新五年级奥数题精选及参考答案

合集下载

五年级奥数题练习及答案(55题)

五年级奥数题练习及答案(55题)

五年级奥数题练习(55题)1、(1+2+8)÷(1+2+8)=2、奥运吉祥物中的5个“福娃”取“北京欢迎您”的谐音:贝贝、京京、欢欢、迎迎、妮妮。

如果在盒子中从左向右放5个不同的“福娃”,那么,有种不同的放法。

3、有一列数:1,1,3,8,22,60,164,448……其中的前三个数是1,1,3,从第四个数起,每个数都是这个数前面两个数之和的2倍。

那么,这列数中的第10个数是。

4、有一排椅子有27个座位,为了使后去的人随意坐在哪个位置都有人与他相邻,则至少要先坐人。

5、五年级一班共有36人,每人参加一个兴趣小组,共有A,B,C,D,E五个小组,若参加A组的有15人,参加B组的仅次于A组,参加C组、D组的人数相同。

参加E组的人数最少,只有4人,那么,参加B组的有人。

6、菜地里的西红柿获得丰收,摘了全部的2/5时,装满了3筐还多16千克。

摘完其余部分后,又装满6筐,则共收得西红柿千克。

7、工程队修一条公路,原计划每天修720米,实际每天比原计划多修80米。

因而提前3天完成任务。

这条路全长千米。

8、两个完全相同长方体的长、宽、高分别是5厘米、4厘米、3厘米,把它们拼在一起可组成一个新长方体,在这些长方体中,表面积最小的是平方厘米。

9、著名的哥德巴赫猜想:“任意一个大于4的偶数都可以表示为两个质数的和”。

如6=3+3,12=5+7,等。

那么自然数100可以写成种两个不同质数和的形式?请分别写出来(100=3+97和100=97+3算作同一种形式)10、号码分别为2005、2006、2007、2008的4名运动员进行乒乓球赛,规定每2人比赛的场数是他们号码的和被4除所得的余数。

那么2008号运动员比赛了场。

11、0.15÷2.1×56=12、15+115+1115+ (1111111115)13、一个自然数除以3,得余数2,用所得的商除以4.得余数3。

若用这个自然数除以6,得余数。

小学五年级奥数题100道及答案(完整版)

小学五年级奥数题100道及答案(完整版)

小学五年级奥数题100道及答案(完整版)1. 一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是()A. 208B. 203C. 200D. 198答案:A解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208。

2. 有一个自然数,被10 除余7,被7 除余4,被4 除余1。

这个自然数最小是()A. 137B. 107C. 131D. 101答案:C解析:这个数加上 3 就能被10、7、4 整除,10、7、4 的最小公倍数是140,所以这个数是140 - 3 = 137。

3. 一筐苹果,2 个一拿,3 个一拿,4 个一拿,5 个一拿都正好拿完而没有余数,这筐苹果最少应有()A. 120 个B. 90 个C. 60 个D. 30 个答案:C解析:苹果数量是2、3、4、5 的公倍数,最小公倍数是60。

4. 把66 分解质因数是()A. 66 = 1×2×3×11B. 66 = 6×11C. 66 = 2×3×11D. 2×3×11 = 66答案:C解析:分解质因数是把一个合数写成几个质数相乘的形式。

5. 两个质数的积一定是()A. 质数B. 奇数C. 偶数D. 合数答案:D解析:两个质数相乘的积,除了1 和它本身以外还有这两个质数作为因数,所以是合数。

6. 一个合数至少有()个因数。

A. 1B. 2C. 3D. 4答案:C解析:合数是指除了能被1 和本身整除外,还能被其他数(0 除外)整除的自然数。

所以一个合数至少有3 个因数。

7. 10 以内既是奇数又是合数的数是()A. 7B. 8C. 9D. 5答案:C解析:9 不能被2 整除是奇数,同时除了1 和9 本身还有3 这个因数,所以是合数。

8. 下面算式中,结果最大的是()A. 300÷8÷6×5B. 300÷(8÷6)×5C. 300÷(8÷6×5)D. 300÷8÷(6×5)答案:C解析:分别计算出每个选项的结果进行比较。

小学五年级数学奥数题100道及答案(完整版)

小学五年级数学奥数题100道及答案(完整版)

小学五年级数学奥数题100道及答案(完整版)题目1:计算:1 + 2 + 3 + 4 + 5 + …+ 99 + 100答案:5050解析:这是一个等差数列求和,公式为(首项+ 末项)×项数÷ 2 ,即(1 + 100)×100 ÷2 = 5050题目2:有三个连续自然数,它们的乘积是60,求这三个数。

答案:3、4、5解析:将60 分解质因数60 = 2×2×3×5 = 3×4×5题目3:一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是多少?答案:208解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208题目4:甲、乙两车同时从A、B 两地相向而行,在距A 地60 千米处第一次相遇。

各自到达对方出发地后立即返回,途中又在距A 地40 千米处相遇。

A、B 两地相距多少千米?答案:110 千米解析:第一次相遇时,两车共行了一个全程,甲行了60 千米。

第二次相遇时,两车共行了三个全程,甲行了60×3 = 180 千米。

此时甲距离 A 地40 千米,所以两个全程是180 + 40 = 220 千米,全程为110 千米。

题目5:鸡兔同笼,共有头48 个,脚132 只,鸡和兔各有多少只?答案:鸡30 只,兔18 只解析:假设全是鸡,有脚48×2 = 96 只,少了132 - 96 = 36 只脚。

