高中数学 1_1 两个基本计数原理教案1 苏教版选修2-31
两个基本计数原理教学案
§1.1两个基本计数原理教学目标:(1)理解分类计数原理与分步计数原理(2)会利用两个原理分析和解决一些简单的应用问题教学重点:分类计数原理与分步计数原理教学过程一.知识要点:1、分类计数原理(加法原理):完成一件事有n 类方式,由第1种方法中有1m 种不同的方法可以完成,由第2种方法有2m 种不同的方法可以完成,……由第n k 种途径有n m 种方法可以完成。
那么,完成这件事共有=N 种不同的方法。
2、分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,……做第 n 步有n m 种不同的方法,那么完成这件事共有=N 种不同的方法。
三、典例分析:例1.书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书,(1)从书架上任取1本书,有多少种不同的取法?(2)从书架的第1、2、3层各取1本书,有多少种不同的取法?例2.为了确保电子信箱的安全,在注册时,通常要设置电子信箱密码。
在某网站设置的信箱中,(1)密码为4位,每位均为0到9这10个数字中的一个数字,这样的密码共有多少个? (2)密码为4位,每位是0到9这10个数字中的一个,或是从A 到Z 这26个英文字母中的1个。
这样的密码共有多少个?(3)密码为4到6位,每位均为0到9这10个数字中的一个。
这样的密码共有多少个?例3.要从甲、乙、丙3名工人中选出2名分别上日班和晚班,有多少种不同的选法?例4.用4种不同颜色给如左图所示的地图上色,要求相邻两块涂不同的颜色,共有多少种不同的涂法?变式:1、如果按照①、②、④、③的次序填涂,怎样解决这个问题?2、如图一,要给①,②,③,④四块区域分别涂上五种颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同涂色方法种数为( )A. 180B. 160C. 96D. 60 若变为图二,图三呢?练习:1、乘积))()((54321321321c c c c c b b b a a a ++++++++展开后共有多少项?2、(2006,北京,5分)在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有 ( )A .36个 B.24个 C.18个 D.6个4、(2005,北京春(文),5分)从0,1,2,3这四个数中选三个不同的数作为函数c bx ax x f ++=2)(的系数,可组成不同的一次函数共有 个,不同的二次函数共有 个。
高中数学 第一章 计数原理 1.1 分类加法计数原理与分步乘法计数原理 第2课时 分类加法计(1)
类型 1 组数问题(自主研析) [典例 1] 用 0,1,2,3,4 五个数字, (1)可以排出多少个三位数字的密码? (2)可以排成多少个三位数? (3)可以排成多少个能被 2 整除的无重复数字的三位数? 解:(1)三位数字的密码,首位可以是 0,数字也可以重 复,每个位置都有 5 种排法,共有 5×5×5=53=125(种). (2)三位数的首位不能为 0,但可以有重复数字,首先考
19
共有 60+96=156(个). 其中比 2 000 小的有:千位是 1 的共有 3×4×3= 36(个), 所以符合条件的四位偶数共有 156-36=120(个).
20
类型 2 分配问题
[典例 2] (1)高三年级的三个班到甲、乙、丙、丁四
个工厂进行社会实践,其中工厂甲必须有班级去,每班去
6
2.应用分类加法计数原理的注意事项 分类要做到不重不漏,分类后再分别对每一类进行 计数,最后用分类加法计数原理求和,得到总数. 3.应用分步乘法计数原理的注意事项 分步要做到步骤完整,步与步之间要相互独立,根 据分步乘法计数原理,把完成每一步的方法数相乘得到 总数.
7
1.从 3 名女同学和 2 名男同学中选出一人主持本班
答案:C
11
5.如图所示,从点 A 沿圆或三角形的边运动到点 C, 若经过点 B,有________种不同的走法.若可经过点 B, 也可不经过点 B,有________种不同的走法.
解析:经过点 B,不同的走法有 2×2=4(种).若可 经过点 B,也可不经过点 B,不同的走法有 2×2+2= 6(种).
一次班会,则不同的选法种数为( )
A.6
B.5
C.3Leabharlann D.2解析:由分类加法计数原理,共有 3+2=5 种不同选
两个基本计数原理教案
第一章计数原理第1节两个基本计数原理教材分析本节课《分类计数原理与分步计数原理》是苏教版普通高中课程标准试验教科书(选修2-3)第一章第一节的内容,是本章后续知识的基础,对后续内容的学习有着举足轻重的作用,另外本节课涉及的分步、分类的思想是解决实际问题的最有效武器,是人们思考问题的最根本方法.学情分析高二学生已具备一定的数学知识和方法,能很容易的接受两个原理的内容,并应用原理解决一些简单的实际问题,这些形成了学生思维的“最近发展区”.虽然学生已经具备了一定的归纳、类比能力,但在数学的应用意识与应用能力方面尚需进一步培养.另外,学生的求知欲强,参与意识,自主探索意识明显增强,对能够引起认知冲突,表现自身价值的学习素材特别感兴趣。
但在合作交流意识欠缺,有待加强. 目标分析⑴知识与技能①掌握分类计数原理与分步计数原理的内容②能根据具体问题的特征选择分类计数原理与分步计数原理解决一些简单实际问题.⑵过程与方法①通过具体问题情境总结出两个计数原理,并通过实际事例学生感悟两个原理的应用并最终学会应用②通过“学生自主探究、合作探究,师生共究”更深刻的理解分类计数与分步计数原理,并应用它们解决实际问题⑶情感、态度、价值观树立学生积极合作的意识,增强数学应用意识,激发学生学习数学的热情和兴趣.教学重难点分析教学重点:分类计数原理与分步计数原理的掌握教学难点:根据具体问题特征选择分类计数原理与分步计数原理解决实际问题.教法、学法分析教法分析:①启发探究法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。
②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。
