人教版数学八上 与三角形有关的线段教学反思
《11.1.2三角形的高、中线与角平分线》教案教学反思-2023-2024学年数学人教版八年级上册
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形高、中线、角平分线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如利用直尺和圆规作出三角形的高、中线、角平分线。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解三角形的高、中线、角平分线的基本概念。三角形的高是从一个顶点到对边的垂线段,中线是连接顶点和对边中点的线段,角平分线是从一个角的顶点出发,把这个角平分成两个相等的角的线段。它们在解决三角形相关问题中具有重要作用。
2.案例分析:接下来,我们来看一个具体的案例。通过案例分析,展示三角形的高、中线、角平分线在实际中的应用,以及如何帮助我们解决问题。
在实践活动环节,我发现学生们在分组讨论时,有些小组的讨论效率不高,个别同学过于依赖他人,缺乏独立思考。为了提高学生的自主学习能力,我计划在接下来的教学中,加强对学生讨论过程的引导,鼓励他们提出自己的观点和想法。
此外,学生在进行实验操作时,对于三角形高、中线、角平分线的作图方法掌握程度不一。针对这一问题,我将在下一节课中增加示范和指导,让学生在实践中掌握正确的作图方法。
五、教学反思
在本次教学过程中,我发现学生们对三角形的高、中线、角平分线这一部分内容表现出较大的兴趣。他们在课堂上积极参与,尤其是在实践活动和小组讨论环节,大家热情高涨,这让我感到很欣慰。
然而,我也注意到,在理论讲解环节,部分学生对三角形高、中线、角平分线的定义和性质掌握不够扎实。在后续的教学中,我需要更加关注这一点,通过增加典型例题和练习,帮助学生巩固基础知识。
八年级数学上11.1.1 三角形的边教学反思
八年级数学上11.1.1三角形的边教学反思教后记《三角形的三边关系》三角形的三边关系是在学生了解了三角形的一些基本特征的基础上学习的,学生虽然知道了三角形有三条边,但三角形“边”的研究却是学生首次接触,短短的四十分钟之内,要让学生从抽象的几何图形中得出三角形三边的关系这个结论,并加以运用,并非易事。
因此,教学中,我让学生亲身经历了探究的过程,围绕“任意的三条线段能不能围成一个三角形?”这个问题让学生自己动手操作,发现有的能围成,有的不能围成,再次由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,接着重点研究“能围成三角形的三条边之间到底有什么关系?”通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论。
这样教学符合学生的认知特点,既增加了兴趣,又增强学生的动手能力。
通过本节课的教学,既让我感受到了成功的喜悦,同时也从课堂中暴露出了一些实际问题,下面我将从以下几方面反思本节课的课堂教学:一、关注学生亲身经历本节课的一个突出特点就在于学生的实际动手操作上,具体体现在以下两个环节:一是导入部分:学生从5根小棒中任意拿出3根,摆一摆,可能出现什么情况?结果有的学生摆成了三角形,而有的学生没有摆成三角形,此时,老师接过话题:能否摆成三角形估计与三角形的“边的长度”有关系,它们之间有着怎样的关系呢?今天我们就一起来研究这个问题。
这样很自然地就导入了新课,为后面的新课做了铺垫。
二是新授部分:学生用手中的小棒按老师的要求来摆三角形,并且做好记录。
这个过程必须得每个学生亲自动手,在此基础上观察、发现、比较,从而得出结论。
苏霍姆林斯基曾说:“在人的心理深处都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者和探索者。
而在儿童的精神世界中,这种需要特别强烈。
”教学中,我有意设置这些实际动手操作、共同探讨的活动,既满足了学生的精神需要,又让学生在浓烈的学习兴趣中学到了知识,体验到了成功的快乐。
新人教版数学八年级上册十一章三角形各课时教学反思
§11.1.1三角形的边[教学目标]教学反思:本节课的一个突出特点就在于学生的实际动手操作上,具体体现在以下两个环节:一是导入部分:学生从5根小棒中任意拿出3根,摆一摆,可能出现什么情况?结果有的学生摆成了三角形,而有的学生没有摆成三角形,此时,老师接过话题:能否摆成三角形估计与三角形的“边的长度”有关系,它们之间有着怎样的关系呢?今天我们就一起来研究这个问题.这样很自然地就导入了新课,为后面的新课做了铺垫.§11.1.2 三角形的高、中线与角平分线八、教学反思:本节内容着重介绍了三角形的三种非常重要的线段,学生已经学过过直线外一点作已知直线的垂线、线段的中点、角的平分线等知识,是学习本节新知识的基础,所以我在复习提问环节不但要求学生说出上述概念的文字语言,还要求学生说出符号语言,为后面三角形的高、中线与角平分线的几何语言做好铺垫.同时我在创设问题情境时我觉得很成功,激起了学生的浓厚兴趣,同时在后面又作为例题进行讲解,既解决了问题情境中提出的问题,又填补了例题的空缺,同时应用三角形的高、中线知识进行解决,得出三角形中线把三角形分成面积相等的两个三角形的结论.§11.1.3三角形的稳定性六、教学反思:在教学三角形的稳定性时,我利用多媒体引导学生探寻三角形稳定性的数学含义,进而用三角形的稳定性解释“为什么不易变形”,再回归生活,运用三角形的稳定性解释为什么要用上三角形和用三角形解决生活中的问题.学生清楚地认识到“不易变形”是三角形的稳定性的一个表现,一种应用.而不是将三角形的稳定性与“不易变形”划等号.这样的教学既使得学生对稳定性有了正确清楚的认识,也为以后进一步学习三角形的稳定性和“全等三角形”的判定方法奠定了认知的基础.§11.2.1三角形的内角六、教学反思:教学重、难点是让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程.本节课教学设计符合新课程理念,转变学生的学习方式,能让学生以小组合作的形式进行问题的探索与研究,学生在整节课中学得轻松.整节课的教学设计,条理清晰,层次清楚,学生思维活跃,教学一开始从学生熟悉的三角板抽象出特殊的三角形探讨三角形的内角和是180°,接下来很自然地引导学生探讨所有的三角形的内角和是不是也是180,过渡自然且有吸引力.§11.2.2三角形的外角八、教学反思:把复杂的数学知识直观形象的让学生自己探索得出,这种讲课思路值得我们借鉴,新课程倡导教师用教材而不是简单的教教材,教师要创造性地使用教材,要融入自己的科学精神和智慧,要对教材知识进行重新组和,选取更好的事例对教材深加工,设计出活生生的、丰富多彩的课来,充分有效的将教材的知识激活,形成有教师教学个性的教材知识,所以我们可结合学生实际适当改变例题,充分发掘教材中的情感因素,化生为熟化难为易化理为趣增强数学的魅力,激起学生学习的信心和兴趣,形成课堂教与学的合力,我们要让学生感悟数学,真正成为学习的主人,教师要做好学生学习道路上的引路人.§11.3.1 多边形八、教学反思:课的开始我从学生已有的认识水平和知识经验出发,出示长方形、正方形的地砖各一块,让学生看一看,数一数,说说自己的发现,激发了学生强烈的好奇心和学习兴趣,让学生在轻松快乐的氛围中展开学习,为下面的分类探究作好准备.动手实践、自主探索、亲身体验是学生学习数学的重要方式.在学生认识了五边形和六边形之后,我又呈现了9个多边形(四边形、五边形、六边形各3个)让学生来分类,并说说分类的理由,激发了学生主动探究的热情,最后学着样子按“边”的条数来分一分,初步体验到多边形“边”的特征,帮助学生进一步巩固所学新知.最后,让学生在搭一搭、折一折、画一画、剪一剪的学习活动中体会有关平面图形的特征,感受不同图形间的联系,发现一些有趣的几何现象或问题,如用一张长方形的纸可以依次折出一个五边形,一个六边形和一个四边形,再如在一张正方形纸上剪下一个三角形,剩下的是什么图形?当学生发现得到的结果可能是五边形,也可能是四边形或三角形时,都被图形的多变多幻所吸引住了,在这一系列的学习过程中,不仅培养了学生的动手能力和合作意识,还强化了学生对多边形的感知.操作活动,让学生初步体验图形之间的联系,比赛又激发了学生的创造欲望,培养学生的创新意识和同学间的合作意识.§11.3.2 多边形的内角和七、教学反思:在这节课的设计中,我大胆的尝试并使用网络教学.在我最初的设计过程中,按照常规的方法引导学生先用分割的方法得到四边形内角和,再探究多边形的内角和.但是网络教学教学就成为一种形式,没有充分的发挥它的作用,效果也不是很好.后来改为不做任何方法的指导,采用完全开放的探究,每步探究先让学生尝试,把学生推到主动位置,放手让学生自己学习,教学过程主要靠学生自己去完成,尽可能做到让学生在"活动"中学习,在"主动"中发展,在"合作"中增知,在"探究"中创新.要充分体现学生学习的自主性:规律让学生自主发现,方法让学生自主寻找,思路让学生自主探究,问题让学生自主解决.课前我很担心,但事实说明,这种探究才是真正的让学生去尝试,去挑战.因此,在课堂教学中选用探究式,可以让学生在自主学习中探究,在质疑问题中探究,在观察比较中探究,在矛盾冲突中探究,在问题解决中探究,在实践活动中探究.总之我对探究课有了更深刻的理解.。
人教初中数学八上 111 与三角形有关的线段教学反思
与三角形有关的线段在这一星期我们学习了第一节的内容:“与三角形有关的线段〞在处理三角形的分类时,是通过练习引入的。
目的是由于三角形的分类学生在小学时已经接触过并不陌生,不是本节课的重点内容,不会影响重难点的分布.学生很容易理解并掌握,又会让大多数的同学感到自然.(2)在练习过程中有这么一道题:“两条边长分别为3cm、5cm,你可以组成几个符合条件的等腰三角形?并求符合条件的等腰三角形的周长。
〞95%的同学都认为是两个答案即3、3、5或5、5、3,正当我们准备进行下一个练习题时,有一位同学站起来说有四个答案即3、3、5,5、5、3,3、3、3、,5、5、5,他的理由是等边三角形是等腰三角形所以应该加上后面两种情况,按照常规的想法我在准备是都没有想到会有这种情况,一时间还以为自己错了此时教师稳定仔细地读题发现自己是正确的作为教师没有马上给予否决,而是让同学进行交流与探究寻求正确的答案。