每把一只鸡换成一只兔,脚多4 - 2 = 2 只,所以兔有36÷2 = 18 只,鸡有48 - 18 = 30 只。

题目6:小明从一楼到三楼用了18 秒,照这样计算,他从一楼到六楼需要多少秒?答案:45 秒解析:一楼到三楼走了 2 层楼梯,每层用时18÷2 = 9 秒。

一楼到六楼走5 层楼梯,用时5×9 = 45 秒。

五年级奥数精选50(附答案)

五年级奥数精选50(附答案)

五年级奥数精选50(附答案)一、拓展提优试题1.如图,在等腰直角三角形ABC 中,斜边AB 上有一点D ,已知CD =5,BD 比AD 长2,那么三角形ABC 的面积是 .2.已知13411a b -=,那么()20132065b a --=______。

3.(8分)小张有200支铅笔,小李有20支钢笔.每次小张给小李6支铅笔,小李还给小张1支钢笔.经过 次这样的交换后,小张手中铅笔的数量是小李手中钢笔数量的11倍.4.如图,正方形的边长是6厘米,AE =8厘米,求OB = 厘米.5.某次入学考试有1000人参加,平均分是55分,录取了200人,录取者的平均分与未录取的平均分相差60分,录取分数线比录取者的平均分少4分.录取分数线是 分.6.小明从家到学校去上课,如果每分钟走60米,可提前10分钟到校;如果每分钟走50米,要迟到4分钟到校.小明家到学校相距 米.7.对于自然数N ,如果在1﹣9这九个自然数中至少有七个数是N 的因数,则称N 是一个“七星数”,则在大于2000的自然数中,最小的“七星数”是 .8.三位偶数A 、B 、C 、D 、E 满足A <B <C <D <E ,若A +B +C +D +E =4306,则A 最小 .9.如图,若每个小正方形的边长是2,则图中阴影部分的面积是 .10.如图,在梯形ABCD中,若AB=8,DC=10,S△AMD=10,S△BCM=15,则梯形ABCD的面积是.11.解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需分钟.12.(8分)如果两个质数的差恰好是2,称这两个质数为一对孪生质数.例如3和5是一对孪生质数,29和31也是一对孪生质数.在数论研究中,孪生质数是最热门的研究课题之一.华裔数学家张益唐在该课题的研究中取得了令人瞩目的成就,他的事迹激励着更多的青年学子投身数学研究.在不超过100的整数中,一共可以找到对孪生质数.13.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换多少只鸡?14.(8分)彤彤和林林分别有若干张卡片:如果彤彤拿6张给林林,林林变为彤彤的3倍;如果林林给彤彤2张,则林林变为彤彤的2倍.那么,林林原有张.15.某场考试共有7道题,每道题问的问题都只与这7道题的答案有关,且答案只能是1、2、3、4中的一个.已知题目如下:①有几道题的答案是4?②有几道题的答案不是2也不是3?③第⑤题和第⑥题的答案的平均数是多少?④第①题和第②题的答案的差是多少?⑤第①题和第⑦题的答案的和是多少?⑥第几题是第一个答案为2的?⑦有几种答案只是一道题的答案?那么,7道题的答案的总和是 .【参考答案】一、拓展提优试题1.解:作CE ⊥AB 于E .∵CA =CB ,CE ⊥AB ,∴CE =AE =BE ,∵BD ﹣AD =2,∴BE +DE ﹣(AE ﹣DE )=2,∴DE =1, 在Rt △CDE 中,CE 2=CD 2﹣DE 2=24,∴S △ABC =•AB •CE =CE 2=24,故答案为242.2068[解答]由于13411a b -=,所以()6520513451155a b a b -=⨯-=⨯=,所以()()20132065201365202068b a a b --=+-=3.解:依题意可知:当第一次过后,小张剩余194只铅笔,小李剩余19只钢笔.当第二次过后,小张剩余188只铅笔,小李剩余18只钢笔.当第三次过后,小张剩余182只铅笔,小李剩余17只钢笔.当第四次过后,小张剩余176只铅笔,小李剩余16只钢笔.正好是11倍. 故答案为:四4.解:6×6÷2=18(平方厘米),18×2÷8=4.5(厘米);答:OB 长4.5厘米.故答案为:4.5.5.解:设录取者的平均成绩为X 分,我们可以得到方程,200X+(1000﹣200)×(X﹣60)=55×1000,200X+800(X﹣60)=55000,1000X﹣48000=55000,1000X=103000,X=103;所以录取分数线是103﹣4=99(分).答:录取分数线是99分.故答案为:99.6.解:(60×10+50×4)÷(60﹣50),=(600+200)÷10,=800÷10,=80(分钟),60×(80﹣10),=60×70,=4200(米).答:小明家到学校相距4200米.故答案为:4200.7.解:根据分析,在2000~2020之间排除掉奇数,剩下的偶数还可以排除掉不能被3整除的偶数,最后只剩下:2004、2010、2016,再将三个数分别分解质因数得:2004=2×2×3×167;2010=2×3×5×67;2016=2×2×2×2×2×3×3×7,显然2014和2010的质因数在1~9中不到7个,不符合题意,排除,符合题意的只有2016,此时2016的因数分别是:2、3、4、6、7、8、9.故答案是:2016.8.解:最大的三位偶数是998,要满足A最小且A<B<C<D<E,则E最大是998,D最大是996,C最大是994,B最大是992,4306﹣(998+996+994+992)=4306﹣3980=326,所以此时A最小是326.故答案为:326.9.解:根据分析,如图,将阴影部分进行剪切和拼接后得:此时,图中阴影部分的小正方形个数为:18个,每个小正方形的面积为:2×2=4,故阴影部分的面积=18×4=72.故答案是:72.10.解:△ADM 、△BCM 、△ABM 都等高,所以S △ABM :(S △ADM +S △BCM )=8:10=4:5,已知S △AMD =10,S △BCM =15,所以S △ABM 的面积是:(10+15)×=20,梯形ABCD 的面积是:10+15+20=45;答:梯形ABCD 的面积是45.故答案为:45.11.解:假设每人每分钟修大坝1份洪水冲毁大坝速度:(10×45﹣20×20)÷(45﹣20)=(450﹣400)÷25=50÷25=2(份)大坝原有的份数45×10﹣2×45=450﹣90=360(份)14人修好大坝需要的时间360÷(14﹣2)=360÷12=30(分钟)答:14人修好大坝需30分钟.故答案为:30.12.解:在不超过100的整数中,以下8组:3,5;5,7;11,13;17,19;29,31;41,43;59,61;71,73是孪生质数.故答案为8.13.解:42÷2=21(只)21÷3×26=7×26=182(只)182÷2×3=91×3=273(只)273×3=819(只)答:3头牛可以换819只鸡.14.解:彤彤给林林6张,林林有总数的;林林给彤彤2张,林林有总数的;所以总数:(6+2)÷(﹣)=96,林林原有:96×﹣6=66,故答案为:66.15.解:因为每道题的答案都是1、2、3、4的一个,所以①的答案不宜太大,不妨取1,此时②的答案其实就是7个答案中1和4的个数,显然只能取2、3、4中的一个,若取2,则意味着剩余的题目只能有一道题答案为1,这是④填1,⑦填2,⑤填3,⑥填2,而③无法填整数,与题意矛盾;所以②的答案取3,则剩余的题目答案为1和4各有1道,此时④填2,显然⑦只能填1,那么⑤填2,则4应该是⑥的答案,从而③填3,此时7道题的答案如表;它们的和是1+3+3+2+2+4+1=16.。

