 f x 在 , 2 单调递减, 2, 在单调递增,
且 f x 唯一零点为 1,当 x 时, f x 0 且 f x 0 ,
3.(2023
春·河南周口·高二校联考阶段练习)已知函数
f
x
x2 ax ex
,
aR
(1)若 a 2 ,求 f x 的单调区间;
(2)若
a
1,
x1,
x2
是方程
f
x
lnx 1 ex
的两个实数根,证明:
x1
x2
2
.
【答案】(1)单调递增区间为 2 2, 2 2 ,单调递减区间为 , 2 2 , 2 2,
不妨设 0 x1 1 x2 ,∵ 0 x1 1,∴ 2 x1 1,
设 G x g x g 2 x ,则 G x lnx x2 x 1 ln 2 x 2 x2 2 x 1 lnx ln 2 x 2x 2 ,
G
x
高中数学导数压轴题专题拔高训练 (二)

高中数学导数压轴题专题拔高训练一.选择题(共15小题)1.已知可导函数f(x)(x∈R)满足f′(x)>f(x),则当a>0时,f(a)和e a f(0)大小关系为()A.f(a)<e a f(0)B.f(a)>e a f(0)C.f(a)=e a f(0)D.f(a)≤e a f(0)考点:利用导数研究函数的单调性.专题:计算题;压轴题.分析:设函数f(x)=e2x,则导函数f′(x)=2•e2x,显然满足f'(x)>f(x),由f(a)=e2a,e a f(0)=e a,比较得出结论.解答:解:由题意知,可设函数f(x)=e2x,则导函数f′(x)=2•e2x,显然满足f'(x)>f(x),f(a)=e2a,e a f(0)=e a,当a>0时,显然e2a>e a ,即f(a)>e a f(0),故选B.点评:本题考查求复合函数的导数的方法,以及指数函数的单调性,利用构造法求解是我们选择题常用的方法.2.已知函数f(x)=x3+bx2+cx+d在区间[﹣1,2]上是减函数,那么b+c()A.有最大值B.有最大值﹣C.有最小值D.有最小值﹣考点:利用导数研究函数的单调性.专题:压轴题.分析:先对函数f(x)求导,然后令导数在[﹣1,2]小于等于0即可求出b+c的关系,得到答案.解答:解:由f(x)在[﹣1,2]上是减函数,知f′(x)=3x2+2bx+c≤0,x∈[﹣1,2],则⇒15+2b+2c≤0⇒b+c≤﹣.故选B.点评:本题主要考查函数的单调性与其导函数的正负情况之间的关系,即导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.3.对任意的实数a,b,记若F(x)=max{f(x),g(x)}(x∈R),其中奇函数y=f(x)在x=1时有极小值﹣2,y=g(x)是正比例函数,函数y=f(x)(x≥0)与函数y=g(x)的图象如图所示则下列关于函数y=F(x)的说法中,正确的是()A.y=F(x)为奇函数B.y=F(x)有极大值F(1)且有极小值F(﹣1)C.y=F(x)的最小值为﹣2且最大值为2 D.y=F(x)在(﹣3,0)上不是单调函数考点:利用导数研究函数的单调性;利用导数研究函数的极值.专题:计算题;压轴题.分析:在同一个坐标系中作出两函数的图象,横坐标一样时取函数值较大的那一个,如图,由图象可以看出选项的正确与否.解答:解:∵f(x)*g(x)=max{f(x),g(x)},∴f(x)*g(x)=max{f(x),g(x)}的定义域为R,f(x)*g(x)=max{f(x),g(x)},画出其图象如图中实线部分,由图象可知:y=F(x)的图象不关于原点对称,不为奇函数;故A不正确y=F(x)有极大值F(﹣1)且有极小值F(0);故B不正确y=F(x)的没有最小值和最大值为,故C不正确y=F(x)在(﹣3,0)上不为单调函数;故D正确故选D.点评:本题考点是函数的最值及其几何意义,本题考查新定义,需要根据题目中所给的新定义作出相应的图象由图象直观观察出函数的最值,对于一些分段类的函数,其最值往往借助图象来解决.本题的关键是读懂函数的图象,属于基础题.4.已知函数f(x)=x3+ax2﹣bx+1(a、b∈R)在区间[﹣1,3]上是减函数,则a+b的最小值是()A.B.C.2D.3考点:利用导数研究函数的单调性.专题:计算题;压轴题.分析:求出f′(x),因为函数在区间[﹣1,3]上是减函数得到f(﹣1)和f(3)都小于0分别列出关于a与b的两个不等式,联立即可解出a的取值范围得到a的最小值,把a的最小值当然①即可求出b的最小值,求出a+b的值即可.解答:解:f′(x)=x2+2ax﹣b,因为函数f(x)在区间[﹣1,3]上是减函数即在区间[﹣1,3]上,f′(x)≤0,得到f′(﹣1)≤0,且f′(3)≤0,代入得1﹣2a﹣b≤0①,且9+6a﹣b≤0②,由①得2a+b≥1③,由②得b﹣6a≥9④,设u=2a+b≥1,v=b﹣6a≤9,假设a+b=mu+nv=m(2a+b)+n(﹣6a+b)=(2m﹣6n)a+(m+n)b,对照系数得:2m﹣6n=1,m+n=1,解得:m=,n=,∴a+b=u+v≥2,则a+b的最小值是2.故选C点评:此题考查学生会利用导数研究函数的单调性,灵活运用不等式的范围求未知数的最值,是一道综合题.5.定义在R上的可导函数f(x),当x∈(1,+∞)时,f(x)+f′(x)<xf′(x)恒成立,a=f(2),b=f(3),c=(+1)f(),则a,b,c的大小关系为()A.c<a<b B.b<c<a C.a<c<b D.c<b<a考点:利用导数研究函数的单调性.专题:综合题;压轴题;导数的概念及应用.分析:根据x∈(1,+∞)时,f(x)+f′(x)<xf′(x),可得g(x)=在(1,+∞)上单调增,由于,即可求得结论.解答:解:∵x∈(1,+∞)时,f(x)+f′(x)<xf′(x)∴f′(x)(x﹣1)﹣f(x)>0∴[]′>0∴g(x)=在(1,+∞)上单调增∵∴g()<g(2)<g(3)∴∴∴c<a<b故选A.点评:本题考查导数知识的运用,考查函数的单调性,确定函数的单调性是关键.6.设f(x)是定义在R上的可导函数,且满足f′(x)>f(x),对任意的正数a,下面不等式恒成立的是()A.f(a)<e a f(0)B.f(a)>e a f(0)C.D.考点:利用导数研究函数的单调性;导数的运算.专题:压轴题;导数的概念及应用.分析:根据选项令f(x)=,可以对其进行求导,根据已知条件f′(x)>f(x),可以证明f(x)为增函数,可以推出f(a)>f(0),在对选项进行判断;解答:解:∵f(x)是定义在R上的可导函数,∴可以令f(x)=,∴f′(x)==,∵f′(x)>f(x),e x>0,∴f′(x)>0,∴f(x)为增函数,∵正数a>0,∴f(a)>f(0),∴>=f(0),∴f(a)>e a f(0),故选B.点评:此题主要考查利用导数研究函数单调性,此题要根据已知选项令特殊函数,是一道好题;7.若函数f(x)=x3+a|x2﹣1|,a∈R,则对于不同的实数a,则函数f(x)的单调区间个数不可能是()A.1个B.2个C.3个D.5个考点:利用导数研究函数的单调性.专题:证明题;压轴题.分析:先令a=0,即可排除A,再将函数化为分段函数,并分段求其导函数,得f′(x),最后利用分类讨论,通过画导函数f′(x)的图象判断函数f(x)的单调区间的个数,排除法得正确判断解答:解:依题意:(1)当a=0时,f(x)=x3,在(﹣∞,+∞)上为增函数,有一个单调区间①当a≠0时,∵f(x)=x3+a|x2﹣1|a∈R∴f(x)=∴f′(x)=(2)当0<a<时,∵﹣<﹣<0,0<<,∴导函数的图象如图1:(其中m为图象与x轴交点的横坐标)∴x∈(﹣∞,0]时,f′(x)>0,x∈(0,m)时,f′(x)<0,x∈[m,+∞)时,f′(x)>0,∴f(x)在x∈(﹣∞,0]时,单调递增,x∈(0,m)时,单调递减,x∈[m,+∞)时,单调递增,有3个单调区间②(3)当a≥3时,∵﹣<﹣1,>1,∴导函数的图象如图2:(其中n为x≤﹣1时图象与x轴交点的横坐标)∴x∈(﹣∞,n]时,f′(x)>0,x∈(n,﹣1]时,f′(x)<0,x∈(﹣1,0)时,f′(x)>0,x∈[0,1)时,f′(x)<0,x∈[1,+∞)时,f′(x)>0∴函数f(x)在x∈(﹣∞,n]时,单调递增,x∈(n,﹣1]时,单调递减,x∈(﹣1,0)时,单调递增,x∈[0,1)时,单调递减,x∈[1,+∞)时,单调递增,有5个单调区间③由①②③排除A、C、D,故选B点评:本题考查了含绝对值函数的单调区间的判断方法,利用导数研究三次函数单调区间的方法,函数与其导函数图象间的关系,排除法解选择题8.已知函数,那么下面结论正确的是()A.f(x)在[0,x0]上是减函数B.f(x)在[x0,π]上是减函数C.∃x∈[0,π],f(x)>f(x0)D.∀x∈[0,π],f(x)≥f(x0)考点:利用导数研究函数的单调性.专题:计算题;压轴题.分析:由函数的解析式f(x)=sinx﹣x可求其导数f′(x)=cosx﹣,又余弦函数在[0,π]上单调递减,判断导数在[x0,π]上的正负,再根据导数跟单调性的关系判断函数的单调性.解答:解:∵f(x)=sinx﹣x∴f′(x)=cosx﹣∵cosx0=,x0∈[0,π]又∵余弦函数y=cosx在区间[0,π]上单调递减∴当x>x0时,cosx<cosx0 即cosx<∴当x>x0时,f′(x)=cosx﹣<0∴f(x)=sinx﹣x在[x0,π]上是减函数.故选B.点评:利用导数判断函数的单调性,一定要注意其方法及步骤.(1)确定函数f(x)的定义域;(2)求导数f′(x);(3)在f(x)的定义域内解不等式f′(x)>0和f′(x)<0;(4)写出f(x)的单调区间.9.设,若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,则实数a的取值范围是()A.B.C.[1,4]D.考点:利用导数研究函数的单调性.专题:计算题;综合题;压轴题;转化思想.分析:根据对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,得到函数f(X)在[0,1]上值域是g(X)在[0,1]上值域的子集,下面利用导数求函数f(x)、g(x)在[0,1]上值域,并列出不等式,解此不等式组即可求得实数a的取值范围解答:解:∵,∴f′(x)=,当x∈[0,1],f′(x)≥0.∴f(x)在[0,1]上是增函数,∴f(x)的值域A=[0,1];又∵g(x)=ax+5﹣2a(a>0)在[0,1]上是增函数,∴g(X)的值域B=[5﹣2a,5﹣a];根据题意,有A⊆B∴,即.故选A.点评:此题是个中档题.考查利用导数研究函数在闭区间上的最值问题,难点是题意的理解与转化,体现了转化的思想.同时也考查了同学们观察、推理以及创造性地分析问题、解决问题的能力,10.设函数f(x)=kx3+3(k﹣1)x2﹣k2+1在区间(0,4)上是减函数,则k的取值范围()A.B.C.D.考点:函数的单调性与导数的关系.专题:计算题;压轴题.分析:先求导函数f'(x),函数f(x)=kx3+3(k﹣1)x2﹣k2+1在区间(0,4)上是减函数转化成f'(x)≤0在区间(0,4)上恒成立,讨论k的符号,从而求出所求.解答:解:f'(x)=3kx2+6(k﹣1)x,∵函数f(x)=kx3+3(k﹣1)x2﹣k2+1在区间(0,4)上是减函数,∴f'(x)=3kx2+6(k﹣1)x≤0在区间(0,4)上恒成立当k=0时,成立k>0时,f'(4)=48k+6(k﹣1)×4≤0,即0<k≤k<0时,f'(4)=48k+6(k﹣1)×4≤0,f'(0)≤0,k<0故k的取值范围是k≤故选D.点评:本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,同时考查了分析与解决问题的综合能力,属于基础题.11.若函数f(x)=2x2﹣lnx在其定义域的一个子区间(k﹣1,k+1)内不是单调函数,则实数k的取值范围是()A.B.C.D.考点:函数的单调性与导数的关系.专题:计算题;压轴题.分析:先求导函数,再进行分类讨论,同时将函数f(x)=2x2﹣lnx在其定义域的一个子区间(k﹣1,k+1)内不是单调函数,转化为f′(x)在其定义域的一个子区间(k﹣1,k+1)内有正也有负,从而可求实数k的取值范围解答:解:求导函数,当k=1时,(k﹣1,k+1)为(0,2),函数在上单调减,在上单调增,满足题意;当k≠1时,∵函数f(x)=2x2﹣lnx在其定义域的一个子区间(k﹣1,k+1)内不是单调函数∴f′(x )在其定义域的一个子区间(k﹣1,k+1)内有正也有负∴f′(k﹣1)f′(k+1)<0∴∴×<0∴∵k﹣1>0∴k+1>0,2k+1>0,2k+3>0,∴(2k﹣3)(2k﹣1)<0,解得综上知,故选D.点评:本题以函数为载体,考查函数的单调性,考查学生分析解决问题的能力,分类讨论,等价转化是关键.12.已知g(x )为三次函数f(x)=x3+ax2+cx的导函数,则它们的图象可能是()A.B.C.D.考点:函数的单调性与导数的关系.专题:计算题;压轴题.分析:先求出函数的导函数,然后利用排除法进行判定,以及f′(x)=ax2+2ax+c与x轴交点处,函数取极值可得结论.解答:解:∵f(x)=x3+ax2+cx∴f′(x)=ax2+2ax+c对称轴为x=﹣1可排除选项B与选项C再根据f′(x)=ax2+2ax+c与x轴交点处,函数取极值可知选项D正确故选D.点评:本题主要考查了函数的单调性与导数的关系,解题的关键是原函数图象与导函数图象的关系,属于基础题.13.已知定义在R上的函数f(x)满足f(2)=1,f′(x)为f(x)的导函数.已知y=f′(x)的图象如图所示,若两个正数a,b满足f(2a+b)>1,则的取值范围是()A.(B.C.(﹣2,1)D.(﹣∞,﹣2)∪(1,+∞)考点:函数的单调性与导数的关系;简单线性规划.专题:计算题;压轴题;数形结合.分析:先根据导函数的图象判断原函数的单调性,从而确定a、b的范围,最后利用线性规划的方法得到答案.解答:解:由图可知,当x>0时,导函数f'(x)<0,原函数单调递减,∵两正数a,b满足f(2a+b)>1,且f(2)=1,∴2a+b<2,a>0,b>0,画出可行域如图.k=表示点Q(2,1)与点P(x,y)连线的斜率,当P点在A(1,0)时,k最大,最大值为:;当P点在B(0,2)时,k最小,最小值为:.k的取值范围是(﹣,1).故选A.点评:本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.14.已知f(x)是定义在R上的奇函数,且f(1)=0,f′(x)是f(x)的导函数,当x>0时总有xf′(x)<f(x)成立,则不等式f(x)>0的解集为()D.{x|﹣1<x<1,且x≠0} A.{x|x<﹣1或x>1} B.{x|x<﹣1或0<x<1} C.{x|﹣1<x<0或0<x<1}考点:函数的单调性与导数的关系;其他不等式的解法.专题:计算题;压轴题.分析:由已知当x>0时总有xf′(x)<f(x)成立,可判断函数g(x)=为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于x•g(x)>0,数形结合解不等式组即可解答:解:设g(x)=,则g(x)的导数为g′(x)=,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=为减函数,又∵g(﹣x)====g(x)∴函数g(x)为定义域上的偶函数又∵g(1)==0∴函数g(x)的图象性质类似如图:数形结合可得不等式f(x)>0⇔x•g(x)>0⇔或⇔0<x<1或x<﹣1故选B点评:本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.15.