学生A说:假设出现3、3、3或5、5、5时有一条线段没有被用上是不正确的必须两条都用的上才行同学们都为这位同学的发言鼓掌,答复的太精彩了刚刚的同学不的不认同了他们的说法,这个问题得到了完美的答复.在这里教师表达了新的课改理念,开展以学生为主体教师为主导的思想本着师生互助的原那么做到由学生提出问题学生自己去解决问题能力的培养。
15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕b a ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标〔一〕教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.〔二〕能力训练要求1.经历作〔画〕出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.〔三〕情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两局部能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,那么可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想. 〔演示课件〕1.等腰三角形是轴对称图形吗?请找出它的对称轴. 2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢? [生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的局部就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的局部互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的局部互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕. 〔演示课件〕等腰三角形的性质:1.等腰三角形的两个底角相等〔简写成“等边对等角〞〕.2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合〔通常称作“三线合一〞〕.[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程〕.〔投影仪演示学生证明过程〕[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD 〔SSS 〕. 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为D CA B,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很标准.下面我们来看大屏幕.〔演示课件〕[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. 〔课件演示〕[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD 〔等边对等角〕.设∠A=x ,那么∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来稳固这节课所学的知识. Ⅲ.随堂练习〔一〕课本练习 1、2、3. 练习1. 如图,在以下等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:〔1〕72° 〔2〕30°2.如图,△ABC 是等腰直角三角形〔AB=AC ,∠BAC=90°〕,AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CABDC A BD CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.〔二〕阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等〔等边对等角〕,等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业〔一〕习题13.3 第1、3、4、8题.〔二〕1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC . ∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P .EDCABPD C A B∴∠4=∠ACD.∴DE=EC.同理可证:AE=DE.∴AE=C E.板书设计一、设计方案作出一个等腰三角形二、等腰三角形性质1.等边对等角2.三线合一三、例题分析四、随堂练习五、课时小结六、课后作业备课资料参考练习1.如果△ABC是轴对称图形,那么它的对称轴一定是〔〕A.某一条边上的高B.某一条边上的中线C.平分一角和这个角对边的直线D.某一个角的平分线2.等腰三角形的一个外角是100°,它的顶角的度数是〔〕A.80°B.20°C.80°和20°D.80°或50°答案:1.C 2.C3. 等腰三角形的腰长比底边多2 cm,并且它的周长为16 cm.求这个等腰三角形的边长.解:设三角形的底边长为x cm,那么其腰长为〔x+2〕cm,根据题意,得2〔x+2〕+x=16.解得x=4.所以,等腰三角形的三边长为4 cm、6 cm和6 cm.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕ba ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 1 2.原式=422--a a ,当=a -1时,原式=-31.。
八年级上册数学教学反思[15篇]
八年级上册数学教学反思[15篇]八年级上册数学教学反思1本节课主要介绍了三角形的三种非常重要的线段,学生已经学过过直线外一点作已知直线的垂线、线段的中点、角的平分线等知识,是学习本节新知识的基础,所以我在复习提问环节不但要求学生说出上述概念的文字语言,还要求学生说出符号语言,为后面三角形的高、中线与角平分线的几何语言做好铺垫。
同时我在创设问题情境时我觉得很成功,激起了学生的浓厚兴趣,同时在后面又作为例题进行讲解,既解决了问题情境中提出的问题,又填补了例题的空缺,同时应用三角形的高、中线知识进行解决,得出三角形中线把三角形分成面积相等的两个三角形的结论。
本节重点是三角形的三种重要线段,难点是对三角形的角平分线、中线、高的准确理解、作图与正确运用,而突破难点的.关键是运用好数形结合的数学思想从画图入手,获得三种线段的直观形象,进一步架起数与形之间的桥梁,加强知识间的相互联系。
对于每一种线段的获得我都设计了动手操作,尤其是钝角三角形的高的画法,占去了大量的时间,因为学生在作图上确实存在很大问题。
但最终学生还是很好的画出了钝角三角形的三条高,并得出了相关结论。
虽然在教学中,课程基本内容讲解完毕,也达到了基本的教学目标,但由于课堂容量大,而且有难点不好突破,所以在时间控制上还存在一定的问题,有些前松后紧了,前边如果能挤出3到5分钟,这节课将很顺利的完成。
八年级上册数学教学反思2 本节课属于人教版八年级数学上册第十五章《整式乘除与因式分解》第二节中的内容,前一节已学习平方差公式,这一课主要研究完全平方公式的特征及应用。
教学关键是引导学生正确理解完全平方公式的推导过程,几何背景,并能准确应用完全平方公式解决相关问题。
教学后我进行反思如下:本课的知识要点是经历探索完全平方公式的过程,了解公式的几何背景,会应公式进行简单的计算,教学已基本达到了预期目标,能突出重点,兼顾难点。
本节课上学生体会了数形结合及转化的数学思想,并知道猜想的.结论必须要加以验证;授课思维流畅,知识发生发展过渡自然,学生容易得到一些结论但在老师的引导下又使问题的探讨得以不断深入,学生思考积极、气氛活跃,教学效果较好。
2024年人教版八年级数学上册教案及教学反思第12章12.2 三角形全等的判定(第4课时)
第十二章全等三角形12.2.三角形全等的判定第4课时直角三角形全等的判定一、教学目标【知识与技能】掌握直角三角形全等的条件:“斜边、直角边”.能运用全等三角形的条件,解决简单的推理证明问题.【过程与方法】经历探究直角三角形全等条件的过程,体会一般与特殊的辩证关系.【情感、态度与价值观】通过画图、探究、归纳、交流,发展学生的实践能力和创新精神.二、课型新授课三、课时第4课时,共4课时。
四、教学重难点【教学重点】掌握判定两个直角三角形全等的特殊方法——HL.【教学难点】熟练选择判定方法,判定两个直角三角形全等.五、课前准备教师:课件、三角尺、直尺、圆规等。
学生:三角尺、直尺、圆规。
