(完整word版)2016全国三卷理科数学高考真题及答案.docx

合集下载

2016年全国高考理科数学试题及答案-全国卷3

2016年全国高考理科数学试题及答案-全国卷3

绝密★启封并使用完毕前试题类型:2016 年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷 1 至3 页,第Ⅱ卷 3 至5 页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S=S x P(x 2)(x 3) 0 ,T x x 0 ,则S I T=(A) [2 ,3] (B) (- ,2] U [3,+ )(C) [3,+ )(D) (0,2] U [3,+ )4i(2)若z=1+2i ,则zz 1(A)1 (B) -1 (C) i (D)-i(3)已知向量u uvBA1 2( , )2 2,u u u vBC3 1( , ),2 2则ABC=(A)30 0(B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低0C,B 点表示四月的平均最低气气温的雷达图。

图中 A 点表示十月的平均最高气温约为150C。

下面叙述不正确的是温约为 51(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同(D) 平均气温高于20 C 的月份有 5 个(5)若tan 34 ,则2cos 2sin 2(A) 6425(B)4825(C) 1 (D)16254 3 1(6)已知 3a 2 ,4b 4 ,3c 25 ,则(A )b a c (B)a b c(C)b c a(D)c a b(7)执行下图的程序框图,如果输入的a=4,b=6,那么输出的n=2(A )3 (B)4 (C)5 (D)6(8)在△ABC中,πB = ,BC 边上的高等于413BC ,则cos A=(A)31010 (B)1010(C)10- (D)10-3 1010(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18 36 5(B)54 18 5(C)90(D)81(10) 在封闭的直三棱柱ABC -A1B1C1 内有一个体积为V 的球,若AB BC,AB=6,BC =8,AA 1=3,则V 的最大值是(A )4π(B)92 (C)6π(D)323(11)已知O 为坐标原点, F 是椭圆C:2 2x y2 2 1( 0)a ba b的左焦点,A,B 分别为 C的左,右顶点.P 为C 上一点,且PF⊥x 轴.过点 A 的直线l 与线段PF 交于点M,与y 轴交于点 E.若直线BM 经过OE 的中点,则 C 的离心率为(A )13 (B)12(C)23(D)343(12)定义“规范01 数列”{a n} 如下:{ a n} 共有2m 项,其中m 项为0,m 项为1,且对任意k 2m ,a1,a2, ,a k 中0 的个数不少于 1 的个数.若m=4,则不同的“规范01 数列”共有(A )18 个(B)16 个(C)14 个(D)12 个第II 卷本卷包括必考题和选考题两部分. 第( 13) 题~第( 21) 题为必考题,每个试题考生都必须作答. 第( 22) 题~第( 24) 题为选考题,考生根据要求作答.二、填空题:本大题共 3 小题,每小题 5 分(13)若x,y 满足约束条件则z=x+y 的最大值为_____________.(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到。

2016年高考理科数学全国Ⅲ卷试题及答案

2016年高考理科数学全国Ⅲ卷试题及答案

绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >P ,则S I T =(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) (2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i (3)已知向量12(,)22BA =uu v,31(,),22BC =uu u v 则∠ABC= (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。

下面叙述不正确的是学.科.网(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个 (5)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A = (A )31010 (B )1010 (C )1010- (D )31010-(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,学.科.网则该多面体的表面积为(A )18365+ (B )54185+ (C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是(A )4π (B )92π(C )6π (D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,学科&网A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,ka a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有 (A )18个 (B )16个 (C )14个 (D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分 (13)若x ,y 满足约束条件则z=x+y 的最大值为_____________.(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到。

(完整word版)2016年全国高考理科数学试题及答案,推荐文档

(完整word版)2016年全国高考理科数学试题及答案,推荐文档

2016年普通高等学校招生全国统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共24题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生务必将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。

2. 选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4. 作图可先使用铅笔画出,确定后必须用墨色笔迹的签字笔描黑。

5. 保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知在复平面内对应的点在第四象限,则实数m 的取值范围是(A ))1,3(-(B ))3,1(-(C )),1(+∞(D )(2)已知集合,,则(A )(B )(C )(D )(3)已知向量,且,则m =(A )-8 (B )-6 (C )6 (D )8 (4)圆的圆心到直线的距离为1,则a=(A )34-(B )43- (C )3 (D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π (7)若将函数y =2sin 2x 的图像向左平移12π个单位长度,则平移后图象的对称轴为 (A )x =62k ππ- (k ∈Z ) (B )x=62ππ+k (k ∈Z ) (C )x=122k ππ- (k ∈Z ) (D )x =122k ππ+ (k ∈Z ) (8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图,执行该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5,则输出的s =(A )7 (B )12 (C )17 (D )34 (9)若cos(4π–α)= 53,则sin 2α= (A )257(B )51(C )51- (D )257- (10)从区间随机抽取2n 个数,,…,,,,…,,构成n 个数对,,…,,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率 的近似值为(A ) (B ) (C ) (D )(11)已知F 1,F 2是双曲线E 的左,右焦点,点M 在E 上,M F 1与 轴垂直,sin,则E 的离心率为(A ) (B ) (C ) (D )2(12)已知函数))((R x x f ∈满足)(2)(x f x f -=-,若函数xx y 1+=与)(x f y =图像的交点为)(1,1y x ,),(22y x ···,(m m y x ,),则=+∑=mi i iy x1)((A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分。

