焊接变形
焊接中出现的问题和解决方案
焊接中出现的问题和解决方案
《焊接中的问题及解决方案》
在焊接过程中,往往会出现各种各样的问题,影响焊接质量和效率。
下面列举几种常见的问题及相应的解决方案。
1. 焊接变形
当焊接过程中受热变形产生时,可能会使得焊接接头不符合设计规定。
解决方法是在焊接过程中采用适当的焊接顺序和焊接方法,以减小变形量。
2. 焊缝气孔
气孔是焊接中常见的缺陷,可能会降低焊接接头的强度和密封性。
解决方法是在焊接前要彻底清除工件表面和焊料上的杂质,并严格控制焊接参数,以减少气孔的产生。
3. 焊接裂缝
焊接裂缝可能是由于焊接残留应力引起的。
解决方法是在焊接前进行应力分析,采用适当的焊接序列和焊接量,以减少应力集中和裂缝的产生。
4. 焊接材料不相容
在焊接不同种类的材料时,可能会出现材料不相容的问题。
解决方法是在选材时要严格按照焊接要求来选择材料,并采用合适的焊接方法和工艺,以确保焊接接头的质量。
总之,焊接中的问题是多种多样的,需要根据具体情况来采取
相应的解决方法。
只有不断积累经验、改进技术,才能够提高焊接质量和效率。
消除焊接变形的方法
焊接变形是焊接过程中常见的问题,它可能对焊接结构的形状、尺寸、精度和稳定性产生不利影响。
为了消除焊接变形,可以采取以下几种方法:
反变形法:在焊接前或焊接过程中,人为地使焊件产生与焊接变形相反的变形,以抵消焊接变形。
这种方法需要在焊接前或焊接过程中精确计算和控制反变形量,才能达到预期的效果。
刚性固定法:将焊件固定在具有足够刚性的夹具或支撑物上,以防止焊接变形。
这种方法适用于小型、简单的焊件,但对于大型、复杂的焊件,由于刚性固定可能会产生较大的应力,因此需要采取其他措施来消除应力。
锤击法:在焊接过程中,使用锤击或振动焊件的方法来消除焊接变形。
这种方法需要在焊接过程中精确控制锤击或振动的力度和频率,以避免对焊件造成过大的损伤。
加热法:在焊接前或焊接过程中,对焊件进行局部或整体加热,以消除焊接变形。
这种方法需要在加热过程中精确控制加热的温度和范围,以避免对焊件造成过大的损伤。
机械校正法:在焊接后,使用机械工具对焊件进行校正,以消除焊接变形。
这种方法需要在机械校正过程中精确控制校正的力度和方向,以避免对焊件造成过大的损伤。
化学校正法:在焊接后,使用化学剂对焊件进行校正,以消除焊接变形。
这种方法需要在化学校正过程中精确控制化学剂的种类、浓度和作用时间,以避免对焊件造成过大的损伤。
以上是消除焊接变形的几种常见方法,可以根据不同的焊接情况选择合适的方法。
无论采用哪种方法,都需要在焊接过程中严格控制工艺参数,以避免产生过大的焊接变形。
焊接变形
焊接变形一、焊接变形的种类(1)纵向收缩变形构件焊后在焊缝方向发生的收缩,如图1中的△L。
(2)横向收缩变形构件经过焊接以后在垂直焊缝方向发生的收缩,如图1中的△B。
(3)角变形焊接以后,构件的平面围绕焊缝发生的角位移,如图2所示。
(4)错边变形焊接过程中,由于两块板材的热膨胀不一致,可能引起长度方向或厚度方向上的错边,如图3所示。
图1 纵向和横向收缩变形图2 角变形图3 错边变形a)长度方向的错边;b)厚度方向的错边(5)波浪变形薄板焊件焊后最容易发生这种失稳变形,形状呈波浪状。
如图4所示。
图4 波浪变形(6)挠曲变形构件焊后所发生的挠曲,如图5所示。
挠曲变形可以由焊缝的纵向收缩引起,如图5a所示。
也可以由焊缝的横向收缩引起,如图5b所示。
(7)螺旋形变形焊后的结构上出现的扭曲,如图6所示。
图5 挠曲变形a)由纵向收缩引起的挠曲;b)由横向收缩引起的挠曲图6 螺旋形变形二、焊接变形的估算方法(1)纵向收缩变形、横向收缩变形均可采用有关公式进行计算,具体方法详见本书第二十章焊接计算的有关内容。
(2)角变形可由图7进行估算。
图7 T形接头角变形与板厚δ及焊脚尺寸K的关系a)低碳钢;b)铝镁合金三、焊接变形的经验数据1)低碳钢纵向收缩变形见表1,适用于中等厚度、以及宽度比约为15的板件。
2)焊缝横向收缩变形见表2。
3)低碳钢对接接头横向收缩变形见表3。
4)低碳钢角接接头的横向收缩变形见表4。
5)低碳钢的对接接头角变形见表5。
表中的角变形数值是在自由状态下对接焊后测得的。
6)T形接头和搭接接头的角变形见表6。
四、焊接变形的控制与矫正1.改进焊缝设计(1)尽量减少焊缝数量在设计焊接结构时应当避免不必要的焊缝。
尽量选用型钢、冲压件代替焊接件,以减少肋板数量来减小焊接和矫正变形的工作量。
表1 低碳钢纵向收缩变形(mm/m)(2)合理选择焊缝形状及尺寸对于板厚较大的对接接头应选X 形坡口代替V形坡口。
减少熔敷金属总量以减少焊接变形。
焊接变形及预防措施
什么是焊接变形?(一)基本类型1. 纵向收缩变形:构件焊后在平行焊缝的方向上尺寸缩短。
2. 横向收缩变形:构件焊后在垂直焊缝的方向上尺寸缩短。
3. 弯曲变形:由于焊缝的布置偏离焊件的形心轴。
4. 角变形:焊后构件的平面围绕焊缝产生的角位移。
5.波浪变形:焊后构件呈波浪形,在焊薄板中出现。
6.错边变形:两焊接热膨胀不一致,所引起的长度或厚度方向上的错边。
(二) 设计措施1. 合理选择焊件尺寸。
焊件的长度、宽度和厚度等尺寸对焊接变形有明显的影响。