五年级奥数题及答案5篇

五年级奥数题及答案5篇

五年级奥数题及答案5篇1.五年级奥数题及答案篇一1、甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?答案与解析:船顺水航行20小时行560千米,可知顺水速度,而静水中船速已知,那么逆水速度可得,逆水航行距离为560千米,船返回甲船头是逆水而行,逆水航行时间可求。

顺水速度:560÷20=28(千米/小时)逆水速度:24-(28-24)=20(千米/小时)返回甲码头时间:560÷20=28(小时)2、甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行。

现在已知甲走一圈的时间是70分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是____分钟?答案与解析:甲行走45分钟,再行走70-45=25(分钟)即可走完一圈。

而甲行走45分钟,乙行走45分钟也能走完一圈。

所以甲行走25分钟的路程相当于乙行走45分钟的路程。

甲行走一圈需70分钟,所以乙需70÷25×45=126(分钟)。

即乙走一圈的时间是126分钟。

2.五年级奥数题及答案篇二1、一副纸牌共54张,最上面的一张是红桃K。

如果每次把最上面的12张牌移到最下面而不改变它们的顺序及朝向,那么,至少经过多少次移动,红桃K才会又出现在最上面?解:因为[54,12]=108,所以每移动108张牌,又回到原来的状况。

又因为每次移动12张牌,所以至少移动108÷12=9(次)。

2、爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍。

”你知道爷爷和小明现在的年龄吗?解:爷爷70岁,小明10岁。

提示:爷爷和小明的年龄差是6,5,4,3,2的公倍数,又考虑到年龄的实际情况,取公倍数中最小的。

(60岁)3、某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数?并将它们写出来。

五年级小学奥数题及答案【五篇】

五年级小学奥数题及答案【五篇】

【导语】天⾼鸟飞,海阔鱼跃,学习这舞台,秀出你独特的精彩⽤好分秒时间,积累点滴知识,解决疑难问题,学会举⼀反三。

以下是为⼤家整理的《五年级⼩学奥数题及答案【五篇】》供您查阅。

【第⼀篇:社会调查】⼀次数学⼩组到安华⼩区去做社会调查。

数学⼩组同学问街道主任:“您这个⼩区有多少⼈⼝?”,街道主任风趣地说:“51995 的末四位数字就是我这个⼩区的⼈⼝数!”原来这位主任是⼀位退休的数学教师。

⼩组同学很快算出了安华⼩区的⼈⼝数。

同学们你也算算看。

答案与解析: 从55 开始,积为四位数字。

55=3125 56 的末四位数字为5625 57 的末四位数字为8125 58 的末四位数字为0625 59 的末四位数字为3125…… 观察上⾯的计算结果2,很快发现,从55 开始,5n 的末四位数字的变化是有规律的,每隔3 个就重复出现:3125、5625、8125、0625、3125、5625、8125、0625、3125、…… 1995÷4=498……3所以,51995 的末四位数字是8125,安华⼩区⼈⼝为8125 ⼈【第⼆篇:100⾯彩旗】某街道从东往西按照五⾯红旗、三⾯黄旗、四⾯绿旗、两⾯粉旗的规律排列,共悬挂1995 ⾯彩旗,你能算出从西往东数第100 ⾯彩旗是什么颜⾊的吗?答案与解析: 从西往东倒数第100 ⾯彩旗,是从东往西正数第⼏⾯彩旗呢? 这是正确解答本题的关键。

从西往东倒数第100 ⾯彩旗相当于从东往西正数第1896 ⾯彩旗,因为1995—100+1=1896已知按“五红、三黄、四绿、两粉”的规律排列,即每14 ⾯彩旗⼜重复出现。