2016年全国卷3理科数学理科综合试题及答案

2016年全国卷3理科数学理科综合试题及答案

2016年全国卷3理科数学理科综合试题及答案绝密★启用前2016年普通高等学校招生全国统一考试 全国卷3理科数学注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明1.设集合S={}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则S I T= (A )[2,3] (B )(-∞ ,2]U [3,+∞)(C )[3,+∞) (D )(0,2]U [3,+∞) 【答案】D 【解析】试题分析:由(2)(3)0x x --≥解得3x ≥或2x ≤,所以{|23}S x x x =≤≥或,所以{|023}S T x x x =<≤≥I 或,故选D .考点:1、不等式的解法;2、集合的交集运算.2.若12z i =+,则41i zz =-(A )1 (B ) -1 (C )i (D )-i 【答案】C 【解析】试题分析:44(12)(12)11i i i i i zz ==+---,故选C . 考点:1、复数的运算;2、共轭复数. 3.已知向量1(,22BA =uu v,1),22BC =uu u v 则∠ABC=(A )300 (B ) 450 (C )600 (D )1200 【答案】A 【解析】 试题分析:由题意,得112222cos 11||||BA BC ABC BA BC ⨯+⋅∠===⨯u u u r u u u r u u ur u u u r ,所以30ABC ∠=︒,故选A .考点:向量夹角公式.4.某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。

下面叙述不正确的是(A)各月的平均最低气温都在00C以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均气温高于200C的月份有5个【答案】D【解析】试题分析:由图可知0C︒均在虚线框内,所以各月的平均最低气温都在0℃以上,A正确;由图可在七月的平均温差大于7.5C︒,而一月的平均温差小于7.5C︒,所以七月的平均温差比一月的平均温差大,B正确;由图可知三月和十一月的平均最高气温都大约在5C︒,基本相同,C正确;由图可知平均最高气温高于20℃的月份有3个或2个,所以不正确.故选D.考点:1、平均数;2、统计图5.若3tan 4α= ,则2cos 2sin 2αα+= (A )6425 (B ) 4825(C )1 (D )1625 【答案】A 【解析】 试题分析:由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .考点:1、同角三角函数间的基本关系;2、倍角公式.6.已知432a =,254b =,1325c =,则(A )b a c << (B )a b c << (C )b c a <<(D )c a b << 【答案】A 【解析】试题分析:因为422335244a b==>=,1223332554c a==>=,所以b a c <<,故选A .考点:幂函数的图象与性质.7.执行下图的程序框图,如果输入的46a b ==,,那么输出的n=(A)3 (B)4 (C)5 (D)6【答案】B【解析】试题分析:第一次循环,得2,4,6,6,1=====;第a b a s n二次循环,得2,6,4,10n=;第三次循环,=-===,2a b a s得2,4,6,16,3=====;第四次循环,得a b a s nn=,故选2,6,4,2016,4=-===>=,退出循环,输出4a b a s nB.考点:程序框图.8.在ABC△中,π4B=,BC边上的高等于13BC,则cos A=(A)310(B)10(C)10-(D)310-【答案】C 【解析】试题分析:设BC 边上的高线为AD ,则3BC AD =,所以225AC AD DC AD=+=,2AB AD=.由余弦定理,知22222210cos 210225AB AC BC A AB AC AD AD+-===-⋅⨯⨯,故选C .考点:余弦定理.9.如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )185+ (B )545+ (C )90(D )81 【答案】B 【解析】试题分析:由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积236233233554185S =⨯⨯+⨯⨯+⨯⨯=+B .考点:空间几何体的三视图及表面积. 10.在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是(A )4π (B )92π(C )6π (D )323π 【答案】B 【解析】试题分析:要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B .考点:1、三棱柱的内切球;2、球的体积. 11.已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E.若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34【答案】A 【解析】试题分析:由题意设直线l 的方程为()y k x a =+,分别令x c=-与x =得点||()FM k a c =-,||OE ka=,由OBE CBM∆∆:,得1||||2||||OE OB FM BC =,即2(c)ka a k a a c=-+,整理,得13c a =,所以椭圆离心率为13e =,故选A . 考点:椭圆方程与几何性质.12.定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,ka a a L 中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有(A )18个 (B )16个 (C )14个 (D )12个 【答案】C 【解析】试题分析:由题意,得必有1a =,81a=,则具体的排法列表如下:考点:计数原理的应用.第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题(题型注释)13.若,x y满足约束条件1020220x yx yx y-+≥⎧⎪-≤⎨⎪+-≤⎩则z x y=+的最大值为_____________.【答案】32【解析】试题分析:作出不等式组满足的平面区域,如图所示,由图知,当目标函数z x y=+经过点1(1,)2A时取得最大值,即max13 122z=+=.考点:简单的线性规划问题.14.函数sin y x x=的图像可由函数sin y x x=+的图像至少向右平移_____________个单位长度得到. 【答案】32π 【解析】试题分析:因为sin 2sin()3y x x x π=+=+,sin 2sin()3y x x x π==-=2sin[()]33x π2π+-,所以函数sin y x x=-的图像可由函数sin y x x=的图像至少向右平移32π个单位长度得到. 考点:1、三角函数图象的平移变换;2、两角和与差的正弦函数.15.已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程是_______________。

(完整)2016全国三卷理科数学高考真题及答案-高中课件精选,推荐文档

(完整)2016全国三卷理科数学高考真题及答案-高中课件精选,推荐文档

2016 年普通高等学校招生全国统一考试理科数学一. 选择题:本大题共12 小题,每小题5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S= S ={x P(x- 2)(x- 3) ≥ 0}, T ={x I x > 0},则S I T=(A) [2,3] (B)(- ∞,2] U [3,+ ∞)(C) [3,+ ∞)(D)(0,2] U [3,+ ∞)4i(2)若z=1+2i,则=zz -1(A)1 (B) -1 (C) i (D)-iu u v12u u u v31(3)已知向量BA = ( , ) , BC = ( , ), 则∠ABC=2 2 2 2(A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C,B 点表示四月的平均最低气温约为50C。