学法分析:本节课要求学生自主探究,学会用类比的思想解决问题,树立学生的合作交流意识.教学过程一、创设情境:对于分类计数原理设计如下情境(看多媒体):该情境是原教材上情境经过加工设计的,比原教材情境更加贴近学生生活,能够增强学生的有意注意,激发学生的兴趣,调动学生的主动性和积极性,从而进入思维情境接着是对情境的处理:在情境处理过程中要启发学生由特殊情形归纳出一般原理,遵循由简单到复杂的认知规律,我处理情境的办法是:第一步在解决问题时首先让学生尝试分析,然后由学生代表分析解答,教师及时给出评价,并由老师给出解题过程,在这里由老师按分类计数原理给出解题过程,为学生顺利总结概括出原理做好铺垫.第二步对原问题加以引申:若当天有4次航班,则有多少种不同方法?设计的意图是让学生更清楚的认识到总方法数是各类方法数之和.第三步提出问题:你能否尽可能简练的总结出问题1中的计数规律?接着由学生分组讨论、总结问题1中计数规律,这样由学生总结归纳,并通过讨论准确叙述出分类计数原理,可以提高学生的数学表达意识,激发合作意识和竞争意识,体验获得成功的喜悦,也就完成了情感目标.第四步由教师板书分类计数原理(加法原理)并说明由于总方法数是各类方法数之和,树立学生平时学习生活中的讲道理意识.在分类计数原理中设计如下问题情境,问题2与问题1的背景一样:都是乘车方法的计数问题.对于问题2的处理办法是:第一步由学生自主尝试分析解答,但该问题并没有问题1般简单所以就有了第二步教师电脑屏幕显示分析及解题过程,利用多媒体显示动画,辅助分析,展示不同的走法,帮助学生更直观的解决问题,然后由感性进入理性,这也符合一般的认知规律.第三步问题引申将问题引申为若从兰州到天水新增一辆4号汽车,则有多少种乘车方法?设计的意图是:通过引申让学生更加清楚的认识到总方法数是各步方法数相乘.第四步提出问题:你能否对照分类计数原理,归纳概括出问题2蕴含的计数规律,并尝试命名,这样设计一可指导学生通过类比给出分步计数原理,渗透类比思想第二也可在自主探究中掌握本节重点,当然重点的突破也为难点突破打下了知识基础第五部教师板书:分步计数原理(乘法原理),由学生说明其称为乘法原理的理由.分步计数原理(乘法原理):做一件事情,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事有N=m1×m2×…×m n种不同的方法.二、建构数学在总结出两个计数原理的基础上让学生进行如下三个问题的探究,初步突破难点.探究1:对比两计数原理,指出相同点与不同点设计探究1的意图是通过自主探究合作探究,加深两个定理的理解并且在两个定理内容的比较中提高学生阅读数学的能力.探究方式:分组讨论(合作交流,加深理解)探究结果:共同点是:研究对象相同,它们都是研究完成一件事情,共有多少种不同的方法.不同点是:它们研究完成一件事情的方式不同,分类计数原理是“分类完成”,分步计数原理是“分步完成”由于学生的认识水平有限,在这里只要求认识到分类计数原理是“分类完成”,分步计数原理是“分步完成”.探究2:何时用分类计数原理,何时用分步计数原理探究方式:自主探究,代表发言,共同总结.探究结果:若完成一件事情有n类方法,则用分类计数原理.若完成一件事情有n个步骤,则用分步计数原理.设计意图:在探究1基础上进一步突破重难点,培养学生分析问题的能力.探究3:用两个计数原理解决计数问题的思维步骤探究方式:分组讨论,合作探究,代表发言,共同总结.探究结果:1、明确要完成什么事2、判断分类还是分步3、计算总方法数(一)两个计数原理内容1、分类计数原理:完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1 +m2 +……+m n种不同的方法.2、分步计数原理:完成一件事,需要分n个步骤,做第1步骤有m1种不同的方法,做第2步骤有m2种不同的方法……做第n步骤有m n种不同的方法,那么完成这件事共有N=m1×m2×……×m n种不同的方法.(二)例题分析例1 某学校食堂备有5种素菜、3种荤菜、2种汤。
两个基本计数原理的教学设计
两个基本计数原理的教学设计一、地位作用计数原理是数学中的一个重要的研究对象,本章所学的排列组合是组合数学的初步知识,这种以计数为特征的内容在中学数学中是较为独特的,它不仅影响广泛,是学习统计概率以及高等数学有关分支的准备知识,而且由于它的思想方法灵活独特,也是发展学生抽象能力和逻辑思维能力的好素材。
本节课讲的两个基本计数原理是计数原理这一章的重点内容,它们不仅是推导排列数组合数计算公式的依据,而且其基本思想方法贯穿在解决本章应用问题的始终。
从思想方法的角度看,两个原理一个是将问题进行分类处理,另一个是将问题进行分步处理,从而达到分解问题、解决问题的目的。
因此对两个原理的理解掌握和运用,成为本章内容的一个关键。
二、教学目标引导学生通过典型的、学生熟悉的实例归纳地得出分类加法计数原理和分步乘法计数原理,初步学会区分“分类”和“分步” , 能够用两个计数原理解决简单的计数问题。
通过例题引导学生体会计数原理的基本思想及应用方法。
正确理解和掌握加法原理和乘法原理,并能准确地应用它们分析和解决一些简单的问题,体会理论来源于实践井应用于实践的辩证唯物主义观点. 从而发展学生的思维能力,培养学生分析问题和解决问题的能力。
三、内容分析分类计数原理和分步计数原理都是设计完成一件事的不同方法的总数,它们的区别在于分类计数原理是将办事方法分为若干类,每一类方法之间是相互独立的,用任一种方法都可以完成这件事情;而分步计数原理是将办事方法分成若干步进行,各个步骤相互依存,必须是各个步骤都完成了,这件事情才完成。
因此,分辨清楚办事方法是分类还是分步,是科学使用两个原理的前提,也是本节课的一个难点。