例如,板的厚度对于角焊缝的角变形影响较大,当厚度达到某一数值(钢约9mm)时角变形最大。
在制造T形或工形焊接梁时,由于焊件细长,以致于焊接区收缩变形引起焊件弯曲变形是一个突出问题。
解决这一问题的最好办法就是要精心设计结构尺寸参数(如板厚、板宽、板长和肋板间距等)和焊接参数(如单位线能量等)。
2. 合理选择焊缝尺寸和坡口形式。
焊缝尺寸的大小,不仅关系到焊接工作量,而且还对焊接变形产生较大的影响。
焊缝尺寸大,焊接量也大,填充金属消耗量多,造成焊接变形大。
因此在设计焊缝尺寸时,在保证结构承载能力的条件下,应采用较小的焊缝尺寸。
片面加大焊缝尺寸对减小焊接变形极其不利。
所以对并不承受很大工作应力的焊缝,不必采用大尺寸焊角,只要能满足其强度要求就好。
另外,还要合理设计坡口型式。
例如对接接头要采用角变形为零的最佳X 形坡口尺寸。
对于受力较大的T形接头和十字接头,在保证相同强度的条件下,采用开坡口的焊缝比不开坡口焊缝动载强度高,焊缝金属量少,而且对减小焊接变形也是有利的,尤其对厚板而言,更有意义。
3. 尽量减少不必要的焊缝。
在焊接结构设计中,应该力求使焊缝数量减至最少。
一般在设计中常采用加肋板来提高结构的稳定性和刚度,特别是有时为减轻主体结构重量而采用较薄板,势必增加肋板数量,从而大大增加装配和焊接的工作量,其结果是不但不经济,而且焊缝致使焊接变形过大。
所以实践证明合理选择板厚,适当减少肋板,使焊缝减少,即使结构可能稍重,还是比较经济的。
(整理)焊接变形产生的原因及预防措施
第一章焊接应力与变形焊接时,由于局部高温加热而造成焊件上温度分布不均匀,最终导致在结构内部产生了焊接应力与变形。
焊接应力是引起脆性断裂、疲劳断裂、应力腐蚀断裂和失稳破坏的主要原因。
另外,焊接变形也使结构的形状和尺寸精度难以达到技术要求,直接影响结构的制造质量和使用性能。
因此,本章主要讨论焊接应力与变形的基本概念及其产生原因;焊接变形的种类,控制焊接变形的工艺措施和焊后如何矫正焊接变形;焊接应力的分布规律,降低焊接应力的工艺措施和焊后如何消除焊接残余应力。
第一节焊接应力与变形的产生一、焊接应力与变形的基本知识1.焊接变形物体在外力或温度等因素的作用下,其形状和尺寸发生变化,这种变化称为物体的变形。
当使物体产生变形的外力或其它因素去除后变形也随之消失,物体可恢复原状,这样的变形称为弹性变形。
当外力或其它因素去除后变形仍然存在,物体不能恢复原状,这样的变形称为塑性变形。
物体的变形还可按拘束条件分为自由变形和非自由变形。
在非自由变形中,有外观变形和内部变形两种。
以一根金属杆的变形为例,当温度为T0时,其长度为L0,均匀加热,温度上升到T时,如果金属杆不受阻,杆的长度会增加至L,其长度的改变ΔL T=L- L0,ΔL T就是自由变形,见图1-la。
如果金属杆件的伸长受阻,则变形量不能完全表现出来,就是非自由变形。
其中,把能表现出来的这部分变形称为外观变形,用ΔLe表示;而未表现出的变形称为内部变形,用ΔL表示。
在数值上,ΔL=ΔL T-ΔLe,见图1-lb。
单位长度的变形量称为变形率,自由变形率用εT表示,其数学表达式为:εT=ΔL T/L0=α(T-T0) (1-1)式中α——金属的线膨胀系数,它的数值随材料及温度而变化。
外观变形率εe,可用下式表示:εe=ΔLe/ L0(1-2)同样,内部变形率ε用下式表示:ε=ΔL/L0(1-3)2.应力存在于物体内部的、对外力作用或其它因素引起物体变形所产生的抵抗力,叫做内力。
焊接变形原因分析及其防止措施
焊接变形原因分析及其防止措施摘要:本文重点对常见焊接变形的原因进行分析,并根据原因分别从设计和工艺两个方面论述防止变形的措施。
关键词:焊接变形原因分析防止措施随着新材料、新结构和新焊接工艺的不断发展,有越来越多的焊接应力变形和强度问题需要研究。
焊接变形在焊接结构生产中经常出现,如果构件上出现了变形,不但影响结构尺寸的准确性和外观美观,而且有可能降低结构的承载能力,引起事故。
同时校正焊接变形需要花费许多工时,有的变形很大,甚至无法校正,造成废品,给企业带来损失。
因此掌握焊接变形的规律和控制焊接变形具有十分重要的现实意义。
一、焊接变形种类生产中常见的焊接变形主要有纵向收缩变形、横向收缩变形、挠曲变形、角变形、波浪变形、错边变形、螺旋变形。
这几种变形在焊接结构中往往并不是单独出现,而是同时出现,相互影响。
在这里重点对生产中经常出现的纵向收缩变形、横向收缩变形、角变形、错边变形进行分析。
二、焊接变形原因分析1.纵向收缩变形。
焊接时,焊缝及其附近的金属由于在高温下自由变形受到阻碍,产生的压缩性变形,在平行于焊缝的变形称之为纵向收缩性变形。
焊缝纵向收缩变形量可近似的用塑性变形区面积S来衡量,变形区面积S于焊接线能量有直接关系,焊接线能量越小,S越小,反之S越大。
同样截面的焊缝可以一次焊成,也可以分几层焊成,多层焊每次所用的线能量比单层焊时小得多,因此每层焊缝产生的塑性变形区的面积S比单层焊时小,但多层焊所引起的总变形量并不等于各层焊缝的总和。
因为各层所产生的塑性变形区面积和是相互重叠的。
从上述分析可以看出多层焊所引起的纵向收缩比单层焊小,所以分的层数越多,每层所用的线能量就越小,变形也越小。
2.横向收缩变形。