下面叙述不正确的是(A)各月的平均最低气温都在00C 以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均气温高于200C 的月份有5 个(5)若tan=3 4(A)64254,则cos2 + 2 sin 2=(B)48253 1(C) 1 (D)1625(6)已知a = 23 ,b = 44 ,c = 253 ,则(A) b <a <c (B)a <b <c (C)b <c <a (D)c <a <b (7)执行下图的程序框图,如果输入的a=4,b=6,那么输出的n=(A)3(B)4(C)5(D)6{(8) 在△ABC 中, B = π ,BC 边上的高等于 1BC ,则cos A =4 3(A )3 1010(C ) - 10 (B ) 1010(D )- 3 1010(9) 如图,网格纸上小正方形的边长为 1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18 +36(B ) 54 +18 (C )90 (D )81(10) 在封闭的直三棱柱 ABC -A 1B 1C 1 内有一个体积为 V 的球,若AB ⊥ BC ,AB =6,BC =8,AA 1=3,则 V 的最大值是 9(A )4π(B )(C )6π2(D )32 3x 2 + y 2=> >(11) 已知 O 为坐标原点,F 是椭圆 C :a 2b 21(a b0) 的左焦点,A ,B 分别为 C 的左,右顶点.P为 C 上一点,且 PF ⊥x 轴.过点 A 的直线 l 与线段 PF 交于点 M ,与 y 轴交于点 E .若直线 BM 经过 OE 的中点, 则 C 的离心率为 112 3 (A )(B )(C )(D )3 234(12) 定义“规范 01 数列”{a n }如下:{a n }共有 2m 项,其中 m 项为 0,m 项为 1,且对任意 k ≤ 2m ,a 1 , a 2 , , a k 中 0 的个数不少于 1 的个数.若 m =4,则不同的“规范 01 数列”共有(A )18 个(B )16 个(C )14 个(D )12 个二、填空题:本大题共 3 小题,每小题 5 分x ‒ y + 1 ≥ 0 x ‒ 2y ≪ 0(13) 若 x ,y 满足约束条件 x + 2y ‒ 2 ≪ 0 则 z=x+y 的最大值为 . (14)函数y = sin x ‒ 3cos x 的图像可由函数y = sin x + 3cos x 的图像至少向右平移 个单位长度得到。

2016年高考理科数学全国卷3含答案

2016年高考理科数学全国卷3含答案

绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷3)理科数学使用地区:广西、云南、贵州注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共6页.2.答题前,考生务必在答题卡上用直径0.5毫米的黑色字迹签字笔将自己的姓名、准考证号填写清楚.再贴好条形码,请认真核准条形码上的准考证号、姓名和科目.3.答第Ⅰ卷时,选出每题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在本试卷上无效.4.答第Ⅱ卷时,请用直径0.5毫米的黑色字迹签字笔在答题卡上各题的答题区域内作答.答在本试卷上无效.5. 第22、23、24小题为选考题,请按题目要求任选其中一题作答.要用2B 铅笔在答题卡上把所选题目题号后的方框涂黑.6. 考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{|(2)(3)0}S x x x =--≥,{}0Tx x =>,则S T = ( )A. []2,3B. (,2][3,)-∞+∞C. [3,)+∞D. (0,2][3,)+∞2.若12i z =+,则4i1zz =- ( )A. 1B. 1-C. iD. i -3.已知向量1331()()2222BA BC ==,,,,则ABC ∠=( )A. 30°B. 45°C. 60°D. 120°4. 某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃.下面叙述不正确的是( )----平均最低气温——平均最高气温A. 各月的平均最低气温都在0℃以上B. 七月的平均温差比一月的平均温差大C. 三月和十一月的平均最高气温基本相同D. 平均最高气温高于20℃的月份有5个5. 若3tan 4α=,则2cos 2sin 2αα+=( )A. 6425B.4825 C. 1D. 16256. 已知432a =,254b =,1325c =,则( )A. b a c <<B. a b c <<C. b c a <<D. c a b <<7. 执行如图的程序框图,如果输入的4a =,6b =,那么输出的n =( )A. 3B. 4C. 5D. 68.在ABC △中,4B π=,BC 边上的高等于13BC ,则cos A = ( )A. 10310B. 1010C. 1010-D. 31010-9. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A. 18365+B. 54185+C. 90D. 8110. 在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球.若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )A. 4πB.92π C. 6πD. 323π11. 已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左、右顶点,P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A. 13 B.12 C. 23D. 3412.