四、教学过程(一)引入课题:1、高二一班男生9 名.女生20 名.从中选出1 名男生和1名女生担任主题班会主持人,有多少不同的选法?2、把我们班的同学排成一排,共有多少种不同的排法?3、一次集会共50 人参加,结束时,大家两两握手,互相道别,请你统计一下,大家握手次数共有多少?设计意图:在运用排列、组合方法时.经常要用到分类加法计数原理与分步乘法计数原理这节课,我们从具体例子出发来学习这两个原理.(二)讲授新课1、分类加法计数原理师生活动:(1)用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?(2)从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3 班,汽车有2 班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?结论:分类加法计数原理完成一件事有两类不同方案,在第 1 类方案中有m 种不同的方法,在第2 类方案中有n 种不同的方法‘那么完成这件事共有N=m+n. 种不同的方法.(3)如果完成一件事有三类不同方案. 在第1 类方案中有m1 种不同的方法,在第2 类方案中有m2 种不同的方法,在第3 类方案中有m3 种不同的方法,那么完成这件事共有多少种不同的方法?一般归纳(略)理解:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事2、分步乘法计数原理师生活动:⑷用前6个大写英文字母和1-9九个阿拉伯数字,以A1A2A3A4…,B1B2,的方式给教室里的座位编号,总共能编出多少个不同的号码a用列举法可以列出所有可能的号码(分析略)(5)你能说说这个问趣的特征吗结论:分步乘法计数原理完成一件事有两类不同方案,在第 1 类方案中有m 种不同的方法,在第2 类方案中有n 种不同的方法.那么完成这件事共有N=mxn 种不同的方法.如果完成一件事需要三个步骤,做第I 步有m1 种不同的方法,做第2 步有m2 种不同的方法,做第3 步有m3 种不同的方法,那么完成这件事共有多少种不同的方法?一般归纳(略)理解分步乘祛计数原理:分步计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后甲才算完成这件事.(6)分类加法计数原理与分步乘法计数原理异同点?①相同点:都是完成一件事的不同方法种数的问题②不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事.是合作完成.(三)例题讲解:课本例1 到例4(四)练习P6 1 、2、3(五)小结 1 、分类加法计数原理2、分步乘法计数原理(六)作业。
1.1两个基本原理(2)
二、两个原理的联系、区别:
分类计数原理 分步计数原理
联系 都是研究完成一件事的不同方法的种数的问题
完成一件事,共有n类 完成一件事,共分n个 区别1 办法,关键词“分类” 步骤,关键词“分步”
每类办法相互独立, 各步骤中的方法相互依 每类方法都能独立地 存,只有各个步骤都完 区别2 完成这件事情 成才算完成这件事
三、例题分析
1.有386,486,586型电脑各一台,A、B、C、D四 名操作人员的技术等次各不相同,A、B会操作三种 型号的电脑,C不能操作586,而D只会操作386,今 从这四名操_________种. 2.某市拟成立一个由6名大学生组成的社会调查小组, 并准备将这6个名额分配给本市的3所大学,要求每 所大学都有学生参加,则不同的名额分配方法共有 _______种
1.1 两个基本计数原理(2)
一、复习回顾两个基本计数原理
分类计数原理:完成一件事,有n类方式,在第1 类方式中有m1种不同的方法,在第2类方式中有 m2种不同的方法,……,在第n类方式中有mn种 不同的方法,那么完成这件事共有 N=m1+m2+…+mn种不同的方法。 分步计数原理:完成一件事,需要分成n个步骤, 做第1步有m1种不同的方法,做第2步有m2种不 同的方法,……,做第n有mn种不同的方法,那 么完成这件事共有N=m1×m2×…×mn种不同的 方法。
三、例题分析
3.现要排一份5天的值班表,每天有一个人值班,共 有5个人,每个人都可以值多天班或不值班,但相邻 两天不准由同一个人值班,问此值班表共有多少种 不同的排法? 4.乘积(a1+a2+a3)(b1+b2+b3+b4)(c1+c2+c3+c4+c5) 的展开式中,有___ 项。 5.1800的正约数个数为_______。 6.有四位老师在同一年级的4个班级中,各教一班的 数学,在数学考试时,要求每位老师均不在本班监 考,则安排监考的方法总数是________.
高二数学两个基本原理
分类计数原理 完成一件事,有n类方 式,在第1类方式中有m1种不同的方法,在 第2类方式中有m2种不同的方法,…,在第 n类方式中有mn种不同的方法,那么完成这 件事共有:
N m1 m2 mn
种不同的方法。
分类计数原理又称为加法原理。
; / 少儿作文加盟
;
,使得收敛送终,尽其子道”夏五月,诏曰“父子之亲,夫妇之道,天性也。虽有患祸,犹蒙死而存之。诚爱结於心,仁厚之至也,岂能违之哉。自今,子首匿父母、妻匿夫、孙匿大父母,皆勿坐。其父母匿子、夫匿妻、大父母匿孙,罪殊死,皆上请廷尉以闻”立广川惠王孙文为广川王。秋七月, 大司马霍禹谋反。诏曰“乃者,东织室令史张赦使魏郡豪李竟报冠阳侯霍云谋为大逆,朕以大将军故,抑而不扬,冀其自新。今大司马博陆侯禹与母宣成侯夫人显及从昆弟冠阳侯云、乐平侯山、诸姊妹婿度辽将军范明友、长信少府邓广汉、中郎将任胜、骑都尉赵平、长安男子冯殷等谋为大逆。显前 又使女侍医淳于衍进药杀共哀后,谋毒太子,欲危宗庙。逆乱不道,咸伏其辜。诸为霍氏所诖误未发觉在吏者,皆赦除之”八月已酉,皇后霍氏废。九月,诏曰“朕惟百姓失职不赡,遣使者循行郡国问民所疾苦。吏或营私烦扰,不顾厥咎,朕甚闵之。今年郡国颇被水灾,已振贷。盐,民之食,而贾 咸贵,众庶重困。其减天下盐贾”又曰“令甲,死者不可生,刑者不可息。此先帝之所重,而吏未称。今系者或以掠辜若饑寒瘐死狱中,何用心逆人道也。朕甚痛之。其令郡国岁上系囚以掠笞若瘐死者所坐名、县、爵、里,丞相、御史课殿最以闻”十二月,清河王年有罪,废迁房陵。元康元年春, 以杜东原上为初陵,更名杜县为杜陵。徙丞相、将军、列侯、吏二千石、訾百万者杜陵。三月,诏曰“乃者凤皇集泰山、陈留,甘露降未央宫。朕未能章先帝休烈,协宁百姓,承天顺地,调序四时,获蒙嘉瑞,赐兹祉福,夙夜兢兢,靡有骄色,内省匪解,永惟罔极。《书》不云乎
两个基本计数原理教案