六、教学过程(一)导入新课小明去公园玩,在公园看到了如下两个长度相同的滑梯,左边滑梯的高度AC 与右边滑梯水平方向的长度DF相等,小明说只要测量出左边滑梯AB的长度就可以知道右边滑梯有多高了,小明的说法正确吗?(出示课件2-4)(二)探索新知1.师生互动,探究直角三角形全等的判定方法教师问1:判定两个三角形全等的条件有哪些?(出示课件6)学生回答:SSS、SAS、AAS、ASA教师提出问题:前面学过的四种判定三角形全等的方法,对直角三角形是否适用?(出示课件7)教师问2:两个直角三角形,除了直角相等外,还要满足几个条件,这两个直角三角形就全等了?(出示课件8)(让学生观察课件中的两个直角三角形并思考回答:分析:1.再满足一边一锐角对应相等,就可用“AAS”或“ASA”证全等了.2.再满足两直角边对应相等,就可用“SAS”证全等了.教师问3:那么,如果满足斜边和一条直角边对应相等,这两个直角三角形全等吗?学生不能作肯定回答,经过小组讨论,只能作出猜测:可能全等.教师讲解:现在不要求马上给出结论.看看通过动手探究,你是否能得出结论.直角三角形我们用Rt△表示.教师问4:如图,已知AC=DF,BC=EF,∠B=∠E,△ABC≌△DEF 吗?(出示课件9)学生讨论并回答:证明三角形全等不存在SSA定理.所以一般的三角形不一定全等.教师问5:如果这两个三角形都是直角三角形,即∠B=∠E=90°,且AC=DF,BC=EF,现在能判定△ABC≌△DEF吗?(出示课件10)我们完成下边的问题:思考:任意画出一个Rt△ABC,使∠C=90°,再画一个Rt△A′B′C′,使B′C′=BC,A′B′=AB,把画好的Rt△A′B′C′剪下,放到Rt△ABC 上,看看它们是否全等.(课件出示11-14,师生一起看题)(学生独立探究,动手作图)分析:画法直接由教师给出,而不安排学生画出,是考虑学生画图有一定的难度,况且作图不是本节课的重点.教师问6:Rt△ABC就是所求作的三角形吗?学生回答:是要求作的三角形.教师问7:画好后,把Rt△A′B′C′剪下,放到Rt△ABC上,看它们全等吗?学生动手做后回答:全等.教师问8:这样你发现了什么结论?学生回答:有一条斜边和直角边相等的两个直角三角形全等》教师板书:斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边,直角边”或“HL”).总结点拨:(出示课件15)“斜边、直角边”判定方法文字语言:斜边和一条直角边对应相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).几何语言:在Rt△ABC和Rt△ A′B′C′ 中,AB=A′B′,BC=B′C′,∴Rt△ABC ≌ Rt△ A′B′C′ (HL).警示注意:(1)一是“HL”是仅适用于Rt△的特殊方法;二是应用“HL”时,虽只有两个条件,但必须先有两个三角形是Rt△的条件.(2)“SSA”可以判定两个直角三角形全等,但是“边边”指的是斜边和一直角边,而“角”指的是直角.例1:如图,AC⊥BC,BD⊥AD,AC﹦BD.求证:BC﹦AD.(出示课件17)师生共同解答如下:证明:∵ AC⊥BC,BD⊥AD,∴∠C与∠D 都是直角.在Rt△ABC 和Rt△BAD 中,AC=BD .∴Rt△ABC≌Rt△BAD (HL).∴ BC﹦AD.例2:如图,已知AD,AF分别是两个钝角△ABC和△ABE的高,如果AD=AF,AC=AE. 求证:BC=BE.(出示课件22)师生共同解答如下:证明:∵AD,AF分别是两个钝角△ABC和△ABE的高,且AD=AF,AC =AE,∴Rt△ADC≌Rt△AFE(HL).∴CD=EF.∵AD=AF,AB=AB,∴Rt△ABD≌Rt△ABF(HL).∴BD=BF.∴BD-CD=BF-EF. 即BC=BE.总结点拨:(出示课件23)证明线段相等可通过证明三角形全等解决,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.例3:如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角∠B和∠F的大小有什么关系?师生共同解答如下:解:在Rt△ABC和Rt△DEF中,BC=EF,AC=DF .∴Rt△ABC≌Rt△DEF (HL).∴∠B=∠DEF(全等三角形对应角相等).∵∠DEF+∠F=90°,∴∠B+∠F=90°.(三)课堂练习(出示课件29-34)1. 判断两个直角三角形全等的方法不正确的有()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一条直角边对应相等D.两个锐角对应相等2. 如图,在△ABC中,AD⊥BC于点D,CE⊥AB于点E ,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长为()A.1 B.2 C.3 D.43.如图,△ABC中,AB=AC,AD是高,则△ADB与△ADC________(填“全等”或“不全等”),根据_______________(用简写法).4. 如图,在△ABC中,已知BD⊥AC,CE ⊥AB,BD=CE.求证:△EBC≌△DCB.5. 如图,AB=CD, BF⊥AC,DE⊥AC, AE=CF.求证:BF=DE.6. 如图,有一直角三角形ABC,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P,Q两点分别在AC上和过A点且垂直于AC的射线AQ上运动,问P点运动到AC上什么位置时△ABC才能和△APQ全等?参考答案:1.D2.A3. 全等HL4. 证明:∵BD⊥AC,CE⊥AB,∴∠BEC=∠BDC=90 °.在Rt△EBC 和Rt△DCB 中,CE=BD,BC=CB .∴Rt△EBC≌Rt△DCB (HL).5. 证明: ∵ BF⊥AC,DE⊥AC,∴∠BFA=∠DEC=90 °.∵AE=CF,∴AE+EF=CF+EF.即AF=CE.在Rt△ABF和Rt△CDE中,AB=CD,AF=CE.∴Rt△ABF≌Rt△CDE(HL).∴BF=DE.6. 解:(1)当P运动到AP=BC时,∵∠C=∠QAP=90°.在Rt△ABC与Rt△QPA中,∵PQ=AB,AP=BC,∴Rt△ABC≌Rt△QPA(HL),∴AP=BC=5cm;(2)当P运动到与C点重合时,AP=AC.在Rt△ABC与Rt△QPA中,∵PQ=AB,AP=AC,∴Rt△QAP≌Rt△BCA(HL),∴AP=AC=10cm,∴当AP=5cm或10cm时,△ABC才能和△APQ全等.(四)课堂小结今天我们学了哪些内容:1.直角三角形“HL”判定方法2.灵活选择三角形全等的判定方法来解决问题(五)课前预习预习下节课(12.3)教材48页到49页的相关内容。
2024年人教版八年级数学上册教案及教学反思全册第12章 全等三角形12.1 全等三角形教案
第十二章全等三角形12.1 全等三角形一、教学目标【知识与技能】1.掌握全等形、全等三角形的概念,能应用符号语言表示两个三角形全等;2.能熟练地找出两个全等三角形的对应元素,理解全等三角形的性质,并解决相关简单的问题.【过程与方法】掌握全等三角形对应边相等,对应角相等的性质,并能进行简单的推理和计算,解决一些实际问题.【情感、态度与价值观】联系学生的生活环境,创设情景,使学生通过观察、操作、交流和反思,获得必需的数学知识,激发学生的学习兴趣.二、课型新授课三、课时第1课时四、教学重难点【教学重点】全等三角形的概念、性质及对应元素的确定.【教学难点】全等三角形对应元素的识别.五、课前准备教师:课件、三角尺、全等图形等。
学生:三角尺、直尺、全等图形、三角形纸板。
六、教学过程(一)导入新课观察这些图片,你能找出形状、大小完全一样的几何图形吗?(出示课件2-3)(二)探索新知1.观察图形,学习全等图形教师问1:下列各组图形的形状与大小有什么特点?(出示课件5)学生回答:每一组图中的两个图形形状相同,大小相等.教师问2:观察思考:每组中的两个图形有什么特点?(出示课件6)学生回答:前三组图形的形状相同,大小也相等,第4组图形的形状相同,但是大小不相等,第5组图形的形状不相同,但是大小相等.教师问3:它们能够完全重合吗?你能再举出一些类似的例子吗?学生讨论分析,教师引导后学生回答:举例:学生手中含30度角的三角板;含45度角的三角板;学生手中的小量角器;由同一张底片洗出的尺寸相同的照片;两本数学书等.教师讲解:由图①②③中的图形,我们可以看到,它们的形状相同,大小相等,像这样,形状相同、大小相同的图形放在一起能够完全重合,能够完全重合的两个图形叫做全等形.教师问4:同学们讨论一下,全等图形有什么性质呢?学生回答:全等图形的形状相同,大小相等.总结点拨:全等图形定义:能够完全重合的两个图形叫做全等图形.全等形性质:如果两个图形全等,它们的形状和大小一定都相等.2.师生互动,认识全等三角形的概念教师问5:观察下边的两个三角形,它们的形状和大小有何特征?学生回答:它们的形状相同,大小相等.教师问6:这两个三角形能够完全重合吗?学生回答:能够完全重合教师问7:这两个三角形能够完全重合之后,△ABC的顶点A、B、C与△DEF的顶点D、E、F那两个点重合呢?它们的边呢?它们的角呢?学生回答:点A与点D重合,点B与点E重合,点C与点F重合,边AB 与边DE重合,边AC与边DF重合,边CB与边FE重合,∠A与∠D重合,∠B与∠E重合,∠C与∠F重合.教师总结:(出示课件9)像上图一样,把△ABC 叠到△DEF上,能够完全重合的两个三角形,叫做全等三角形. 把两个全等的三角形重叠到一起时,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.教师问8:平移、翻折、旋转前后的两个三角形什么变化,什么没有变化呢?学生讨论并回答:三角形的形状和大小没有变化,位置变化了.教师问9:把一个三角形平移、旋转、翻折,变换前后的两个三角形全等吗?(出示课件10)学生回答:平移、翻折、旋转前后的两个三角形全等.总结点拨:(出示课件11)一个图形经过平移、翻折、旋转后,位置变化了,但形状和大小都没有改变,即平移、翻折、旋转前后的两个图形全等.学生小组活动:教师提出下列要求:①请你用事先准备好的三角形纸板通过平移、翻折、旋转等操作得到你认为美丽的图形;②在练习本上画出这些图形,标上字母,并在小组内交流;③指出这些图形中的对应顶点、对应边、对应角.教师问10:请同学们观察分析,指出下列图形的对应边、对应角和对应顶点.学生分组做完后并点名回答教师问11:寻找对应元素有什么方法和规律吗?学生思考交流后,师生共同归纳、板书.(出示课件13)1. 有公共边,则公共边为对应边;2. 有公共角(对顶角),则公共角(对顶角)为对应角;3.最大边与最大边(最小边与最小边)为对应边;最大角与最大角(最小角与最小角)为对应角;4. 对应角的对边为对应边;对应边的对角为对应角.教师问12:全等三角形的对应边、对应角有什么数量关系?学生回答:全等三角形的对应边相等,全等三角形的对应角相等.教师问:全等三角形用什么表示呢?学生阅读教材32页内容回答:全等”用符号“≌”表示,△ABC全等于△DEF,记作△ABC≌△DEF.教师问13:全等三角形有哪些性质呢?学生讨论回答:全等三角形的对应边相等,对应角相等.总结点拨:全等的表示方法:“全等”用符号“≌”表示,读作“全等于”. (出示课件15)警示:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.全等的性质:(出示课件16-17)全等三角形的对应边相等,对应角相等.几何语言:∵△ABC≌△DEF(已知),∴AB=DE,AC=DF,BC=EF(全等三角形对应边相等),∠A=∠D,∠B=∠E,∠C=∠F(全等三角形对应角相等).