定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,123,,......k a a a a 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共有( )A. 18个B. 16个--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无----------------效----------------姓名________________ 准考证号_____________C. 14个D. 12个第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13. 若x ,y 满足约束条件10,20,220,x y x y x y -+⎧⎪-⎨⎪+-⎩≥≤≤则z x y =+的最大值为______.14. 函数sin y x x =-的图象可由函数sin y x x =+的图象至少向右平移______个单位长度得到.15. 已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程式是______. 16. 已知直线30l mx y m ++-:与圆2212x y +=交于,A B 两点,过,A B 分别作l的垂线与x 轴交于,C D两点,若||AB =||CD =______. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 前n 项和1n n S a λ=+,其中0λ≠. (Ⅰ)证明{}n a 是等比数列,并求其通项公式; (Ⅱ)若53132S =,求λ.18.(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1~7分别对应年份2008—2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化 处理量.附注:参考数据:719.32i i y ==∑,7140.17i i i t y ==∑0.55=2.646≈.参考公式:相关系数()()nii tt y y r --=∑ 回归方程y a bt =+中斜率和截距的最小二乘估计公式分别为b =121()()()nii i nii tt y y tt ==---∑∑,a y bt =-.19.(本小题满分12分)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ∥,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点. (Ⅰ)证明:MN ∥平面PAB ;(Ⅱ)求直线AN 与平面PMN 所成角的正弦值.20.(本小题满分12分)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ∥;(Ⅱ)若PQF △的面积是ABF △的面积的两倍,求AB 中点的轨迹方程.21.(本小题满分12分)设函数()cos2(1)(cos 1)f x x x αα=+-+,其中0α>,记|()|f x 的最大值为A . (Ⅰ)求()f x ';(Ⅱ)求A ; (Ⅲ)证明:()2f x A '≤.请考生在第22、23、24题中任选一题作答,作答时用2B 铅笔在答题卡上把所选题目题号后的方框涂黑.如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—1:几何证明选讲如图,O 中AB 的中点为P ,弦PC PD ,分别交AB 于E F ,两点. (Ⅰ)若2PFB PCD ∠=∠,求PCD ∠的大小;(Ⅱ)若EC 的垂直平分线与FD 的垂直平分线交于点G ,证明:OG CD ⊥.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为,sin ,x y αα⎧⎪⎨=⎪⎩(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin()4ρθπ+=(Ⅰ)写出1C 的普通方程和2C 的直角坐标方程;(Ⅱ)设点P 在1C 上,点Q 在2C 上,求||PQ 的最小值及此时P 的直角坐标.24.(本小题满分10分)选修4—5:不等式选讲 已知函数()|2|f x x a a =-+.(Ⅰ)当2a =时,求不等式()6f x ≤的解集;(Ⅱ)设函数()|21|g x x =-.当x ∈R 时,()()3f x g x +≥,求a的取值范围.][)3,+∞,(][)0,23,S T =+∞.【考点】解一元二次不等式,交集 ,故1zz -=4ii 1zz ∴=-. 【考点】共轭复数,复数运算 3211BA BC BA BC =⨯30.点为坐标原点建立如图所示直角坐标系,易知60ABx ∠,30CBx ∠,30.【考点】向量夹角的坐标运算【解析】从图像中可以看出平均最高气温高于20C 的月份有七月、八月,六月为20C 左a c a c a a --=+【解析】sin y x =者的图像可由后者向右平移【考点】三角恒等变换,图像平移【答案】2x y +【解析一】()f x '=,2AB =线l 的倾30,1n S λ=+1n n a a λ-=,0λ≠,1λλ=-,(公比1q λλ=-11λ-,11n λλλ-⎛⎫∴ ⎪-⎝⎭511λλ⎡⎛⎫- ⎪-⎝⎭1λ=-. 求通项,等比数列的性质(Ⅱ)11((ii ni tb ==-=∑∑ 1.33bt -=-的线性回归方程为0.92bt +=+9=代入回归方程可得,2016年我国生活垃圾无害化处理量将约为亿吨.,又PA ⊥面轴建立空间直角坐标系,⎝⎭),52AN ⎛∴= ⎝,(0,2,PM =,5,1,2PN N ⎛= ⎝向量(0,2,1)n =,4,552AN n <>=⨯,AN 与平面PMN 25【考点】线面平行证明,线面角的计算180,PFB ∠180,因此60;(Ⅱ)因为PCD BFD ∠=∠,所以180PCD EFD ∠+∠=,由此知C ,D ,F ,E 四点共的垂直平分线上,的垂直平分线上,因此。