1896÷(5+3+4+2)=135……6余数为6,所以正数第1896 ⾯彩旗为黄⾊。

【第三篇:存折上的钱】某⼈去银⾏取款,第⼀次取了存款的⼀半多50元,第⼆次取了余下的⼀半少100元,这时他的存折卡上还剩1350元。

问:他存折卡上原有多少钱?答案与解析:我们可以倒过来推,第⼆次取了余下⼀半少100元,可知"余下的⼀半多100元"是1350,从⽽"余下的⼀半"是1350-100=1250(元) 余下的钱是:1250×2=2500(元) 同样的道理,第⼀次去了余下⼀半多50元,可知"余下⼀半少50元"是2500,从⽽"余下⼀半"是2500+50=2550(元) 存折卡上原有2550×2=5100(元) 这道题主要是运⽤的还原的思想。

小学五年级奥数题及答案6篇

小学五年级奥数题及答案6篇

小学五年级奥数题及答案6篇1.小学五年级奥数题及答案一排椅子只有15个座位, 部分座位已有人就座, 乐乐来后一看, 他无论坐在哪个座位, 都将与已就座的人相邻。

问: 在乐乐之前已就座的最少有几人?将15个座位顺次编为1:15号。

如果2号位、5号位已有人就座, 那么就座1号位、3号位、4号位、6号位的人就必然与2号位或5号位的人相邻。

根据这一想法, 让2号位、5号位、8号位、11号位、14号位都有人就座, 也就是说, 预先让这5个座位有人就座, 那么乐乐无论坐在哪个座位, 必将与已就座的人相邻。

因此所求的答案为5人。

2.小学五年级奥数题及答案1.某工车间共有77个工人, 已知每天每个工人平均可加工甲种部件5个, 或者乙种部件4个, 或丙种部件3个。

但加工3个甲种部件, 一个乙种部件和9个丙种部件才恰好配成一套。

问应安排甲、乙、丙种部件工人各多少人时, 才能使生产出来的甲、乙、丙三种部件恰好都配套?解: 设加工后乙种部件有x个。

3/5X+1/4X+9/3X=77x=20甲: 0.6×20=12(人)乙: 0.25×20=5(人)丙: 3×20==60(人)2.哥哥现在的年龄是弟弟当年年龄的三倍, 哥哥当年的年龄与弟弟现在的年龄相同, 哥哥与弟弟现在的年龄和为30岁, 问哥哥、弟弟现在多少岁?解: 设哥哥现在的年龄为x岁。

x-(30-x)=(30-x)-x/3x=18弟弟30-18=12(岁)3.小学五年级奥数题及答案对任意两个不同的自然数, 将其中较大的数换成这两数之差, 称为一次变换。

如对18和42可进行这样的连续变换: 18, 42→18, 24→18, 6→12, 6→6, 6。

直到两数相同为止。

问: 对12345和54321进行这样的连续变换, 最后得到的两个相同的数是几?为什么?如果两个数的公约数是a, 那么这两个数之差与这两个数中的任何一个数的公约数也是a。

小学五年级奥数题30道(附答案)

小学五年级奥数题30道(附答案)

小学五年级奥数题30道(附答案)1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,求一张桌子和一把椅子的价钱分别是多少元。

设一把椅子的价钱为x元,则一张桌子的价钱为10x元。

根据题意,有10x - x = 288,解得x = 32,因此一把椅子的价钱为32元,一张桌子的价钱为320元。

2.3箱苹果重45千克,一箱梨比一箱苹果多5千克,求3箱梨的重量是多少千克。

设一箱苹果的重量为x千克,则3箱苹果的重量为3x千克。

根据题意,有3x = 45,解得x = 15,因此一箱苹果的重量为15千克,一箱梨的重量为20千克,因此3箱梨的重量为60千克。

3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

甲比乙速度快,甲每小时比乙快10千米,求甲、乙两人的速度分别是多少千米每小时。

设甲的速度为x千米每小时,则乙的速度为x - 10千米每小时。

根据题意,有4x = (4 + 4) * 2,解得x = 4,因此甲的速度为4千米每小时,乙的速度为(4 - 10)千米每小时,即-6千米每小时(表示向相反方向行驶)。

4.XXX和XXX同样多的钱买了同一种铅笔,XXX要了13支,XXX要了7支,XXX又给XXX0.6元钱。

求每支铅笔的价格是多少元。

设每支铅笔的价格为x元,则李军和XXX分别付出的钱数为13x元和7x元。

根据题意,有13x = 7x + 0.6,解得x = 0.1,因此每支铅笔的价格为0.1元。

5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

甲车每小时行40千米,乙车每小时行45千米,求两地相距多少千米。

设两地相距为x千米,则甲车和乙车相遇时,它们共行驶了(x/2)千米。

根据题意,甲车和乙车共用了6个小时,因此它们共行驶了2x千米。

五年级小学生奥数题及答案大全

五年级小学生奥数题及答案大全

五年级小学生奥数题及答案大全1.五年级小学生奥数题及答案大全篇一1、火车从甲城到乙城,现已行了200千米,是剩下路程的4倍。

甲乙两城相距多少千米?2、甲港到乙港的航程有210千米,一艘轮船运货从甲港到乙港,用了6小时,返回时每小时比去时多行7千米,返回时用了几小时?3、小方从家到学校,每分钟走60米,要14分钟,如果她每分钟多走10米,需要多少分钟?参考答案:1、200+200÷4=250(千米)2、210÷(210÷6+7)=5(小时)3、60×14÷(60+10)=12(分钟)2.五年级小学生奥数题及答案大全篇二1、一个平行四边形,四条边长度相等,都是5厘米,高是3厘米求这个平行四边形面积是多少?2、一个长方形长是18厘米,宽是长的一半多2厘米,求这个长方形面积和周长分别是多少?3、一个正方形边长9厘米,把它分成四个相等大小的小正方形,请问小正方形的面积是多少?参考答案:1、5×3=15(平方厘米)2、18÷2+2=11(厘米)面积是:18×11=198(平方厘米)周长是:(18+11)×2=58(厘米)3、9×9÷4=20.25(平方厘米)3.五年级小学生奥数题及答案大全篇三1、甲乙两车同时从AB两地相对开出。

甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。

求AB两地相距多少千米?解:AB距离=(4.5×5)/(5/11)=49.5千米2、一辆客车和一辆货车分别从甲乙两地同时相向开出。

货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。

甲乙两地相距多少千米?解:客车和货车的速度之比为5:4那么相遇时的路程比=5:4相遇时货车行全程的4/9此时货车行了全程的1/4距离相遇点还有4/9-1/4=7/36那么全程=28/(7/36)=144千米4.五年级小学生奥数题及答案大全篇四1、将一个四位数的数字顺序颠倒过来,得到一个新的四位数。

小学五年级奥数题30道(附答案)

小学五年级奥数题30道(附答案)

小学五年级奥数题30道(附答案)在小学五年级学习奥数的过程中,练习题是非常重要的。

通过解答奥数题,可以增强逻辑思维能力、提升解决问题的能力。

下面给大家分享30道小学五年级奥数题,并附上详细的解答,帮助大家更好地理解和掌握解题技巧。

题目1:小明有5块巧克力,小红有3块巧克力,他们一共有多少块巧克力?解答1:小明有5块,小红有3块,所以总共有5+3=8块巧克力。

题目2:5艘船将100个水桶分给海盗们,每艘船上都要有相同数量的水桶,问每艘船上装了多少个水桶?解答2:要将100个水桶平均分给5艘船,所以每艘船上装了100÷5=20个水桶。

题目3:有一辆公交车上有18个座位,现在已经有10个人上车了,还有多少个座位空着?解答3:公交车上一共有18个座位,已经有10个人上车了,空着的座位数为18-10=8个。

题目4:一年有365天,这些天分成几个星期和几天?解答4:一周有7天,所以365天可以分成52个星期和1天。

题目5:小明和小红共有50颗糖果,小明比小红多15颗,小红有多少颗糖果?解答5:小明比小红多15颗,小明和小红共有50颗,所以小红有50-15=35颗糖果。

题目6:一个矩形的长是5米,宽是3米,这个矩形的面积是多少平方米?解答6:矩形的面积可以通过长乘以宽计算,所以这个矩形的面积为5×3=15平方米。

题目7:一个正方形的边长是8厘米,这个正方形的周长是多少厘米?解答7:正方形的周长可以通过边长乘以4计算,所以这个正方形的周长为8×4=32厘米。

题目8:有40个苹果,每个篮子装8个苹果,问最多可以装多少个篮子?解答8:如果每个篮子装8个苹果,那么40个苹果可以装40÷8=5个篮子。

题目9:某商店的西瓜每公斤4元,小明买了3.5公斤的西瓜,他应该付多少钱?解答9:小明买了3.5公斤的西瓜,每公斤4元,所以他应该付3.5×4=14元。

题目10:一个三角形的底是6厘米,高是4厘米,这个三角形的面积是多少平方厘米?解答10:三角形的面积可以通过底乘以高再除以2计算,所以这个三角形的面积为6×4÷2=12平方厘米。

小学五年级数学50道奥数题(附解析答案)

小学五年级数学50道奥数题(附解析答案)

小学五年级数学50道奥数题(附解析答案)小学五年级奥数题一、工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还需要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。

现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。

已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。

当师傅完成了1/2时,徒弟完成了120个。

当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。

单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。

甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。

现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,,问鸡与兔各有几只?三.数字数位问题1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?2.A和B是小于100的两个非零的不同自然数。

五年级奥数题及答案

五年级奥数题及答案

五年级奥数题及答案题目一:数字排列小明在玩一个数字排列游戏,他有数字1到9的卡片各一张,现在他想将这些卡片排列成一个三位数,使得这个三位数的每一位数字都不相同。

请问小明有多少种不同的排列方式?答案:这是一个排列组合问题。

对于三位数,我们有9个选择来放置第一位数字(不能是0),剩下的8个数字中选择一个来放置第二位,最后7个数字中选择一个来放置第三位。

因此,总的排列方式是9×8×7=504种。

题目二:图形计数在一个5×5的方格中,有多少种不同的路径可以从左上角走到右下角,只能向下或向右移动?答案:这是一个组合问题,我们可以通过计算到达右下角的路径数来解决。

在5×5的方格中,到达右下角需要向右移动4次和向下移动4次,总共8步。

我们需要从这8步中选择4步是向下的,剩下的4步是向右的。

这可以通过组合公式C(8,4)来计算,即8!/(4!4!)=70种不同的路径。

题目三:分数问题如果1/2 + 1/3 + 1/4 + ... + 1/100的和是一个整数,那么这个整数是多少?答案:首先我们需要找到一个通项公式来表示这个序列。