已知函数f(x)的定义域为[﹣2,+∞),部分对应值如下表.f′(x)为f(x)的导函数,函数y=f′(x)的图象如下图所示.若两正数a,b满足f(2a+b)<1,则的取值范围是()X ﹣2 0 4f(x) 1 ﹣1 1A.B.C.D.考点:函数的单调性与导数的关系.专题:计算题;压轴题;数形结合.分析:由导函数的图象得到导函数的符号,利用导函数的符号与函数单调性的关系得到f(x)的单调性,结合函数的单调性求出不等式的解即a,b的关系,画出关于a,b的不等式表示的平面区域,给函数与几何意义,结合图象求出其取值范围.解答:解:由导函数的图形知,x∈(﹣2,0)时,f′(x)<0;x∈(0,+∞)时,f′(x)>0∴f(x)在(﹣2,0)上单调递减,在(0,+∞)上单调递增;∵f(2a+b)<1∴﹣2<2a+b<4∵a>0,b>0∴a,b满足的可行域为表示点(a,b)与(﹣3,﹣3)连线的斜率的2倍由图知当点为(2.,0)时斜率最小,当点为(0,4)时斜率最大所以的取值范围为故选A点评:利用导函数求函数的单调性问题,应该先判断出导函数的符号,当导函数大于0对应函数单调递增;当导函数小于0,对应函数单调递减.二.解答题(共15小题)16.已知m∈R,函数f(x)=x2﹣m x,g(x)=lnx.(1)当x∈[1,2]时,如果函数f(x)的最大值为f(1),求m的取值范围;(2)若对有意义的任意x,不等式f(x)>g(x)恒成立,求m的取值范围;(3)当m在什么范围内取值时,方程f(x)=g(x)分别无实根?只有一实根?有两个不同实根?考点:导数在最大值、最小值问题中的应用;利用导数研究函数的极值.专题:计算题;压轴题.分析:(1)本问题求出函数的最值代入已知最大值为f(1),即可解得参数m的值,(2)本题恒成立问题转化为函数的最值来解答,具体方法是由f(x)>g(x)等价于x2﹣mx>lnx,即,构造出函数,利用导数工具可以求解.(3)我们对本题可以这样处理,想根据函数y=x2,y=mx,y=lnx的图象的增减性,判断猜测出参数m取值时分别对应方程的根的情况,然后来证明这个结论.证明时可利用新构造的函数h(x)=f(x)﹣g(x),利用导数以及函数的单调性,求出函数的最值来判断根x0的性质以辨别是否存在这个根.解答:解:(1)函数f(x)=x2﹣mx的图象开口向上,函数在x=1或x=2处取得最大值,则f(1)≥f(2),1﹣m≥4﹣2m,得:m≥3.(2)f(x)>g(x)等价于x2﹣mx>lnx,其中x>0,即:由,令,得,当x=1时t′(x)=0,当x∈(0,1)时t′(x)<0;当x∈(1,+∞)时t′(x)>0,m<t(x)min=t(1)=1,∴m<1.(3)设h(x)=f(x)﹣g(x)=x2﹣mx﹣lnx,其中x>0.观察得当m=1时,方程f(x)=g(x)即为:x2﹣x﹣lnx=0的一个根为x=1.猜测当m<1,m=1,m>1时方程分别无根,只有一个根,有且只有两个根.证明:∵h′(x)==0,等价于2x2﹣mx﹣1=0此方程有且只有一个正根为,且当x∈(0,x0)时,h′(x)<0;当x∈(x0,+∞)时,h′(x)>0,函数只有一个极值h(x)min=h(x0)=x02﹣mx0﹣lnx0.1°当m<1时,由(2)得f(x)>g(x)恒成立,方程无解.2°当m=1时,x0=1,h(x)min=h(1)=0,则h(x)≥h(x)min=0,当且仅当x=1时,h(x)=0,此时只有一个根x=1.3°当m>1时,,关于m在(1,+∞)上递增,∴x0∈(1,+∞)时lnx0>0,∵m>1⇒1<m2⇒8<8m2⇒m2+8<9m2⇒⇒⇒⇒x0<m.∴h(x)min=h(x0)=x02﹣mx0﹣lnx0=x0(x0﹣m)﹣lnx0<0.证毕点评:本题考查二次函数在定区间上的最值问题,函数类型简单,是一个二次函数,第一问的设计很容易,后面两问的综合性较强,对学生的逻辑思维能力,运算能力有很好的锻炼价值,本题第二小题是一个恒成立的问题,求参数的范围,一般转化最值问题来求解,本题第三问也是构造函数来解答,转化为利用导数研究新构造的函数的单调性求出函数的最值,结合最值来判断根的存在与否.本题对运算能力有一定的要求,解题时一定要严谨.考查的思想方法有分类讨论,构造函数等方法思想.17.设函数h(x)=x2,φ(x)=2elnx(e为自然对数的底).(1)求函数F(x)=h(x)﹣φ(x)的极值;(2)若存在常数k和b,使得函数f(x)和g(x)对其定义域内的任意实数x分别满足f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为函数f(x)和g(x)的“隔离直线”.试问:函数h(x)和φ(x)是否存在“隔离直线”?若存在,求出“隔离直线”方程;若不存在,请说明理由.考点:导数在最大值、最小值问题中的应用;利用导数研究函数的极值.专题:计算题;压轴题;新定义;数形结合;转化思想.分析:(1)根据所给的函数,对函数求导,使得导函数等于0,验证可能的极值点两侧导函数的符合相反,得到函数存在极值.(2)由题意知若存在隔离直线,则对其定义域内的任意实数x分别满足f(x)≥kx+b和g(x)≤kx+b,两个函数的图象有公共点,设出直线的方程,根据函数的恒成立得到k的值,求出函数的极大值,得到结论.解答:解:(1)∵F(x)=h(x)﹣φ(x)=x2﹣2elnx(x>0)∴当x=时,F′(x)=0,当0<x<时,F′(x)<0,当x>时,F′(x)<0∴F(x)在处取得极小值0.(2)由(1)知当x>0时,h(x)≥φ(x),若存在隔离直线,则对其定义域内的任意实数x分别满足f(x)≥kx+b和g(x)≤kx+b,∵两个函数的图象有公共点,∴隔离直线必过(,e)设直线的方程是y﹣e=k(x﹣)∴h(x)≥kx+e﹣k恒成立,∴△≤0∴k=2令G(x)=φ(x)﹣2x+e对函数求导有当x>时,F′(x)<0,当0<x<时,F′(x)<0∴当时有G(x)的极大值为0,也就是最大值为0.从而G(x)≤0,即恒成立.故函数h(x)和φ(x)存在唯一的“隔离直线”.点评:本题考查导数在最大值与最小值问题中的应用,求解本题关键是根据导数研究出函数的单调性,由最值的定义得出函数的最值,本题中第一小题是求出函数的极值,第二小题是一个求函数的最值的问题,此类题运算量较大,转化灵活,解题时极易因为变形与运算出错,故做题时要认真仔细.18.函数f(x)=x2+bln(x+1)﹣2x,b∈R.(1)当b=1时,求曲线f(x)在点(0,f(0))处的切线方程;(2)当时,求函数f(x)在(﹣1,1]上的最大值;(ln2≈0.69)(3)设g(x)=f(x)+2x,若b≥2,求证:对任意x1,x2∈(﹣1,+∞),且x1≥x2,都有g(x1)﹣g(x2)≥2(x1﹣x2).考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.专题:压轴题.分析:(1)把b=1代入解析式,使得解析式具体,对于函数求导利用导函数的几何意义即可求的;(2)把代入解析式,由函数求导得导函数,求出函数在定义域上的极值,在与区间端点值进行比较大小,进而求得函数在区间上的最值;(3)由于g(x)=f(x)+2x,由函数解析式求导得其导函数,利用导函数得到函数在区间上的单调性,进而得到要证明的不等式.解答:解:(1)当b=1时,f(x)=x2+ln(x+1)﹣2x定义域为(﹣1,+∞),,f′(0)=﹣1,又f(0)=0,故有直线的方程可知:曲线f(x)在点(0,f(0))出的切线方程为:y=﹣x,(2)当b=,求导得:,由f′(x)=0⇒,当x变化时,f′(x),f(x)的变化情况如下表:由上表可知:,,,所以,所以函数f(x)在(﹣1,1]上的最大值为:,(3)证明:∵f(x)=x2+bln(x+1)﹣2x∴=0.当且仅当2(x+1)=,即:b=2,且x=0时取等号,∴b≥2时,函数f(x)在(﹣1,+∞)内单调递增,从而对于任意x1,x2∈(﹣1,+∞)且x1≥x2,有f(x1)>f(x2),即g(x1)﹣2x1≥g(x2)﹣2x2∴g(x1)﹣g(x2)≥2(x1﹣x2)点评:此题考查了利用导数求函数在闭区间上的最值,还考查了导数的几何含义进而求出曲线上任意一点处的切线方程,还考查了利用均值不等式求解函数的最值.19.已知函数f(x)=ax+lnx,a∈R.(1)当a=﹣1时,求f(x)的最大值;(2)求证:;(3)对f(x)图象上的任意不同两点P1(x1,x2),P(x2,y2)(0<x1<x2),证明f(x)图象上存在点P0(x0,y0),满足x1<x0<x2,且f(x)图象上以P0为切点的切线与直线P1P2平行.考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.专题:综合题;压轴题;转化思想.分析:(1)当a=﹣1时,f(x)=﹣x+lnx,易求得f′(x),且f′(x)>0时,函数f(x)单调递增,f′(x)<0时,函数f(x)单调递减;故可求得f(x)的最大值.(2)由(1)知﹣x+lnx≤﹣1,∴lnx≤x﹣1,当取时,可得;把以上各式相加,可得证明.(3)直线P1P2的斜率k由P1,P2两点坐标可表示为;由(1)知﹣x+lnx≤﹣1,当且仅当x=1时取等号;可得+<﹣1,整理可得<,同理,由,得;所以P1P2的斜率,在x∈(x1,x2)上,有,可得结论.解答:解:(1)当a=﹣1时,f(x)=﹣x+lnx,∴,且x∈(0,1)时,f′(x)>0,函数f(x)单调递增;x∈(1,+∞)时,f′(x)<0,函数f(x)单调递减.故当x=1时,f(x)取最大值f(1)=﹣1.(2)由(1)知﹣x+lnx≤﹣1,∴lnx≤x﹣1,取,可得;以上各式相加得:ln(n+1)<1+++…+(n∈N+)(3)直线P1P2的斜率为;由(1)知﹣x+lnx≤﹣1,当且仅当x=1时取等号,∴,同理,由,可得;故P1P2的斜率,又在x∈(x1,x2)上,,所以f(x)图象上存在点P0(x0,y0),满足x1<x0<x2,且f(x)图象上以P0为切点的切线与直线P1P2平行.点评:本题综合考查了利用导数研究曲线上过某点的切线方程,利用导数研究函数的单调区间以及根据函数的增减性得到函数的最值问题,也考查了利用函数证明不等式的问题,是较难的题目.20.已知函数(Ⅰ)若函数在区间()(其中m>0)上存在极值,求实数m的取值范围;(Ⅱ)如果当x≥1时,不等式恒成立,求实数k的取值范围;(Ⅲ)求证:[(n+1)!]2>(n+1)•e n﹣2(n∈N*).考点:导数在最大值、最小值问题中的应用;利用导数研究函数的极值.专题:计算题;证明题;压轴题.分析:(Ⅰ)求出函数的极值,在探讨函数在区间(m,m+)(其中a>0)上存在极值,寻找关于m的不等式,求出实数m的取值范围;(Ⅱ)如果当x≥1时,不等式恒成立,求出f(x)在x≥1时的最小值,把k分离出来,转化为求k的范围.(Ⅲ)借助于(Ⅱ)的结论根据叠加法证明不等式.解答:解:(Ⅰ)因为函数所以f′(x)=﹣.极值点为f′(x)=0解得x=1故m<1<m+,解得<m<1.即答案为<m<1.(Ⅱ)如果当x≥1时,f′(x)=﹣≤0故f(x)递碱.故f(x)≥f(1)=1又不等式恒成立,所以恒成立,所以k≤2证明:(Ⅲ)由(Ⅱ)知:恒成立,即令x=n(n+1),则所以,,,….叠加得:ln[1×22×32×…n2×(n+1)]×=则1×22×32×…n2×(n+1)>e n﹣2,所以:[(n+1)!]2>(n+1)•e n﹣2(n∈N*).点评:此题主要考查应用导数研究函数的极值最值问题,有关恒成立的问题一般采取分离参数,转化为求函数的最值问题,体现了转化的思想方法,证明数列不等式,借助函数的单调性或恒成立问题加以证明.属难题.21.设函数.(p是实数,e是自然对数的底数)(1)若直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于点(1,0),求p的值;(2)若f(x)在其定义域内为单调函数,求p的取值范围;(3)若在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立,求p的取值范围.考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.专题:计算题;综合题;压轴题.分析:(1)由“函数f(x)的图象相切于点(1,0)求得切线l的方程,再由“l与g(x)图象相切”得到(p﹣1)x2﹣(p﹣1)x﹣e=0由判别式求解即可.(2)求导f’(x)=,要使“f(x)为单调增函数”,转化为“f’(x)≥0恒成立”,再转化为“p≥=恒成立”,由最值法求解.同理,要使“f(x)为单调减函数”,转化为“f’(x)≤0恒成立”,再转化为“p≤=恒成立”,由最值法求解,最后两个结果取并集.(3)因为“在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立”,要转化为“f(x)max>g(x)min”解决,易知g(x)=在[1,e]上为减函数,所以g(x)∈[2,2e],①当p≤0时,f(x)在[1,e]上递减;②当p≥1时,f(x)在[1,e]上递增;③当0<p<1时,两者作差比较.解答:解:(1)∵f′(x)=p+,∴f’(1)=2(p﹣1),设直线l:y=2(p﹣1)(x﹣1),∵l与g(x)图象相切,∴y=2(p﹣1)(x﹣1),得(p﹣1)(x﹣1)=,即(p﹣1)x2﹣(p﹣1)x﹣e=0,y=当p=1时,方程无解;当p≠1时由△=(p﹣1)2﹣4(p﹣1)(﹣e)=0,得p=1﹣4e,综上,p=1﹣4e(2)f’(x)=,要使“f(x)为单调增函数”,转化为“f’(x)≥0恒成立”,即p≥=恒成立,又,所以当p≥1时,f(x)在(0,+∞)为单调增函数.同理,要使“f(x)为单调减函数”,转化为“f’(x)≤0恒成立,再转化为“p≤=恒成立”,又,所以当p≤0时,f(x)在(0,+∞)为单调减函数.综上所述,f(x)在(0,+∞)为单调函数,p的取值范围为p≥1或p≤0(3)因g(x)=在[1,e]上为减函数,所以g(x)∈[2,2e]①当p≤0时,由(1)知f(x)在[1,e]上递减⇒f(x)max=f(1)=0<2,不合题意②当p≥1时,由(1)知f(x)在[1,e]上递增,f(1)<2,又g(x)在[1,e]上为减函数,故只需f(x)max>g(x)min,x∈[1,e],即:f(e)=p(e﹣)﹣2lne>2⇒p>.③当0<p<1时,因x﹣≥0,x∈[1,e]所以f(x)=p(x﹣)﹣2lnx≤(x﹣)﹣2lnx<2,不合题意综上,p的取值范围为(,+∞)点评:本题主要考查用导数法研究函数的单调性,基本思路是:当函数为增函数时,导数大于等于零;当函数为减函数时,导数小于等于零,已知单调性求参数的范围往往转化为求相应函数的最值问题.22.设函数.(1)试判断当x>0,g(x)与f(x)的大小关系;(2)求证:(1+1•2)(1+2•3)…[1+n(n+1)]>e2n﹣3(n∈N*);(3)设A(x1,y1)、B(x2,y2)(x1<x2)是函数y=g(x)的图象上的两点,且g′(x0)=(其中g′(x)为g(x)的导函数),证明:x0∈(x1,x2).考点:导数在最大值、最小值问题中的应用.专题:压轴题;导数的综合应用.分析:(1)欲求g(x)与f(x)的大小关系只需判断F(x)=g(x)﹣f(x)的正负,利用导数研究函数F(x)的最小值,使最小值与0比较即可;(2)由(1)知令x=n(n+1)(n∈N*),则,从而可证得结论;(3)根据,于是,,然后证明,等价于x1lnx2﹣x1lnx1﹣x2+x1<0,令h(x)=xlnx2﹣xlnx1﹣x2+x,利用导数研究最小值与0比较,对于同理可证,即可证得结论.