横向收缩变形是指垂直于焊缝方向的变形,焊缝不但发生纵向收缩变形,同时也发生横向收缩变形,其变形产生的过程比较复杂,下面分几种焊缝情况来分析。
2.1堆焊和角焊缝。
首先研究在平板全长上对焊一条焊缝的情况。
当板很窄,可以把焊缝当作沿全长同时加热,采用分析纵向收缩的方法加以处理。
焊接变形的原因及控制方法
焊接变形的原因及控制方法焊接变形是指焊接过程中产生的结构形状、尺寸和应力的改变。
变形对于焊接结构的质量和使用寿命都具有重要影响,因此需要采取控制措施来减少焊接变形。
1.熔融区的体积收缩:在焊接中,熔融区的温度升高,熔化的金属液体会发生体积收缩。
当焊接过程中发生多次的局部加热和熔化,熔融区收缩现象将会导致焊接件变形。
2.焊接应力:焊接过程中形成的焊接应力是导致焊缝及周边材料变形的重要原因。
焊接引起的应力主要有热应力和残余应力两种。
3.材料的热物理性质差异:焊接过程中,不同材料的热膨胀系数和热传导系数的差异也会导致焊件变形。
为了控制焊接变形,可以采取以下方法:1.合理设计焊接结构:通过合理设计焊接结构,可以减轻焊接变形产生的程度。
例如,在设计焊接结构时可以采用对称组织,增加长交叉焊缝间的连接来减轻焊接变形。
2.使用焊接工艺参数:调整焊接工艺参数,如焊接速度、焊接电流和电压等,可以减少焊接变形。
例如,在焊接速度控制方面,可以采用逆向焊接、速度波动焊接和脉冲焊接等方法来减少焊接变形。
3.采用预应力:对焊接材料进行预应力处理可以减少焊接变形的产生,常见的方法有热拉伸和压力留置法。
4.使用夹具和支撑物:采用夹具和支撑物对焊接结构进行支撑和固定,可以减少焊接变形的产生。
夹具可以限制材料的收缩和变形,支撑物能够提供必要的支撑力和刚度。
5.控制焊接热输入:通过控制焊接热输入来减少焊接变形。
可以采用分段焊接、小电流多道焊、局部加热等方法来降低焊接区域的温度梯度。
总之,焊接变形是焊接过程中难以避免的问题,但通过合理的设计和控制参数的调整,可以有效减少焊接变形的产生,提高焊接结构的质量和可靠性。
焊接变形原因及控制方法
焊接变形原因及控制方法焊接是一种常见的金属连接方法,但在实际应用中,我们常常会遇到焊接件变形的问题。
本文将探讨焊接变形的原因以及控制方法,帮助读者更好地理解和解决这一问题。
一、焊接变形的原因1. 焊接过程中的温度梯度:焊接时,焊缝区域受到高温的加热,而其它部位则保持较低的温度。
这种温度梯度会导致焊接件产生热应力,从而引起变形。
2. 残余应力的存在:焊接后,冷却过程中会产生残余应力。
这些应力会引起焊接件的变形,尤其是在焊接接头附近。
3. 材料的物理性质:不同材料在焊接过程中会由于热影响区域的不同导致不同的变形情况。
例如,具有较高热膨胀系数的材料在焊接后更容易发生变形。
二、焊接变形的控制方法1. 优化焊接工艺:通过合理安排焊接顺序、增加焊缝长度等方式来减小温度梯度,从而降低焊接变形的发生。
2. 使用预应力技术:在焊接过程中引入预应力,可以通过反向应力来抵消残余应力,从而减小焊接件的变形。
3. 控制焊接变形方向:合理预测焊接变形的方向,并采取相应的措施来控制变形。
例如,在设计中合理选择焊接结构和间隙,减小焊接残余应力对结构的影响。
4. 应用补偿技术:通过在焊接过程中进行额外的加工,例如机械加工或热处理等,来消除或减小焊接变形。
5. 使用支撑和夹具:通过设置支撑物或夹具来限制焊接件的变形,保持其形状和位置。
6. 使用适合的焊接方法:不同的焊接方法具有不同的变形控制效果。
在实际应用中,应根据具体情况选择适当的焊接方法,以减小焊接变形。
三、小结焊接变形是焊接过程中常见的问题,其产生原因主要包括温度梯度、残余应力和材料的物理性质。
为了控制焊接变形,我们可以通过优化焊接工艺、使用预应力技术、控制变形方向、应用补偿技术、使用支撑和夹具以及选择适合的焊接方法等方式进行控制。
只有在理解了焊接变形的原因并采取相应的措施后,我们才能更好地解决这一问题,并获得满意的焊接结果。
通过本文的探讨,相信读者对焊接变形的原因及其控制方法有了更深入的了解,这将有助于在实践中更好地应对焊接变形问题。
焊接变形的矫正方法
焊接变形的矫正方法
焊接变形的矫正方法有以下几种:
1. 机械方法:使用各种夹具、千斤顶、液压装置等机械设备对焊接件进行机械矫正。
这种方法适用于板材、管道等较小尺寸的焊接件。
2. 热处理方法:通过加热焊接件,在达到一定温度时进行矫正。
热处理方法常用的有火焰矫正、电阻矫正、感应矫正等。
这种方法适用于较大尺寸的焊接件,通过热处理可以改变焊接件的尺寸和应力分布,从而实现矫正。
3. 冷却方法:在焊接完成后,通过控制焊接件的冷却速度来改变其尺寸和应力分布。
这种方法适用于较小尺寸的焊接件,通过冷却可以使焊接件产生收缩,从而实现矫正。
4. 修正焊接方法:通过在变形区域补焊,热引起的收缩可以抵消原来的变形。
这种方法适用于焊接件变形较大的情况,通过修正焊接可以使焊接件恢复到设计要求的形状。
需要注意的是,矫正焊接变形时应控制矫正力度和过程,避免引起新的应力和变形。
同时,对于一些要求较高的焊接件,可以在焊前进行设计和模拟分析,以减少变形的发生。
焊接变形分类
焊接变形分类
1. 收缩变形啊,就好比你把一块橡皮泥捏成一个形状后,它会变小一点,对不?比如焊接一块钢板,冷却后它就会变短变窄呢!