这个序列是1/n,其中n从2到100。

我们需要找到一个公共的分母,使得所有的分数相加后能够简化为一个整数。

这个公共分母是2到100的所有整数的乘积。

将每个分数转换为这个公共分母后,我们可以看到分子是1到100的和,即(1+2+3+...+100)。

这是一个等差数列的和,公式为n(n+1)/2,代入n=100,我们得到51×101=5151。

因此,这个整数是5151。

题目四:逻辑推理有五个盒子,每个盒子里都装有不同的糖果数量,分别是2、3、5、7和11个。

现在有五个人,每个人从每个盒子里拿走了不同数量的糖果。

第一个人拿走了总数的一半,第二个人拿走了剩下的一半,依此类推。

最后,每个盒子里都剩下1个糖果。

问每个人分别从每个盒子里拿走了多少糖果?答案:这是一个逆向思维问题。

五年级奥数题及答案通用13篇

五年级奥数题及答案通用13篇

五年级奥数题及答案通用13篇五年级小学生奥数题篇一1、某厂有一批煤,原计划每天烧5吨,可以烧45天。

实际每天少烧0.5吨,这批煤可以烧多少天?2、学校买来150米长的塑料绳,先剪下7.5米,做3根同样长的跳绳。

照这样计算,剩下的塑料绳还可以做多少根?3、修一条水渠,原计划每天修0.48千米,30天修完。

实际每天多修0.02千米,实际修了多少天?4、王老师看一本书,如果每天看32页,15天看完。

现在每天看40页,可以提前几天看完?5、一辆汽车4小时行驶了260千米,照这样的速度,又行了2.4小时,前后一共行驶了多少千米?(用两种方法解答)五年级小学生奥数题篇二1、快车和慢车同时从两个城市相对开出,2.5小时后相遇。

快车每小时行42千米,慢车每小时行35千米。

两个城市相距多少千米?2、甲、乙二位同学合打一份资料,甲每分打18个字,乙每分打22个字,两人用了30分打完这份资料,这份资料一共有多少个字?3、甲乙两车分别从两地同时出发,相对开来,甲车每小时行40千米,乙车每小时行50千米,3小时后两车还相距25千米,两地相距多少千米?4、两地相距628千米,甲车每小时行60千米,乙车每小时行80千米。

两车同时从两地相向而行,4小时后两车相遇了吗?两车相距多少千米?5、甲乙两人合做一批零件。

甲每小时做124个,乙每小时做136个。

他们合做了8小时,超额完成120个。

他们原来打算合做多少个零件?6、上午10时一只货船从甲港开往乙港,下午1小时一只客船从乙港开往甲港。

客船开出4小时与货船相遇。

货船每小时行18千米,客船每小时行27千米。

两港相距多远?参考答案1、(42+35)×2.5=192.5(千米)2、(18+22)×30=12003、(50+40)×3+25=295(千米)4、没相遇。

(60+80)×4=560(千米)628-560=68(千米)5、(124+136)×8-120=1960(个)6、18×3+(18+27)×4=234(千米)五年级小学生奥数题篇三1、甲、乙、丙三人赛跑,同时从A地出发向B地跑,当甲跑到终点时,乙离B还有30米,丙离B还有70米;当乙跑到终点时,丙离B还有45米。

五年级奥数题精选及答案

五年级奥数题精选及答案

五年级奥数题精选及答案1. 如果a的值满足下列各式之一,请写出一个实数解x。

(1)a-2x=7(2)a+3x=4解:(1)a-2x=7 可化简为 x=(a-7)/2,当a=9时,x=1,则方程有一个实数解x=1。

(2)a+3x=4 可化简为 x=(4-a)/3,当a=1时,x=1,则方程有一个实数解x=1。

2. 三个数在公差为2的等差数列中,它们的和是18,这三个数分别是多少?解:设这三个数为a-2, a, a+2,则它们的和为3a=18,解得a=6,所以这三个数为4, 6, 8。

3. 小华身高1.4米,小红比小华高0.1米,小林比小红高1.2米,那么小林的身高是多少米?解:小红比小华高0.1米,即小红身高为1.4+0.1=1.5米;小林比小红高1.2米,即小林身高为1.5+1.2=2.7米。

4. 一条地下通道长为600米,上面有A,B两地,小明从A处以常速行驶,时速6米/秒,而小红从B处出发,以8米/秒速度追赶小明,小红赶上小明需要多长时间?解:设小红赶上小明的时间为t秒,则小红走了8t米,小明走了6t 米,根据题意有8t-6t=600,解得t=300秒。

5. 用最少的竖式运算,求出47乘以25的结果。

解:47× 25------------141(47×3=141)940(47×20=940)------------1175(47×25=1175)通过以上五道奥数题的精选,希望能够激发同学们对数学的兴趣,并提高解题能力。

每道题的解题方法都有其特殊的技巧,希望同学们能够灵活运用,加深对数学知识的理解和掌握。

祝愿同学们在未来的数学学习中取得更好的成绩!。

五年级奥数题100道及答案

五年级奥数题100道及答案

五年级奥数题100道及答案1. 小明有5个苹果,他给小华2个,自己还剩下多少个苹果?答案:小明还剩下3个苹果。

2. 一个班级有40名学生,如果每2名学生组成一个小组,可以组成多少个小组?答案:可以组成20个小组。

3. 一个数的3倍是45,这个数是多少?答案:这个数是15。

4. 一个长方形的长是15厘米,宽是10厘米,它的周长是多少?答案:周长是50厘米。

5. 一个数加上12等于36,这个数是多少?答案:这个数是24。

6. 如果一个数的一半是18,那么这个数是多少?答案:这个数是36。

7. 一个数的4倍是64,这个数是多少?答案:这个数是16。

8. 一个正方形的边长是8厘米,它的面积是多少?答案:面积是64平方厘米。

9. 一个数的5倍是100,这个数是多少?答案:这个数是20。

10. 一个班级有50名学生,如果每5名学生组成一个小组,可以组成多少个小组?答案:可以组成10个小组。

11. 一个数的6倍是72,这个数是多少?答案:这个数是12。

12. 一个数减去15得到30,这个数是多少?答案:这个数是45。

13. 一个数的7倍是49,这个数是多少?答案:这个数是7。

14. 一个数的8倍是64,这个数是多少?答案:这个数是8。

15. 一个数的9倍是81,这个数是多少?答案:这个数是9。

16. 一个数的10倍是100,这个数是多少?答案:这个数是10。

17. 一个数的11倍是121,这个数是多少?答案:这个数是11。

18. 一个数的12倍是144,这个数是多少?答案:这个数是12。

19. 一个数的13倍是169,这个数是多少?答案:这个数是13。

20. 一个数的14倍是196,这个数是多少?答案:这个数是14。

21. 一个数的15倍是225,这个数是多少?答案:这个数是15。

22. 一个数的16倍是256,这个数是多少?答案:这个数是16。

23. 一个数的17倍是289,这个数是多少?答案:这个数是17。

小学五年级奥数题及答案解析(五篇)