解答:(1)解:设F(x)=g(x)﹣f(x)(x>0)则F′(x)=﹣由F′(x)=0得x=3当0<x<3时,F′(x)<0;当x>3时,F′(x)>0∴x=3时,F(x)取得最小值为F(3)=ln3﹣1>0∴F′(x)>0即g(x)>f(x)…(5分)(2)证明:由(1)知令x=n(n+1)(n∈N*),则…(7分)∴ln(1+1•2)+ln(1+2•3)+…+ln[1+n(n+1)]>(2﹣)+(2﹣)+…+[2﹣]=2n﹣3[++…+]=2n﹣3(1﹣)>2n﹣3∴(1+1•2)(1+2•3)…[1+n(n+1)]>e2n﹣3…(10分)(3)证明:,于是,,以下证明等价于x1lnx2﹣x1lnx1﹣x2+x1<0.令h(x)=xlnx2﹣xlnx1﹣x2+x …(12分)则h'(x)=lnx2﹣lnx1,在上,h'(x)>0所以h(x)在(0,x2]上为增函数当x1<x2时h(x1)<h(x2)=0,即x1lnx2﹣x1lnx1﹣x2+x1<0从而x0>x1,得到证明.对于同理可证.所以x0∈(x1,x2).…(16分)点评:本题主要考查了利用导数研究函数的最值,以及利用导数证明不等式,同时考查了转化的思想,以及考查计算能力,属于难题.23.已知函数f(x)=(x2﹣3x+3)e x的定义域为[﹣2,t],其中常数t>﹣2,e为自然对数的底数.(1)若函数f(x)是增函数,求实数t的取值范围;(2)求证:f(t)>13e﹣2;(3)设f'(x)表示函数f(x)的导函数,,求函数g(x)在区间(﹣2,t)内的零点个数.考点:导数在最大值、最小值问题中的应用.专题:综合题;压轴题;探究型;数形结合;分类讨论;转化思想.分析:(1)若函数f(x)是增函数,则必要导数f'(x)≥0,由此不等式即可解出实数t的取值范围;(2)由题意求证f(t)>13e﹣2,可解出函数f(x)在区间[﹣2,+∞)上的最小值,由此最小值与13e﹣2作比较即可证明此不等式;(3)由题意先解出的解析式,由所得的解析式,及零点判定定理知,可研究此函数在区间(﹣2,t)两个端点值的符号及区间内函数最值的符号,由定理判断出零点个数即可解答:解:(1)f(x)=(x2﹣3x+3)e x,f'(x)=(x2﹣x)e x=x(x﹣1)e x,…(1分)f'(x)≥0⇔x≥1或x≤0,…(2分)若函数f(x)是定义域[﹣2,t]上的增函数,知t的取值范围是(﹣2,0].…(4分)(2)由(1)知函数f(x)的增区间为[﹣2,0]与[1,+∞),减区间为[0,1],从而函数f(x)在区间[﹣2,+∞)上有唯一的极小值f(1)=e,…(6分)但f(﹣2)=13e﹣2<e(∵,故函数f(x)在区间[﹣2,+∞)上的最小值为f(﹣2)=13e﹣2,…(8分)因为t>﹣2,所以f(t)>f(﹣2)=13e﹣2.…(9分)(3)函数g(x)的图象是开口向上、对称轴为的抛物线,且,,.函数g(x)在区间(﹣2,t)内有两个零点;…(9分)当﹣2<t≤1时,g(﹣2)>0,g(t)≤0,又由可知,函数g(x)在区间(﹣2,t)内只有一个零点;…(11分)当t≥4时,g(﹣2)<0,g(t)>0,可知,函数g(x)在区间(﹣2,t)内只有一个零点.…(13分)综上,当1<t<4时,函数g(x)在区间(﹣2,t)内有两个零点;当﹣2<t≤1或t≥4时,函数g(x)在区间(﹣2,t)内只有一个零点.(14分)点评:本题考查导数在最值问题中的运用,利用导数研究单调性,再利用单调性求最值,这是导数的重要运用,解答本题,第一小题关键是理解导数与函数单调性的关系,第二小题关键是将证明不等式问题转化为利用导数解出函数的最值,从而证明不等式,第三题解题的关键是理解零点定理及函数区间内函数最值的判断,本题考查了转化的思想分类讨论思想等,由于本题运算量较大,易因运算导致错误,解题时要严谨24.已知函数f(x)=(a﹣1)lnx+ax2.(1)讨论函数y=f(x)的单调性;(2)求证:+++…+>(n≥2,n∈N+);(3)当a=0时,求证:f(x)≤﹣.考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.专题:压轴题;导数的综合应用.分析:(1)先求导得f′(x),通过对a分类讨论即可得出;(2)利用(1)的结论,取a=时,当x>1时,f(x)单调递增,f(x)>f(1),从而得出x2>lnx>0,取倒数得,令x=k,再利用放缩和裂项求和即可得出;(3)要证⇔⇔(xlnx)min≥,利用导数分别求出其极值即最值即可证明.解答:解:(1)f(x)=(a﹣1)lnx+ax2,定义域为(0,+∞).∵.当a≥1时,f'(x)>0,故f(x)在(0,+∞)单调递增;当a≤0时,f'(x)<0,故f(x)在(0,+∞)单调递减;当0<a<1时,令f'(x)=0,解得.则当时,f'(x)<0;时,f'(x)>0.故f(x)在单调递减,在单调递增.(2)当时,,由(1)知,时,y=f(x)递增,所以x>1时,∵x>1,∴x2>lnx>0,∴,,(3)就是要证,即需证.令g(x)=xlnx,则由g'(x)=lnx+1=0,得,当时g(x)递增,当时g(x)递减,所以g(x)的最小值为.设,。
高三数学导数压轴题

导数压轴一.解答题(共20小题)1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数.(1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围;(2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1.2.设.(1)求证:当x≥1时,f(x)≥0恒成立;(2)讨论关于x的方程根的个数.3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).(1)当a=1时,判断g(x)=e x f(x)的单调性;(2)若函数f(x)无零点,求a的取值范围.4.已知函数.(1)求函数f(x)的单调区间;(2)若存在成立,求整数a的最小值.5.已知函数f(x)=e x﹣lnx+ax(a∈R).(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间;(Ⅱ)当a≥﹣1时,求证:f(x)>0.6.已知函数f(x)=e x﹣x2﹣ax﹣1.(Ⅰ)若f(x)在定义域内单调递增,求实数a的范围;(Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).(2)若对∀x∈(0,+∞),f(x)≥0,求实数a的取值范围.8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=.(Ⅰ)若0是函数f(x)的好点,求a;(Ⅱ)若函数f(x)不存在好点,求a的取值范围.9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).(2)若a为整数,函数f(x)恰好有两个零点,求a的值.10.已知函数f(x)=xlnx﹣ax2,a∈R.(1)若函数f(x)存在单调增区间,求实数a的取值范围;(2)若x1,x2为函数f(x)的两个不同极值点,证明x12x2>e﹣1.11.已知函数f(x)=x3﹣a(x+1)2,(2)若函数f(x)只有一个零点,求实数a的取值范围.12.已知函数.(1)当0<m<2时,证明:f(x)只有1个零点;(2)证明:曲线f(x)没有经过原点的切线.13.已知函数f(x)=4lnx+x2﹣2mx(m∈R).(2)若直线l为曲线的切线,求证:直线l与曲线不可能有2个切点.14.已知函数f(x)=(x+1)e x++2ax,a∈R(1)讨论f(x)极值点的个数(2)若x0(x0≠﹣2)是f(x)的一个极值点,且f(﹣2)>e﹣2,证明:f(x0)≤1.15.己知函数f(x)=(x﹣a)2e x+b在x=0处的切线方程为x+y﹣1=0,函数g(x)=x﹣k(lnx﹣1).(1)求函数f(x)的解析式;(2)求函数g(x)的极值;(3)设F(x)=min{f(x),g(x)}(min{p,q}表示p,q中的最小值),若F(x)在(0,+∞)上恰有三个零点,求实数k的取值范围.16.已知函数,且y=x﹣1是曲线y=f(x)的切线.(1)求实数a的值以及切点坐标;(2)求证:g(x)≥f(x).17.已知函数f(x)=x2﹣x﹣alnx,a∈R.(1)若不等式f(x)<0无解,求a的值;(2)若函数f(x)存在两个极值点x1、x2,且x1<x2,当恒成立时,求实数m的最小值.18.设a,b∈R,已知函数f(x)=alnx+x2+bx存在极大值.(Ⅰ)若a=1,求b的取值范围;(Ⅱ)求a的最大值,使得对于b的一切可能值,f(x)的极大值恒小于0.19.已知函数f(x)=x﹣1nx(1)求函数f(x)的极值;(2)设函数g(x)=xf(x).若存在区间[m,n]⊆[,+∞),使得函数g(x)在[m,n]上的值域为[k(m+2)﹣2,k(n+2)﹣2],求实数k的取值范围.20.已知a≠0,函数,且曲线y=f(x)在x=1处的切线与直线x+2y+1=0垂直.(Ⅰ)求函数在区间(0,+∞)上的极大值;(Ⅱ)求证:当x∈(0,+∞)时,导数压轴参考答案与试题解析一.解答题(共20小题)1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数.(1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围;(2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1.【解答】(1)解:依题意,g(x)=e﹣x f(x)+x2﹣x=1+alnx+x2﹣x,x>0.故,x>0.∵g(x)在[1,2]上单调递增,∴g'(x)≥0在[1,2]上恒成立,故,即a≥x(1﹣2x)在[1,2]上恒成立,根据二次函数的知识,可知:x(1﹣2x)在[1,2]上的最大值为﹣1.∴a的取值范围为[﹣1,+∞).(2)证明:由题意,f′(x)=e x(1+lnx+),x>0,a>2.设h(x)=f′(x)=e x(1+lnx+),x>0,a>2.则h′(x)=e x(1+alnx+﹣).再设H(x)=1+alnx+﹣,则H′(x)=﹣+=.∵当x>0时,y=x2﹣2x+2=(x﹣1)2+1>0恒成立,∴当x>0时,H′(x)>0恒成立.∴H(x)在(0,+∞)上单调递增.又∵当a>2时,H(1)=1+a>0,H()=1﹣aln2<0,∴根据H(x)的单调性及零点定理,可知:存在一点x2∈(,1),使得H(x2)=0.∴f′(x)在(0,x2)上单调递减,在(x2,+∞)上单调递增,在x=x2处取得极小值.∴x2=x1.即且H(x1)=0,即1+alnx1+﹣=0,即…①又∵f(x)的零点为x0,故f(x0)=0,即,即alnx0=﹣1…②由①②,得,则,又,故,即lnx0﹣lnx1>0,∴x0>x1.故得证.2.设.(1)求证:当x≥1时,f(x)≥0恒成立;(2)讨论关于x的方程根的个数.【解答】解:(1)证明:的定义域为(0,+∞).∵,∴f(x)在[1,+∞)上是单调递增函数,∴f(x)≥f(1)=0对于x∈[1,+∞)恒成立.故当x≥1时,f(x)≥0恒成立得证.(2)化简方程得2lnx=x3﹣2ex2+tx.注意到x>0,则方程可变为.令,则.当x∈(0,e)时,L′(x)>0,∴L(x)在(0,e)上为增函数;当x∈(e,+∞)时,L′(x)<0,∴L(x)在(e,+∞)上为减函数.当x=e时,.函数在同一坐标系内的大致图象如图所示:由图象可知,①当时,即时,方程无实根;②当时,即时,方程有一个实根;③当时,即时,方程有两个实根.3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).(1)当a=1时,判断g(x)=e x f(x)的单调性;(2)若函数f(x)无零点,求a的取值范围.【解答】解:(1)当a=1时,g(x)=e x f(x)=e x(﹣x2+x+1﹣e﹣x+1)=(﹣x2+x+1)e x﹣e,g′(x)=(﹣2x+1)e x+(﹣x2+x+1)e x=﹣e x(x﹣1)(x+2),∴当x∈(﹣∞,﹣2)∪(1,+∞)时,g′(x)<0,故g(x)在(﹣∞,﹣2),(1,+∞)单调递减;当x∈(﹣2,1)时,g′(x)>0,故g(x)在(﹣2,1)单调递增;(2)函数f(x)=﹣x2+ax+a﹣e﹣x+1,∴f′(x)=﹣2x+a+e﹣x+1,设h(x)=﹣2x+a+e﹣x+1,∴h′(x)=﹣2﹣e﹣x+1<0恒成立,∴h(x)在(﹣∞,+∞)上单调递减,∴存在x0∈R,使得h(x0)=0,∴当x∈(﹣∞,x0)时,h(x)=f′(x)>0,函数f(x)单调递增,∴当x∈(x0,+∞)时,h(x)=f′(x)<0,函数f(x)单调递减,∴f(x)max=f(x0)=﹣x02+ax0+a﹣,∵函数f(x)无零点,∴f(x)max=f(x0)=﹣x02+ax0+a﹣<0在R上恒成立,又∵h(x0)=﹣2x0+a+=0,即=2x0﹣a.∴f(x)max=f(x0)=﹣x02+(a﹣2)x0+2a<0在R上恒成立,∴△=(a﹣2)2﹣4•2a=a2﹣12a+4<0,解得6﹣4<a<6+4.∴a的取值范围为(6﹣4,6+4).4.已知函数.(1)求函数f(x)的单调区间;(2)若存在成立,求整数a的最小值.【解答】解:(1)由题意可知,x>0,,方程﹣x2+x﹣a=0对应的△=1﹣4a,当△=1﹣4a≤0,即时,当x∈(0,+∞)时,f'(x)≤0,∴f(x)在(0,+∞)上单调递减;…(2分)当时,方程﹣x2+x﹣a=0的两根为,且,此时,f(x)在上f'(x)>0,函数f(x)单调递增,在上f'(x)<0,函数f(x)单调递减;…(4分)当a≤0时,,,此时当,f(x)单调递增,当时,f'(x)<0,f(x)单调递减;…(6分)综上:当a≤0时,,f(x)单调递增,当时,f(x)单调递减;当时,f(x)在上单调递增,在上单调递减;当时,f(x)在(0,+∞)上单调递减;…(7分)(2)原式等价于(x﹣1)a>xlnx+2x﹣1,即存在x>1,使成立.设,x>1,则,…(9分)设h(x)=x﹣lnx﹣2,则,∴h(x)在(1,+∞)上单调递增.又h(3)=3﹣ln3﹣2=1﹣ln3<0,h(4)=4﹣ln4﹣2=2﹣2ln2>0,根据零点存在性定理,可知h(x)在(1,+∞)上有唯一零点,设该零点为x0,则x0∈(3,4),且h(x0)=x0﹣lnx0﹣2=0,即x0﹣2=lnx0,∴…(11分)由题意可知a>x0+1,又x0∈(3,4),a∈Z,∴a的最小值为5.…(12分)5.已知函数f(x)=e x﹣lnx+ax(a∈R).(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间;(Ⅱ)当a≥﹣1时,求证:f(x)>0.【解答】(Ⅰ)解:f(x)=e x﹣lnx+(﹣e+1)x;令,得x=1;当x∈(0,1)时,f′(x)<0,f(x)单调递减;当x∈(1,+∞)时,f′(x)>0,f(x)单调递增;(Ⅱ)证明:当a=﹣1时,f(x)=e x﹣lnx﹣x(x>0);令,则;∴h(x)在(0,+∞)上单调递增;又,h(1)=e﹣2>0;∴∃,使得,即;∴函数f(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增;∴函数f(x)的最小值为;又函数是单调减函数;∴f(x0)>1+1﹣ln1﹣1=1>0,即e x﹣lnx﹣x>0恒成立;又e x>x>lnx;∴e x﹣lnx>0;又a≥﹣1,x>0;∴ax≥﹣x;∴f(x)=e x﹣lnx+ax≥e x﹣lnx﹣x>0,得证.6.