两个基本计数原理教案第一章:概述1.1 计数原理的定义解释计数原理的概念和重要性强调计数原理在数学和实际生活中的应用1.2 两个基本计数原理介绍两个基本计数原理:排列原理和组合原理解释排列原理:从n个不同元素中取出m(m≤n)个元素的所有排列方式的个数解释组合原理:从n个不同元素中取出m(m≤n)个元素的所有组合方式的个数第二章:排列原理2.1 排列原理的公式介绍排列公式:P(n, m) = n! / (n-m)!解释排列公式的含义和推导过程2.2 排列原理的应用举例说明排列原理在实际问题中的应用练习题:根据给定的问题,运用排列原理计算不同的排列方式个数第三章:组合原理3.1 组合原理的公式介绍组合公式:C(n, m) = n! / [m! (n-m)!]解释组合公式的含义和推导过程3.2 组合原理的应用举例说明组合原理在实际问题中的应用练习题:根据给定的问题,运用组合原理计算不同的组合方式个数第四章:排列与组合的综合应用4.1 排列与组合的区别与联系解释排列与组合的概念及其区别强调排列与组合在解决实际问题中的综合应用4.2 综合应用举例举例说明排列与组合在实际问题中的综合应用练习题:根据给定的问题,运用排列与组合原理计算不同的方式个数第五章:练习与拓展5.1 练习题提供一系列练习题,巩固排列与组合原理的应用鼓励学生自主思考,提高解题能力5.2 拓展与应用探讨排列与组合原理在其他领域的应用鼓励学生发现生活中的数学问题,运用排列与组合原理解决第六章:排列与组合在概率论中的应用6.1 排列与组合在概率计算中的作用解释排列与组合在概率计算中的重要性介绍排列与组合在计算事件概率时的应用6.2 具体案例分析通过具体案例,展示排列与组合在概率计算中的应用练习题:根据给定的概率问题,运用排列与组合原理进行计算第七章:排列与组合在日常生活中的应用7.1 排列与组合在日常生活中的实例探讨排列与组合原理在日常生活中的应用实例强调排列与组合原理在解决实际问题中的重要性7.2 练习题提供一系列与日常生活相关的练习题,运用排列与组合原理进行解答鼓励学生自主思考,提高解决实际问题的能力第八章:排列与组合在算法与编程中的应用解释排列与组合在算法与编程中的应用介绍排列与组合在解决算法与编程问题时的作用第八章:排列与组合在算法与编程中的应用8.1 排列与组合在算法中的应用解释排列与组合在算法中的重要性介绍排列与组合在算法设计中的应用实例8.2 排列与组合在编程语言中的应用探讨排列与组合在编程语言中的应用实例强调排列与组合在编程问题解决中的重要性第九章:排列与组合在数学竞赛中的应用9.1 排列与组合在数学竞赛中的题目特点分析数学竞赛中排列与组合题目的特点解释排列与组合在数学竞赛中的重要性9.2 练习题提供一系列数学竞赛中的排列与组合题目,进行练习鼓励学生自主思考,提高解决竞赛题目的能力第十章:总结与提高10.1 排列与组合原理的总结回顾本教案的主要内容,总结排列与组合原理的重要性和应用强调排列与组合原理在数学和实际生活中的重要性10.2 提高题与研究性学习提供一系列提高题,鼓励学生深入研究排列与组合原理鼓励学生开展研究性学习,探索排列与组合原理在其他领域的应用重点和难点解析六、排列与组合在概率论中的应用重点:排列与组合在概率计算中的作用,具体案例分析难点:理解排列与组合在概率计算中的应用,以及如何将实际问题转化为概率问题七、排列与组合在日常生活中的应用重点:排列与组合在日常生活中的实例,练习题难点:将抽象的排列与组合原理应用到具体的生活情境中,提高解决实际问题的能力八、排列与组合在算法与编程中的应用重点:排列与组合在算法与编程中的应用,练习题难点:理解算法与编程中排列与组合的概念,以及在实际编程中应用这些概念九、排列与组合在数学竞赛中的应用重点:排列与组合在数学竞赛中的题目特点,练习题难点:解决数学竞赛中的排列与组合问题,需要学生具备较高的逻辑思维和解题能力十、总结与提高重点:排列与组合原理的总结,提高题与研究性学习难点:巩固所学知识,进一步探索排列与组合原理在其他领域的应用全文总结与概括:本教案主要介绍了排列与组合两个基本计数原理,通过讲解排列与组合的概念、公式及其在概率论、日常生活、算法与编程、数学竞赛等领域的应用,使学生能够理解并掌握这两个基本计数原理。
基本计数原理教案
基本计数原理教案基本计数原理教案主要包括以下步骤:一、教材分析●地位和作用:基本计数原理是学习排列组合的基础,是推导排列数、组合数的重要理论,同时也给出了分析解决排列与组合问题的思维方法。
●重点、难点和关键:分类计数原理及分步计数原理的区别及应用。
二、学情分析和学法指导学生基础差,学习主动性差,缺乏学习兴趣。
从培养学生的兴趣入手,使学生在学习过程中学会观察问题、探究问题,自主归纳总结进而得出结论。
三、教学目标●知识目标:掌握计数的基本原理,并能用它们分析和解决一些简单的应用问题。
●能力目标:锻炼学生的观察能力和解决问题的能力。
●情感目标:培养学生对数学的兴趣和好奇心,建立自信心。
四、教学方法课堂上应积极引导学生进行思考和讨论,鼓励学生提问和发表自己的观点,以便更好地帮助他们掌握知识和提高能力。
五、教学过程●提出问题:从实例出发,提出有关排列与组合的问题,引导学生思考如何用计数原理来解决。
●讲解原理:详细解释分类计数原理和分步计数原理的定义和适用范围,对比两者的异同点。
●实例解析:通过具体的例子,让学生更好地理解如何运用计数原理来解决实际问题。
●总结反思:回顾分类计数原理和分步计数原理的主要内容,总结解题思路和方法,反思在解题过程中遇到的困难和问题。
●布置作业:根据教学内容和学生的学习情况,布置适当的练习题或思考题,巩固所学的知识。
六、教学评估通过课堂表现、作业完成情况、小组讨论等方式对学生的学习效果进行评估,及时发现问题并进行针对性的指导。
同时也可以设置一些测试题或小测验来检验学生对知识的掌握程度。
高中数学 第1章 计数原理 1.2 排列 第1课时 排列与排列数公式学案 苏教版选修2-3-苏教版高