2. 角变形可有意思啦,就像一张纸被折了一下,两边就翘起来啦!比如说焊接一个角钢,两边不就会向两边弯嘛!
3. 弯曲变形呢,哎呀,这不就像一根小木棍被压弯了似的嘛!像那长长的钢梁焊接后可能就会中间向下弯哟!
4. 波浪变形呀,就如同水面上的波浪起伏一样嘞!你想想焊接薄金属板时,不就可能出现这样高低起伏的情况嘛!
5. 扭曲变形,这可真让人头疼呀!就像拧麻花一样扭起来啦!像个复杂的焊件可能一不小心就变成扭曲的啦!
6. 错边变形,这就像是两块积木没对齐一样呢!焊接不同厚度的焊件时就容易出现这种情况呀!
总之啊,焊接变形的分类可真是不少,每一种都得小心应对,不然就会出问题啦!。
焊接变形规律-概述说明以及解释
焊接变形规律-概述说明以及解释1.引言1.1 概述焊接是一种常见的金属连接方法,但往往会导致焊后产生变形。
焊接变形是指材料在焊接过程中由于受到热应力和冷却收缩等因素的影响,导致焊缝或焊接结构发生形变的现象。
在焊接工程中,焊接变形是一个普遍存在且较为复杂的问题,严重的变形甚至可能影响到焊接工件的使用性能和结构的安全性。
焊接变形的产生是由多种因素共同作用所致。
首先是焊接过程中高温引起的热应力,焊接区域局部受热后会发生膨胀,而冷却后则会发生收缩。
这种热应力在焊接接头中会引起不均匀的应变分布,从而导致焊接结构发生塑性变形。
其次,根据焊接方式的不同,焊接过程中的热输入和冷却速度也会影响焊接变形的程度。
此外,金属材料本身的热膨胀系数、热导率等物理性质也是影响焊接变形的重要因素。
焊接变形主要分为弯曲变形、扭曲变形和拉伸变形等几种类型。
弯曲变形是指焊接结构在焊接过程中因应力不均匀而发生的弯曲形变。
扭曲变形是指焊接结构在焊接过程中因应力不均匀而发生的扭曲形变。
拉伸变形是指焊接结构在焊接过程中因各部位受到不同的拉力而发生的形变。
针对焊接变形问题,研究人员和工程师们进行了大量的研究,并提出了各种控制焊接变形的方法。
例如,在设计焊接结构时合理选择焊接缝的位置和布置方式,可以减少焊接变形的程度。
同时,也可以通过预热、焊接顺序、焊接参数的调整等操作来控制焊接变形。
此外,采用合适的焊接气氛和焊接工艺也能够对焊接变形进行有效的控制。
综上所述,焊接变形是焊接工程中不可忽视的问题。
了解焊接变形的产生原因和分类有助于我们更好地掌握焊接变形的规律,并采取相应的措施来控制和减小焊接变形,从而提高焊接结构的质量和使用性能。
1.2 文章结构文章结构部分的内容可以包括以下内容:文章结构的目的是为读者提供对整篇文章的概览,并指导他们在阅读过程中更好地理解和把握文章的内容。
本文主要分为引言、正文和结论三个部分。
引言部分旨在引入文章的主题和目的,提供对焊接变形规律的概述。
焊接残余变形
焊接残余变形
焊接残余变形的分类 研究焊接残余变形的意义 引起变形的原因 预防焊接变形的措施 矫正焊接变形的方法
焊接残余变形的分类
1、纵向收缩变形:结构焊后在焊缝方向发生的收缩。 2、横向收缩变形:结构焊后在垂直焊缝方向发生的 收缩。 3、饶曲变形:焊件焊后发生饶曲,饶曲是由焊缝纵 向收缩引起和焊缝横向收缩共同引起的。 4、角变形:焊后构件的平面围绕焊缝产生的角拉移。 5、波浪变形:焊后构件呈波浪形状,这种变形在薄 板焊接中最容易发生。 6、错边变形:在焊接过程中,两焊接件的膨胀系数 不一致。可能引起长度方向的错边和厚度方向 上的错位。 7、螺旋变形:焊后结构件上呈现扭曲。
矫正焊接变形的方法
(1) 机械矫正方法: 利用外力使机构件产生于焊接变形向相反的 塑性变形使两者相互抵消,当薄板结构的焊缝比 较规则时,采用滚压法消除焊接变形效率高,质 量好,具有极大的优越性。 (2) 火焰加热矫正法: 利用热量相对集中的火源对变形结构件反弹 或突出的部分加热至红,然后用冷水冷却使其晶 体结构紧密,从而消除了延伸出的部分,并与机 械矫形方法同时用来达到矫正的效果。
预防焊接变形的措施
(1)设计措施
1. 合理的选择焊缝的尺寸和形式; 2. 尽可能减少不必要的形法:这是生产中最常见常用 的方法,事先估计好结构变形的尺寸和方 向,然后在装配时给予反方向的变形和焊 接变形抵消,使焊后结构件保持设计要求。 2. 刚性固定法:用焊接夹具来限制焊 接变形,这种方法在一定程度上可以减少 焊接变形,但不可消除焊接变形。 3. 合理的选择焊接方法和规范:先用 焊接能源相对集中焊接线能量小的焊接方 法。 4. 选择合理的装配焊接顺序。
引起变形的原因