已知函数f(x)=e x﹣x2﹣ax﹣1.(Ⅰ)若f(x)在定义域内单调递增,求实数a的范围;(Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.【解答】解:(1)由条件得,f'(x)=e x﹣2x﹣a≥0,得a≤e x﹣2x,令h(x)=e x﹣2x,h'(x)=e x﹣2=0.得x=ln2,当x<ln2时,h'(x)<0,当x>ln2时,h'(x)>0.故当x=ln2时,h(x)=h(ln2)=2﹣2ln2.min∴a≤2﹣2ln2.(2)g(x)=xe x﹣ax2﹣e x,g'(x)=x(e x﹣2a).当a≤0时,由x>0,g'(x)>0且x<0,g'(x)<0,故0是g(x)唯一的极小值点;令g'(x)=0得x1=0,x2=ln(2a).当a=时,x1=x2,g'(x)≥0恒成立,g(x)无极值点.故a∈.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).(1)讨论函数f(x)的单调性;(2)若对∀x∈(0,+∞),f(x)≥0,求实数a的取值范围.【解答】解:(1)由题意知,f(x)的定义域为(0,+∞),由函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R)得f'(x)=1﹣﹣2a(x﹣1)=;①当a≤0时,令f'(x)>0,可得x>1,令f'(x)<0,可得0<x<1;故函数f(x)的增区间为(1,+∞),减区间为(0,1).②当0<a<时,,令f'(x)>0,可得,令f'(x)<0,可得0<x <1或x>,故f(x)的增区间为(1,),减区间为(0,1),();③当a=时,f'(x)=≤0,故函数f(x)的减区间为(0,+∞);④当a>时,0<<1,令f'(x)>0,可得;令f'(x)<0,可得或x>1.故f(x)的增区间为(),减区间为(0,),(1,+∞).综上所述:当a≤0时,f(x)在(0,1)上为减函数,在(1,+∞)上为增函数;当0<a<时,f(x)在(0,1),()上为减函数,在(1,)上为增函数;当a=时,f(x)在(0,+∞)上为减函数;当a>时,f(x)在(0,),(1,+∞)上为减函数.在(,1)上为增函数.(2)由(1)可知:①当a≤0时,f(x)min=f(1)=0,此时,f(x)≥0;②当0<a<时,f(1)=0,当x∈(,+∞)时,lnx>0,ax>a+1,可得f(x)=x﹣1﹣lnx﹣a(x﹣1)2<x﹣1﹣a(x﹣1)2=(x﹣1)(a+1﹣ax)<0,不合题意;③当a=时,f(1)=0,由f(x)的单调性可知,当x∈(1,+∞)时,f(x)<0,不合题意;④当a>时,f(1)=0,由f(x)的单调性可知,当x∈(,1)时,f(x)<0,不合题意.综上可知:所求实数a的取值范围为:(﹣∞,0].8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=.(Ⅰ)若0是函数f(x)的好点,求a;(Ⅱ)若函数f(x)不存在好点,求a的取值范围.【解答】(Ⅰ)解:f′(x)=e2x﹣ae x﹣(a2﹣1)x;由f′(x)=x,得e2x﹣ae x﹣(a2﹣1)x=x,即e2x﹣ae x﹣a2x=0;∵0是函数f(x)得好点;∴1﹣a=0,∴a=1;(Ⅱ)解:令g(x)=e2x﹣ae x﹣a2x,问题转化为讨论函数g(x)的零点问题;∵当x→﹣∞时,g(x)→+∞,若函数f(x)不存在好点,等价于g(x)没有零点,即g(x)的最小值大于零;g′(x)=2e2x﹣ae x﹣a2=(2e x+a)(e x﹣a);①若a=0,则g(x)=e2x>0,g(x)无零点,f(x)无好点;②若a>0,则由g′(x)=0得x=lna;易知;当且仅当﹣a2lna>0,即0<a<1时,g(x)>0;∴g(x)无零点,f(x)无好点;③若a<0,则由g′(x)=0得;故;当且仅当,即时,g(x)>0;∴g(x)无零点,f(x)无好点;综上,a的取值范围是.9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).(1)讨论函数f(x)的单调性;(2)若a为整数,函数f(x)恰好有两个零点,求a的值.【解答】解(1)由题意x>0,f′(x)==①若a≥0,对x>0,f′(x)>0恒成立,f(x)在(0,+∞)单调递增;②若a<0,则﹣>0,当0<x<﹣时,f′(x)>0,x>时,f′(x)<0,所以f(x)在(0,﹣)单调递增,在(﹣,+∞)单调递减,(2)由(1)知,若函数f(x)恰好有两个零点,则a<0,且f(x)在x=处有极大值,也是最大值;f(x)max=f()>0,∵f()=ln(﹣)+a(﹣)2+(a+2)(﹣)+2=ln(﹣)+(﹣)+1,又∵a为整数且a<0,∴当a=﹣1时,且f(x)max=f()=0+2=2>0,当a=﹣2时,且f(x)max=f()=>0,当a=﹣3时,且f(x)max=f()=ln+1>0,当a=﹣4时,且f(x)max=f()=<0,故a的值为:﹣1,﹣2,﹣3.10.已知函数f(x)=xlnx﹣ax2,a∈R.(1)若函数f(x)存在单调增区间,求实数a的取值范围;(2)若x1,x2为函数f(x)的两个不同极值点,证明x12x2>e﹣1.【解答】解:(1)∵函数f(x)=xlnx﹣ax2,a∈R.∴f′(x)=lnx+1﹣2ax,∵函数f(x)存在单调增区间∴只需f'(x)=1+lnx﹣2ax>0有解;即有解.令g(x)=,g′(x)=,当x∈(0,1)时g′(x)>0当x∈(1,+∞)时g′(x)<0当x=1时g(x)有最大值,g(1)=1.故2a<g(1)=1∴a时,函数f(x)存在增区间.证明:(2)要证明>e﹣1,即证明2lnx1+lnx2>﹣1,∵f′(x)=1+lnx﹣2ax,∴x1,x2是方程lnx=2ax﹣1的两个根,即,lnx1=2ax1﹣1 ①,lnx2=2ax2﹣1 ②,即证明2a(2x1+x2)>2.∵①﹣②,得:2a=,即证(2x1+x2)>2,不妨设x1>x2,则t=>1,则证(2t+1)>2,∴lnt﹣>0,设g(t)=lnt﹣,则g′(t)═﹣=;∵t>1∴4(t+)2﹣6>4(1+)2﹣6=3>0,∴g'(x)>0;∴g(t)在(1,+∞)单调递增,g(t)>g(1)=0,故>e﹣1.11.已知函数f(x)=x3﹣a(x+1)2,(1)讨论函数f(x)的单调区间;(2)若函数f(x)只有一个零点,求实数a的取值范围.【解答】解(1)函数的定义域为R,f'(x)=x2﹣2a(x+1)=x2﹣2ax﹣2a,△=4a2+8a=4a(a+2),1)△≤0时,﹣2≤a≤0时,f'(x)≥0,∴f(x)在R上递增…(1分)2)当△>0时,即a<﹣2或a>0时,令f'(x)=0,∴x2﹣2ax﹣2a=0,解得,;∴f(x)在(﹣∞,a﹣)递增,递减,递增;(2)由(1)知①△≤0时,﹣2≤a≤0时,当f(x)在R上递增.f(﹣1)=<0,f(1)=﹣4a>0;∴存在唯一零点x0∈(﹣1,1);②当a<﹣2或a>0时,1)a<﹣2时,∵=a+<a+|a+1|;∵a<﹣2,∴a+|a+1|=﹣1,即,x2<﹣1,∴x1<x2<﹣1;∵f(﹣1)=<0,f(0)=﹣a>0,∴存在零点x0∈(﹣1,0).又∵f(x)在(﹣∞,x1)递增,(x1,x2)递减,(x2,+∞)递增;∴f(x)在x=x1处有极大值,∴f(x1)<0,,(*)又∵,将a(x1+1)=代入(*)得;,得,∴x1>﹣3,且x1≠0;∴﹣3<x1<﹣1,即﹣3<a﹣<﹣1;,解得;2)当a>0时,∵x1•x2=﹣2a<0,∴x1<0<x2;当x∈(﹣∞,0)时,又∵,﹣a(x+1)2<0,∴f(x)=,又∵f(x)在(﹣∞,x1)递增,(x1,x2)递减,(x2,+∞)递增;∵f(0)=﹣a<0,∴f(x2)<f(0)<0,又∵3a+2>2,而f(3a+2)==3a+>0,∴存在零点x0∈(x2,3a+2);综上,a∈().12.已知函数.(1)当0<m<2时,证明:f(x)只有1个零点;(2)证明:曲线f(x)没有经过原点的切线.【解答】(1)证明:f(x)的定义域为(0,+∞);;令g(x)=x2﹣mx+1,则△=m2﹣4;∵0<m<2;∴△<0;∴g(x)>0在x∈(0,+∞)上恒成立;∴f(x)在(0,+∞)上单调递增;∴f(x)至多有一个零点;∵;∴当0<x<2m且x<1时,f(x)<0;当x>2m且x>1时,f(x)>0;∴f(x)有一个零点;∴当0<m<2时,f(x)只有一个零点;(2)证明:假设曲线y=f(x)在点(x,f(x))(x>0)处的切线经过原点,则有;即,化简得;令,则;令h′(x)=0,解得x=1;当0<x<1时,h′(x)<0,h(x)单调递减;当x>1时,h′(x)>0,h(x)单调递增;∴;∴与矛盾;∴曲线y=f(x)没有经过原点的切线.13.已知函数f(x)=4lnx+x2﹣2mx(m∈R).(1)求函数f(x)的单调区间;(2)若直线l为曲线的切线,求证:直线l与曲线不可能有2个切点.【解答】解:(1)由题意,,令y=x2﹣mx+2,则△=m2﹣8,①若,则△≤0,则f'(x)≥0,故函数f(x)在(0,+∞)上单调递增;②若或,y=x2﹣mx+2有两个零点x1,x2,则x1x2=2>0,其中,;(i)若,则x1<0,x2<0,此时f'(x)>0,故函数f(x)在(0,+∞)上单调递增;(ii)若,则x1>0,x2>0,此时当x∈(0,x1)时,f'(x)>0,当x∈(x1,x2)时,f'(x)<0,当x∈(x2,+∞)时,f'(x)>0,故函数f(x)在(0,x1)和(x2,+∞)上单调递增,在(x1,x2)上单调递减;综上所述,可知:①当时,函数f(x)在(0,+∞)上单调递增;②当时,函数f(x)在(0,x1)和(x2,+∞)上单调递增,在(x1,x2)上单调递减.(2)证明:(反证法)假设存在一条直线与函数的图象有两个不同的切点T1(x1,y1),T2(x2,y2),不妨令0<x1<x2,则T1处切线l1的方程为:,T2处切线l2的方程为:.∵切线l1,l2为同一直线,所以有.即,整理得.消去x2得,.①令,由0<x1<x2与x1x2=2,得t∈(0,1),记,则,所以p(t)为(0,1)上的单调减函数,所以p(t)>p(1)=0.从而①式不可能成立,所以假设不成立,即若直线l为曲线的切线,则直线l与曲线不可能有2个切点.14.已知函数f(x)=(x+1)e x++2ax,a∈R(1)讨论f(x)极值点的个数(2)若x0(x0≠﹣2)是f(x)的一个极值点,且f(﹣2)>e﹣2,证明:f(x0)≤1.【解答】(1)解:f(x)的定义域为R,f′(x)=(x+2)(e x+a);若a≥0,则e x+a>0;∴当x∈(﹣∞,﹣2)时,f′(x)<0,f(x)单调递减;当x∈(﹣2,+∞)时,f′(x)>0,f(x)单调递增;∴x=﹣2是f(x)唯一的极小值点,无极大值点,故此时f(x)有1个极值点;若a<0,令f′(x)=(x+2)(e x+a)=0,则x1=﹣2,x2=ln(﹣a);当a<﹣e﹣2时,x1<x2,可知当x∈(﹣∞,x1)∪(x2.+∞)时,f′(x)>0;当x∈(x1,x2)时,f′(x)<0;∴x1,x2分别是f(x)的极大值点和极小值点,故此时f(x)有2个极值点;当a=﹣e﹣2时,x1=x2,f′(x)≥0,此时f(x)在R上单调递增,无极值点;当﹣e﹣2<a<0时,x1>x2,同理可知,f(x)有2个极值点;综上,当a=﹣e﹣2时,f(x)无极值点;当a≥0时,f(x)有1个极值点;当a<﹣e﹣2或﹣e﹣2<a<0时,f(x)有2个极值点.(2)证明:若x0(x0≠﹣2)是f(x)的一个极值点,由(1)知a∈(﹣∞,﹣e﹣2)∪(﹣e﹣2,0);又f(﹣2)=﹣e﹣2﹣2a>e﹣2;∴a∈(﹣∞,﹣e﹣2);则x0=ln(﹣a);∴;令t=ln(﹣a)∈(﹣2,+∞),则a=﹣e t;∴;∴;又∵t∈(﹣2,+∞);∴t+4>0;令g′(t)=0,得t=0;当t∈(﹣2,0)时,g′(t)>0,g(t)单调递增;当t∈(0,+∞)时,g′(t)<0,g(t)单调递减;∴t=0是g(t)唯一得极大值点,也是最大值点,即g(t)≤g(0)=1;∴f[ln(﹣a)]≤1,即f(x0)≤1.15.己知函数f(x)=(x﹣a)2e x+b在x=0处的切线方程为x+y﹣1=0,函数g(x)=x ﹣k(lnx﹣1).(1)求函数f(x)的解析式;(2)求函数g(x)的极值;(3)设F(x)=min{f(x),g(x)}(min{p,q}表示p,q中的最小值),若F(x)在(0,+∞)上恰有三个零点,求实数k的取值范围.【解答】解:(1)f'(x)=[x2+(2﹣2a)x+a2﹣2a]e x,因为f(x)在x=0处的切线方程为x+y﹣1=0,所以,解得,所以f(x)=(x﹣1)2e x.(2)g(x)的定义域为(0,+∞),,①若k≤0时,则g'(x)>0在(0,+∞)上恒成立,所以g(x)在(0,+∞)上单调递增,无极值.②若k>0时,则当0<x<k时,g'(x)<0,g(x)在(0,k)上单调递减;当x>k时,g'(x)>0,g(x)在(k,+∞)上单调递增;所以当x=k时,g(x)有极小值2k﹣klnk,无极大值.(3)因为f(x)=0仅有一个零点1,且f(x)≥0恒成立,所以g(x)在(0,+∞)上有仅两个不等于1的零点.①当k≤0时,由(2)知,g(x)在(0,+∞)上单调递增,g(x)在(0,+∞)上至多一个零点,不合题意,舍去,②当0<k<e2时,g(x)min=g(k)=k(2﹣lnk)>0,g(x)在(0,+∞)无零点,③当k=e2时,g(x)≥0,当且仅当x=e2等号成立,g(x)在(0,+∞)仅一个零点,④当k>e2时,g(k)=k(2﹣lnk)<0,g(e)=e>0,所以g(k)•g(e)<0,又g(x)图象不间断,g(x)在(0,k)上单调递减,故存在x1∈(e,k),使g(x1)=0,又g(k2)=k(k﹣2lnk+1),下面证明,当x>e2时,h(x)=x﹣2lnx+1>0>0,h(x)在(e2,+∞)上单调递增h(x)>h(e2)=e2﹣3>0,所以g(k2)=k•(k﹣2lnk+1)>0,g(k)•g(k2)<0,又g(x)图象在(0,+∞)上不间断,g(x)在(k,+∞)上单调递增,故存在,使g(x2)=0,综上可知,满足题意的k的范围是(e2,+∞).16.已知函数,且y=x﹣1是曲线y=f(x)的切线.(1)求实数a的值以及切点坐标;(2)求证:g(x)≥f(x).【解答】解:(1)设切点为(x0,),则切线为y﹣=(x﹣x0),即y=x+;所以,消去a得:x0﹣1+lnx0﹣2x0lnx0=0,记m(t)=t﹣1+lnt﹣2tlnt(t>0),则m′(t)=,显然m′(t)单调递减,且m′(1)=0,所以t∈(0,1)时,m′(t)>0,m(t)单调递增,t∈(1,+∞)时,m′(t)<0,m(t)单调递减,故m(t)当且仅当t=1时取到最大值,又m(1)=0,所以方程x0﹣1+lnx0﹣2x0lnx0=0有唯一解x0=1,此时a=1,所以a=1,切点为(1,0).