小学五年级奥数题及答案解析(五篇)

小学五年级奥数题及答案解析(五篇)篇一油库里有6桶油,分别装着汽油、柴油和机油。

油桶上只标明15公升、16公升、18公升、19公升、20公升和31公升,却没有注明是哪一种油。

只知道柴油是机油的2倍,汽油只有一桶。

请你分析一下,各个油桶里装的是什么油?【答案解析】根据“柴油是机油的2倍”这一条件可知,这两种油之和一定是3的倍数。

而六桶油的和为15+16+18+19+20+31=119(公升),119除以3得到的余数为2,说明汽油量是3的倍数还多2公升。

又知“汽油只有一桶”,在油桶上标明的六个数中,只有20是3的倍数多2的数,所以标明20公升这一桶装的是汽油。

从而可求出机油量为(15+16+18+19+31)÷3=33(公升),柴油量为33×2=66(公升)通过观察可知,标明15公升与18公升的两桶装的是机油,标明16公升、19公升与31公升的三桶装的是柴油。

篇二甲、乙、丙三个桶内各装了一些油,先将甲桶内三分之一的油倒入乙桶,再将乙桶内五分之一的油倒入丙桶,这时三个桶内的油一样多,如果最初丙桶内有油48千克,那么最初甲桶内有油_____千克。

乙桶内有油_____千克。

【答案解析】甲桶里面应该有96千克,乙桶里有48千克。

假设甲桶往乙桶倒过油之后乙桶的油是5份,那么它将五分之一给了丙桶,结果两桶一样多,说明丙桶原来有3份,那么三桶都一样的时候都是4份,可以知道,甲桶倒出去三分之一之后还有4份,那么原来就有6份,甲桶往乙桶倒过2份油之后乙桶的油是5份,说明原来乙桶也是3份,那么丙桶的3份相当于48千克,一份就是16千克,最初的甲桶里面应该有96千克,乙桶里有48千克。

篇三学校参加体操表演的学生人数在60~100之间。

把这些同学按人数平均分成8人一组,或平均分成12人一组都正好分完。

参加这次表演的同学至少有()人。

【答案解析】考点:公因数和公倍数应用题。

分析:按人数平均分成8人一组,或平均分成12人一组都正好分完,那么总人数就是8和12的公倍数,再根据总人数在60~100之间进行求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级奥数题精选姓名:学校:班级分数:1、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加。

那么有多少人两个小组都不参加?2、某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文成绩均得满分的有3人,这两科都没有得满分的有29人。

那么语文成绩得满分的有多少人?3、50名同学面向老师站成一行。

老师先让大家从左至右按1,2,3, (49)50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。

问:现在面向老师的同学还有多少名?4、在游艺会上,有100名同学抽到了标签分别为1至100的奖券。

按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔。

那么游艺会为该项活动准备的奖品铅笔共有多少支?5、有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断。

问绳子共被剪成了多少段?答案:1,因为10人2组都参加,所以只参加数学的5人,只参加航模的8人,加上那10人就是23人,40-23=17,2个小组都不参加的17人2,同理,数学满分10人,2科都满分的3人,于是只是数学满分的7人,45-7-29=9,这个就是语文满分的人(如果说只是语文满分的则需要减去3)3,50÷4取整12,50÷6取整8,但是要注意,报4倍数的同时可能是6的倍数,所以还要算出4和6的公倍数,有50÷12(4和6的最小公倍数)=4(取整),所以,应该是50-12-8+4=344,100÷2=50,100÷3=33(取整),还是算出2和3的公倍数100÷6=16(取整),然后找出即没不被2整除,也不被3整除的数的个数100-50-33+16=28,所以,准备铅笔为50X2+33X3+28=2275,180÷3=60,180÷4=45,但是可能2个划线划在一起,也就是要算出他们的公倍数,180÷3÷4=15,所以应该为60+45-15=90例1有4堆外表上一样的球,每堆4个。

已知其中三堆是正品、一堆是次品,正品球每个重10克,次品球每个重11克,请你用天平只称一次,把是次品的那堆找出来。

解:依次从第一、二、三、四堆球中,各取1、2、3、4个球,这10个球一起放到天平上去称,总重量比100克多几克,第几堆就是次品球。

例2有27个外表上一样的球,其中只有一个是次品,重量比正品轻,请你用天平只称三次(不用砝码),把次品球找出来。

解:第一次:把27个球分为三堆,每堆9个,取其中两堆分别放在天平的两个盘上。

若天平不平衡,可找到较轻的一堆;若天平平衡,则剩下来称的一堆必定较轻,次品必在较轻的一堆中。

第二次:把第一次判定为较轻的一堆又分成三堆,每堆3个球,按上法称其中两堆,又可找出次品在其中较轻的那一堆。

第三次:从第二次找出的较轻的一堆3个球中取出2个称一次,若天平不平衡,则较轻的就是次品,若天平平衡,则剩下一个未称的就是次品。

例3把10个外表上一样的球,其中只有一个是次品,请你用天平只称三次,把次品找出来。

解:把10个球分成3个、3个、3个、1个四组,将四组球及其重量分别用A、B、C、D表示。

把A、B两组分别放在天平的两个盘上去称,则(1)若A=B,则A、B中都是正品,再称B、C。

如B=C,显然D中的那个球是次品;如B>C,则次品在C中且次品比正品轻,再在C中取出2个球来称,便可得出结论。

如B<C,仿照B>C的情况也可得出结论。

(2)若A>B,则C、D中都是正品,再称B、C,则有B=C,或B<C(B>C 不可能,为什么?)如B=C,则次品在A中且次品比正品重,再在A中取出2个球来称,便可得出结论;如B<C,仿前也可得出结论。