在焊接中焊缝以及附近的金属由于在高温下的自由变 形受到阻碍,产生了压缩塑性变形,这个区域称之塑性变 形区(长度,截面积)与焊接参数,焊接方法,焊接顺序, 以及材料的物理参数有关,在诸多工艺因素中,焊接线能 量是主要的。在一般情况下焊接变形与焊接线能量成正比。 同样截面的焊缝可以一次焊成,也可以分几次焊成, 多层焊每次所用的线能量比单层焊小的多。因此每层焊缝 所产生的塑性变形区的面积比单层焊小,但多层焊所引起 的变形量,并不等于各层焊缝的总和。因为各层所产生的 塑性变形区的面积相互叠加的。 从以上分析可以看出多层焊所引起的纵向收缩比单 层焊小,变形也就更小。
焊接变形和焊接应力
焊接变形和焊接应力焊接变形和焊接应力焊接是一种局部加热的加工方法,热源集中在焊缝处加热,因而造成焊件上温分布不均匀,最终导致在焊接结构内部产生了焊接变形与焊接应力。
一、焊接变形1. 焊接变形的概念由焊接而引起的焊件尺寸和形状的改变称为焊接变形。
焊接过程结束后,残国在焊接结构中的变形,称为焊接残余变形。
本书中提到的焊接变形指的是焊接残余变形。
2. 焊接变形的类型及产生原因焊接变形可分为收缩变形、角变形、弯曲变形、波浪变形、扭曲变形等几种形式焊件局部(焊缝和焊缝附近的金属)不均匀加热和冷却是产生焊接变形的根本用因。
焊接时,加热是通过移动的高温电弧热源进行的,焊缝和焊缝附近的金属温度很高,受热金属要膨胀,其余大部分金属不受热,受热金属的膨胀受到阻碍和抑制,生了压缩塑性变形。
焊完冷却后,焊缝和附近的金属因收缩而变短,却又受到周围受热金属的限制,就使焊件产生了内应力,以致产生变形。
各类焊接变形的具体原因各不相同,与焊缝在焊件中的位置、加热方法、焊接序等因素密切相关。
焊接变形的类型及产生原因见表2-3-7。
3. 预防和矫正焊接变形的方法及措施(1)预防焊接变形的方法及措施预防焊接变形可以从焊接结构设计和焊接工艺两方面进行。
在焊接结构设计时要在保证结构有足够强度的前提下,尽量减小焊缝的数量和尺寸;对称布置焊缝;必要时预先留出收缩余量;采用冲压结构代替焊接结构;将焊缝布置在最大工作应力之外等。
预防焊接残余变形的工艺措施主要有∶1)选择合理的装配焊接顺序。
装配焊接顺序对焊接结构变形的影响很大。
对称焊接、不对称焊缝先焊焊缝少的一侧和减少长道直焊缝等都可以很大程度上减少焊接变形量。
如图2-3-13所示的工字梁,当采用1、2、3、4的焊接顺序时,虽然结构的焊缝对称,焊后仍将产生较大的上拱弯曲变形,但如果改为将工字梁1、2焊缝的长度分成若干段,采取分段、跳焊的对称焊接,先焊完总长度的60%~70%,然后将工字果翻转180°焊接3、4焊缝,也采取分段、跳焊的对称焊将3、4焊缝全部焊完。
焊接变形的矫正方法
焊接变形的矫正方法变形是一种常见的焊接缺陷,它可能会影响焊接部件的功能和结构。
为了改善焊接部件的结构和功能,焊接工程师经常会采用焊接变形的矫正方法。
本文旨在介绍焊接变形的矫正方法,并提出合理的建议。
一、焊接变形的矫正方法1.整焊接参数:一些焊接参数调整可以改善焊接变形,例如焊接温度、焊接电流、焊接速度和焊接时间等。
例如,调整焊接温度、焊接电流和焊接速度可以减少焊条的熔池体积和焊接速度,从而减少焊接变形。
2.择正确的焊材:选择正确的焊材可以改善焊接变形。
当焊接变形较大时,可以选择一种具有较高熔化点的焊材,以降低焊接温度,从而减少焊条的熔池体积和焊接速度,从而减少焊接变形。
3. 使用正确的焊接方法:选择正确的焊接方法可以降低焊接变形。
例如,冷折可以有效地降低焊接变形。
另外,以正确的焊接技术可以有效地减少焊接变形。
4.变焊条和焊剂的形状:改变焊条和焊剂的形状可以改善焊接变形。
例如,用曲线形状的焊条和焊剂可以有效地减小焊接变形。
二、进一步改善焊接变形的建议1.强焊接技术的培训:焊接技术的培训可以帮助焊接工程师更好地掌握正确的焊接技术,并使用正确的焊材和焊剂,从而减少焊接变形。
2.当的调整焊条和焊剂的几何尺寸:适当的调整几何尺寸可以改善焊接变形。
焊条和焊剂的几何尺寸应根据实际情况进行调整,以提高焊接部件的质量。
3.正确的工具和材料进行焊接:使用正确的工具和材料可以改善焊接变形,例如使用热抗性材料、减少焊接温度、选择正确的焊条和焊剂等。
4. 使用新型焊接技术:采用新型焊接技术,可以有效地改善焊接变形,例如电弧焊、激光焊、高频焊、电阻焊等。
总之,焊接变形的矫正方法包括调整焊接参数、选择正确的焊材、使用正确的焊接方法和改变焊条和焊剂的形状等。