(2)证明:由(1)得f(x)=,g(x)=e x﹣1﹣1,记F(x)=e x﹣1﹣x(x>0),则F′(x)=e x﹣1﹣1,当x∈(1,+∞)时,F′(x)>0,F(x)单调递增;当x∈(0,1)时,F′(x)<0,F(x)单调递减,所以F(x)≥F(1)=1﹣1=0,所以e x﹣1≥x,即g(x)≥x﹣1①,记G(x)=x2﹣x﹣lnx(x>0),则G′(x)=2x﹣1﹣==,所以x∈(0,1)时,G′(x)<0,G(x)单调递减,x∈(1,+∞)时,G′(x)>0,G(x)单调递增,所以G(x)≥G(1)=0,即x2﹣x≥lnx,所以x﹣1≥,即x﹣1≥f(x)②,由①②得g(x)≥f(x).17.已知函数f(x)=x2﹣x﹣alnx,a∈R.(1)若不等式f(x)<0无解,求a的值;(2)若函数f(x)存在两个极值点x1、x2,且x1<x2,当恒成立时,求实数m的最小值.【解答】解:(1)f(x)=x2﹣x﹣alnx(x>0),则f'(x)=,f(1)=0,∵不等式f(x)<0无解,∴f(x)极小值=f(1),∴f'(1)=2﹣1﹣a=0,∴a=1;(2)∵函数f(x)存在两个极值点x1、x2,且x1<x2,∴f'(x)在(0,+∞)上有两个不相等的实根,即x1、x2是方程2x2﹣x﹣a=0的两个不相等的正实根,∴,.令,则0<t<1,∴==﹣==,令g(t)=(0<t<1),则g'(t)=,∴g(t)在(0,1)上单调递增,∴g(t)<g(1)=0.∵当恒成立,∴m>g(t)在(0,1)上恒成立,∴m≥g(1)=0,∴实数m的最小值为0.18.设a,b∈R,已知函数f(x)=alnx+x2+bx存在极大值.(Ⅰ)若a=1,求b的取值范围;(Ⅱ)求a的最大值,使得对于b的一切可能值,f(x)的极大值恒小于0.【解答】解:(Ⅰ)当a=1时,f'(x)=(x>0),由f(x)存在极大值,可知方程2x2+bx+1=0有两个不等的正根,∴解得b<﹣2.故b的取值范围是(﹣∞,﹣2).(Ⅱ)f′(x)=(x>0).由f(x)存在极大值,可知方程:2x2+bx+a=0有两个不等的正根,设为x1<x2,由x1x2=>0,可得:0<x1<.可得表格:x(0,x1)x1(x1,x2)x2(x2,+∞)f′(x)+0﹣0+f(x)单调递增极大值单调递减极小值单调递增∴f(x)的极大值为f(x1)=alnx1++bx1.2+bx1+a=0,解得:bx1=﹣2﹣a,∴f(x1)=alnx1﹣﹣a.构造函数:g(x)=alnx﹣x2﹣a.当:0<x<.g′(x)=>0,∴g(x)在(0,]上单调递增.可得:g(x1)<g()=(ln﹣3).当0<a≤2e3时,f(x)极大=f(x1)=g(x1)<g()≤0.当a>2e3时,取b=﹣2(+﹣),即x1=,x2=.此时f(x)极大=f()=﹣e3>0,不符合题意.∴a的最大值为2e3.19.已知函数f(x)=x﹣1nx(1)求函数f(x)的极值;(2)设函数g(x)=xf(x).若存在区间[m,n]⊆[,+∞),使得函数g(x)在[m,n]上的值域为[k(m+2)﹣2,k(n+2)﹣2],求实数k的取值范围.【解答】解:(1)f(x)=x﹣1nx,(x∈(0,+∞)).f′(x)=1﹣=,可得:x=1时,函数f(x)取得极小值f(1)=1.(2)g(x)=xf(x)=x2﹣xlnx.(x∈[,+∞)).g′(x)=2x﹣lnx﹣1=h(x),h′(x)=2﹣=≥0,∴函数h(x)在x∈[,+∞)上单调递增,h()=1+ln2﹣1=ln2>0.∴g′(x)>0.∴函数g(x)在x∈[,+∞)上单调递增.∴函数g(x)的值域为:[g(m),g(n)].已知函数g(x)在[m,n]上的值域为[k(m+2)﹣2,k(n+2)﹣2],∴m2﹣mlnm=k(m+2)﹣2,n2﹣nlnn=k(n+2)﹣2,≤m<n.令u(x)=x2﹣xlnx﹣k(x+2)+2.x∈[,+∞).则u(x)在x∈[,+∞)存在两个不同的实数根.化为:k=,x∈[,+∞).令u(x)=,x∈[,+∞).u′(x)=.u′(1)=0.令v(x)=x2+3x﹣2lnx﹣4,x∈[,+∞).v′(x)=2x+3﹣=≥0,∴函数v(x)在x∈[,+∞)上单调递增.∴x∈[,1),u′(x)<0;x∈(1,+∞),u′(x)>0.∴x=1时,u(x)取得极小值即最小值,u(1)=1.又u()==.x→+∞时,u(x)→+∞.∴1<k≤时,函数y=k与u(x)的图象有两个交点.∴实数k的取值范围是(1,].20.已知a≠0,函数,且曲线y=f(x)在x=1处的切线与直线x+2y+1=0垂直.(Ⅰ)求函数在区间(0,+∞)上的极大值;(Ⅱ)求证:当x∈(0,+∞)时,【解答】解:(Ⅰ)由题意得直线x+2y+1=0的斜率为﹣,即曲线y=f(x)在x=1处的切线斜率为2,f'(x)=,∴f'(1)=1+a=2,得a=1.∴f(x)=,=,∴g'(x)=,当x=e时,g'(x)=0;当0<x<e时,g'(x)>0,当x>e时,g'(x)<0;∴函数在(0,e)单调递增,在(e,+∞)单调递减,∴g(x)在(0,+∞)上有唯一的极大值g(e)=;(Ⅱ)由题意得≤,即证明,设φ(x)=,φ'(x)=,当0<x<e时,φ'(x)>0,∴函数φ(x)在(0,e)单调递增.当x>e,φ'(x)<0.∴函数在(e,+∞)上单调递减,当x=e时,φ(x)取最大值φ(e)=,即φ(x)≤,再令h(x)=,则h(x)=()≥,∴φ(x)<h(x),即e x f(x)<.。
(完整版)导数压轴题

导数压轴题9.(能力挑战题)设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点.(2)若f (x )为⎣⎢⎡⎦⎥⎤12,32上的单调函数,求a 的取值范围.[解析] ∵f ′(x )=(ax 2-2ax +1)e x(1+ax 2)2,(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0⇒x 1=12,x 2=32,∴x 1=12是极大值点,x 2=32是极小值点. (2)记g (x )=ax 2-2ax +1,则 g (x )=a (x -1)2+1-a ,∵f (x )为⎣⎢⎡⎦⎥⎤12,32上的单调函数,则f ′(x )在⎣⎢⎡⎦⎥⎤12,32上不变号,∵e x(1+ax 2)2>0, ∴g (x )≥0或g (x )≤0对x ∈⎣⎢⎡⎦⎥⎤12,32恒成立,又g (x )的对称轴为x =1,故g (x )的最小值为g (1),最大值为g ⎝ ⎛⎭⎪⎫12.由g (1)≥0或g ⎝ ⎛⎭⎪⎫12≤0⇒0<a ≤1或a ≥43, ∴a 的取值范围是0<a ≤1或a ≥43.10.(能力挑战题)函数f (x )=x ln x -ax 2-x (a ∈R ).(1)若函数f(x)在x=1处取得极值,求a的值.(2)若函数f(x)的图象在直线y=-x图象的下方,求a的取值范围.(3)求证:2 0132 012<2 0122 013.[解析](1)函数定义域为(0,+∞),f′(x)=ln x-2ax,∵f(x)在x=1处取得极值,∴f′(1)=0,即-2a=0,∴a=0.∴f′(x)=ln x,当x∈(0,1)时,f′(x)<0,当x∈(1,+∞)时,f′(x)>0,∴f(x)在x=1处取得极值.(2)由题意,得x ln x-ax2-x<-x,∴x ln x-ax2<0.∵x∈(0,+∞),∴a>ln xx.设h(x)=ln xx,则h′(x)=1-ln xx2.令h′(x)>0,得0<x<e,∴h(x)在(0,e)上为增函数;令h′(x)<0,得x>e,∴h(x)在(e,+∞)上为减函数.∴h(x)max=h(e)=1e,∴a>1e.(3)由(2)知h (x )=ln xx 在(e ,+∞)上为减函数, ∴h (x )>h (x +1), ∴ln x x >ln (x +1)x +1.∴(x +1)ln x >x ln(x +1), ∴ln x x +1>ln(x +1)x , ∴x x +1>(x +1)x .令x =2 012,得2 0122 013>2 0132 012. 11.已知函数f (x )=ln(1+x )-ax1-x(a ∈R ). (1)求函数f (x )的单调区间;(2)若数列{a m }的通项公式a m =⎝ ⎛⎭⎪⎫1+12 013×2m +1 2 013(m ∈N *),求证:a 1·a 2·…·a m <3(m ∈N *).[解析] (1)由题意,函数的定义域为(-1,1)∪(1,+∞),f ′(x )=11+x-a(1-x )2, 当a ≤0时,注意到11+x >0,a (1-x )2≤0, 所以f ′(x )>0,即函数f (x )的增区间为(-1,1),(1,+∞),无减区间; 当a >0时,f ′(x )=11+x -a (1-x )2 =x 2-(2+a )x +1-a (1+x )(1-x )2, 由f ′(x )=0,得x 2-(2+a )x +1-a =0,此方程的两根x 1=a +2-a 2+8a 2,x 2=a +2+a 2+8a2,其中-1<x 1<1<x 2,注意到(1+x )(1-x )2>0,所以f ′(x )>0⇔-1<x <x 1或x >x 2,f ′(x )<0⇔x 1<x <1或1<x <x 2,即函数f (x )的增区间为(-1,x 1),(x 2,+∞),减区间为(x 1,1),(1,x 2). 综上,当a ≤0时,函数f (x )的增区间为(-1,1)(1,+∞),无减区间; 当a >0时,函数f (x )的增区间为(-1,x 1),(x 2,+∞),减区间为(x 1,1),(1,x 2),其中x 1=a +2-a 2+8a 2,x 2=a +2+a 2+8a2.(2)当a =1时,由(1)知,函数f (x )=ln(1+x )-x1-x在(0,1)上为减函数, 则当0<x <1时,f (x )=ln(1+x )-x1-x<f (0)=0, 即ln(1+x )<x1-x ,令x =12 013×2m+1(m ∈N *),则 ln ⎝ ⎛⎭⎪⎫1+12 013×2m+1<12 013×2m ,12.已知函数f (x )=x 22+a 3ln(x -a -a 2),a ∈R 且a ≠0. (1)讨论函数f (x )的单调性;(2)当a <0时,若a 2+a <x 1<x 2<a 2-a ,证明:f (x 2)-f (x 1)x 2-x 1<a 22-a .[解析] (1)由题意,f ′(x )=x +a 3x -a -a 2=x 2-(a +a 2)x +a 3x -a -a 2=(x -a )(x -a 2)x -a -a 2.令f ′(x )>0,因为x -a -a 2>0,故(x -a )(x -a 2)>0. 当a >0时,因a +a 2>a 且a +a 2>a 2, 所以上面不等式的解集为(a +a 2,+∞), 从而此时函数f (x )在(a +a 2,+∞)上单调递增.当a <0时,因a <a +a 2<a 2,所以上面不等式的解集为(a 2,+∞),从而此时函数f (x )在(a 2,+∞)上单调递增,同理此时f (x )在(a +a 2,a 2]上单调递减.(2)证法一: 要证原不等式成立,只需证明 f (x 2)-f (x 1)<(x 2-x 1)⎝ ⎛⎭⎪⎫a 22-a ,只需证明f (x 2)-⎝ ⎛⎭⎪⎫a 22-a x 2<f (x 1)-⎝ ⎛⎭⎪⎫a 22-a x 1.因为a 2+a <x 1<x 2<a 2-a ,所以原不等式只需证明函数h (x )=f (x )-⎝ ⎛⎭⎪⎫a 22-a x在x ∈(a 2+a ,a 2-a )内单调递减.由(1)知h ′(x )=x -⎝ ⎛⎭⎪⎫a 22-a +a 3x -a -a 2=x 2-32a 2x +a 42+a 32-a 2x -a -a 2,因为x -a -a 2>0,我们考察函数g (x )=x 2-32a 2x +a 42+a 32-a 2,x ∈(a 2+a ,a 2-a ).因a 2+a +a 2-a 2=a 2>x 对称轴=3a 24,且3a 24<a 2-a ,所以g (x )≤g (a 2-a )=0.从而知h ′(x )<0在x ∈(a 2+a ,a 2-a )上恒成立,所以函数h (x )=f (x )-⎝ ⎛⎭⎪⎫a 22-a x 在x ∈(a 2+a ,a 2-a )内单调递减.从而原命题成立.证法二:要证原不等式成立, 只需证明f (x 2)-f (x 1)<(x 2-x 1)⎝ ⎛⎭⎪⎫a 22-a ,只需证明f (x 2)-⎝ ⎛⎭⎪⎫a 22-a x 2<f (x 1)-⎝ ⎛⎭⎪⎫a 22-a x 1.又a 2+a <x 1<x 2<a 2-a , 设g (x )=f (x )-⎝ ⎛⎭⎪⎫a 22-a x ,则欲证原不等式只需证明函数g (x )=f (x )-⎝ ⎛⎭⎪⎫a 22-a x 在x ∈(a 2+a ,a 2-a )内单调递减.由(1)可知g ′(x )=f ′(x )-⎝ ⎛⎭⎪⎫a 22-a=x +a 3x -a -a2-⎝ ⎛⎭⎪⎫a 22-a =x -a -a 2+a 3x -a -a 2+a +a 2-⎝ ⎛⎭⎪⎫a 22-a .因为a <0,所以y =x -a -a 2+a 3x -a -a2在(a 2+a ,a 2-a )上为增函数, 所以g ′(x )≤g ′(a 2-a )=a 2-a -a -a 2+a 3a 2-a -a -a 2+a +a 2-⎝ ⎛⎭⎪⎫a 22-a =0. 从而知g ′(x )<0在x ∈(a 2+a ,a 2-a )上恒成立,所以函数g (x )=f (x )-⎝ ⎛⎭⎪⎫a 22-a x 在x ∈(a 2+a ,a 2-a )内单调递减.从而原命题成立. 13.已知函数f (x )=e x sin x . (1)求函数f (x )的单调区间;(2)如果对于任意的x ∈⎣⎢⎡⎦⎥⎤1,π2,f (x )≥kx 总成立,求实数k 的取值范围;(3)设函数F (x )=f (x )+e x cos x ,x ∈⎣⎢⎡⎦⎥⎤-2 011π2,2 013π2.过点M ⎝ ⎛⎭⎪⎫π-12,0作函数F (x )图象的所有切线,令各切点的横坐标构成数列{x n },求数列{x n }的所有项之和S 的值.[解析] (1)由于f (x )=e x sin x ,所以 f ′(x )=e x sin x +e x cos x =e x (sin x +cos x ) =2e x sin ⎝ ⎛⎭⎪⎫x +π4.当x +π4∈(2k π,2k π+π),即x ∈⎝ ⎛⎭⎪⎫2k π-π4,2k π+3π4时,f ′(x )>0; 当x +π4∈(2k π+π,2k π+2π),即x ∈⎝ ⎛⎭⎪⎫2k π+3π4,2k π+7π4时,f ′(x )<0.所以f (x )的单调递增区间为⎝ ⎛⎭⎪⎫2k π-π4,2k π+3π4(k ∈Z ),单调递减区间为⎝ ⎛⎭⎪⎫2k π+3π4,2k π+7π4(k ∈Z ).(2)令g (x )=f (x )-kx =e x sin x -kx ,要使f (x )≥kx 总成立,只需x ∈⎣⎢⎡⎦⎥⎤0,π2时g (x )min ≥0.g ′(x )=e x (sin x +cos x )-k ,令h (x )=e x (sin x +cos x ),则h ′(x )=2e x cos x >0,x ∈⎝ ⎛⎭⎪⎫0,π2,所以h (x )在⎣⎢⎡⎦⎥⎤0,π2上为增函数, 所以h (x )∈[1,e ]. 