(3)若A<B,类似于A>B的情况,可分析得出结论。

练习有12个外表上一样的球,其中只有一个是次品,用天平只称三次,你能找出次品吗?奥赛专题--鸡兔同笼问题[专题介绍]鸡兔同笼问题是指在应用题中给出了鸡和兔子的总头数和总腿数,求鸡和兔子各有多少只的一类问题。

鸡兔同笼问题在解答过程中用到假设的思路,可以假设都是兔子,这样总腿数就比实际腿数要多,多出来的腿数就是把鸡当兔子多算的,因此再除以一只鸡比一只兔子少的腿数就可以求得鸡有多少只。

也可以假设成都是鸡,这样就可以求得兔有多少只。

[经典例题]例1鸡兔同笼,头共46,足共128,鸡兔各几只?[分析]:如果46只都是兔,一共应有4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。

解:①鸡有多少只?(4×6-128)÷(4-2)=(184-128)÷2=56÷2=28(只)②免有多少只?46-28=18(只)答:鸡有28只,免有18只。

[总结]:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是:鸡数=(每只兔脚数×兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数当然,也可以先假设全是鸡。

例2鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?[分析]:这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢?假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。

解:(2×100-80)÷(2+4)=20(只)。

100-20=80(只)。

答:鸡与兔分别有80只和20只。

例3红英小学三年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人?[分析1]我们设想,如果条件中三个班人数同样多,那么,要求每班有多少人就很容易了.由此得到启示,是否可以通过假设三个班人数同样多来分析求解。

结合下图可以想,假设二班、三班人数和一班人数相同,以一班为标准,则二班人数要比实际人数少5人.三班人数要比实际人数多7-5=2(人).那么,请你算一算,假设二班、三班人数和一班人数同样多,三个班总人数应该是多少?解法1:一班:[135-5+(7-5)]÷3=132÷3=44(人)二班:44+5=49(人)三班:49-7=42(人)答:三年级一班、二班、三班分别有44人、49人和42人。

[分析2]假设一、三班人数和二班人数同样多,那么,一班人数比实际要多5人,而三班要比实际人数多7人.这时的总人数又该是多少?解法2:(135+5+7)÷3=147÷3=49(人)49-5=44(人),49-7=42(人)答:三年级一班、二班、三班分别有44人、49人和42人。

例4刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?[分析]我们分步来考虑:①假设租的10条船都是大船,那么船上应该坐6×10=60(人)。

②假设后的总人数比实际人数多了60-(41+1)=18(人),多的原因是把小船坐的4人都假设成坐6人。

③一条小船当成大船多出2人,多出的18人是把18÷2=9(条)小船当成大船。

解:[6×10-(41+1)÷(6-4)=18÷2=9(条)10-9=1(条)答:有9条小船,1条大船。

例5有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只?[分析]这是在鸡兔同笼基础上发展变化的问题.观察数字特点,蜻蜓、蝉都是6条腿,只有蜘蛛8条腿.因此,可先从腿数入手,求出蜘蛛的只数.我们假设三种动物都是6条腿,则总腿数为6×18=108(条),所差118-108=10(条),必然是由于少算了蜘蛛的腿数而造成的.所以,应有(118-108)÷(8-6)=5(只)蜘蛛.这样剩下的18-5=13(只)便是蜻蜓和蝉的只数.再从翅膀数入手,假设13只都是蝉,则总翅膀数1×13=13(对),比实际数少20-13=7(对),这是由于蜻蜓有两对翅膀,而我们只按一对翅膀计算所差,这样蜻蜓只数可求7÷(2-1)=7(只).解:①假设蜘蛛也是6条腿,三种动物共有多少条腿?6×18=108(条)②有蜘蛛多少只?(118-108)÷(8-6)=5(只)③蜻蜒、蝉共有多少只?18-5=13(只)④假设蜻蜒也是一对翅膀,共有多少对翅膀?1×13=13(对)⑤蜻蜒多少只?(20-13)÷2-1)=7(只)答:蜻蜒有7只.参考资料:小数专业网过桥问题(1)1.一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟?分析:这道题求的是通过时间。

根据数量关系式,我们知道要想求通过时间,就要知道路程和速度。

路程是用桥长加上车长。

火车的速度是已知条件。

总路程:(米)通过时间:(分钟)答:这列火车通过长江大桥需要17.1分钟。

2.一列火车长200米,全车通过长700米的桥需要30秒钟,这列火车每秒行多少米?分析与解答:这是一道求车速的过桥问题。

我们知道,要想求车速,我们就要知道路程和通过时间这两个条件。

可以用已知条件桥长和车长求出路程,通过时间也是已知条件,所以车速可以很方便求出。

总路程:(米)火车速度:(米)答:这列火车每秒行30米。

3.一列火车长240米,这列火车每秒行15米,从车头进山洞到全车出山洞共用20秒,山洞长多少米?分析与解答:火车过山洞和火车过桥的思路是一样的。

相关文档
最新文档