(完整word)2016年高考全国Ⅲ理科数学试题及答案(word解析版),推荐文档

(完整word)2016年高考全国Ⅲ理科数学试题及答案(word解析版),推荐文档

2016年普通高等学校招生全国统一考试(全国Ⅲ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2016年全国Ⅲ,理1,5分】设集合()(){}{}|230,|0S x x x T x x =--≥=> ,则S T =I ( )(A )[]2,3 (B )(][),23,-∞+∞U (C )[)3,+∞ (D )(][)0,23,+∞U 【答案】D【解析】由()()230x x --≥解得3x ≥或2x ≤,{}23S x x ∴=≤≥或,所以{}023S T x x x =<≤≥I 或,故选D . 【点评】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.(2)【2016年全国Ⅲ,理2,5分】若i 12z =+,则4i1zz =-( )(A )1 (B )1- (C )i (D )i - 【答案】C【解析】4i 4ii (12i)(12i)11zz ==+---,故选C . 【点评】复数的加、减法运算中,可以从形式上理解为关于虚数单位“i ”的多项式合并同类项,复数的乘法与多项式的乘法相类似,只是在结果中把2i 换成1-.复数除法可类比实数运算的分母有理化.复数加、减法的几何意义可依平面向量的加、减法的几何意义进行理解.(3)【2016年全国Ⅲ,理3,5分】已知向量13(,)2BA =uu v ,31(,)2BC =uu u v ,则ABC ∠=( )(A )30︒ (B )45︒ (C )60︒ (D )120︒ 【答案】A【解析】由题意,得133132222cos 11BA BC ABC BA BC⨯+⨯⋅∠===⨯u u u r u u u r u u u r u u u r ,所以30ABC ∠=︒,故选A . 【点评】(1)平面向量a r 与b r 的数量积为·cos a b a b θr r r r=,其中θ是a r 与b r 的夹角,要注意夹角的定义和它的取值范围:0180θ︒≤≤︒;(2)由向量的数量积的性质有||=a a a ·r r r ,·cos a ba b θ=r rr r ,·0a b a b ⇔⊥r r r r =,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题.(4)【2016年全国Ⅲ,理4,5分】某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15C ︒,B 点表示四月的平均最低气温约为5C ︒.下面叙述不正确的是( )(A )各月的平均最低气温都在0C ︒以上 (B )七月的平均温差比一月的平均温差大 (C )三月和十一月的平均最高气温基本相同(D )平均气温高于20C ︒的月份有5个 【答案】D【解析】由图可知0C ︒均在虚线框内,所以各月的平均最低气温都在0C ︒以上,A 正确;由图可在七月的平均温差大于7.5C ︒,而一月的平均温差小于7.5C ︒,所以七月的平均温差比一月的平均温差大,B 正确;由图可知三月和十一月的平均最高气温都大约在5C ︒,基本相同,C 正确;由图可知平均最高气温高于20C ︒的月份有3个或2个,所以不正确,故选D .【点评】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B .(5)【2016年全国Ⅲ,理5,5分】若3tan 4α=,则2cos 2sin 2αα+=( ) (A )6425(B )4825(C )1 (D )1625【答案】A 【解析】由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .【点评】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系. (6)【2016年全国Ⅲ,理6,5分】已知432a =,254b =,1325c =,则( )(A )b a c << (B )a b c << (C )b c a << (D )c a b << 【答案】A【解析】因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A .【点评】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决.(7)【2016年全国Ⅲ,理7,5分】执行下图的程序框图,如果输入的46a b ==,,那么输出的n =( )(A )3 (B )4 (C )5 (D )6 【答案】B【解析】第一循环,得2,4,6,6,1a b a s n =====;第二循环,得2,6,4,10,2a b a s n =-====;第三循环,得2,4,6,16,3a b a s n =====;第四循环,得2,6,4,2016,4a b a s n =-===>=; 退出循环,输出4n =,故选B .【点评】解决此类型时要注意:第一,要明确是当型循环结构,还是直到型循环结构.根据各自的特点执行循环体;第二,要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;第三,要明确循环体终止的条件是什么,会判断什么时候终止循环体.(8)【2016年全国Ⅲ,理8,5分】在ABC D 中,π4B =,BC 边上的高等于13BC ,则cos A = ( )(A )310 (B )10 (C )10- (D )310-【答案】C【解析】设BC 边上的高线为AD ,则3BC AD =,所以225AC AD DC AD =+=,2AB AD =.由余弦定理,知22222210cos 2225AB AC BC A AB AC AD AD+-===-⋅⨯⨯,故选C .【点评】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解.(9)【2016年全国Ⅲ,理9,5分】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )(A )18365+ (B )54185+ (C )90 (D )81 【答案】B【解析】由三视图该集合体是以侧视图为底面的斜四棱柱,所以该几何体的表面积236233233554185S =⨯⨯+⨯⨯+⨯⨯=+,故选B .【点评】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立 未知量与已知量间的关系,进行求解.(10)【2016年全国Ⅲ,理10,5分】在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )(A )4π (B )92π (C )6π (D )323π【答案】B【解析】要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B .【点评】立体几何是的最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解.(11)【2016年全国Ⅲ,理11,5分】已知O 为坐标原点,F 是椭圆2222:1(0)x y C a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13(B )12 (C )23 (D )34【答案】A 【解析】由题意设直线l 的方程为()y k x a =+,分别令x c =-与0x =得点()FM k a c =-,OE ka =,由~OBE ∆CBM ∆,得12OE OB FM BC=,即()2ka a k a c a c =-+,整理得13c a =,所以椭圆离心率为1e 3=,故选A . 【点评】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e 的值;(2)建立,,a b c 的齐次等式,求得ba或转化为关于e 的等式求解;(3)通过特殊值或特殊位置,求出e .(12)【2016年全国Ⅲ,理12,5分】定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a L 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共有( ) (A )18个 (B )16个 (C )14个 (D )12个【答案】C【解析】由题意,得必有0a =,1a =,则具体的排法列表如下:,故选C .往往利用表格法、树枝法将其所有可能一一列举出来,常常会达到岀奇制胜的效果.第II 卷本卷包括必考题和选考题两部分。

2016年高考理科数学全国卷3-答案

2016年高考理科数学全国卷3-答案

量将约为 1.82 亿吨. 【考点】相关性分析,线性回归 19.【答案】(Ⅰ)由已知得 AM 2 AD 2 ,取 BP 的中点T ,连接 AT ,TN ,由 N 为 PC 中点知TN∥BC ,
3 TN 1 BC 2 ,又 AD∥BC ,故 TN 平行且等于 AM ,四边形 AMNT 为平行四边形,于是 MN∥AT ,因
【考点】奇偶性,导数,切线方程
16.【答案】3
【解析】如图所示,作 AE BD 于 E ,作 OF AB于 F , AB 2 3 , OA 2 3 ,OF 3 ,即
3/7
3m
3 3 ,m
3 ,直线 l 的倾斜角为 30 , CD AE 2 3
3 3.
m2 1
3
2
【考点】直线和圆,弦长公式
0
0 11 1 01
【考点】数列,树状图
第Ⅱ卷
二、填空题
13.【答案】 3 2
【解析】三条直线的交点分别为
(2,1)

1,
1 2

(0,1)
,代入目标函数可得 3

3 2
,1 ,故最大值为
3 2

【考点】线性规划
14.【答案】 2π 3
【解析】
y sin x
3
cos
x
2sin
x
3
,y
1/7
a 4 2 6 -2 4 2 6 -2 4
b6 4
6
4
6
s0
6
10
16
20
n0
1
2
3
4
【考点】程序框图
8.【答案】C
【 解 析 】 如 图 所 示 , 可 设 B D A D1 , 则 AB 2 , DC 2 , AC 5 , 由 余 弦 定 理 知 ,

2016全国三卷理科数学高考真题及答案 甄选

2016全国三卷理科数学高考真题及答案 甄选

2016全国三卷理科数学高考真题及答案 (优选.)赠人玫瑰,手留余香。

rd2016年普通高等学校招生全国统一考试理科数学一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >,则S T =(A) [2,3] (B)(-∞,2][3,+∞) (C)[3,+∞) (D)(0,2][3,+∞) (2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i (3)已知向量12(,)22BA =,31(,),22BC =则∠ABC= (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。