对k 分类讨论:①当k ≤1时,g ′(x )≥0恒成立,所以g (x )在⎣⎢⎡⎦⎥⎤0,π2上为增函数,所以g (x )min=g (0)=0,即g (x )≥0恒成立;②当1<k <e 时,g ′(x )=0在[1,e ]上有实根x 0,因为h (x )在⎝ ⎛⎭⎪⎫0,π2上为增函数,所以当x ∈(0,x 0)时,g ′(x )<0,所以g (x 0)<g (0)=0,不符合题意;③当k ≥e 时,g ′(x )≤0恒成立,所以g (x )在⎝ ⎛⎭⎪⎫0,π2上为减函数,则g (x )<g (0)=0,不符合题意;综合①②③可得,所求的实数k 的取值范围是(-∞,1]. (3)因为F (x )=f (x )+e x cos x =e x (sin x +cos x ), 所以F ′(x )=2e x cos x ,设切点坐标为(x 0,e x 0(sin x 0+cos x 0)), 则斜率为F ′(x 0)=2e x 0cos x 0,切线方程为y -e x 0(sin x 0+cos x 0) =2e x 0cos x 0·(x -x 0),将M ⎝ ⎛⎭⎪⎫π-12,0的坐标代入切线方程,得 -e x 0(sin x 0+cos x 0) =2e x 0cos x 0·⎝ ⎛⎭⎪⎫π-12-x 0, 整理得-tan x 0-1=-2⎝ ⎛⎭⎪⎫x 0-π-12, 即tan x 0=2⎝ ⎛⎭⎪⎫x 0-π2,令y 1=tan x ,y 2=2⎝ ⎛⎭⎪⎫x -π2,则这两个函数的图象均关于点⎝ ⎛⎭⎪⎫π2,0对称,它们交点的横坐标也关于π2对称且成对出现,方程tan x =2⎝ ⎛⎭⎪⎫x -π2,x ∈⎣⎢⎡⎦⎥⎤-2 011π2,2 013π2的根即所作的所有切线的切点横坐标构成的数列{x n }的项也关于π2对称且成对出现,在⎣⎢⎡⎦⎥⎤-2 011π2,2 013π2内共构成1 006对,每对的和为π,因此数列{x n }的所有项的和S =1 006π.14.已知函数f (x )=ln x -px +1. (1)求函数f (x )的极值点;(2)若对任意的x >0,恒有f (x )≤0,求p 的取值范围; (3)证明:ln 222+ln 332+…+ln n n 2<2n 2-n -14(n +1)(n ∈N ,n ≥2).[解析] (1)∵f (x )=ln x -px +1, ∴f (x )的定义域为(0,+∞), f ′(x )=1-pxx ,当p ≤0时,f ′(x )>0,f (x )在(0,+∞)上无极值点;当p >0时,令f ′(x )=0, ∴x =1p ∈(0,+∞),f ′(x ),f (x )随x 的变化情况如下表:从上表可以看出:当p >0时,f (x )有唯一的极大值,当x =1p 时,f (x )=-ln p ;即函数f (x )的极值点是⎝ ⎛⎭⎪⎫-1p ,-ln p .(2)当p >0时,在x =1p 处取得极大值f ⎝ ⎛⎭⎪⎫1p =ln 1p ,此极大值也是最大值,要使f (x )≤0恒成立,只需f ⎝ ⎛⎭⎪⎫1p =ln 1p ≤0;∴p ≥1,∴p 的取值范围为[1,+∞). (3)令p =1,由(2)知,ln x -x +1≤0, ∴ln x ≤x -1,∵n ∈N ,n ≥2,ln n 2≤n 2-1,∴ln n 2n 2≤n 2-1n 2=1-1n 2,∴ln 222+ln 332+…+ln n n 2 =12⎝ ⎛⎭⎪⎫ln 2222+ln 3232+…+ln n 2n 2≤12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-122+⎝ ⎛⎭⎪⎫1-132+…+⎝ ⎛⎭⎪⎫1-1n 2 =12⎣⎢⎡⎦⎥⎤(n -1)-⎝ ⎛⎭⎪⎫122+132+…+1n 2<12(n -1)-12⎣⎢⎡⎦⎥⎤12×3+13×4+…+1n (n +1) =12(n -1)⎣⎢⎡⎦⎥⎤1-12(n +1)=2n 2-n -14(n +1)(n ∈N ,n ≥2),得证.10.(2014·银川模拟)已知函数f (x )=ax +bx 2+1在点M (1,f (1))处的切线方程为x -y -1=0.(1)求f (x )的解析式.(2)设函数g (x )=ln x ,证明:g (x )≥f (x )对x ∈[1,+∞)恒成立. [解析] (1)将x =1代入切线方程得f (1)=0, 又f (1)=a +b2,化简得a +b =0.① f ′(x )=a (x 2+1)-(ax +b )·2x(1+x 2)2,f ′(1)=2a -2(a +b )4=-2b 4=-b2, 由f ′(1)=1得-b2=1.② 由①②解得:a =2,b =-2, 所以f (x )=2x -2x 2+1.(2)要证ln x ≥2x -2x 2+1在[1,+∞)上恒成立,即证(x 2+1)ln x ≥2x -2在[1,+∞)上恒成立, 即证x 2ln x +ln x -2x +2≥0在[1,+∞)上恒成立. 设h (x )=x 2ln x +ln x -2x +2, h ′(x )=2x ln x +x +1x -2.∵x ≥1,∴2x ln x ≥0,x +1x ≥2,即h ′(x )≥0. ∴h (x )在[1,+∞)上单调递增,h (x )≥h (1)=0, ∴g (x )≥f (x )在x ∈[1,+∞)上恒成立.11.(2014·河北质检)已知函数f (x )=2ln x -x 2+ax (a ∈R ). (1)当a =2时,求f (x )的图象在x =1处的切线方程;(2)若函数g (x )=f (x )-ax +m 在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点,求实数m 的取值范围;(3)若函数f (x )的图象与x 轴有两个不同的交点A (x 1,0),B (x 2,0),且0<x 1<x 2,求证:f ′⎝⎛⎭⎪⎫x 1+x 22<0(其中f ′(x )是f (x )的导函数). [解析] (1)当a =2时,f (x )=2ln x -x 2+2x ,f ′(x )=2x -2x +2,切点坐标为(1,1),切线的斜率k =f ′(1)=2,则切线方程为y -1=2(x -1),即y =2x -1. (2)g (x )=2ln x -x 2+m ,则g ′(x )=2x -2x =-2(x +1)(x -1)x,∵x ∈⎣⎢⎡⎦⎥⎤1e ,e ,∴当g ′(x )=0时,x =1.当1e <x <1时,g ′(x )>0;当1<x <e 时,g ′(x )<0.故g (x )在x =1处取得极大值g (1)=m -1. 又g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2, g (e)=m +2-e 2,g (e)-g ⎝ ⎛⎭⎪⎫1e =4-e 2+1e 2<0,则g (e)<g ⎝ ⎛⎭⎪⎫1e .∴g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最小值是g (e).g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点的条件是⎩⎨⎧g (1)=m -1>0,g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2≤0,解得1<m ≤2+1e 2,∴实数m 的取值范围是⎝ ⎛⎦⎥⎤1,2+1e 2. (3)∵f (x )的图象与x 轴交于两个不同的点A (x 1,0),B (x 2,0),∴方程2ln x -x 2+ax =0的两个根为x 1,x 2,则⎩⎪⎨⎪⎧2ln x 1-x 21+ax 1=0,2ln x 2-x 22+ax 2=0,两式相减得a =(x 1+x 2)-2(ln x 1-ln x 2)x 1-x 2.又f (x )=2ln x -x 2+ax ,f ′(x )=2x -2x +a ,则f ′⎝ ⎛⎭⎪⎫x 1+x 22=4x 1+x 2-(x 1+x 2)+a =4x 1+x 2-2(ln x 1-ln x 2)x 1-x 2. 下证4x 1+x 2-2(ln x 1-ln x 2)x 1-x 2<0(*),即证明2(x 2-x 1)x 1+x 2+ln x 1x 2<0,设t =x 1x 2,∵0<x 1<x 2,∴0<t <1,即证明u (t )=2(1-t )t +1+ln t <0在0<t <1上恒成立.∵u ′(t )=-2(t +1)-2(1-t )(t +1)2+1t =1t -4(t +1)2=(t -1)2t (t +1)2,又0<t <1,∴u ′(t )>0, ∴u (t )在(0,1)上是增函数,则u (t )<u (1)=0,从而知2(x 2-x 1)x 1+x 2+ln x 1x 2<0,故(*)式成立,即f ′⎝ ⎛⎭⎪⎫x 1+x 22<0成立. 12.(2014·潍坊模拟)已知函数f (x )=ax 2+x ,g (x )=ln(x +1). (1)若a =1,求F (x )=g (x )-f (x )在(-1,+∞)上的最大值.(2)利用(1)的结论证明:对任意的正整数n ,不等式2+34+49+…+n +1n 2>ln(n +1)都成立.(3)是否存在实数a (a >0),使得方程2g (x -1)x =f ′(x )-(4a -1)在区间⎝ ⎛⎭⎪⎫1e ,e 内有且只有两个不相等的实数根?若存在,请求出a 的取值范围;若不存在,请说明理由.[解析] (1)F ′(x )=1x +1-2x -1=-x (2x +3)x +1,当x ∈(-1,0)时,F ′(x )>0, x ∈(0,+∞)时,F ′(x )<0,∴x =0是F (x )在(-1,+∞)上唯一的极大值点, 从而当x =0时,F (x )取得最大值 F (0)=0. (2)由(1)知∀x ∈(0,+∞),F (x )<0, 即ln(x +1)<x 2+x , 令x =1n 得ln ⎝ ⎛⎭⎪⎫1n +1<1n 2+1n ,即ln(n +1)-ln n <n +1n 2, ∴ln 2-ln 1<2,ln 3-ln 2<34, ……ln(n +1)-ln n <n +1n 2,∴ln(n +1)-ln 1<2+34+49+…+n +1n 2, 即2+34+49+…+n +1n 2>ln(n +1).(3)把方程2g (x -1)x =f ′(x )-(4a -1)整理为ax 2+(1-2a )x -ln x =0.设H (x )=ax 2+(1-2a )x -ln x (x >0),原方程在区间⎝ ⎛⎭⎪⎫1e ,e 内有且只有两个不相等的实数根,即函数H (x )在区间⎝ ⎛⎭⎪⎫1e ,e 内有且只有两个零点. H ′(x )=2ax +(1-2a )-1x =2ax 2+(1-2a )x -1x=(2ax +1)(x -1)x,令H ′(x )=0,因为a >0,解得x =1或x =12a (舍), 当x ∈(0,1)时,H ′(x )<0,H (x )是减函数;当x ∈(1,+∞)时,H ′(x )>0,H (x )是增函数,H (x )在⎝ ⎛⎭⎪⎫1e ,e 内有且只有两个不相等的零点,只需⎩⎪⎨⎪⎧H ⎝ ⎛⎭⎪⎫1e >0,H (x )min<0,H (e )>0,即⎩⎪⎨⎪⎧a e 2+1-2ae +1=(1-2a )e +a +e 2e 2>0,H (1)=a +(1-2a )=1-a <0,a e 2+(1-2a )e -1=(e 2-2e )a +(e -1)>0,∴⎩⎪⎨⎪⎧a <e 2+e2e -1,a >1,a >1-e e 2-2e,解得1<a <e 2+e 2e -1,所以a 的取值范围是⎝ ⎛⎭⎪⎪⎫1,e 2+e 2e -1. 13.(14届衡水中学期中)已知函数f (x )=a ln x +1x -1(a ≠0)在⎝ ⎛⎭⎪⎫0,12内有极值.(1)求实数a 的取值范围;(2)若x 1∈⎝ ⎛⎭⎪⎫0,12,x 2∈(2,+∞)且a ∈⎣⎢⎡⎦⎥⎤12,2时,求证:f (x 2)-f (x 1)≥ln 2+34.[解析] (1)由f (x )=a ln x +1x -1(a ≠0),得 f ′(x )=ax 2-(2a +1)x +ax (x -1)2,∵a ≠0,令g (x )=x 2-⎝ ⎛⎭⎪⎫2+1a x +1, ∴g (0)=1>0.令g ⎝ ⎛⎭⎪⎫12<0或⎩⎪⎨⎪⎧0<1+12a <12,Δ=(2a +1)2-4a 2>0,g ⎝ ⎛⎭⎪⎫12>0,则0<a <2.即a 的取值范围是(0,2).(2)由(1)得:f ′(x )=ax 2-(2a +1)x +ax (x -1)2,设ax 2-(2a +1)x +a =0(0<a <2)的两根为α,β,则⎩⎨⎧α+β=2+1a ,α·β=1解得0<α<12<2<β.当x ∈(0,α)和(β,+∞)时, f ′(x )=ax 2-(2a +1)x +ax (x -1)2>0,函数f (x )单调递增;当x ∈⎝ ⎛⎭⎪⎫α,12和(2,β)时,f ′(x )=ax 2-(2a +1)x +ax (x -1)2<0,函数f (x )单调递减,则f (x 1)≤f (α),f (x 2)≥f (β), 则f (x 2)-f (x 1)≥f (β)-f (α)=a ln β+1β-1-a ln α-1α-1=a ln βα+α-βαβ-(α+β)+1=a ⎝ ⎛⎭⎪⎫ln β2+β-1β⎝ ⎛⎭⎪⎫利用α+β=2+1a ,α·β=1 令h (x )=ln x 2+x -1x ,x >2则 h ′(x )=(x +1)2x 2>0,则函数h (x )单调递增,h (x )≥h (2)=2ln 2+32, ∴ln β2+β-1β≥2ln 2+32>0. ∵a ∈⎣⎢⎡⎭⎪⎫12,2,则a ⎝ ⎛⎭⎪⎫ln β2+β-1β≥ln 2+34,∴f (x 1)-f (x 2)≥ln 2+34.。
函数与导数经典例题--高考压轴题(含答案)

函数与导数1. 已知函数32()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间;(Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点.【解析】(19)本小题主要考查导数的几何意义、利用导数研究函数的单调性、曲线的切线方程、函数的零点、解不等式等基础知识,考查运算能力及分类讨论的思想方法,满分14分。
(Ⅰ)解:当1t =时,322()436,(0)0,()1266f x x x x f f x x x '=+-==+-(0) 6.f '=-所以曲线()y f x =在点(0,(0))f 处的切线方程为6.y x =-(Ⅱ)解:22()1266f x x tx t '=+-,令()0f x '=,解得.2t x t x =-=或因为0t ≠,以下分两种情况讨论:(1)若0,,2tt t x <<-则当变化时,(),()f x f x '的变化情况如下表: x,2t ⎛⎫-∞ ⎪⎝⎭,2t t ⎛⎫- ⎪⎝⎭(),t -+∞()f x '+ - + ()f x所以,()f x 的单调递增区间是(),,,;()2t t f x ⎛⎫-∞-+∞ ⎪⎝⎭的单调递减区间是,2t t ⎛⎫- ⎪⎝⎭。