第1课时排列与排列数公式1.了解排列及排列数的意义.2.理解排列数公式的推导并应用.3.掌握排列数公式并会运用.1.排列的定义一般地,从n个不同的元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.2.排列数一般地,从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A m n表示.3.排列数公式A m n=n(n-1)(n-2)…(n-m+1),其中n,m∈N*,且m≤n.4.全排列与n的阶乘(1)n个不同元素全部取出的一个排列,叫做n个不同元素的一个全排列,在排列数公式中,当m=n时,即有A n n=n(n-1)(n-2)·…·3·2·1.(2)正整数1到n的连乘积,叫做n的阶乘,用n!表示,即有A n n=n!.5.排列数公式的阶乘形式A m n=n!(n-m)!(n≥m),规定0!=1.1.判断(正确的打“√”,错误的打“×”)(1)a,b,c与b,a,c是同一个排列.( )(2)同一个排列中,同一个元素不能重复出现.( )(3)在一个排列中,若交换两个元素的位置,则该排列不发生变化.( )(4)从4个不同元素中任取三个元素,只要元素相同得到的就是相同的排列.( ) 答案:(1)×(2)√(3)×(4)×2.下面问题中,是排列问题的是( )A.由1,2,3,4四个数字组成无重复数字的四位数B.从60人中选11人组成足球队C.从100人中选2人抽样调查D.从1,2,3,4,5中选2个数组成集合答案:A3.从甲、乙、丙三人中选两人站成一排的所有站法为________.答案:甲乙,甲丙,乙甲,乙丙,丙甲,丙乙4.A24=________,A33=________.答案:12 6排列的有关概念判断下列问题是否为排列问题:(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);(2)选2个小组分别去植树和种菜;(3)选2个小组去种菜;(4)选10人组成一个学习小组;(5)选3个人分别担任班长、学习委员、生活委员;(6)某班40名学生在假期相互通信.【解】(1)中票价只有三种,虽然机票是不同的,但票价是一样的,不存在顺序问题,所以不是排列问题.(2)植树和种菜是不同的,存在顺序问题,属于排列问题.(3)(4)不存在顺序问题,不属于排列问题.(5)中每个人的职务不同,例如甲当班长或当学习委员是不同的,存在顺序问题,属于排列问题.(6)A给B写信与B给A写信是不同的,所以存在着顺序问题,属于排列问题.所以在上述各题中(2)(5)(6)属于排列问题,(1)(3)(4)不是排列问题.判断一个具体问题是否为排列问题的方法1.判断下列问题是否是排列问题:(1)从1到10十个自然数中任取两个数组成直角坐标平面内的点的坐标,可得多少个不同的点的坐标?(2)从10名同学中任抽两名同学去学校开座谈会,有多少种不同的抽取方法?(3)某商场有四个大门,若从一个门进去,购买物品后再从另一个门出来,不同的出入方式共有多少种?解:(1)由于取出的两数组成点的坐标与哪一个数作横坐标,哪一个数作纵坐标的顺序有关,所以这是一个排列问题.(2)因为从10名同学中抽取两人去学校开座谈会的方式不用考虑两人的顺序,所以这不是排列问题.(3)因为从一门进,从另一门出是有顺序的,所以是排列问题.综上,(1)、(3)是排列问题,(2)不是排列问题.“树形图”解决排列问题四个人A,B,C,D坐成一排照相有多少种坐法?将它们列举出来.【解】先安排A有4种坐法,安排B有3种坐法,安排C有2种坐法,安排D有1种坐法,由分步计数原理,有4×3×2×1=24种.画出树形图:由“树形图”可知,所有坐法为ABCD,ABDC,ACBD,ACDB,ADBC,ADCB,BACD,BADC,BCAD,BCDA,BDAC,BDCA,CABD,CADB,CBAD,CBDA,CDAB,CDBA,DACB,DABC,DBAC,DBCA,DCAB,DCBA.1.若本例条件再增加一条“A不坐排头”,则结论如何?解:画出树形图:由“树形图”可知,所有坐法为BACD,BADC,BCAD,BCDA,BDAC,BDCA,CABD,CADB,CBAD,CBDA,CDAB,CDBA,DACB,DABC,DBAC,DBCA,DCAB,DCBA,共18种坐法.2.若在本例条件中再增加一条“A,B不相邻”,则结论如何?解:画出树形图:由“树形图”可知,所有坐法为ACBD,ACDB,ADBC,ADCB,BCAD,BCDA,BDAC,BDCA,CADB,CBDA,DACB,DBCA共12种.利用“树形图”法解决简单排列问题的适用范围及策略(1)适用范围:“树形图”在解决排列元素个数不多的问题时,是一种比较有效的表示方式.(2)策略:在操作中先将元素按一定顺序排出,然后以先安排哪个元素为分类标准进行分类,再安排第二个元素,并按此元素分类,依次进行,直到完成一个排列,这样能做到不重不漏,然后再按树形图写出排列.2.将语文、数学、英语书各一本分给甲、乙、丙三人,每人一本,共有多少种不同的分法?请将它们列举出来.解:按分步计数原理的步骤:第一步,分给甲,有3种分法;第二步,分给乙,有2种分法;第三步,分给丙,有1种分法. 故共有3×2×1=6种不同的分法. 列出树形图,如下:所以,按甲乙丙的顺序分的分法为:语数英,语英数,数语英,数英语,英语数,英数语.排列数公式及其应用(1)计算2A 58+7A 48A 88-A 59;(2)解方程3A 3x =2A 2x +1+6A 2x . 【解】 (1)2A 58+7A 48A 88-A 59=2×8×7×6×5×4+7×8×7×6×58×7×6×5×4×3×2×1-9×8×7×6×5=8×7×6×5×(8+7)8×7×6×5×(24-9)=1.(2)由3A 3x =2A 2x +1+6A 2x ,得3x (x -1)(x -2)=2(x +1)x +6x (x -1). 因为x ≥3,且x ∈N *,所以3(x -1)(x -2)=2(x +1)+6(x -1), 即3x 2-17x +10=0. 解得x =5,x =23(舍去).所以x =5.利用排列数公式①A m n =n (n -1)(n -2)…(n -m +1)或②A mn =n !(n -m )!解题时,要注意题目特点,当m 较小时,用公式①较方便,第②个公式常用在化简或证明问题中.3.已知3A n -18=4A n -29,则n 等于________.解析:由已知3×8!(9-n )!=4×9!(11-n )!,即4×3(11-n )(10-n )=1,因为n ≤9,所以解得n =7. 答案:71.排列定义的两个要素一是“取出元素”,二是“将元素按一定顺序排列”,这是排列的两个要素. 2.对排列数公式的说明(1)这个公式是在m ,n ∈N *,m ≤n 的情况下成立的,m >n 时不成立.(2)公式右边是m 个数的连乘积,形式较复杂,其特点是:从n 开始,依次递减1,连乘m 个.3.排列与排列数的区别排列与排列数是两个不同的概念,一个排列就是完成一件事的一种方法,不是数;排列数是指所有排列的个数,它是一个数.符号A m n 中,m ,n 均为正整数,且m ≤n ,A mn 是一个整体.10个人走进只有6把不同椅子的屋子,若每把椅子必须且只能坐一人,共有多少种不同的坐法?