此外,还可以通过加强焊接技术的培训、调整焊条和焊剂几何尺寸、使用正确的工具和材料、采用新型焊接技术等方式来进一步改善焊接变形。
焊接常见问题及处理方法
焊接常见问题及处理方法一、焊接变形问题:焊接过程中,焊缝受热收缩,导致焊件不规则变形。
处理方法:1. 采用对称焊接顺序和分段焊接。
2. 预制适当的焊接变形。
3. 预热焊件,减小温度差异带来的热应力。
4. 使用低焊接热输入的焊接工艺。
5. 对焊件进行热处理,降低焊缝应力。
二、焊接接头开裂问题:焊接过程中,热裂纹、冷裂纹、延迟裂纹等问题经常出现在焊缝和熔合区。
处理方法:1. 选择合适的焊接材料和焊接工艺。
2. 预热焊件,降低焊接应力。
3. 控制焊接热输入,避免过热。
4. 对焊件进行热处理,降低焊缝应力。
5. 及时清理焊接缝中的气体和杂质。
三、未熔合和未穿透问题:焊接过程中,焊缝未能充分熔合和穿透母材,导致接头强度不足。
处理方法:1. 选择合适的焊接电流和电压。
2. 控制焊接速度,保证足够的熔化时间。
3. 调整焊枪角度,使热量充分传递到母材。
4. 对焊缝进行充分预热。
5. 采用多层焊、多道焊等方法。
四、气孔和夹杂问题:焊缝中出现气孔、夹渣、夹杂等质量缺陷。
处理方法:1. 严格清理焊件表面的油污、氧化皮等杂质。
2. 选择合适的焊接材料和焊接工艺。
3. 采用气体保护焊,确保焊接过程中无空气中的氧气和氮气侵入。
4. 控制焊接速度,避免过冷。
5. 及时清理焊接缝中的气体和杂质。
五、焊接应力和焊接裂纹问题:焊接过程中产生的热应力导致焊缝和母材产生裂纹。
处理方法:1. 选择合适的焊接材料和焊接工艺。
2. 预热焊件,降低焊接应力。
3. 控制焊接热输入,避免过热。
4. 对焊件进行热处理,降低焊缝应力。
5. 采用对称焊接顺序和分段焊接。
减小或消除焊接变形的措施
减小或消除焊接变形的措施
焊接变形是焊接过程中不可避免的问题,会影响到焊接件的结构和精度。
为了减小或消除焊接变形,可以采取以下措施:
1. 控制焊接温度:焊接温度过高会导致焊接变形,因此需要控制焊接温度。
可以采用预热、间歇焊接、多点焊接等方法来控制焊接温度。
2. 选用合适的焊接材料:不同材料的热膨胀系数不同,选用合适的焊接材料可以减小焊接变形的影响。
同时,选择材料时要考虑其焊接性能和机械性能。
3. 控制焊接过程:焊接过程中需要控制焊接速度、电流、电压等参数,避免出现焊接变形的情况。
可以采用纵向或横向交替焊接、对称焊接等方法来控制焊接过程。
4. 采用夹具或支撑:在焊接过程中,可以采用夹具或支撑来固定工件,避免出现变形。
夹具或支撑的设计要合理,能够保证焊接部位的固定和支撑。
5. 后续处理:焊接完成后,需要进行后续处理,如退火、冷却等。
后续处理能够使焊接件的结构和精度得到进一步保证,减小或消除焊接变形的影响。
总之,减小或消除焊接变形需要在焊接过程中控制好各种参数,并采取相应的措施来保证焊接件的质量。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
焊接变形1 焊接变形的种类。
焊接过程中焊件产生的变形称为焊接变形。
焊后,焊件残留的变形称为焊接残余变形。
焊接残余变形有纵向收缩变形、横向收缩变形、角变形、弯曲变形、扭曲变形和波浪变形等共六种,见图1,其中焊缝的纵向收缩变形和横向收缩变形是基本的变形形式,在不同的焊件上,由于焊缝的数量和位置分布不同,这两种变形又可表现为其它几种不同形式的变形。
2 焊件在什么情况下会产生纵向收缩变形?焊件焊后沿平行于焊缝长度方向上产生的收缩变形称为纵向收缩变形。
当焊缝位于焊件的中性轴上或数条焊缝分布在相对中性轴的对称位置上,焊后焊件将产生纵向收缩变形,其焊缝位置见表1。
焊缝的纵向收缩变形量随焊缝的长度、焊缝熔敷金属截面积的增加而增加,随焊件截面积的增加而减少,其近似值见表2。
表2 焊缝纵向收缩变形量的近似值(mm/m)对接焊缝连续角焊缝间断角焊缝0.15~0.3 0.2~0.4 0~0.1注:表中所表示的数据是在宽度大约为15倍板厚的焊缝区域中的纵向收缩变形量,适用于中等厚度的低碳钢板。
3 试述焊缝的横向收缩变形量及其计算。
焊件焊后在垂直于焊缝方向上发生的收缩变形称为横向收缩变形,横向收缩变形量随板厚的增加而增加。
低碳钢对接接头、T形接头和搭接接头的横向收缩变形量,见表3、表4。
对接接头横向收缩变形量的近似计算公式,见表5。