下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个(5)若3tan 4α=,则2cos 2sin 2αα+=(A)6425(B)4825(C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B,BC 边上的高等于13BC ,则cos A(A )31010(B )1010 (C )1010(D )31010(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18365+ (B )54185+ (C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是(A )4π (B )92π(C )6π (D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C的离心率为(A)13(B)12(C)23(D)34(12)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意2k m≤,12,,,ka a a中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有(A)18个(B)16个(C)14个(D)12个二、填空题:本大题共3小题,每小题5分(13)若x,y满足约束条件则z=x+y的最大值为_____________.(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到。

2016年全国高考理科数学试题及答案-全国卷3

2016年全国高考理科数学试题及答案-全国卷3

绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >P ,则S I T =(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) (2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i(3)已知向量1(2BA =uu v ,1),2BC =uu u v 则∠ABC= (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。

下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个 (5)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A = (A )310 (B )10 (C )10- (D )310-(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )185+(B )54185+ (C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是 (A )4π (B )92π(C )6π (D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a L 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有(A )18个(B )16个(C )14个(D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分 (13)若x ,y 满足约束条件则z=x+y 的最大值为_____________.(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到。

2016年高考数学理科真题试卷及答案(word版)

2016年高考数学理科真题试卷及答案(word版)

2016年普通高等学校招生考试真题试卷数 学(理科)参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A+B )=PA .+PB . S=4лR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径P (A ·B )=PA .+PB . 球的体积公式1+2+…+n 2)1(+n n V=334R π 12+22+…+n 2=6)12)(1(++n n n 其中R 表示球的半径 13+23++n 3=4)1(22+n n 第Ⅰ卷(选择题 共55分)一、选择题:本大题共11小题,每小题5分,共55分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列函数中,反函数是其自身的函数为A .[)+∞∈=,0,)(3x x x f B .[)+∞∞-∈=,,)(3x x x f C .),(,)(+∞-∞∈=x e x f x D .),0(,1)(+∞∈=x xx f 2.设l ,m ,n 均为直线,其中m ,n 在平面α内,“l ⊥α”是l ⊥m 且“l ⊥n ”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.若对任意∈x R,不等式x ≥ax 恒成立,则实数a 的取值范围是A .a <-1B .a ≤1C . a <1D .a ≥14.若a 为实数,iai212++=-2i ,则a 等于 A .2 B .—2 C .22 D .—225.若}{8222<≤Z ∈=-x x A ,{}1log R 2>∈=x x B ,则)(C R B A ⋂的元素个数为A .0B .1C .2D .3 6.函数)3π2sin(3)(-=x x f 的图象为C , ①图象C 关于直线π1211=x 对称; ②函灶)(x f 在区间)12π5,12π(-内是增函数; ③由x y 2sin 3=的图象向右平移3π个单位长度可以得到图象C .以上三个论断中,正确论断的个数是A .0B .1C .2D .37.如果点P 在平面区域⎪⎩⎪⎨⎧≤-+≤+-≥+-02012022y x y x y x 上,点Q 在曲线1)2(22=++y x 上,那么Q P 的最小值为A .15-B .154- C .122- D .12-8.半径为1的球面上的四点D C B A ,,,是正四面体的顶点,则A 与B 两点间的球面距离为A .)33arccos(-B .)36arccos(-C .)31arccos(- D .)41arccos(- 9.如图,1F 和2F 分别是双曲线)0,0(12222>>=-b a br a x 的两个焦点,A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且△AB F 2是等边三角形,则双曲线的离心率为A .3B .5C .25D .31+10.以)(x φ表示标准正态总体在区间(x ,∞-)内取值的概率,若随机变量ξ服从正态分布),(2σμN ,则概率)(σμξ<-P 等于 A .)(σμφ+-)(σμφ-B .)1()1(--φφC .)1(σμφ-D .)(2σμφ+ 11.定义在R 上的函数)(x f 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程0)(=x f 在闭区间][T T ,-上的根的个数记为n ,则n 可能为A .0B .1C .3D .5二、填空题:本大题共4小题,每小题4分,共16分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016 年普通高等学校招生全国统一考试理科数学一.选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的 .(1)设集合 S= S x P(x2)(x3)0 ,T x x 0,则 S I T=(A) [2 ,3](B) (-, 2]U [3,+)(C) [3,+ )(D) (0, 2] U[3,+ )(2)若 z=1+2i ,则4izz1(A)1(B)-1(C) i(D)-iuuv( 1uuuv(3,1),(3)已知向量BA, 2 ) , BC则 ABC=2222(A)30 0(B)450(C) 60 0(D)120 0(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C, B 点表示四月的平均最低气温约为50C。

下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均气温高于 200C 的月份有 5 个(5)若tan3,则 cos22sin 26444816(B)(C) 1(A)25(D)2525 431(6)已知a23, b44, c253,则(A )b a c( B)a b c (C) b c a (D) c a b(7)执行下图的程序框图,如果输入的a=4, b=6,那么输出的n=(A ) 3(B ) 4(C) 5(D ) 6(8)在 △ABC 中,B = πBC1cos A =,边上的高等于则43 BC ,( A )3 10( B )101010( C ) -10 ( D ) - 3 1010 10 (9) 如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A ) 18 36 5(B ) 54 18 5(C ) 90 (D ) 81(10) 在封闭的直三棱柱 ABC-A 1B 1C 1 内有一个体积为 V 的球,若AB BC , AB=6 ,BC=8, AA 1 =3,则 V 的最大值是(A ) 4π ( B )9( C ) 6π(D )3223x 2 y 2 1(a b 0) 的左焦点, A , B 分别为 C 的左,右顶点 .P 为(11)已知 O 为坐标原点, F 是椭圆 C :b 2 a 2C 上一点,且 PF ⊥ x 轴 .过点 A 的直线 l 与线段 PF 交于点 M ,与 y 轴交于点 E.若直线 BM 经过 OE 的中点,则C 的离心率为(A )1( B )1( C )2( D )33 2 3 4(12)定义 “规范 01 数列 ”{a n } 如下: { a n } 共有 2m 项,其中 m 项为 0,m 项为 1,且对任意 k 2m , a 1 , a 2, L , a k 中 0 的个数不少于 1 的个数 .若 m=4,则不同的“规范 01 数列”共有 (A ) 18 个( B ) 16 个(C ) 14 个(D ) 12 个二、填空题:本大题共 3 小题,每小题 5 分(13)若 x , y 满足约束条件 错误 ! 未找到引用源。