【解】 坐在椅子上的6个人是走进屋子的10个人中的任意6个人,若把人抽象地看成元素,将6把不同的椅子当成不同的位置,则原问题抽象为从10个元素中取6个元素占据6个不同的位置.显然是从10个元素中任取6个元素的排列问题.从而,共有A 610=151 200(种)坐法.(1)本题易出现以下错解:10个人坐6把不同的椅子,相当于从含10个元素的集合到含6个元素的集合的映射,故有610种不同的坐法.该错解是没弄清题意,题中要求每把椅子必须并且只能坐一个,是从10个人中取出6个人的一个排列问题.(2)在用排列数公式求解时需先对问题是否是排列问题做出判断.1.4×5×6×…×(n -1)×n 等于( ) A .A 4n B .A n -4n C .n !-4!D .A n -3n解析:选D.4×5×6×…×(n -1)×n 中共有n -4+1=n -3个因式,最大数为n ,最小数为4,故4×5×6×…×(n -1)×n =A n -3n .2.从1,2,3,4这四个数字中任取两个不同的数字,则可组成不同的两位数有( ) A .9个 B .12个 C .15个D .18个解析:选B.用树形图表示为:由此可知共有12个. 3.5A 35+4A 24=________.解析:原式=5×5×4×3+4×4×3=348. 答案:3484.若A m 10=10×9×…×5,则m =________. 解析:10-m +1=5,得m =6. 答案:6[A 基础达标]1.已知下列问题:①从甲、乙、丙三名同学中选出两名分别参加数学、物理兴趣小组;②从甲、乙、丙三名同学中选出两人参加一项活动;③从a ,b ,c ,d 中选出3个字母;④从1,2,3,4,5这五个数字中取出2个数字组成一个两位数.其中是排列问题的有( )A .1个B .2个C .3个D .4个 解析:选B.由排列的定义知①④是排列问题. 2.计算A 67-A 56A 45=( )A .12B .24C .30D .36解析:选D.A 67-A 56A 45=7×6×5×4×3×2-6×5×4×3×25×4×3×2=7×6-6=36.3.若α∈N *,且α<27,则(27-α)(28-α)…(34-α)等于( ) A .A 827-α B .A 27-α34-α C .A 734-αD .A 834-α解析:选D.从27-α到34-α共有34-α-(27-α)+1=8个数.所以(27-α)(28-α)…(34-α)=A 834-α.4.甲、乙、丙三人排成一排照相,甲不站在排头的所有排列种数为( ) A .6 B .4 C .8 D .10解析:选B.列树形图如下:5.不等式A 2n -1-n <7的解集为( ) A .{n |-1<n <5} B .{1,2,3,4} C .{3,4}D .{4}解析:选C.由不等式A 2n -1-n <7, 得(n -1)(n -2)-n <7, 整理得n 2-4n -5<0, 解得-1<n <5.又因为n -1≥2且n ∈N *, 即n ≥3且n ∈N *, 所以n =3或n =4,故不等式A 2n -1-n <7的解集为{3,4}. 6.A n +32n +A n +14=________.解析:由⎩⎪⎨⎪⎧n +3≤2n ,n +1≤4,n ∈N *,得n =3,所以A n +32n +A n +14=6!+4!=744. 答案:7447.给出的下列四个关系式中,其中正确的个数是________.①A mn =(n -m )!n !;②A m -1n -1=n -1!(m -n )!;③A m n =n A m -1n -1;④n !=(n +1)!n +1.解析:①②不成立,③④成立. 答案:28.从a ,b ,c ,d ,e 五个元素中每次取出三个元素,可组成________个以b 为首的不同的排列,它们分别是____________________.解析:画出树状图如下:可知共12个,它们分别是bac ,bad ,bae ,bca ,bcd ,bce ,bda ,bdc ,bde ,bea ,bec ,bed .答案:12 bac ,bad ,bae ,bca ,bcd ,bce ,bda ,bdc ,bde ,bea ,bec ,bed 9.求证:12!+23!+34!+…+n -1n !<1.证明:因为n -1n !=n n !-1n !=1(n -1)!-1n !, 所以12!+23!+34!+…+n -1n !=11!-12!+12!-13!+13!-14!+…+1(n -1)!-1n ! =1-1n !<1. 所以原式得证. 10.计算下列各题. (1)A 215; (2)A 66; (3)A m -1n -1·A n -mn -m A n -1n -1;(4)1!+2·2!+3·3!+…+n ·n !. 解:(1)A 215=15×14=210.(2)A 66=6!=6×5×4×3×2×1=720.(3)原式=(n -1)![n -1-(m -1)]!·(n -m )!·1(n -1)!=(n -1)!(n -m )!·(n -m )!·1(n -1)!=1.(4)因为n ·n !=[(n +1)-1]·n! =(n +1)n !-n! =(n +1)!-n !,所以原式=(2!-1)+(3!-2!)+(4!-3!)+…+[(n +1)!-n !]=(n +1)!-1.[B 能力提升]1.若S =A 11+A 22+A 33+A 44+…+A 100100,则S 的个位数字是( ) A .8 B .5 C .3D .0解析:选C.因为当n ≥5时,A nn 的个位数字是0,故S 的个位数取决于前四个排列数.又A 11+A 22+A 33+A 44=33,故选C.2.若2<(m +1)!A m -1m -1≤42,则满足条件的m 的集合是________. 解析:原不等式可化为2<(m +1)!(m -1)!≤42.即2<m 2+m ≤42.所以⎩⎪⎨⎪⎧m 2+m -2>0m 2+m -42≤0,解不等式组得,-7≤m <-2或1<m ≤6,又m ∈N *,所以满足题意的m 的集合为{2,3,4,5,6}. 答案:{2,3,4,5,6}3.一条铁路有n 个车站,为适应客运需要,新增了m 个车站,且知m >1,客运车票增加了62种,问原有多少个车站?现在有多少个车站?解:由题意可知,原有车票的种数是A 2n 种,现有车票的种数是A 2n +m 种,所以A 2n +m -A 2n =62,即(n +m )(n +m -1)-n (n -1)=62,所以m (2n +m -1)=62=2×31,因为m <2n +m -1,且n ≥2,m ,n ∈N *,所以⎩⎪⎨⎪⎧m =2,2n +m -1=31, 解得m =2,n =15,故原有15个车站,现有17个车站.4.(选做题)A ,B ,C ,D 四名同学重新换位(每个同学都不能坐其原来的位子),试列出所有可能的换位方法.解:假设A ,B ,C ,D 四名同学原来的位子分别为1,2,3,4号,树形图如下:换位后,原来1,2,3,4号座位上坐的同学的所有可能排法有:BADC ,BCDA ,BDAC ,CADB ,CDAB ,CDBA ,DABC ,DCAB ,DCBA .。