例1:如图,若△BOD≌△COE,∠B=∠C,指出这两个全等三角形的对应边;若△ADO≌△AEO,指出这两个三角形的对应角.(出示课件18)师生共同解答如下:解:△BOD与△COE的对应边为:BO与CO,OD与OE,BD与CE;△ADO与△AEO的对应角为:∠DAO与∠EAO,∠ADO与∠AEO,∠AOD与∠AOE.例2:如图,△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,求∠DEF的度数和CF的长.(出示课件20)师生共同解答如下:解:∵△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,∴∠DEF=∠B=50°,BC=EF=7,∴CF=BC–BF=7–4=3.例3:如图,△EFG≌△NMH,EF=2.1cm,EH=1.1cm,NH=3.3cm.(1)试写出两三角形的对应边、对应角;(2)求线段NM及HG的长度;(3)观察图形中对应线段的数量或位置关系,试提出一个正确的结论并证明.(出示课件22-23)师生共同解答如下:解:(1)对应边有EF和NM,FG和MH,EG和NH;对应角有∠E和∠N,∠F和∠M,∠EGF和∠NHM.(2)解:∵△EFG≌△NMH,∴NM=EF=2.1cm,EG=NH=3.3cm.∴HG=EG –EH=3.3 – 1.1=2.2(cm).(3)解:结论:EF∥NM证明:∵ △EFG≌△NMH,∴ ∠E=∠N. ∴ EF∥NM.总结点拨:全等三角形的性质:能够重合的边是对应边,重合的角是对应角,对应边所对的角是对应角.对应角所对的边是对应边;两个全等三角形最大的边是对应边,最小的边也是对应边; 两个全等三角形最大的角是对应角,最小的角也是对应角.(三)课堂练习(出示课件27-30)1.能够_________的两个图形叫做全等形.两个三角形重合时,互相__________的顶点叫做对应顶点.记两个全等三角形时,通常把表示___________顶点的字母写在_________的位置上.2.如图,△ABC≌ △ADE,若∠D=∠B,∠C= ∠AED,则∠DAE=_______;∠DAB=__________ .3.如图,△ABC≌△BAD,如果AB=5cm,BD=4cm,AD=6cm,那么BC 的长是( )A.6cmB.5cmC.4cmD.无法确定4.在上题中,∠CAB的对应角是( )A.∠DABB.∠DBAC.∠DBCD.∠CAD5. 如图所示,△ABD≌△CDB,下面四个结论中,不正确的是( )A.△ABD 和△CDB 的面积相等B.△ABD 和△CDB 的周长相等C.∠A +∠ABD =∠C +∠CBDD.AD∥BC,且AD = BC6.如图,△ABC ≌△AED,AB是△ABC 的最大边,AE是△AED的最大边,∠BAC 与∠ EAD是对应角,且∠BAC=25°,∠B= 35°,AB =3cm,BC =1cm,求出∠E,∠ ADE 的度数和线段DE,AE 的长度.参考答案:1. 重合重合对应相对应2. ∠BAC ∠EAC3.A4.B5.C6. 解:∵ △ABC ≌△AED,(已知)∴∠E= ∠B = 35°,(全等三角形对应角相等)∠ADE =∠ACB =180°–25°–35°=120 °,(全等三角形对应角相等) DE = BC =1cm,AE = AB =3cm.(全等三角形对应边相等)(四)课堂小结今天我们学了哪些内容:1.全等三角形的有关概念2.全等三角形的性质3.寻找对应元素的方法(五)课前预习预习下节课(11.2)教材35页到教材37页的相关内容。
与三角形有关的线段说课稿
与三角形有关的线段各位评委老师:大家好!我是××号考生,今天我抽到的题目是初中数学人教版八年级上册第十一章第11.1节《与三角形有关的线段》。
下面我将从说教材、说教法、说学法、说教学过程、板书设计、教学反思六个方面来进行我的说课展示。
一、说教材1、本节教材的地位和作用与三角形有关的线段是初中数学图形与几何的内容,在此之前,学生已经学习了角、线段、相交线、平行线等知识,为本节课的学习做了良好的铺垫;另一方面,本节课的学习可以加深学生对三角形的认识,对后续学习其他几何图形奠定了基础。
因此,本节课起着承上启下的作用。
2、学情分析从学生的认知基础看,学生在此之前已经对三角形有了初步认识。
希望通过本节课对三角形的进一步学习,引导学生通过观察和比较的方法来思考和解决问题,培养学生的归纳概括能力。
3、教学目标基于以上对教材和学生的分析,以及新课标理念,我设计如下教学目标:①知识与技能目标:认识三角形,能用符号语言表示三角形,理解三角形的概念及三角形的分类。
②过程与方法目标:通过经历三角形三边不等关系的探究过程,理解三角形的三边不等关系,培养学生的归纳概括能力。
③情感态度价值观目标:通过自主探究、合作交流等方式培养学生的探究精神和团队意识。
4、教学重点和难点通过以上综合分析,我确定本节课的——教学重点:理解三角形的概念,能用符号语言表示三角形,理解三角形的三边不等关系。
教学难点:对三角形三边不等关系的应用。
二、说教法基于我对研究性学习,“启发式”教学模式和新课程改革理论的认识,本节课我主要采用小组合作、诱思探究、生成体验的教学方法来完成本节课教学。
为了实现教学目标,在教学过程中,注重多媒体课件的直观展示,通过观察比较等方法,加深学生对新知识的感知和理解。
三、说学法学生是学习的主体,教师的教要紧紧围绕学生的学。
因此,在课堂教学中,我注重师生互动、学生相互交流等方式,并综合运用多媒体技术服务教学;在学生合作探究过程中,注重学生的主动评价,通过小组展示,培养学生的归纳总结能力。
人教版初中数学八年级上册11.1与三角形有关的线段(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形相关的实际问题,如三角形稳定性在实际生活中的应用。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用牙签和糖果搭建三角形,观察三角形的稳定性。
人教版初中数学八年级上册11.1与三角形有关的线段(教案)
一、教学内容
人教版初中数学八年级上册第11章第1节“与三角形有关的线段”,本节课主要内容包括:
1.三角形的定义及分类;
2.三角形的ห้องสมุดไป่ตู้角和定理;
3.三角形的高、中线、角平分线及其性质;
4.三角形内角和与外角的关系;
5.三角形内角和与周长的关系。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解三角形的基本概念。三角形是由三条线段首尾相连围成的图形。它是研究几何图形的基础,具有很多独特的性质和应用。
2.案例分析:接下来,我们来看一个具体的案例。通过分析三角形在桥梁建筑中的应用,了解三角形的高、中线、角平分线如何帮助我们解决实际问题。
二、核心素养目标
1.培养学生的几何直观和空间想象能力,通过探究三角形的性质,使学生能够理解和运用几何图形及其特征,形成对几何图形的直观感知;
2.提升学生逻辑推理和问题解决能力,通过分析三角形内角和、高、中线、角平分线的性质,使学生掌握逻辑推理方法,解决实际问题;
3.培养学生的数据分析和数学抽象能力,让学生在研究三角形内角和与周长关系中,学会从数据中提炼规律,形成数学模型;
-针对内角和与外角的关系,设计相关练习题,让学生通过解题过程逐步突破难点。
2024年人教版八年级数学上册教案及教学反思全册第11章 三角形(11.3.1 多边形教案
第十一章三角形11.3 多边形及其内角和11.3.1 多边形一、教学目标【知识与技能】了解多边形的有关概念,理解正多边形和有关概念.【过程与方法】经历动手、作图的过程,进一步发展空间能力.【情感态度与价值观】经历探索、归纳等过程,学会研究问题的方法.二、课型新授课三、课时第1课时四、教学重难点【教学重点】1.了解多边形的边、顶点、内角、外角、对角线等有关概念.2.了解正多边形的基本性质.【教学难点】1.在多边形的概念中,对“在同一平面内”的理解.2.对多边形对角线的理解.3.对正多边形性质的理解.五、课前准备教师:课件、三角尺、多边形图片等。
学生:三角尺、直尺、多边形纸片。
六、教学过程(一)导入新课在实际生活当中,除了三角形,还有许多由线段围成的图形.观察图片,你能找到由一些线段围成的图形吗?(出示课件2-4)(二)探索新知1.师生互动,探究多边形的定义及其有关概念教师问1:观察下面的图片,你能找到哪些我们熟悉的图形?学生回答:三角形、长方形、正方形、平行四边形、五边形、六边形、八边形等.教师讲解引入多边形:上面这些图形我们要给出一个统一的名称,称它们为多边形.那么到底什么是多边形呢?我们先回忆一下三角形的定义.教师问2:同学们想一想,什么是三角形呢?学生回答:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.做一做教师讲解:请同学们拿出准备好的材料,随意画几个多边形.教师问3:观察画多边形的过程,类比三角形的概念,你能说出什么是多边形吗?学生回答:在平面内,由一些线段首尾顺次相接组成的封闭图形叫多边形.(出示课件6)教师问4:比较多边形的定义与三角形的定义,为什么要强调“在平面内”呢?怎样命名多边形呢?学生交流,教师讲解并强调“在平面内”,并总结:这是因为三角形中的三个顶点肯定都在同一个平面内,而四点,五点,甚至更多的点就有可能不在同一个平面内.根据边数的多少来命名为,有四条边就是四边形,有五条边就是五边形,依次命名为六边形、七边形、八边形…学生问:观察这个多边形,为什么有一条边是虚线?教师回答:虚线代表的是“不止一条边”,所以这个图形不仅可以代表七边形,也可以代表八边形、九边形等任意一个多边形.教师问5:根据图示,类比三角形的有关概念,说明什么是多边形的边、顶点、内角、外角和对角线.学生讨论回答,教师引导如下:内角:多边形相邻两边组成的角.外角:多边形的边与它的邻边的延长线组成的角.对角线:连接多边形两个顶点的线段教师问6:多边形按边数分类,可以分为哪一些呢?学生回答:多边形按它的边数可分为:三角形,四边形,五边形等等.其中三角形是最简单的多边形.(出示课件8)教师总结如下:(1)多边形的分类:多边形按组成它的线段的条数分成三角形、四边形、五边形……如果一个多边形由n条线段组成,那么这个多边形就叫做n边形. 其中,三角形是最简单的多边形.