(2)若0,2tt t >-<则,当x 变化时,(),()f x f x '的变化情况如下表: x(),t -∞,2t t ⎛⎫- ⎪⎝⎭,2t ⎛⎫+∞ ⎪⎝⎭()f x ' + - + ()f x所以,()f x 的单调递增区间是(),,,;()2t t f x ⎛⎫-∞-+∞⎪⎝⎭的单调递减区间是,.2t t ⎛⎫- ⎪⎝⎭(Ⅲ)证明:由(Ⅱ)可知,当0t >时,()f x 在0,2t ⎛⎫ ⎪⎝⎭内的单调递减,在,2t ⎛⎫+∞⎪⎝⎭内单调递增,以下分两种情况讨论: (1)当1,22tt ≥≥即时,()f x 在(0,1)内单调递减, 2(0)10,(1)643644230.f t f t t =->=-++≤-⨯+⨯+<所以对任意[2,),()t f x ∈+∞在区间(0,1)内均存在零点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数压轴一.解答题(共20小题)1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数.(1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围;(2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1.2.设.(1)求证:当x≥1时,f(x)≥0恒成立;(2)讨论关于x的方程根的个数.3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).(1)当a=1时,判断g(x)=e x f(x)的单调性;(2)若函数f(x)无零点,求a的取值范围.4.已知函数.(1)求函数f(x)的单调区间;(2)若存在成立,求整数a的最小值.5.已知函数f(x)=e x﹣lnx+ax(a∈R).(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间;(Ⅱ)当a≥﹣1时,求证:f(x)>0.6.已知函数f(x)=e x﹣x2﹣ax﹣1.(Ⅰ)若f(x)在定义域内单调递增,求实数a的范围;(Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).(2)若对∀x∈(0,+∞),f(x)≥0,求实数a的取值范围.8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=.(Ⅰ)若0是函数f(x)的好点,求a;(Ⅱ)若函数f(x)不存在好点,求a的取值范围.9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).(2)若a为整数,函数f(x)恰好有两个零点,求a的值.10.已知函数f(x)=xlnx﹣ax2,a∈R.(1)若函数f(x)存在单调增区间,求实数a的取值范围;(2)若x1,x2为函数f(x)的两个不同极值点,证明x12x2>e﹣1.11.已知函数f(x)=x3﹣a(x+1)2,(2)若函数f(x)只有一个零点,求实数a的取值范围.12.已知函数.(1)当0<m<2时,证明:f(x)只有1个零点;(2)证明:曲线f(x)没有经过原点的切线.13.已知函数f(x)=4lnx+x2﹣2mx(m∈R).(2)若直线l为曲线的切线,求证:直线l与曲线不可能有2个切点.14.已知函数f(x)=(x+1)e x++2ax,a∈R(1)讨论f(x)极值点的个数(2)若x0(x0≠﹣2)是f(x)的一个极值点,且f(﹣2)>e﹣2,证明:f(x0)≤1.15.己知函数f(x)=(x﹣a)2e x+b在x=0处的切线方程为x+y﹣1=0,函数g(x)=x﹣k(lnx﹣1).(1)求函数f(x)的解析式;(2)求函数g(x)的极值;(3)设F(x)=min{f(x),g(x)}(min{p,q}表示p,q中的最小值),若F(x)在(0,+∞)上恰有三个零点,求实数k的取值范围.16.已知函数,且y=x﹣1是曲线y=f(x)的切线.(1)求实数a的值以及切点坐标;(2)求证:g(x)≥f(x).17.已知函数f(x)=x2﹣x﹣alnx,a∈R.(1)若不等式f(x)<0无解,求a的值;(2)若函数f(x)存在两个极值点x1、x2,且x1<x2,当恒成立时,求实数m的最小值.18.设a,b∈R,已知函数f(x)=alnx+x2+bx存在极大值.(Ⅰ)若a=1,求b的取值范围;(Ⅱ)求a的最大值,使得对于b的一切可能值,f(x)的极大值恒小于0.19.已知函数f(x)=x﹣1nx(1)求函数f(x)的极值;(2)设函数g(x)=xf(x).若存在区间[m,n]⊆[,+∞),使得函数g(x)在[m,n]上的值域为[k(m+2)﹣2,k(n+2)﹣2],求实数k的取值范围.20.已知a≠0,函数,且曲线y=f(x)在x=1处的切线与直线x+2y+1=0垂直.(Ⅰ)求函数在区间(0,+∞)上的极大值;(Ⅱ)求证:当x∈(0,+∞)时,导数压轴参考答案与试题解析一.解答题(共20小题)1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数.(1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围;(2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1.【解答】(1)解:依题意,g(x)=e﹣x f(x)+x2﹣x=1+alnx+x2﹣x,x>0.故,x>0.∵g(x)在[1,2]上单调递增,∴g'(x)≥0在[1,2]上恒成立,故,即a≥x(1﹣2x)在[1,2]上恒成立,根据二次函数的知识,可知:x(1﹣2x)在[1,2]上的最大值为﹣1.∴a的取值范围为[﹣1,+∞).(2)证明:由题意,f′(x)=e x(1+lnx+),x>0,a>2.设h(x)=f′(x)=e x(1+lnx+),x>0,a>2.则h′(x)=e x(1+alnx+﹣).再设H(x)=1+alnx+﹣,则H′(x)=﹣+=.∵当x>0时,y=x2﹣2x+2=(x﹣1)2+1>0恒成立,∴当x>0时,H′(x)>0恒成立.∴H(x)在(0,+∞)上单调递增.又∵当a>2时,H(1)=1+a>0,H()=1﹣aln2<0,∴根据H(x)的单调性及零点定理,可知:存在一点x2∈(,1),使得H(x2)=0.∴f′(x)在(0,x2)上单调递减,在(x2,+∞)上单调递增,在x=x2处取得极小值.∴x2=x1.即且H(x1)=0,即1+alnx1+﹣=0,即…①又∵f(x)的零点为x0,故f(x0)=0,即,即alnx0=﹣1…②由①②,得,则,又,故,即lnx0﹣lnx1>0,∴x0>x1.故得证.2.设.(1)求证:当x≥1时,f(x)≥0恒成立;(2)讨论关于x的方程根的个数.【解答】解:(1)证明:的定义域为(0,+∞).∵,∴f(x)在[1,+∞)上是单调递增函数,∴f(x)≥f(1)=0对于x∈[1,+∞)恒成立.故当x≥1时,f(x)≥0恒成立得证.(2)化简方程得2lnx=x3﹣2ex2+tx.注意到x>0,则方程可变为.令,则.当x∈(0,e)时,L′(x)>0,∴L(x)在(0,e)上为增函数;当x∈(e,+∞)时,L′(x)<0,∴L(x)在(e,+∞)上为减函数.当x=e时,.函数在同一坐标系内的大致图象如图所示:由图象可知,①当时,即时,方程无实根;②当时,即时,方程有一个实根;③当时,即时,方程有两个实根.3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).(1)当a=1时,判断g(x)=e x f(x)的单调性;(2)若函数f(x)无零点,求a的取值范围.【解答】解:(1)当a=1时,g(x)=e x f(x)=e x(﹣x2+x+1﹣e﹣x+1)=(﹣x2+x+1)e x﹣e,g′(x)=(﹣2x+1)e x+(﹣x2+x+1)e x=﹣e x(x﹣1)(x+2),∴当x∈(﹣∞,﹣2)∪(1,+∞)时,g′(x)<0,故g(x)在(﹣∞,﹣2),(1,+∞)单调递减;当x∈(﹣2,1)时,g′(x)>0,故g(x)在(﹣2,1)单调递增;(2)函数f(x)=﹣x2+ax+a﹣e﹣x+1,∴f′(x)=﹣2x+a+e﹣x+1,设h(x)=﹣2x+a+e﹣x+1,∴h′(x)=﹣2﹣e﹣x+1<0恒成立,∴h(x)在(﹣∞,+∞)上单调递减,∴存在x0∈R,使得h(x0)=0,∴当x∈(﹣∞,x0)时,h(x)=f′(x)>0,函数f(x)单调递增,∴当x∈(x0,+∞)时,h(x)=f′(x)<0,函数f(x)单调递减,∴f(x)max=f(x0)=﹣x02+ax0+a﹣,∵函数f(x)无零点,∴f(x)max=f(x0)=﹣x02+ax0+a﹣<0在R上恒成立,又∵h(x0)=﹣2x0+a+=0,即=2x0﹣a.∴f(x)max=f(x0)=﹣x02+(a﹣2)x0+2a<0在R上恒成立,∴△=(a﹣2)2﹣4•2a=a2﹣12a+4<0,解得6﹣4<a<6+4.∴a的取值范围为(6﹣4,6+4).4.已知函数.(1)求函数f(x)的单调区间;(2)若存在成立,求整数a的最小值.【解答】解:(1)由题意可知,x>0,,方程﹣x2+x﹣a=0对应的△=1﹣4a,当△=1﹣4a≤0,即时,当x∈(0,+∞)时,f'(x)≤0,∴f(x)在(0,+∞)上单调递减;…(2分)当时,方程﹣x2+x﹣a=0的两根为,且,此时,f(x)在上f'(x)>0,函数f(x)单调递增,在上f'(x)<0,函数f(x)单调递减;…(4分)当a≤0时,,,此时当,f(x)单调递增,当时,f'(x)<0,f(x)单调递减;…(6分)综上:当a≤0时,,f(x)单调递增,当时,f(x)单调递减;当时,f(x)在上单调递增,在上单调递减;当时,f(x)在(0,+∞)上单调递减;…(7分)(2)原式等价于(x﹣1)a>xlnx+2x﹣1,即存在x>1,使成立.设,x>1,则,…(9分)设h(x)=x﹣lnx﹣2,则,∴h(x)在(1,+∞)上单调递增.又h(3)=3﹣ln3﹣2=1﹣ln3<0,h(4)=4﹣ln4﹣2=2﹣2ln2>0,根据零点存在性定理,可知h(x)在(1,+∞)上有唯一零点,设该零点为x0,则x0∈(3,4),且h(x0)=x0﹣lnx0﹣2=0,即x0﹣2=lnx0,∴…(11分)由题意可知a>x0+1,又x0∈(3,4),a∈Z,∴a的最小值为5.…(12分)5.已知函数f(x)=e x﹣lnx+ax(a∈R).(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间;(Ⅱ)当a≥﹣1时,求证:f(x)>0.【解答】(Ⅰ)解:f(x)=e x﹣lnx+(﹣e+1)x;令,得x=1;当x∈(0,1)时,f′(x)<0,f(x)单调递减;当x∈(1,+∞)时,f′(x)>0,f(x)单调递增;(Ⅱ)证明:当a=﹣1时,f(x)=e x﹣lnx﹣x(x>0);令,则;∴h(x)在(0,+∞)上单调递增;又,h(1)=e﹣2>0;∴∃,使得,即;∴函数f(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增;∴函数f(x)的最小值为;又函数是单调减函数;∴f(x0)>1+1﹣ln1﹣1=1>0,即e x﹣lnx﹣x>0恒成立;又e x>x>lnx;∴e x﹣lnx>0;又a≥﹣1,x>0;∴ax≥﹣x;∴f(x)=e x﹣lnx+ax≥e x﹣lnx﹣x>0,得证.6.已知函数f(x)=e x﹣x2﹣ax﹣1.(Ⅰ)若f(x)在定义域内单调递增,求实数a的范围;(Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.【解答】解:(1)由条件得,f'(x)=e x﹣2x﹣a≥0,得a≤e x﹣2x,令h(x)=e x﹣2x,h'(x)=e x﹣2=0.得x=ln2,当x<ln2时,h'(x)<0,当x>ln2时,h'(x)>0.故当x=ln2时,h(x)=h(ln2)=2﹣2ln2.min∴a≤2﹣2ln2.(2)g(x)=xe x﹣ax2﹣e x,g'(x)=x(e x﹣2a).当a≤0时,由x>0,g'(x)>0且x<0,g'(x)<0,故0是g(x)唯一的极小值点;令g'(x)=0得x1=0,x2=ln(2a).当a=时,x1=x2,g'(x)≥0恒成立,g(x)无极值点.故a∈.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).(1)讨论函数f(x)的单调性;(2)若对∀x∈(0,+∞),f(x)≥0,求实数a的取值范围.【解答】解:(1)由题意知,f(x)的定义域为(0,+∞),由函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R)得f'(x)=1﹣﹣2a(x﹣1)=;①当a≤0时,令f'(x)>0,可得x>1,令f'(x)<0,可得0<x<1;故函数f(x)的增区间为(1,+∞),减区间为(0,1).②当0<a<时,,令f'(x)>0,可得,令f'(x)<0,可得0<x <1或x>,故f(x)的增区间为(1,),减区间为(0,1),();③当a=时,f'(x)=≤0,故函数f(x)的减区间为(0,+∞);④当a>时,0<<1,令f'(x)>0,可得;令f'(x)<0,可得或x>1.故f(x)的增区间为(),减区间为(0,),(1,+∞).综上所述:当a≤0时,f(x)在(0,1)上为减函数,在(1,+∞)上为增函数;当0<a<时,f(x)在(0,1),()上为减函数,在(1,)上为增函数;当a=时,f(x)在(0,+∞)上为减函数;当a>时,f(x)在(0,),(1,+∞)上为减函数.在(,1)上为增函数.(2)由(1)可知:①当a≤0时,f(x)min=f(1)=0,此时,f(x)≥0;②当0<a<时,f(1)=0,当x∈(,+∞)时,lnx>0,ax>a+1,可得f(x)=x﹣1﹣lnx﹣a(x﹣1)2<x﹣1﹣a(x﹣1)2=(x﹣1)(a+1﹣ax)<0,不合题意;③当a=时,f(1)=0,由f(x)的单调性可知,当x∈(1,+∞)时,f(x)<0,不合题意;④当a>时,f(1)=0,由f(x)的单调性可知,当x∈(,1)时,f(x)<0,不合题意.综上可知:所求实数a的取值范围为:(﹣∞,0].8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=.(Ⅰ)若0是函数f(x)的好点,求a;(Ⅱ)若函数f(x)不存在好点,求a的取值范围.【解答】(Ⅰ)解:f′(x)=e2x﹣ae x﹣(a2﹣1)x;由f′(x)=x,得e2x﹣ae x﹣(a2﹣1)x=x,即e2x﹣ae x﹣a2x=0;∵0是函数f(x)得好点;∴1﹣a=0,∴a=1;(Ⅱ)解:令g(x)=e2x﹣ae x﹣a2x,问题转化为讨论函数g(x)的零点问题;∵当x→﹣∞时,g(x)→+∞,若函数f(x)不存在好点,等价于g(x)没有零点,即g(x)的最小值大于零;g′(x)=2e2x﹣ae x﹣a2=(2e x+a)(e x﹣a);①若a=0,则g(x)=e2x>0,g(x)无零点,f(x)无好点;②若a>0,则由g′(x)=0得x=lna;易知;当且仅当﹣a2lna>0,即0<a<1时,g(x)>0;∴g(x)无零点,f(x)无好点;③若a<0,则由g′(x)=0得;故;当且仅当,即时,g(x)>0;∴g(x)无零点,f(x)无好点;综上,a的取值范围是.9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).(1)讨论函数f(x)的单调性;(2)若a为整数,函数f(x)恰好有两个零点,求a的值.【解答】解(1)由题意x>0,f′(x)==①若a≥0,对x>0,f′(x)>0恒成立,f(x)在(0,+∞)单调递增;②若a<0,则﹣>0,当0<x<﹣时,f′(x)>0,x>时,f′(x)<0,所以f(x)在(0,﹣)单调递增,在(﹣,+∞)单调递减,(2)由(1)知,若函数f(x)恰好有两个零点,则a<0,且f(x)在x=处有极大值,也是最大值;f(x)max=f()>0,∵f()=ln(﹣)+a(﹣)2+(a+2)(﹣)+2=ln(﹣)+(﹣)+1,又∵a为整数且a<0,∴当a=﹣1时,且f(x)max=f()=0+2=2>0,当a=﹣2时,且f(x)max=f()=>0,当a=﹣3时,且f(x)max=f()=ln+1>0,当a=﹣4时,且f(x)max=f()=<0,故a的值为:﹣1,﹣2,﹣3.10.