计数原理教案
计数原理教案计数原理是数学中的一个重要概念,也是许多数学问题的基础。
通过计数原理,我们可以解决许多与排列、组合、概率等相关的问题。
本节课将围绕计数原理展开讲解,帮助学生深入理解这一概念,并掌握相关的解题方法。
一、基本概念。
1. 计数原理的概念。
计数原理是指在一系列事件中,每个事件发生的可能性个数的乘积等于所有事件发生的可能性个数的总数。
计数原理包括加法原理和乘法原理两种基本形式。
2. 加法原理。
加法原理是指如果一个事件可以分解成若干个互不相容的事件之一,那么这个事件发生的可能性个数等于各个互不相容事件发生的可能性个数之和。
3. 乘法原理。
乘法原理是指如果一个事件发生的可能性个数等于m,另一个事件发生的可能性个数等于n,那么这两个事件同时发生的可能性个数等于m与n的乘积。
二、排列与组合。
1. 排列的概念与计算方法。
排列是指从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列。
排列的计算方法是n(n-1)(n-2)...(n-m+1)。
2. 组合的概念与计算方法。
组合是指从n个不同元素中取出m(m≤n)个元素,不考虑元素的顺序。
组合的计算方法是C(n,m)=n!/(m!(n-m)!)。
三、应用实例分析。
1. 生日问题。
假设有5个人,问他们的生日都不相同的概率是多少?这是一个典型的排列问题,根据排列的计算方法可得出答案。
2. 球的排列组合问题。
有红、黄、蓝三种颜色的球各3个,问排成一排有多少种不同的排列方式?这是一个典型的排列问题,根据排列的计算方法可得出答案。
3. 奖学金发放问题。
某班级有10名同学,奖学金要发给其中的3名同学,问有多少种不同的发放方式?这是一个典型的组合问题,根据组合的计算方法可得出答案。
四、练习与作业。
1. 请同学们结合课上所学知识,完成《计数原理》相关练习题。
2. 布置作业,请同学们自行查阅相关资料,总结排列与组合的应用实例,并写出解题思路。
五、课堂小结。
本节课我们学习了计数原理的基本概念,包括加法原理和乘法原理,以及排列与组合的概念和计算方法。
高二数学精品教案:112基本计数原理和排列组合选修2-3
(2)分步乘法计数原理: 做一件事情,完成它需要分成 n 个步骤,做第一个步骤有 m1 种不同的方法,做第二个步 骤有 m2 种不同的办法……做第 n 个步骤有 mn 种不同的方法,那么完成这件事情共有 N= m1×m2×…×mn 种不同的方法 说明: (1)两个基本计数原理是解决计数问题最基本的理论根据,它们分别给出了用两种不同 方式(分类和分步)完成一件事情的方法总数的计算方法 (2)考虑用哪个计 数原理,关键是看完成一件事情是否能独立完成,决定是分类还是分 步。如果完成一件事情有 n 类办法,每类办法都能独立完成,则用分类加法计数原理;如果 完成一件事情,需要分成 n 个步骤,各个步骤都是不可缺少的,需要依次完成所有步骤,才
型与乙型电视机各一台,不同的取法共有( )种
A. 140
B. 84
C. 70
D. 35
4. 四个不同的小球放入编号 1,2,3,4 的四个盒子中 ,则恰有一个空盒的方法共有
N ,且m
n)
C
0 n
C
n n
1
(4)组合数的两个性质:
①
C
m n
C nm n
②
Cm n1
C
m n
C
m n
1
4. 排列和组合的关系:
(1)二者区别的关键:是否和顺序有关
(2)二者的联系:
Anm
C
m n
Amm
5. 解决站队和组数的常用方法:
(1)特殊位置(或元素)优先考虑法:解决在与不在的问题
(2)捆绑法:解决元素相邻的问题
有( )个
高中数学计数原理教案
高中数学计数原理教案
教学内容:计数原理
教学对象:高中学生
教学时间:一节课
教学目标:
1. 了解计数原理的概念和基本原理;
2. 能够应用计数原理解决相关问题;
3. 培养学生的逻辑思维和问题解决能力。
教学重点:
1. 计数原理的基本概念和原理;
2. 计数原理在实际问题中的应用。
教学难点:
1. 计数原理的具体运用;
2. 解决实际问题时的逻辑思维能力。
教学准备:
1. 计算器;
2. 实例题目。
教学过程:
一、导入(5分钟)
教师引导学生回顾排列、组合的概念,并提出计数原理的概念。
通过一个简单的例子引导学生了解计数原理的基本原理。
二、讲解(15分钟)
1. 计数原理的概念和原理;
2. 巴斯卡三角形及其应用;
3. 实例分析和解决。
三、练习(15分钟)
教师布置几道相关计数原理的练习题,学生针对每道题进行思考并给出答案,教师引导学生讨论解题方法,帮助学生掌握计数原理的运用技巧。
四、总结(5分钟)
教师对本节课的教学内容进行总结和回顾,强化学生对计数原理的理解和运用。
五、作业(5分钟)
布置相关练习题作为课后作业,加深学生对计数原理的掌握和应用。
【教学反思】
本节课主要通过讲解概念、实例分析和练习训练,帮助学生掌握计数原理的基本原理和运用技巧。
在以后的教学中,可以结合实际问题,进一步提高学生的问题解决能力和创新思维。
高中数学选修2-3 第1章 计数原理第一章1.1(一)
研一研·问题探究、课堂更高效
解
本 课 时 栏 目 开 关
这名同学可以选择 A、B 两所大学中的一所.在 A 大学中
有 5 种专业选择方法,在 B 大学中有 4 种专业选择方法.又由 于两所大学没有共同的强项专业, 因此根据分类加法计数原理, 这名同学可能的专业选择种数为 5+4=9.