如图所示的多边形记作五边形ABCDE.(2)多边形的边:所连接的线段叫做多边形的边. 如图中的AB、BC、CD、DE、EA都是五边形ABCDE的边.(3)多边形的角:①内角:多边形相邻的两边所组成的角叫做多边形的内角,如图中的∠EAB、∠ABC、∠BCD、∠CDE、∠DEA都是五边形ABCDE的内角;n 边形共有n个内角.②外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角,如图中的∠DCF是五边形ABCDE的一个外角.n边形共有2n个外角,其中每个顶点处有两个相等的外角,这两个外角是对顶角.(4)多边形的对角线:多边形不相邻的两个顶点的连线组成的线段叫做多边形的对角线. 如图中,AC、AD是五边形ABCDE的两条对角线.教师问7:回想三角形的表示方法,多边形应如何表示?学生讨论回答并得出结论.多边形用图形名称以及它的各个顶点的字母表示.字母要按照顶点的顺序书写,可以按顺时针或逆时针的顺序.(出示课件7)教师问8:请分别画出下列两个图形各边所在的直线,你能得到什么结论?学生讨论回答,并得出结论:如图(2)这样,此类多边形被一条边所在的直线分成了两部分,不在这条直线同侧是凹多边形.如图(1)这样,画出多边形的任何一条边所在的直线,整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形.(出示课件9)例:凸六边形纸片剪去一个角后,得到的多边形的边数可能是多少?画出图形说明.师生共同解答如下:(出示课件10)解:∵六边形截去一个角的边数有增加1、减少1、不变三种情况,∴新多边形的边数为7、5、6三种情况,如图所示.总结点拨:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条.①从所截角的两边截,边数增加1.②从所截角的相邻两角的顶点截,边数减少1.③从所截角的一边及相邻角的顶点截,边数不变.2.动手画图,寻找多边形对角线的特征教师问9:三角形有对角线吗?为什么?学生回答:三角形没有对角线,因为三角形只有三个顶点,而这三个顶点是两两相邻的,它没有不相邻的顶点,所以没有对角线.教师问10:四边形有对角线,过四边形的一个顶点有几条对角线?学生画图并回答:过四边形的一个顶点有1条对角线.(如下图所示)教师问11:过五边形的一个顶点有几条对角线?学生回答:过五边形的一个顶点有2条对角线.(如下图所示)(出示课件13)教师问12:请画出下列图形从某一顶点出发的对角线的条数,并看一下边数与对角线的条数之间有何规律?多边形三角形四边形五边形六边形八边形n边形从同一顶点引出的对角线的条数0 1 2 3 5 n-3分割出的三角形的个数1 2 3 4 6 n-2学生动手操作并回答(如上表数字)教师问13:每个多边形被过同一顶点的对角线分为几个三角形?学生观察并回答(如上表数字)(出示课件14)教师指导学生完成下列问题:(1)学生画一画画出下列多边形的全部对角线.(出示课件17)(2)观察下列图形,并阅读图形下面的相关文字,解答下列问题:教师问14:十边形有多少条对角线?n边形呢?(出示课件18)学生解答如下:(出示课件19)解:∵四边形的对角线条数为4×(4-3)×1=2.2=5.五边形的对角线条数为5×(5-3)× 12=9.六边形的对角线条数为6×(6-3)× 12∴十边形的对角线条数为10×(10-3)× 1=35.2n(n-3) .n边形的对角线条数为12教师问15:多边形一共有多少条对角线呢?学生讨论并回答,教师引导总结如下:(出示课件15)从n(n≥3)边形的一个顶点可以作出(n-3)条对角线.将多边形分成(n-2)个三角形.n(n≥3)边形共有对角线n(n−3)条.2例2:过多边形的一个顶点的所有对角线的条数与这些对角线分割多边形所得三角形的个数的和为21,求这个多边形的边数.师生共同解答如下:(出示课件16)解:设这个多边形为n边形,则有(n-3)条对角线,所分得的三角形个数为n-2,∴n-3+n-2=21,解得n=13.答:该多边形的边数有13条.3.自主探索正多边形的概念及基本性质教师问16:观察下列图形,它们的边、角有什么特点?学生回答:它们的边都相等,它们的角也都相等.教师问17:像这样的多边形我们称为正多边形.请用自己的语言说明什么是正多边形?学生回答:各个角都相等,各条边都相等的多边形叫做正多边形.问题3:由定义可知,正多边形有什么性质?学生回答:正多边形的各个角都相等,各条边都相等.教师问18:下列多边形是正多边形吗?如不是,请说明为什么?(出示课件21)(四条边都相等)(四个角都相等)学生回答:都不是,第一个图形不符合四个角都相等;第二个图形不符合各边都相等.总结点拨:判断一个多边形是不是正多边形,各边都相等,各角都相等,两个条件必须同时具备.(三)课堂练习(出示课件24-27)1.下列多边形中,不是凸多边形的是()2. 九边形的对角线有()A. 25条B. 31条C. 27条D. 30条3. 把一张形状是多边形的纸片剪去其中一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A.六边形 B .五边形C.四边形D.三角形4. 若从一个多边形的一个顶点出发,最多可以引10条对角线,则这是__________边形.5. 过八边形的一个顶点画对角线,把这个八边形分割成________个三角形.6. 过m边形的一个顶点有7条对角线,n边形没有对角线,k边形共有k条对角线,则(m-k)n为多少?参考答案:1.B2.C3.A4. 十三5.六6. 解:∵m=10,n=3,k=5.∴(m-k)n=(10-5)3=53=125.(四)课堂小结今天我们学了哪些内容:1.本节主要学习多边形及有关概念,多边形的分类和正多边形的概念及基本性质.2.本节涉及的思想方法是类比思想.(五)课前预习预习下节课(11.3.2)的相关内容。
人教版数学八年级上册11.1 与三角形有关的线段(3课时)教案与反思
11.1 与三角形有关的线段路漫漫其修远兮,吾将上下而求索。
屈原《离骚》江南学校李友峰11.1.1 三角形的边(第1课时)一、基本目标【知识与技能】理解三角形的表示法、分类法以及三边存在的关系,发展空间观念.【过程与方法】经历探索三角形中三边关系的过程,认识三角形这个最简单、最基本的几何图形,提高推理能力.【情感态度与价值观】培养学生的推理能力,运用几何语言有条理的表达能力,体会三角形知识的应用价值.二、重难点目标【教学重点】掌握三角形三边关系.【教学难点】三角形三边关系的应用.环节1 自学提纲,生成问题【5 min 阅读】阅读教材P2~P4的内容,完成下面练习.【3 min 反馈】1.由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.如图,线段AB 、BC 、CA 是三角形的边,点A 、B 、C 是三角形的顶点,∠A 、∠B 、∠C 是相邻两边组成的角,叫做三角形的内角,简称三角形的角.3.三角形的表示:顶点是A 、B 、C 的三角形,记作“△ABC ”,读作“三角形ABC ”.4.等边三角形:三条边都相等的三角形叫做等边三角形.5.等腰三角形:有两条边相等的三角形叫做等腰三角形.在等腰三角形中,相等的边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.6.三角形按边的相等关系分类如下:三角形⎩⎨⎧ 三边都不相等的三角形等腰三角形⎩⎪⎨⎪⎧底边和腰不相等的等腰三角形等边三角形 5.三角形三边关系:三角形的两边的和大于第三边.推论:三角形两边的差小于第三边.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】以下列各组线段为边,能组成三角形的是( )A.2,3,5 B.5,6,10C.1,1,3 D.3,4,9【互动探索】(引发学生思考)三角形的三边满足:任意两边之和大于第三边.A中,2+3=5,不能组三角形;B中,5+6>10,能组成三角形;C中,1+1<3,不能组成三角形;D中,3+4<9,不能组成三角形.故选B.【答案】B【互动总结】(学生总结,老师点评)判定三条线段能否组成三角形,只需判定两条较短线段长度之和大于第三条线段的长度即可.【例2】用一根长为18厘米的细铁丝围成一个等腰三角形.(1)如果腰长是底边长的2倍,那么各边的长是多少?(2)能围成有一边的长为4厘米的等腰三角形吗?【互动探索】(引发学生思考)(1)等腰三角形的周长是18厘米→列方程求解;(2)等腰三角形的长为18厘米→分类讨论:已知边长是腰长还是底边长→得三角形另外两边长→三角形三边关系进行判断.【解答】(1)设底边长为x厘米,则腰长为2x厘米.根据题意,得x+2x+2x=18,解得x=3.6.∴三边长分别为3.6厘米、7.2厘米、7.2厘米.(2)分情况讨论:当4厘米长为底边长时,设腰长为x厘米,则4+2x=18,解得x=7.此时等腰三角形的三边长为7厘米、7厘米、4厘米;当4厘米长为腰长时,设底边长为x厘米,则4×2+x=18,解得x =10.∵4+4<10,∴此时不能构成三角形,故可围成满足条件的等腰三角形,且三边长分别为7厘米、7厘米、4厘米.【互动总结】(学生总结,老师点评)当已知等腰三角形的周长和一边长时,需要分类讨论已知的一边长是腰长还是底边长,再解决问题.活动2 巩固练习(学生独学)1.下列说法:①等边三角形是等腰三角;②三角形任意两边和大于第三边;③三角形按边分类可分为等腰三角形、等边三角形和不等边三角形;④三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.其中正确的有( C )A.1个B.2个C.3个D.4个2.已知a、b、c为三角形的三边,则︱a+b―c︱-︱b-c -a︱的化简结果是( D )A.2a B.-2bC.2a+2b D.2b-2c3.知等腰三角形的两边长分别为4 cm和6 cm,且它的周长大于14 cm,则第三边长为6 cm.4.三角形的三边长是三个连续的自然数,且三角形的周长小于20,求三边的长.解:2,3,4;3,4,5;4,5,6;5,6,7.环节3 课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!11.1.2 三角形的高、中线与角平分线(第2课时)一、基本目标【知识与技能】1.