表5 对接接头横向收缩变形量的近似计算公式坡口形式横向缩短量计算公式Y形双Y形△L横=0.1δ①+0.6 △L横=0.1δ+0.4①δ——板厚(mm)。
当两板自由对接、焊缝不长、横向没有约束时,横向收缩变形量要比纵向的大得多。
4 焊件在什么情况下会产生弯曲变形?如果焊件上的焊缝不位于焊件的中性轴上,并且相对于中性轴不对称(上下、左右),则焊后焊件将会产生弯曲变形。
如果焊缝集中在中性轴下方(或下方焊缝较多)则焊件焊后将产生上拱弯曲变形;相反如果焊缝集中在中性轴上方(或上方焊缝较多),则焊件焊后将产生下凹弯曲变形。
又如果焊件相对焊件中性轴左、右不对称,则焊后将产生旁弯,焊件产生弯曲变形的焊缝位置,见表6。
5 试述焊件产生角变形的原因及其数值。
焊接时,由于焊接区沿板材厚度方向不均匀的横向收缩而引起的回转变形称为角变形见图1 b。
产生角变形的原因是,焊缝的截面总是上宽下窄,因而横向收缩量在焊缝的厚度方向上分布不均匀,上面大、下面小,结果就形成了焊件的平面偏转,两侧向上翘起一个角度。
电渣焊缝由于焊缝厚度均匀,所以焊后焊件基本上不产生角变形。
有色金属和薄板,由于焊接过程中熔池承托不住焊件的重量,使两侧板下垂,结果会引起相反方向的角变形。
低碳钢对接接头在自由状态下,焊后角变形的实验值,见表7。
6 试述波浪变形和扭曲变形产生的原因。
⑴波浪变形焊后构件产生形似波浪的变形称为波浪变形。
薄板对接焊后,存在于板中的内应力,在焊缝附近是拉应力,离开焊缝较远的两侧区域为压应力,如压应力较大,平板失去稳定就产生波浪变形,见图1d。
此外,当焊件上的几条角焊缝靠得很近时,由每角焊缝所引起的角变形连贯在一起也会形成波浪变形,见图2。
波浪变形通常产生在薄板结构中。
⑵扭曲变形构件焊后两端绕中性轴相反方向扭转一角度称为扭曲变形,见图1e。
如果构件的角变形沿长度上分布不均匀和纵向有错边,则往往会产生扭曲变形。
如图3a 所示工字梁的四条角焊缝在定位焊后不采用适当夹具,按图3b 所示的焊接方向(相邻焊缝反向)进行焊接,这时角变形沿着焊缝长度逐渐增大,使构件扭转,即构件扭转,即产生扭曲变形。
7 如何利用合理的装配焊接顺序来控制焊接残余变形?不同的构件形式应采用不同的装配焊接方法。
1)结构截面对称、焊缝布置对称的焊接结构,采用先装配成整体,然后再按一定的焊接顺序进行生产,使结构在整体刚性较大的情况下焊接,能有效地减少弯曲变形。
例如,工字梁的装配焊接过程,可以有两种不同方案,见图4。
若采用图4b所示的边装边焊顺序进行生产,焊后要产生较大的上拱弯曲变形;若采用图4c所示的整装后焊顺序,就可有效地减少弯曲变形的产生。
2)结构截面形状和焊缝不对称的焊接结构,可以分别装焊成部件,最后再组焊在一起见图5。
图5b所示的方案由于焊缝1离中性轴距离较大,所以弯曲变形较大,而图5a所示的焊缝1的位置几乎与上盖板截面中性轴重合,所以对整个结构的弯曲变形没有影响。
8 如何利用合理的焊接顺序来控制焊接残余变形?⑴对称焊缝采用对称焊接当构件具有对称布置的焊缝时,可采用对称焊接减少变形。
如图4所示工字梁,当总体装配好后先焊焊缝1、2,然后焊接3、4,焊后就产生上拱的弯曲变形。
如果按1、4、2、3的顺序进行焊接,焊后弯曲变形就会减小。
但对称焊接不能完全消除变形,因为焊缝的增加,结构刚度逐渐增大,后焊的焊缝引起的变形比先焊的焊缝小,虽然两者方向相反,但并不能完全抵消,最后仍将保留先焊焊缝的变形方向。
⑵不对称焊缝先焊焊缝少的一侧因为先焊焊缝的变形大,故焊缝少的一侧先焊时,使它产生较大的变形,然后再用另一侧多的焊缝引起的变形来加以抵消,就可以减少整个结构的变形。
9 如何利用合理的焊接方向来控制焊接残余变形?为控制焊接残余变形而采用的焊接方向,有以下几种:⑴长焊缝同方向焊接如T形梁、工字梁等焊接结构,具有互相平行的长焊缝,施焊时,应采用同方向焊接,可以有效地控制扭曲变形,见图6a。
⑵逆向分段退焊法同一条或同一直线的若干条焊缝,采用自中间向两侧分段退焊的方法,可以有效地控制残余变形,见图6b。
⑶跳焊法如构件上有数量较多又互相隔开的焊缝时,可采用适当的跳焊,使构件上的热量分布趋于均匀,能减少焊接残余变形,见图6c。
10 如何利用反变形法来控制焊接残余变形?为了抵消焊接残余变形,焊前先将焊件向与焊接残余变形相反的方向进行人为的变形,这种方法称为反变形法。
例如,为了防止对接接头产生的角变形,可以预先将对接处垫高,形成反向角变形见图7a。
为了防止工字梁翼板焊后产生角变形,可以将翼板预先反向压弯见图7b。