则 z=x+y 的最大值为 _____________.(14)函数 错误 !未找到引用源。

的图像可由函数 错误 ! 未找到引用源。

的图像至少向右平移 _____________个单 位长度得到。

( 15)已知 f(x) 为偶函数,当 错误 !未找到引用源。

时, 错误 !未找到引用源。

,则曲线 y=f(x) ,在带你( 1, -3)处的切线方程是 _______________。

( 16)已知直线 错误 !未找到引用源。

与圆 错误 !未找到引用源。

交于 A , B 两点,过 A , B 分别做 l 的垂线与 x轴交于 C, D 两点,若错误 ! 未找到引用源。

,则错误 !未找到引用源。

__________________.三. 解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12 分)已知数列错误 !未找到引用源。

的前n 项和错误 !未找到引用源。

,错误 !未找到引用源。

,其中错误!未找到引用源。

0(I)证明错误 !未找到引用源。

是等比数列,并求其通项公式(II )若S531错误 ! 未找到引用源。

,求32(18)(本小题满分12 分)下图是我国2008 年至 2014 年生活垃圾无害化处理量(单位:亿吨)的折线图(I)由折线图看出,可用线性回归模型拟合y 与 t 的关系,请用相关系数加以说明(I I )建立 y 关于 t 的回归方程(系数精确到 0.01),预测 2016 年我国生活垃圾无害化处理量。

(19)(本小题满分 12 分)如图,四棱锥 P-ABCD 中,PA⊥地面 ABCD ,AD∥ BC,AB=AD=AC =3,PA=BC =4,M 为线段 AD 上一点,AM= 2MD ,N 为 PC 的中点 .(I)证明 MN ∥平面 PAB;(I I )求直线 AN 与平面 PMN 所成角的正弦值 .(20)(本小题满分 12 分)已知抛物线 C: y2 2 x 的焦点为 F,平行于 x 轴的两条直线 l1,l2分别交C于A, B 两点,交 C 的准线于 P, Q 两点 .(I)若 F 在线段 AB 上, R 是 PQ 的中点,证明AR∥ FQ ;(II )若△ PQF 的面积是△ ABF 的面积的两倍,求AB 中点的轨迹方程 .(21)(本小题满分12 分)设函数 f( x) =acos2x+( a-1)( cosx+1 ),其中 a> 0,记错误 !未找到引用源。

的最大值为 A.(Ⅰ)求 f'( x);(Ⅱ)求 A;(Ⅲ)证明错误 !未找到引用源。

≤2A.请考生在 [22] 、 [23] 、 [24] 题中任选一题作答。

作答时用2B 铅笔在答题卡上把所选题目题号后的方框涂黑。

如果多做,则按所做的第一题计分。

22.(本小题满分 10 分)选修 4-1:几何证明选讲 如图,⊙ O 中?的中点为 ,弦 , 分别交 于 , 两点 AB P PC PD AB E F .( I )若∠ PFB=2∠ PCD ,求∠ PCD 的大小; (II )若 EC 的垂直平分线与FD 的垂直平分线交于点G ,证明 OG ⊥CD .23.(本小题满分 10 分)选修 4-4:坐标系与参数方程在直角坐标系 xOy 中,曲线 C 1 x3 cos(为参数 ),以坐标原点为极点,以 x 轴的正半轴为极的参数方程为 y sin轴,,建立极坐标系,曲线 C 2 的极坐标方程为sin( ) 2 2 . 4(I )写出 C 1 的普通方程和 C 2 的直角坐标方程;(II )设点 P 在 C 1 上,点 Q 在 C 2 上,求 |PQ|的最小值及此时P 的直角坐标 .24.(本小题满分 10 分)选修 4-5:不等式选讲 已知函数 f ( x) | 2 x a | a (I )当 a=2 时,求不等式f (x)6 的解集;(II )设函数 g ( x) | 2x 1|, 当 x R 时, f (x ) +g ( x ) ≥3,求 a 的取值范围 .绝密★启封并使用完毕前试题类型:新课标Ⅲ2016 年普通高等学校招生全国统一考试理科数学正式答案第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) D( 2)C( 3) A( 4)D( 5) A(6) A( 7) B( 8) C( 9) B( 10) B( 11) A( 12) C【11】【12】解:由题意可知,“规范 01 数列”有偶数项 2m 项,且所含 0 与 1 的个数相等,首项为 0,末项为 1,若m=4,说明数列有 8 项,满足条件的数列有:0, 0,0,0,1,1,1, 1; 0, 0, 0,1,0,1,1, 1; 0, 0, 0,1, 1,0,1, 1; 0, 0, 0,1, 1,1,0,1;0, 0, 1, 0, 0, 1,1, 1;0, 0,1,0,1,0,1, 1; 0, 0, 1,0,1,1,0, 1; 0, 0, 1,1, 0,1,0, 1; 0, 0, 1,1, 0,0,1,1;0, 1, 0, 0, 0, 1,1, 1;0,1,0,0,1,0,1,1; 0,1,0,0,1, 1,0,1; 0,1,0,1,0,0,1,1; 0,1,0,1,0,1,0,1.共14个.故选: C.第 II卷本卷包括必考题和选考题两部分。