掌握三角形的高、中线和角平分线的定义.2.能够准确的画出三角形的高、中线和角平分线.【过程与方法】会用工具准确画出三角形的高、中线与角平分线,通过画图了解三角形的三条高(及所在直线)、三条中线、三条角平分线都分别交于一点.【情感态度与价值观】通过对问题的解决,分别培养学生的合作精神,树立学好数学的信心.二、重难点目标【教学重点】理解三角形的高、中线与角平分线.【教学难点】会利用三角形的三条高、三条中线与三条角平分线分别交于一点解决问题.环节1 自学提纲,生成问题【5 min阅读】阅读教材P4~P5的内容,完成下面练习.【3 min反馈】1.从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高.2.在三角形中,连结一个顶点与它对边中点的线段,叫做三角形的中线.三角形的三条中线相交于一点.三角形三条中线的交点叫做三角形的重心.3.在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫三角形的角平分线.环节2 合作探究,解决问题活动1 小组讨论(师生互学)1.画三角形的高.如图,线段AD是△ABC中BC边上的高.注意:标明垂直符号和垂足的字母.教师点拨:回忆并演示“过一点画已知直线的垂线”的画法.讨论1:分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的高,观察高与三角形的位置关系.结论:由作图可得:(1)三角形的三条高线相交于一点;(2)锐角三角形的三条高线相交于三角形的内部;(3)钝角三角形的三条高线相交于三角形的外部;(4)直角三角形的三条高线相交于三角形的直角顶点.2.画三角形的中线.如图,线段AD是△ABC中BC边上的中线.讨论2:分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的中线,观察中线与三角形的位置关系.结论:由作图可得:(1)三角形的三条中线相交于一点;(2)锐角三角形的三条中线相交于三角形的内部;(3)钝角三角形的三条中线相交于三角形的内部;(4)直角三角形的三条中线相交于三角形的内部.3.画三角形的角平分线.如图,线段AD是△ABC的一条角平分线,则∠BAD=∠CAD.讨论3:分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的角平分线,观察角平分线与三角形的位置关系.结论:由作图可得:(1)三角形的三条角平分线相交于一点;(2)锐角三角形的三条角平分线相交于三角形的内部;(3)钝角三角形的三条角平分线相交于三角形的内部;(4)直角三角形的三条角平分线相交于三角形的内部.活动2 巩固练习(学生独学)1.如图,在△ABC中,EF∥AC,BD⊥AC于点D,交EF于点G,则下面说法中错误的是( C )A.BD是△ABC的高B.CD是△BCD的高C.EG是△ABD的高D.BG是△BEF的高2.如图,DE∥BC,CD是∠ACB的平分线,∠ACB=60°,那么∠EDC=30度.3.如图所示,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3 cm,BC=8 cm,求边AC的长.解:∵CD为△ABC的AB边上的中线,∴AD=BD.∵△BCD的周长比△ACD的周长大3 cm,∴(BC+BD+CD)-(AC+AD+CD)=3 cm,∴BC-AC=3 cm.又∵BC=8 cm,∴AC=5 cm.环节3 课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!11.1.3 三角形的稳定性(第3课时)一、基本目标【知识与技能】通过实践活动,使学生掌握三角形的稳定性.【过程与方法】培养学生从周围生活中发现数学问题,运用所学知识解决实际问题的能力,使学生体验到数学与日常生活的密切联系.【情感态度与价值观】在活动中培养学生知识迁移的能力和创造性思维.二、重难点目标【教学重点】三角形具有稳定性.【教学难点】三角形的稳定性在实际生活中的应用.环节1 自学提纲,生成问题【5 min阅读】阅读教材P6~P7的内容,完成下面练习.【3 min反馈】1.三角形具有稳定性,四边形不具有稳定性.2.如图,盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,这是为了防止窗框变形.3.2017年11月5日19时45分,我国在西昌卫星发射中心用长征三号乙运载火箭,以“一箭双星”的方式成功发射第二十四、二十五颗北斗导航卫星.这两颗卫星属于中圆地球轨道卫星,是我国北斗三号第一、二颗组网卫星,开启了北斗卫星导航系统全球组网的新时代.如图所示,在发射运载火箭时,运载火箭的发射架被焊接成了许多的三角形,这样做的原因是:三角形具有稳定性.4.下列设备,没有利用三角形的稳定性的是( A )A.活动的四边形衣架B.起重机C.屋顶三角形钢架D.索道支架环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】(1)动手操作探究三角形的稳定性.①如图1,将三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?图1 图2 图3②如图2,将四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?③在四边形的木架上再钉一根木条,将它的一对顶点连结起来,然后再扭动它,这时木架的形状还会改变吗?为什么?从上面的实验过程中你能得出什么结论?与同学交流.(2)了解四边形的不稳定性的应用.四边形的不稳定性是我们常常需要克服的,那么四边形的不稳定性在生活中有没有应用价值呢?如果有,你能举出实例吗?【互动探索】(引发学生思考)三角形木架形状不会改变,四边形木架形状会改变.这就是说,三角形具有稳定性,四边形不具有稳定性.【解答】(1)①不会改变.②会改变.③不会改变.原因:斜钉一根木条后,四边形变成两个三角形,由于三角形具有稳定性,所以斜钉一根木条的四边形木架的形状不会改变.从上面的实验得出:三角形具有稳定性.(2)有应用价值,实例不唯一,如:活动2 巩固练习(学生独学)1.下列图形中具有稳定性的是( B )A.平行四边形B.等腰三角形C.长方形D.梯形2.下列实际情景运用了三角形稳定性的是( C )A.人能直立在地面上B.校门口的自动伸缩栅栏门C.古建筑中的三角形屋架D.三轮车能在地面上运动而不会倒活动3 拓展延伸(学生对学)【例2】要使下列木架稳定,可以在任意两个点之间钉上木棍,各至少需要钉上多少根木棍?【互动探索】三角形具有稳定性,怎样添加木棍才能使多边形具有稳定性呢?【解答】①四边形木架至少需要钉上1根木棍;②五边形木架至少需要钉上2根木棍;③六边形木架至少需要钉上3根木棍.如图所示:【互动总结】(学生总结,老师点评)n边形沿一个顶点的对角线添加(n-3)条木棍后就具有稳定性.环节3 课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!【素材积累】司马迁写《史记》汉朝司马迁继承父业,立志著述史书。
三角形有关的线段教学反思
三角形有关的线段教学反思三角形有关的线段教学反思1本课题设计思路按操作、猜想、验证的学习过程,遵循从感性到理性的渐进认识规律,暴露了知识发生过程,体现了数学学习的必然性.教学先从学生折纸开始,让学生体验三角形中线、角平分线的存在及其性质,而后通过尺规作图,加深学生对中线、角平分线的认识,增加了数学学习兴趣.讲三角形高时,学生也想用折纸折出三角形高,结果碰到困难(钝角三角形),使新、旧知识大碰撞,加速知识同化.在探究三角形稳定性时,课堂出现很多三角形结构,并让同学解释,使学生认识到数学来源于生活同时数学也服务于生活的真谛,增强学生学习数学的热情,整堂课都以学生操作、探究、合作贯穿始终,培养学生动手、合作、概括能力.特别是三角形的高:应注意以下几点:1、强调直观性原则利用学生生活中已有的对“高矮”的直观认识,让学生比较一副三角尺在不同的情况下,哪一个更高。
总结出比较三角尺“高矮”的一般方法:看“顶点”的高低位置,底面的边在同一条水平线上。
在此基础上,再提问“顶点”的.高低如何测量,从“顶点”量到底边的“距离”其实就是我们已经学过的哪一个知识?使学生从生活的感性经验中逐渐抽象出概念的一些表象。
2、注意概念之间的联系和区别客观事物是互相连系的,因此反映客观事物的概念也是互相联系的。
数学学科中,一些概念之间存在着内在着联系,前一个概念是后一个概念的基础,后一个概念又是前一个概念的变化或发展,所以在数学教学中,一定要注意概念之间的联系。
从“顶点”量到底边的“距离”其实就是从“顶点”起画一条“垂直线段”与“顶点”所对应的底边互相垂直。
在这里就可以唤起学生的旧知“点到线的距离”,并回忆其画法,边回忆边操作,为学生概括三角形高的定义和掌握高的画法打下基础。
(板书)顶点---底边“距离”---“高”点-----直线“距离”---“垂直线段”3、注意概念的运用和巩固人们的认识过程不是一次完成的,概念的形成也必须经过一定的反复。
最新人教版八年级数学上册第十一章三角形 优秀教案教学设计 含教学反思