已知函数f(x)=xlnx﹣ax2,a∈R.(1)若函数f(x)存在单调增区间,求实数a的取值范围;(2)若x1,x2为函数f(x)的两个不同极值点,证明x12x2>e﹣1.【解答】解:(1)∵函数f(x)=xlnx﹣ax2,a∈R.∴f′(x)=lnx+1﹣2ax,∵函数f(x)存在单调增区间∴只需f'(x)=1+lnx﹣2ax>0有解;即有解.令g(x)=,g′(x)=,当x∈(0,1)时g′(x)>0当x∈(1,+∞)时g′(x)<0当x=1时g(x)有最大值,g(1)=1.故2a<g(1)=1∴a时,函数f(x)存在增区间.证明:(2)要证明>e﹣1,即证明2lnx1+lnx2>﹣1,∵f′(x)=1+lnx﹣2ax,∴x1,x2是方程lnx=2ax﹣1的两个根,即,lnx1=2ax1﹣1 ①,lnx2=2ax2﹣1 ②,即证明2a(2x1+x2)>2.∵①﹣②,得:2a=,即证(2x1+x2)>2,不妨设x1>x2,则t=>1,则证(2t+1)>2,∴lnt﹣>0,设g(t)=lnt﹣,则g′(t)═﹣=;∵t>1∴4(t+)2﹣6>4(1+)2﹣6=3>0,∴g'(x)>0;∴g(t)在(1,+∞)单调递增,g(t)>g(1)=0,故>e﹣1.11.已知函数f(x)=x3﹣a(x+1)2,(1)讨论函数f(x)的单调区间;(2)若函数f(x)只有一个零点,求实数a的取值范围.【解答】解(1)函数的定义域为R,f'(x)=x2﹣2a(x+1)=x2﹣2ax﹣2a,△=4a2+8a=4a(a+2),1)△≤0时,﹣2≤a≤0时,f'(x)≥0,∴f(x)在R上递增…(1分)2)当△>0时,即a<﹣2或a>0时,令f'(x)=0,∴x2﹣2ax﹣2a=0,解得,;∴f(x)在(﹣∞,a﹣)递增,递减,递增;(2)由(1)知①△≤0时,﹣2≤a≤0时,当f(x)在R上递增.f(﹣1)=<0,f(1)=﹣4a>0;∴存在唯一零点x0∈(﹣1,1);②当a<﹣2或a>0时,1)a<﹣2时,∵=a+<a+|a+1|;∵a<﹣2,∴a+|a+1|=﹣1,即,x2<﹣1,∴x1<x2<﹣1;∵f(﹣1)=<0,f(0)=﹣a>0,∴存在零点x0∈(﹣1,0).又∵f(x)在(﹣∞,x1)递增,(x1,x2)递减,(x2,+∞)递增;∴f(x)在x=x1处有极大值,∴f(x1)<0,,(*)又∵,将a(x1+1)=代入(*)得;,得,∴x1>﹣3,且x1≠0;∴﹣3<x1<﹣1,即﹣3<a﹣<﹣1;,解得;2)当a>0时,∵x1•x2=﹣2a<0,∴x1<0<x2;当x∈(﹣∞,0)时,又∵,﹣a(x+1)2<0,∴f(x)=,又∵f(x)在(﹣∞,x1)递增,(x1,x2)递减,(x2,+∞)递增;∵f(0)=﹣a<0,∴f(x2)<f(0)<0,又∵3a+2>2,而f(3a+2)==3a+>0,∴存在零点x0∈(x2,3a+2);综上,a∈().12.已知函数.(1)当0<m<2时,证明:f(x)只有1个零点;(2)证明:曲线f(x)没有经过原点的切线.【解答】(1)证明:f(x)的定义域为(0,+∞);;令g(x)=x2﹣mx+1,则△=m2﹣4;∵0<m<2;∴△<0;∴g(x)>0在x∈(0,+∞)上恒成立;∴f(x)在(0,+∞)上单调递增;∴f(x)至多有一个零点;∵;∴当0<x<2m且x<1时,f(x)<0;当x>2m且x>1时,f(x)>0;∴f(x)有一个零点;∴当0<m<2时,f(x)只有一个零点;(2)证明:假设曲线y=f(x)在点(x,f(x))(x>0)处的切线经过原点,则有;即,化简得;令,则;令h′(x)=0,解得x=1;当0<x<1时,h′(x)<0,h(x)单调递减;当x>1时,h′(x)>0,h(x)单调递增;∴;∴与矛盾;∴曲线y=f(x)没有经过原点的切线.13.已知函数f(x)=4lnx+x2﹣2mx(m∈R).(1)求函数f(x)的单调区间;(2)若直线l为曲线的切线,求证:直线l与曲线不可能有2个切点.【解答】解:(1)由题意,,令y=x2﹣mx+2,则△=m2﹣8,①若,则△≤0,则f'(x)≥0,故函数f(x)在(0,+∞)上单调递增;②若或,y=x2﹣mx+2有两个零点x1,x2,则x1x2=2>0,其中,;(i)若,则x1<0,x2<0,此时f'(x)>0,故函数f(x)在(0,+∞)上单调递增;(ii)若,则x1>0,x2>0,此时当x∈(0,x1)时,f'(x)>0,当x∈(x1,x2)时,f'(x)<0,当x∈(x2,+∞)时,f'(x)>0,故函数f(x)在(0,x1)和(x2,+∞)上单调递增,在(x1,x2)上单调递减;综上所述,可知:①当时,函数f(x)在(0,+∞)上单调递增;②当时,函数f(x)在(0,x1)和(x2,+∞)上单调递增,在(x1,x2)上单调递减.(2)证明:(反证法)假设存在一条直线与函数的图象有两个不同的切点T1(x1,y1),T2(x2,y2),不妨令0<x1<x2,则T1处切线l1的方程为:,T2处切线l2的方程为:.∵切线l1,l2为同一直线,所以有.即,整理得.消去x2得,.①令,由0<x1<x2与x1x2=2,得t∈(0,1),记,则,所以p(t)为(0,1)上的单调减函数,所以p(t)>p(1)=0.从而①式不可能成立,所以假设不成立,即若直线l为曲线的切线,则直线l与曲线不可能有2个切点.14.已知函数f(x)=(x+1)e x++2ax,a∈R(1)讨论f(x)极值点的个数(2)若x0(x0≠﹣2)是f(x)的一个极值点,且f(﹣2)>e﹣2,证明:f(x0)≤1.【解答】(1)解:f(x)的定义域为R,f′(x)=(x+2)(e x+a);若a≥0,则e x+a>0;∴当x∈(﹣∞,﹣2)时,f′(x)<0,f(x)单调递减;当x∈(﹣2,+∞)时,f′(x)>0,f(x)单调递增;∴x=﹣2是f(x)唯一的极小值点,无极大值点,故此时f(x)有1个极值点;若a<0,令f′(x)=(x+2)(e x+a)=0,则x1=﹣2,x2=ln(﹣a);当a<﹣e﹣2时,x1<x2,可知当x∈(﹣∞,x1)∪(x2.+∞)时,f′(x)>0;当x∈(x1,x2)时,f′(x)<0;∴x1,x2分别是f(x)的极大值点和极小值点,故此时f(x)有2个极值点;当a=﹣e﹣2时,x1=x2,f′(x)≥0,此时f(x)在R上单调递增,无极值点;当﹣e﹣2<a<0时,x1>x2,同理可知,f(x)有2个极值点;综上,当a=﹣e﹣2时,f(x)无极值点;当a≥0时,f(x)有1个极值点;当a<﹣e﹣2或﹣e﹣2<a<0时,f(x)有2个极值点.(2)证明:若x0(x0≠﹣2)是f(x)的一个极值点,由(1)知a∈(﹣∞,﹣e﹣2)∪(﹣e﹣2,0);又f(﹣2)=﹣e﹣2﹣2a>e﹣2;∴a∈(﹣∞,﹣e﹣2);则x0=ln(﹣a);∴;令t=ln(﹣a)∈(﹣2,+∞),则a=﹣e t;∴;∴;又∵t∈(﹣2,+∞);∴t+4>0;令g′(t)=0,得t=0;当t∈(﹣2,0)时,g′(t)>0,g(t)单调递增;当t∈(0,+∞)时,g′(t)<0,g(t)单调递减;∴t=0是g(t)唯一得极大值点,也是最大值点,即g(t)≤g(0)=1;∴f[ln(﹣a)]≤1,即f(x0)≤1.15.己知函数f(x)=(x﹣a)2e x+b在x=0处的切线方程为x+y﹣1=0,函数g(x)=x ﹣k(lnx﹣1).(1)求函数f(x)的解析式;(2)求函数g(x)的极值;(3)设F(x)=min{f(x),g(x)}(min{p,q}表示p,q中的最小值),若F(x)在(0,+∞)上恰有三个零点,求实数k的取值范围.【解答】解:(1)f'(x)=[x2+(2﹣2a)x+a2﹣2a]e x,因为f(x)在x=0处的切线方程为x+y﹣1=0,所以,解得,所以f(x)=(x﹣1)2e x.(2)g(x)的定义域为(0,+∞),,①若k≤0时,则g'(x)>0在(0,+∞)上恒成立,所以g(x)在(0,+∞)上单调递增,无极值.②若k>0时,则当0<x<k时,g'(x)<0,g(x)在(0,k)上单调递减;当x>k时,g'(x)>0,g(x)在(k,+∞)上单调递增;所以当x=k时,g(x)有极小值2k﹣klnk,无极大值.(3)因为f(x)=0仅有一个零点1,且f(x)≥0恒成立,所以g(x)在(0,+∞)上有仅两个不等于1的零点.①当k≤0时,由(2)知,g(x)在(0,+∞)上单调递增,g(x)在(0,+∞)上至多一个零点,不合题意,舍去,②当0<k<e2时,g(x)min=g(k)=k(2﹣lnk)>0,g(x)在(0,+∞)无零点,③当k=e2时,g(x)≥0,当且仅当x=e2等号成立,g(x)在(0,+∞)仅一个零点,④当k>e2时,g(k)=k(2﹣lnk)<0,g(e)=e>0,所以g(k)•g(e)<0,又g(x)图象不间断,g(x)在(0,k)上单调递减,故存在x1∈(e,k),使g(x1)=0,又g(k2)=k(k﹣2lnk+1),下面证明,当x>e2时,h(x)=x﹣2lnx+1>0>0,h(x)在(e2,+∞)上单调递增h(x)>h(e2)=e2﹣3>0,所以g(k2)=k•(k﹣2lnk+1)>0,g(k)•g(k2)<0,又g(x)图象在(0,+∞)上不间断,g(x)在(k,+∞)上单调递增,故存在,使g(x2)=0,综上可知,满足题意的k的范围是(e2,+∞).16.已知函数,且y=x﹣1是曲线y=f(x)的切线.(1)求实数a的值以及切点坐标;(2)求证:g(x)≥f(x).【解答】解:(1)设切点为(x0,),则切线为y﹣=(x﹣x0),即y=x+;所以,消去a得:x0﹣1+lnx0﹣2x0lnx0=0,记m(t)=t﹣1+lnt﹣2tlnt(t>0),则m′(t)=,显然m′(t)单调递减,且m′(1)=0,所以t∈(0,1)时,m′(t)>0,m(t)单调递增,t∈(1,+∞)时,m′(t)<0,m(t)单调递减,故m(t)当且仅当t=1时取到最大值,又m(1)=0,所以方程x0﹣1+lnx0﹣2x0lnx0=0有唯一解x0=1,此时a=1,所以a=1,切点为(1,0).(2)证明:由(1)得f(x)=,g(x)=e x﹣1﹣1,记F(x)=e x﹣1﹣x(x>0),则F′(x)=e x﹣1﹣1,当x∈(1,+∞)时,F′(x)>0,F(x)单调递增;当x∈(0,1)时,F′(x)<0,F(x)单调递减,所以F(x)≥F(1)=1﹣1=0,所以e x﹣1≥x,即g(x)≥x﹣1①,记G(x)=x2﹣x﹣lnx(x>0),则G′(x)=2x﹣1﹣==,所以x∈(0,1)时,G′(x)<0,G(x)单调递减,x∈(1,+∞)时,G′(x)>0,G(x)单调递增,所以G(x)≥G(1)=0,即x2﹣x≥lnx,所以x﹣1≥,即x﹣1≥f(x)②,由①②得g(x)≥f(x).17.已知函数f(x)=x2﹣x﹣alnx,a∈R.(1)若不等式f(x)<0无解,求a的值;(2)若函数f(x)存在两个极值点x1、x2,且x1<x2,当恒成立时,求实数m的最小值.【解答】解:(1)f(x)=x2﹣x﹣alnx(x>0),则f'(x)=,f(1)=0,∵不等式f(x)<0无解,∴f(x)极小值=f(1),∴f'(1)=2﹣1﹣a=0,∴a=1;(2)∵函数f(x)存在两个极值点x1、x2,且x1<x2,∴f'(x)在(0,+∞)上有两个不相等的实根,即x1、x2是方程2x2﹣x﹣a=0的两个不相等的正实根,∴,.令,则0<t<1,∴==﹣==,令g(t)=(0<t<1),则g'(t)=,∴g(t)在(0,1)上单调递增,∴g(t)<g(1)=0.∵当恒成立,∴m>g(t)在(0,1)上恒成立,∴m≥g(1)=0,∴实数m的最小值为0.18.设a,b∈R,已知函数f(x)=alnx+x2+bx存在极大值.(Ⅰ)若a=1,求b的取值范围;(Ⅱ)求a的最大值,使得对于b的一切可能值,f(x)的极大值恒小于0.【解答】解:(Ⅰ)当a=1时,f'(x)=(x>0),由f(x)存在极大值,可知方程2x2+bx+1=0有两个不等的正根,∴解得b<﹣2.故b的取值范围是(﹣∞,﹣2).(Ⅱ)f′(x)=(x>0).由f(x)存在极大值,可知方程:2x2+bx+a=0有两个不等的正根,设为x1<x2,由x1x2=>0,可得:0<x1<.可得表格:x(0,x1)x1(x1,x2)x2(x2,+∞)f′(x)+0﹣0+f(x)单调递增极大值单调递减极小值单调递增∴f(x)的极大值为f(x1)=alnx1++bx1.2+bx1+a=0,解得:bx1=﹣2﹣a,∴f(x1)=alnx1﹣﹣a.构造函数:g(x)=alnx﹣x2﹣a.当:0<x<.g′(x)=>0,∴g(x)在(0,]上单调递增.可得:g(x1)<g()=(ln﹣3).当0<a≤2e3时,f(x)极大=f(x1)=g(x1)<g()≤0.当a>2e3时,取b=﹣2(+﹣),即x1=,x2=.此时f(x)极大=f()=﹣e3>0,不符合题意.∴a的最大值为2e3.19.已知函数f(x)=x﹣1nx(1)求函数f(x)的极值;(2)设函数g(x)=xf(x).若存在区间[m,n]⊆[,+∞),使得函数g(x)在[m,n]上的值域为[k(m+2)﹣2,k(n+2)﹣2],求实数k的取值范围.【解答】解:(1)f(x)=x﹣1nx,(x∈(0,+∞)).f′(x)=1﹣=,可得:x=1时,函数f(x)取得极小值f(1)=1.(2)g(x)=xf(x)=x2﹣xlnx.(x∈[,+∞)).g′(x)=2x﹣lnx﹣1=h(x),h′(x)=2﹣=≥0,∴函数h(x)在x∈[,+∞)上单调递增,h()=1+ln2﹣1=ln2>0.∴g′(x)>0.∴函数g(x)在x∈[,+∞)上单调递增.∴函数g(x)的值域为:[g(m),g(n)].已知函数g(x)在[m,n]上的值域为[k(m+2)﹣2,k(n+2)﹣2],∴m2﹣mlnm=k(m+2)﹣2,n2﹣nlnn=k(n+2)﹣2,≤m<n.令u(x)=x2﹣xlnx﹣k(x+2)+2.x∈[,+∞).则u(x)在x∈[,+∞)存在两个不同的实数根.化为:k=,x∈[,+∞).令u(x)=,x∈[,+∞).u′(x)=.u′(1)=0.令v(x)=x2+3x﹣2lnx﹣4,x∈[,+∞).v′(x)=2x+3﹣=≥0,∴函数v(x)在x∈[,+∞)上单调递增.∴x∈[,1),u′(x)<0;x∈(1,+∞),u′(x)>0.∴x=1时,u(x)取得极小值即最小值,u(1)=1.又u()==.x→+∞时,u(x)→+∞.∴1<k≤时,函数y=k与u(x)的图象有两个交点.∴实数k的取值范围是(1,].20.已知a≠0,函数,且曲线y=f(x)在x=1处的切线与直线x+2y+1=0垂直.(Ⅰ)求函数在区间(0,+∞)上的极大值;(Ⅱ)求证:当x∈(0,+∞)时,【解答】解:(Ⅰ)由题意得直线x+2y+1=0的斜率为﹣,即曲线y=f(x)在x=1处的切线斜率为2,f'(x)=,∴f'(1)=1+a=2,得a=1.∴f(x)=,=,∴g'(x)=,当x=e时,g'(x)=0;当0<x<e时,g'(x)>0,当x>e时,g'(x)<0;∴函数在(0,e)单调递增,在(e,+∞)单调递减,∴g(x)在(0,+∞)上有唯一的极大值g(e)=;(Ⅱ)由题意得≤,即证明,设φ(x)=,φ'(x)=,当0<x<e时,φ'(x)>0,∴函数φ(x)在(0,e)单调递增.当x>e,φ'(x)<0.∴函数在(e,+∞)上单调递减,当x=e时,φ(x)取最大值φ(e)=,即φ(x)≤,再令h(x)=,则h(x)=()≥,∴φ(x)<h(x),即e x f(x)<.。