第(13)题 ~第( 21)题为必考题,每个试题考生都必须作答。

第( 22)题 ~第( 24)题未选考题,考生根据要求作答。

二、填空题:本大题共 3 小题,每小题 5 分( 13) 32(14) 3(15) y2x 1( 16) 4三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分 12 分)a 1 S 11a 1 ,故1 , a 10. 解:(Ⅰ)由题意得1, a 11由 S n 1 a n , S n 1 1 a n 1 得 a n 1an 1a n ,即 a n 1 (1)a n . 由 a 1 0,0 得 a n 0 ,所以 a n1.a n 1因此 { a n } 是首项为1 ,公比为 的等比数列,于是a n1 1 ( )n 1 .111(Ⅱ)由(Ⅰ)得S n 1 () n ,由 S 5 31 得 1 ( )531,即 ()51 ,1 32132132解得1 .( 18)(本小题满分 12 分)解:(Ⅰ)由折线图这数据和附注中参考数据得7 t)27y)2t4 ,(t i28 ,( y i0.55 ,i 1i 1777(t it)( y i y)t i y i ty i 40.17 4 9.32 2.89 ,i 1i 1i12.89r0.99 .0.55 2 2.646因为 y 与 t 的相关系数近似为0.99 ,说明 y 与 t 的线性相关相当高, 从而可以用线性回归模型拟合y 与 t 的关系 .79.32?(t i t )( y iy)2.89(Ⅱ)由 yi 10.103 ,7 1.331 及(Ⅰ)得 b7228(t it)i1??.bt 1.331 0.103 4 0.92a y所以,y关于 t的回归方程为: y0.92 0.10t .?将 2016 年对应的 t 9y 0.92 0.1091.82 .代入回归方程得: ?所以预测 2016 年我国生活垃圾无害化处理量将约 1.82 亿吨 .(19)(本小题满分 12 分)解:(Ⅰ)由已知得AM2AD2 ,取 BP 的中点 T ,连接 AT ,TN ,由 N 为 PC 中点知 TN // BC ,3TN1BC 2 .2又 AD // BC ,故 TN 平行且等于 AM ,四边形 AMNT 为平行四边形,于是 MN // AT .因为 AT平面 PAB , MN平面 PAB ,所以 MN // 平面 PAB .( Ⅱ ) 取 BC 的 中 点 E , 连 结 AE , 由 AB AC 得 AEBC , 从 而 AEAD , 且AEAB 2 BE 2AB 2( BC ) 25 .2以 A 为坐标原点, AE 的方向为 x 轴正方向,建立如图所示的空间直角坐标系 A xyz ,由题意知,P(0,0,4) , M ( 0,2,0) , C ( 5,2,0) , N (5,1,2) ,2PM(0,2, 4) , PN( 5,1, 2) , AN (5,1,2) .22n PM2 x 4z 0设 n ( x, y, z) 为平面 PMN 的法向量,则,可取 n (0,2,1) ,,即5x y2zn PN2于是 | cos n, AN | | n AN |8 5. | n || AN |25(20)解:由题设F (1,0) .设 l1 : y a, l 2 : y b ,则ab0 ,且2A( a 2,0), B( b2,b), P(1, a), Q (1, b), R(1 , ab) .222222记过 A, B 两点的直线为l,则l的方程为 2x(a b) y ab0 . .....3分(Ⅰ)由于 F 在线段 AB 上,故 1ab 0 .记 AR 的斜率为k1,FQ的斜率为k2,则a b a b1ab k1a 2a2ab a b k2.1a所以 AR ∥ FQ .......5分(Ⅱ)设 l 与x轴的交点为 D ( x1,0),则SABF 1 b a FD 1 b a x1a b1 , SPQF.2222由题设可得1b a x11a b0 (舍去), x11.,所以 x1222设满足条件的 AB 的中点为 E (x, y).当 AB 与x轴不垂直时,由kAB2y1).k DE可得b x( x而 a ba1 y ,所以 y2x1(x 1) .2当 AB 与x轴垂直时, E 与 D 重合.所以,所求轨迹方程为y2x 1. ....12分(21)(本小题满分 12 分)解:(Ⅰ) f ' ( x)2asin 2 x (a1)sin x .(Ⅱ)当 a1 ,| f ' (x) | | a sin 2 x (a1)(cos x 1) | a2(a 1) 3a2 f (0)因此, A 3a 2 .⋯⋯⋯ 4 分当 0 a 1 ,将 f ( x) 形 f ( x) 2a cos 2 x( a 1)cos x 1 .令 g(t )2at 2(a 1)t 1, A 是 | g(t) |在 [ 1,1]上的最大 , g (1) a ,g(1) 3a 2,且当 t1 a ,4ag (t ) 取得极小 ,极小g (1a )(a1)2 1a 2 6a 1 .4a8a8a令 11 a 1 ,解得 a 1(舍去), a1 . 4a 35(ⅰ)当a1 1,1) 内无极 点, | g( 1) | a , | g(1)|2 3a , | g( 1) | | g(1) | ,所以, g (t ) 在 (5A 23a .(ⅱ)当1 a1 ,由 g( 1) g(1) 2(1 a)0,知 g ( 1)g(1) g( 1 a) .54a 又 | g(1a) || g( 1) | (1 a)(1 7a)0 ,所以 A | g(1a) |a 2 6a1 .4a8a 4a8a23a,0 a15a 2上, A6a 1 , 1 a 1 . ⋯⋯⋯ 9 分8a 53a 2, a 1(Ⅲ)由(Ⅰ)得 | f ' (x) | | 2a sin 2x(a 1)sin x | 2a | a 1| .当 0a 1 , | f ' ( x) |1 a2 4a 2(2 3a)2 A .5当1a 1 , Aa1 3 1 ,所以 | f ' ( x) | 1 a2A . 588a 4当 a1 , | f ' (x) |3a 1 6a4 2 A ,所以 | f ' (x) |2A .考生在 [22] 、[23] 、 [24] 中任 一 作答。

相关文档
最新文档