第十一章三角形11.1 与三角形有关的线段 (1)11.1.1 三角形的边 (1)11.1.2 三角形的高、中线与角平分线 (3)11.1.3 三角形的稳定性 (7)11.2 与三角形有关的角 (10)11.2.1 三角形的内角 (10)11.2.2 三角形的外角 (14)11.3 多边形及其内角和 (19)11.3.1 多边形 (19)11.3.2 多边形的内角和 (22)11.1 与三角形有关的线段11.1.1 三角形的边【知识与技能】1.掌握三角形的定义及相关概念.2.掌握等腰三角形、等边三角形、不等边三角形的定义,掌握三角形按边分类的方法.3.掌握三角形三边关系定理.【过程与方法】通过具体的图形学习三角形、等边三角形、不等边三角形的定义,运用“两点之间,线段最短”推导出三角形三边关系定理.【情感态度】通过求三角形的边长时必须注意三角形的三边关系,训练学生思维的严密性.【教学重点】三角形的三边关系.【教学难点】三角形三边关系的运用.一、情境导入,初步认识问题1 画一个三角形,结合图形探究三角形的定义及相关概念.问题2 出示等边三角形、等腰三角形、不等边三角形探究等边三角形、等腰三角形、不等边三角形定义及概念.问题3 如图,利用“两点之间,线段最短”探究AB、AC、BC之间的关系.【教学说明】全班同学合作交流,共同完成上面三个问题,教师巡回指导,必要时给予个别指导或集体指导,在全班同学基本完成的情况下,针对问题3进行重点讲解.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知思考 1.三角形按边怎样分类?2.三角形的三边关系是怎样的.3.已知三条线段,怎样判断它们能否围成三角形?【归纳结论】 1.主要定义:三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.等边三角形:三条边都相等的三角形叫做等边三角形.等腰三角形:有两条边相等的三角形叫做等腰三角形.不等边三角形:三边都不相等的三角形叫做不等边三角形.2.三角形三边关系定理:三角形的两边之和大于第三边.3.已知三条线段,可用如下简易方法判断它们能否围成三角形:若两条较短边的和大于最长边,则能围成三角形,否则不能.4.已知三角形两边长a,b,第三边长为x,则x的取值范围是a-b<x<a+b(a≥b).三、运用新知,深化理解1.以下列长度的三条线段为边,哪些可以构成一个三角形,哪些不能构成一个三角形?(1)6,8,10;(2)3,8,11;(3)3,4,11;(4)三条线长度之比4:6:72.等腰△ABC中,AB=AC,D是AB的中点,连CD,若CD将△ABC周长分成19和8两部分,求△ABC的腰长及底边的长.【教学说明】可由学生抢答完成,再由教师总结归纳.【答案】略.四、师生互动,课堂小结请若干同学口头小结,之后将小结放映在屏幕上.1.布置作业:从教材“习题11.1”中选取.2.完成练习册中本课时的练习.教学过程中,强调学生自主探索和合作交流,经历观察、实验、归纳、类比、直觉、数据处理等思维过程,从中获得数学知识与技能,体验教学活动的方法,同时升华学生的情感、态度和价值观.11.1.2 三角形的高、中线与角平分线【知识与技能】1.掌握三角形的高、中线与角平分线定义.2.会画三角形的高、中线与角平分线.3.掌握三角形的三条高线、三条中线与三条角平分线的有关性质.【过程与方法】对学生进行操作训练,边训练边讲解,然后学以致用.【情感态度】训练同学们动手操作的能力,提高学习兴趣.【教学重点】画三角形的高线、中线与角平分线.【教学难点】画钝角三角形的高线.一、情境导入,初步认识问题1 如图,已知△ABC,画它的三条高.问题2 如图,已知△ABC,画它的三条中线.问题3如图,已知△ABC,画它的三条角平分线.【教学说明】对问题1,对于钝角三角形的作高要给予集体指导、分类指导,甚至要进行个别指导,以便让绝大部分同学过关.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知思考 1.锐角三角形的三条高、直角三角形的三条高、钝角三角形的三条高的位置有何不同之处?2.三角形的三条高、三条中线、三条角平分线各自有怎样的位置关系?3.三角形的角平分线与角的平分线有什么区别和联系?【归纳结论】1.定义:三角形的高:从三角形的一个顶点向对边所在的直线作垂线,所得的垂线段叫做三角形的一条高.三角形的中线:连接三角形的一个顶点和它对边中点的线段叫做三角形的一条中线. 三角形的角平分线:三角形一个角的平分线与对边相交;以这个顶点和交点为端点的线段叫做三角形的角平分线.2.三角形的三条高所在的直线交于一点,这一点有时在形内,有时在直角顶点上,有时在形外;三角形的三条中线交于一点;三角形的三条角平分线交于一点.3.三角形的角平分线与角的平分线的区别是:三角形的角平分线是线段,而角的平分线是一条射线;它们的联系是都是平分角.三、运用新知,深化理解1.如图,AD 是△ABC 的中线;BE 是△ABC 的角平分线,CF 是△ABC 的高,填空:(1)BD= =21 ; (2)∠ABE=∠ =21∠ ; (3)∠ =∠ =90°.2.如图,△ABC 中,∠A 是钝角.(1)画出AC 、AB 上的高BD 、CE ;(2)画出∠ABC 的平分线BF ;(3)画出边AB 上的中线CG.3.已知,如图,AB ⊥BD 于B ,AC ⊥CD 于C ,且AC 与BD 交于点E.那么(1)△ADE 的边DE 上的高为,边AE 上的高为 ;(2)若AE=5,DE=2,CD=59,则AB= .。
《11.1.1三角形的边》教案教学反思-2023-2024学年数学人教版八年级上册
(1)三角形的内角和定理的应用:在解决具体问题时,学生可能难以灵活运用内角和定理;
突破方法:通过设置不同类型的练习题,让学生多角度、多层次的运用内角和定理,提高其解决问题的能力。
(2)三角形两边之和大于第三边的原理的理解:学生对这一原理的理解可能不够深入,难以应用到实际问题中;
突破方法:通ห้องสมุดไป่ตู้举例、画图等方式,让学生直观地理解这一原理,并引导他们将其应用于解决实际问题。
《11.1.1三角形的边》教案教学反思-2023-2024学年数学人教版八年级上册
一、教学内容
《11.1.1三角形的边》教案教学反思,选自2023-2024学年数学人教版八年级上册第十一章第一节的课程内容。本节课主要围绕以下知识点展开:
1.三角形的定义及其基本性质;
2.三角形的分类:按边分(不等边三角形、等腰三角形、等边三角形)和按角分(锐角三角形、直角三角形、钝角三角形);
(五)总结回顾(用时5分钟)
今天的学习,我们了解了三角形的基本概念、内角和定理以及两边之和大于第三边的原理等重要知识点。同时,我们也通过实践活动和小组讨论加深了对三角形边的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现学生们对三角形的边这一知识点表现出较大的兴趣。通过引入日常生活中的例子,同学们能够更好地理解三角形的概念和性质。以下是我对今天教学的一些思考:
1.讨论主题:学生将围绕“三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
“三角形的三种重要线段”课后反思
“三角形的三种重要线段”课后反思几何部分的三角形教学中,有一课时的内容是“三角形的三种重要线段”,即三角形的高线、中线、角平分线。
这节课要落实的知识性教学目标是1、使学生掌握三种线段的概念;2、掌握三种线段的画法;3、掌握三角形中三条高线、三条中线、三条角平分线各自交于一点的性质。
其中线段的画法和性质是这节课的重点和难点。
为了落实三种线段的性质,我制作了配合教学的几何画板,在三角形的形状和各角度数发生变化的条件下,分别观察三种线段的交点情况,让学生直观地感受到不管三角形是直角三角形、锐角三角形,还是钝角三角形,它们的三条高线、三条中线和三条角平分线始终交于一点。
同时也解决了钝角三角形三条高线交于三角形外部,直角三角形三条高线交于直角顶点这两个较难理解的知识点。
这节课所教授的三种线段中的两种,即三角形的角平分线和高线都是建立在以往旧知识的基础上的,学生对这两种线段已经有了一定的认识,但这种认识也带来一定的弊端。
第一,三角形中的三种线段强调的是“线段”二字,而学生所学过的角平分线始终是建立在角的基础上的,强调的是“射线”,所以学生在具体应用中时常忽视两种图形的区别。
第二,三种线段的画法中,中线和角平分线都很容易掌握,但三角形高线的画法中,钝角三角形的高是学生掌握起来非常困难的一个知识点。
部分学生已经形成思维定式,认为高线应该始终在三角形的内部,所以画出的高无法构成垂直。
针对这两个难点,我在教学中也采取了一定的方法进行强调。
用对比的方式强调了“三角形”和“角”的平分线的区别。
再示范了如何借助一副三角板准确画出钝角三角形中夹钝角两边的高。
在课后的反馈中,我发现以上两个知识点中出现问题的同学明显减少了,而且由于几何画板到辅助作用,学生对三种线段分别交于一点的性质印象很深。
三角形有关的线段教学反思
三角形有关的线段教学反思引言线段是几何学中的基本概念之一,它在解决各种几何问题中都占据着重要地位。
而与线段相关的三角形问题也是初中数学中的重点内容之一。
本文将对三角形有关的线段教学进行反思,探讨其中存在的问题,并提出改进措施。
问题分析在教学实践中,我们发现学生对三角形内部和边界上的线段往往容易混淆和理解错误。
这主要体现在以下几个方面:1. 未能正确辨别三角形的边与内部线段在课堂上,学生常常将三角形的边界上的线段与内部的线段混淆。
例如,在求解三角形的周长时,有的学生会错误地将三角形内部的线段也计入周长中。
2. 未能准确描述边与内部线段之间的关系学生在描述三角形的边与内部线段之间的关系时,表达不准确或混淆概念。
例如,在描述角平分线与三角形边之间的关系时,有的学生会将角平分线误认为是三角形的内部线段。
3. 缺乏线段实际应用的讲解在教学中,我们往往只关注线段的几何性质和定理,而忽略了线段在实际生活和其他学科中的应用。
这导致学生对线段的重要性和实际意义缺乏认识。
解决策略1. 强调概念的准确性在教学中,我们应当加强对三角形边和内部线段的概念辨析。
可以通过让学生在实际生活中观察和描述线段的特征,加深对该概念的理解。
同时,通过大量的练习题和实例分析,培养学生正确区分边与内部线段的能力。
2. 清晰地讲解线段与边的关系我们需要对三角形边与内部线段之间的关系进行清晰的讲解和解释。
可以通过绘制示意图,在图中明确标注各个线段的名称和作用,让学生直观地理解边与内部线段之间的关系。
3. 增加实际应用的案例在课堂教学中,我们应该增加线段实际应用的案例,让学生了解线段在现实生活中的作用和应用场景。
例如,可以以建筑、道路规划等实例为切入点,让学生明确线段在实际中的重要性,并引导他们发现和分析线段在解决实际问题中的妙用。
总结通过本次教学反思,我们认识到三角形有关的线段教学中存在的问题,并提出了相应的解决策略。
希望通过这些改进措施,能够提高学生对线段的理解和应用能力,进一步提升三角形有关知识的学习效果。
与三角形有关的线段(1)三角形的边 初中八年级上册数学教案教学设计课后反思 人教版
三角形的三边关系是三角形两边的和大于第三边,三角形两边的差小于第三边,作用是不光能判断三条线段能否组成三角形,还能求出三角形第三边的取值范围,
有三根木棒长分别为3cm、6cm和2cm,用这些木棒能否围成一个三角形?