在薄壳结构上,有时需在壳体上焊接支承座之类的零件,焊后壳体往往发生塌陷,为此,可以在焊前将支承座周围的壳壁向外顶出,然后再进行焊接见图7c。
采用反变形法控制焊接残余变形,焊前必需较精确地掌握焊接残余变形量,通常用来控制构件焊后产生的弯曲变形和角变形,如反变形量留得适当,可以基本抵消这两种变形。
11 如何利用刚性固定法来控制焊接残余变形?焊前对焊件采用外加刚性拘束,强制焊件在焊接时不能自由变形,这种防止焊接残余变形的方法称为刚性固定法。
采用压铁防止薄板焊后的波浪变形见图8。
刚性固定法简单易行,适用面广,不足之处是焊后当外加刚性拘束卸掉后,焊件上仍会残留一些变形,不能完全消除,不过要比没有拘束时小得多。
另外,刚性固定法将使焊接接头中产生较大的焊接应力,所以对于一些抗裂性较差的材料应该慎用。
12 如何利用散热法和自重法来控制焊接残余变形?⑴散热法焊接时用强迫冷却的方法将焊接区的热量散走,减少受热面积从而达到减少变形的目的,这种方法称为散热法,利用散热法减少薄板的焊接变形见图9。
图9b是将焊件浸入水中进行焊接(常用于小容器焊接)。
图9c是用水冷铜块进行冷却。
散热法不适用于焊接淬硬性较高的材料。
⑵自重法利用焊件本身的质量在焊接过程中产生的变形来抵消焊接残余变形的方法称为自重法。
如一焊接梁上部的焊缝明显多于下部,见图10a,焊后整根梁产生下凹弯曲变形。
为此焊前将梁放在两个相距很近的支墩上,见图10b,首先焊接梁的下部两条直焊缝,由于梁的自重和焊缝的收缩,将使梁产生弯曲变形,焊毕,将支墩置于两头,并使梁反身搁置,随后焊接梁的上部,由于支墩是置于梁的两头,梁的自重弯曲变形与第一次相反,不仅如此,上部焊缝的收缩变形方向也与下部焊缝收缩变形的方向相反,因此焊后梁的弯曲变形得以控制,见图10c。
13 如何利用机械矫正法矫正焊接残余变形?利用手工锤击或机械压力矫正焊接残余变形的方法叫机械矫正法。
手工锤击矫正薄板波浪变形的方法,见图11。
图11a表示薄板原始的变形情况,锤击时锤击部位不能是突起的地方,这样结果只能朝反方向突出,见图11b,接着又要锤击反面,结果不仅不能矫平,反而要增加变形。
正确的方法是锤击突起部分四周的金属,使之产生塑性伸长,并沿半径方向由里向外锤击,见图11c,或者沿着突起部分四周逐渐向里锤击,见图11d。
利用机械力矫正焊接残余变形的方法,见图12。
图12a是利用加压机构矫正工字梁焊后的弯曲变形。
图12b是利用圆盘形辗轮辗压薄板焊缝及其两侧,使之伸长来消除薄板焊后的残余变形。
手工锤击矫形劳动强度大,技术难度高,但无须设备,适用于薄板的焊后矫形。
机械矫正效率高、速度快、效果好,但须要加压机构等设备,适用于中、大型焊件焊后的矫形。
14 如何正确进行火焰矫正焊接残余变形?利用火焰对焊件进行局部加热时产生的塑性变形,使较长的金属在冷却后收缩,以达到矫正变形的目的称火焰加热矫正法。
火焰加热矫正法矫正焊件残余变形时要注意以下事项:1)加热用火焰通常采用氧乙炔焰,火焰性质为中性焰,如果要求加热深度小时,可采用氧化焰。
2)对于低碳钢和低合金结构钢,加热温度为600~800℃,此时焊件呈樱红色。
3)火焰加热的方式有点状、线状和三角形三种,其中三角形加热适用于厚度大、刚性强的焊件。
4)加热部位应该是焊件变形的突出处,不能是凹处,否则变形将越矫越严重。
5)矫正薄板结构的变形时,为了提高矫正效果,可以在火焰加热的同时用水急冷,这种方法称为水火矫正法。
对于厚度较大而又比较重要的构件或者淬硬倾向较大的钢材,不可采用水火矫正法。
6)夏天室外矫正,应考虑到日照的影响。
因为中午和清晨原加热效果往往不一样。
7)薄板变形的火焰矫正过程中,可同时使用木锤进行锤击,以加速矫正效果。
15 试述用电磁锤法矫正焊接残余变形的工作原理。
电磁锤法又称强电磁脉冲矫正法,其矫正焊件变形的过程如下:把一个由绝缘的圆盘形线圈组成的电磁锤放置于焊件待矫正处,从已充电的高压电容向其放电,于是在线圈与焊件的间隙中出现一个很强的脉冲电磁场,见图13。
由此产生一个比较均匀(与机械锤相比)的压力脉冲,使该处产生与焊件变形反向的变形,用以矫正焊件的变形。
电磁锤法适用于电导率大的材料如铝、铜等板壳结构的矫形。
对电导率小的材料则需在焊件与电磁锤之间放置铝或铜质薄板。
电磁锤法矫正变形的优点在于:1)焊件表面没有撞击的锤痕。
2)矫形能量可精确地控制。
3)无需挥动锤头,可在比较窄小的空间内进行工作。