分析:(1)三条线段能否构成一个三角形, 关键在捡判定它们是否符合三角形三边的不等关系,符合即可的构成一个三角形,看不符合就不可能构成一个三角形.
(2)要让学生明确两条木棒长为3cm和6cm,要想用三根木棒合起来构成一个三角形,这第三根木棒的长度应介于3cm和9cm之间,由于它的第三根木棒长只有2cm,所以不可能用这三条木棒构成一个三角形.
错导:∵3cm+6cm>2cm
∴用3cm、6cm、2cm的木棒可以构成一个三角形.
错因:三角形的三边之间的关系为任意两边之和大于第三边,任意两边之差小于第三边,这里3+6>2,没错,可6-3不小于2,所以回答这类问题应先确定最大边,然后看小于最大量的两量之和是否大于最大值,大时就可构成,小时就无法构成.
从学生角度分析为什么难
在小学阶段,学生大多数是用实际操作,拼图游戏探究三角形三边关系,对于严格的推理证明,学生是比较惧怕
难点教学方法
1、通过探究证明,让学生确信三边关系的正确性;
2、通过对三边关系的变形应用发散学生的思维,锻炼学生的能力;
教学环节
教学过程
导入
三角形是一种最常见的几何图形之一.(看条件许可, 可以把古埃及的金字塔、飞机、飞船、分子结构……的投影,给同学放映)从古埃及的金字塔到现代的飞机、上天的飞船,从宏大的建筑如课本中的图,到微小的分子结构, 处处都有三角形的身影.结合以上的实际使学生了解到:我们所研究的“三角形”这个课题来源于实际生活之中.
《三角形有关的线段》教学反思
《三角形有关的线段》教学反思
《三角形有关的线段》教学反思
海南省文昌中学钟山
本节课通过学生自主探索从而发现规律,并应用其规律解决问题,使学生经历了一次自主获取新知的成功体验,体现了“重过程,轻结果”的新理念。
新的课程标准提出:数学教学活动必须建立在学生的认知发展水平和已有的生活经验基础之上,教师应帮助他们在自主探索的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验;学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者,因此,在进行三角形三边关系的教学中采用了学生自主实验、探索、发现规律的方法进行教学
例如:学生在得到了任意三角形的三条角平分线交于一点,且在三角形的内部,这一规律后,就轻易认为三条中线也适用此规律。
教师抓住学生的惯性心理,引导学生通过动手发现新问题,从而解决它。
锻炼了学生要以严谨的态度学习科学知识,提高主动探索、善于发现、敢于实践的能力,培养了自身的合作精神和创新意识,有利于潜能的挖掘与发展。
教学流程通顺流畅、清新自然,注重双基,突出重点,
形成良好的师生互动,收到了不错的教学效果。
教师在教学过程中,真正起到了引导者、合作者的作用,学生经历了操作、观察、归纳、猜想、再探索等学习过程,真正扮演了教学过程的“主角”,在“操作”中感悟数学,体现了“以学生为本”的新型师生关系和新课程教育理念。
不足之处在于缺乏足够的时间对学生的课堂学习掌握效果做及时的检查。
个别学习能力较差的同学未能得到及时的关注。
八年级数学上册-人教版八年级上册数学11章小结与复习与三角形有关的线段教学反思
八年级数学上册-人教版八年级上册数学11章小结与复习与三角形相关的线段教课反省
与三角形相关的线段教课反省
在这一礼拜我们学习了第一节的内容:“与三角形相关的线段”在办理三
角形的分类时,是经过练习引入的。
目的是因为三角形的分类学生在小学时已
经接触过其实不陌生,不是本节课的要点内容,不会影响重难点的散布 . 学生很简单
理解并掌握,又会让大部分的同学感觉自然 .(2) 在练习过程中有这么一道题:“已
知两条边长分别为 3cm、5cm,你能够构成几个切合条件的等腰三角形?并求切合条
件的等腰三角形的周长。
” 95%的同学都认为是两个答案即 3、3、5
或 5、5、3,正当我们准备进行下一个练习题时,有一位同学站起来说有四个答案
即 3、3、5, 5、5、3,3、3、 3、, 5、 5、 5,他的原因是等边三角形是等腰
三角形因此应当加上后边两种状况,依据旧规的想法我在准备是都没有想到会有
这类状况,一时间还认为自己错了此时教师稳固认真地读题发现自己是正确的作
为教师没有立刻赐予反对,而是让同学进行沟通与研究追求正确的答案。
学生A 说:若出现 3、3、3 或 5、5、5 时有一条线段没有被用上是不正确的一定两条都
用的上才行同学们都为这位同学的讲话鼓掌,回答的太出色了方才的同学不的不
认可了他们的说法,这个问题获得了完满的回答 . 在这里教师表现了新的课改理念,
发展以学生为主体教师为主导的思想本着师生相助的原则做到由学生提出
问题学生自己去解决问题能力的培育。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本资源的初衷,是希望通过网络分享,能够为广大读者提供更好的服务,为您水平的提高提供坚强的动力和保证。
内容由一线名师原创,立意新,图片精,是非常强的一手资料。
与三角形有关的线段
在这一星期我们学习了第一节的内容:“与三角形有关的线段”在处理三角形的分类时,是通过练习引入的. 目的是由于三角形的分类学生在小学时已经接触过并不陌生,不是本节课的重点内容,不会影响重难点的分布.学生很容易理解并掌握,又会让大多数的同学感到自然.(2)在练习过程中有这么一道题:“已知两条边长分别为3cm、5cm,你可以组成几个符合条件的等腰三角形?并求符合条件的等腰三角形的周长. ”95%的同学都认为是两个答案即3、3、5或5、5、3,正当我们准备进行下一个练习题时,有一位同学站起来说有四个答案即3、3、5,5、5、3,3、3、3、,5、5、5,他的理由是等边三角形是等腰三角形所以应该加上后面两种情况,按照常规的想法我在准备是都没有想到会有这种情况,一时间还以为自己错了此时教师稳定仔细地读题发现自己是正确的作为教师没有马上给予否决,而是让同学进行交流与探究寻求正确的答案. 学生A说:若出现3、3、3或5、5、5时有一条线段没有被用上是不正确的必须两条都用的上才行同学们都为这位同学的发言鼓掌,回答的太精彩了刚才的同学不的不认同了他们的说法,这个问题得到了完美的回答.在这里教师体现了新的课改理念,发展以学生为主体教师为主导的思想本着师生互助的原则做到由学生提出问题学生自己去解决问题能力的培养.
本资源的初衷,是希望通过网络分享,能够为广大读者提供更好的服务,为您水平的提高提供坚强的动力和保证。
内容由一线名师原创,立意新,图片精,是非常强的一手资料。