研一研·问题探究、课堂更高效
问题 5 若还有 C 大学,其中强项专业为:新闻学、金融学、 人力资源学,那么,这名同学可能的专业选择共有多少种? 答 这名同学可以选择 A、B、C 三所大学中的一所.在 A
本 课 时 栏 目 开 关
大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方 法,在 C 大学中有 3 种专业选择方法.又由于三所大学没有 共同的强项专业,因此根据分类加法计数原理,这名同学可 能的专业选择种数为 5+4+3=12.
本 课 时 栏 目 开 关
【学习要求】 1.理解分类加法计数原理与分步乘法计数原理.
本 课 时 栏 目 开 关
2.会用这两个原理分析和解决一些简单的实际计数问题. 【学法指导】 两个计数原理是推导排列数、组合数计算公式的依据,其基 本思想贯穿本章始终,理解两个原理的关键是分清分类与 分步.
填一填·知识要点、记下疑难点
本 课 时 栏 目 开 关
两个计数原理 1.分类加法计数原理:完成一件事有两类不同方案,在第 1 类方案中有 m 种不同的方法,在第 2 类方案中有 n 种不 同的方法, 那么完成这件事共有 N= m+n 种不同的方法. 2.分步乘法计数原理:完成一件事需要两个步骤,做第 1 步 有 m 种不同的方法,做第 2 步有 n 种不同的方法,那么 完成这件事共有 N= m×n 种不同的方法.
1.1两个基本计数原理(1)
例题: 例题: 用四种颜色给如图所示的地图上色, 用四种颜色给如图所示的地图上色, 要求相邻两块涂不同的颜色, 要求相邻两块涂不同的颜色,共有 多少种不同的涂法? 多少种不同的涂法?
练习: 练习: 书架上原来并排放着5 书架上原来并排放着5本不同的 现要插入三本不同的书, 书,现要插入三本不同的书,那么 不同的插法有多少种? 不同的插法有多少种?
因为一天中乘火车有3种走法,乘汽车有2 解:因为一天中乘火车有3种走法,乘汽车有2 种走法,每一种走法都可以从甲地到乙地, 种走法,每一种走法都可以从甲地到乙地,所 种不同的走法。 以共有 3+2=5 种不同的走法。
加法原理) 分类计数原理 (加法原理)
做一件事,完成它可以有n类办法, 做一件事,完成它可以有n类办法, 在第一类办法中有m 种不同的方法, 在第一类办法中有m1种不同的方法,在 第二类办法中有m 种不同的方法, 第二类办法中有m2种不同的方法,……, , 在第n类办法中有m 种不同的方法. 在第n类办法中有mn种不同的方法. 那么完成这件事共有 ____________________种不同的方法 种不同的方法. ____________________种不同的方法. N=m1十m2十…十mn = 十 要点: 分类, 要点: (1)分类, 相互独立(并联) (2)相互独立(并联) (3)各类办法之和
3.把四封信任意投入三个信箱中, 3.把四封信任意投入三个信箱中,不同投法种数是 把四封信任意投入三个信箱中 ( A. 12 B.64 C.81 ) D.7
4.火车上有10名乘客,沿途有5个车站,乘客下车 4.火车上有10名乘客,沿途有5个车站, 火车上有10名乘客 的可能方式有 ( )种 A. C. 510 50 B. 105 D. 以上都不对
高中数学计数原理讲课教案
高中数学计数原理讲课教案
一、教学目标
1. 了解计数原理的概念和基本思想;
2. 掌握计数原理的应用方法;
3. 能够独立解决计数问题;
4. 培养学生的逻辑思维能力和数学分析能力。
二、教学重点
1. 计数原理的概念和基本思想;
2. 计数原理的应用方法。
三、教学难点
1. 计数原理的应用方法;
2. 计数问题的解决策略。
四、教学内容
1. 计数原理的概念介绍
2. 计数原理的基本思想
3. 计算原理的应用方法
五、教学过程
1. 导入:引导学生思考一个问题:有3个红球、4个蓝球和2个绿球,问一共有多少种不同的排列方式?
2. 讲解:引入计数原理的概念,讲解计数原理的基本思想和应用方法,例如排列、组合等概念。
3. 实践:让学生尝试解决一些计数问题,如:有5本数学书、4本物理书和3本化学书,问从这些书中随机选取一本书,选取一本数学书的概率是多少?
4. 拓展:通过更复杂的例题,让学生进一步理解计数原理的应用,提高他们的计数能力。
5. 总结:对计数原理的概念和应用方法进行总结,强调解决计数问题的关键思路和策略。
六、作业
1. 完成课堂练习题,巩固所学知识;
2. 拓展阅读相关数学问题,提升计数能力。
七、教学反馈
1. 对学生在实践中的表现进行评价和反馈;
2. 对学生提出的问题进行解答和指导。
八、板书设计
1. 计数原理的概念和基本思想;
2. 计数原理的应用方法;
3. 计数问题的解决策略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学过程:
学生探究过程:
问题 1. 从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。
一天中,火车
有4 班, 汽车有2班,轮船有3班。
那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?
分析: 从甲地到乙地有3类方法,
第一类方法, 乘火车,有4种方法;
第二类方法, 乘汽车,有2种方法;
第三类方法, 乘轮船, 有3种方法;
所以 从甲地到乙地共有 4 + 2 + 3 = 9 种方法。
问题 2. 如图,由A 村去B 村的道路有3条,由B 村去C 村的道路有2条。
从A
村经B 村去C 村,共有多少种不同的走法?
分析: 从A 村经 B 村去C 村有2步,
第一步, 由A 村去B 村有3种方法,
第二步, 由B 村去C 村有3种方法,
所以 从A 村经 B 村去C 村共有 3 ×2 = 6 种不同的方法。
分类计数原理 完成一件事,有n 类办法,在第一类办法中有m 1种不同的方法,在第二类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法。
那么完成这件事共有
N=m 1+m 2+…+m n
种不同的方法。
A B C
北 南 中 北 南
分步计数原理完成一件事,需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事有
N=m1×m2×…×m n
种不同的方法。
、㈢例题
1.某班级有男三好学生5人,女三好学生4人。
(1)从中任选一人去领奖, 有多少种不同的选法?
(2) 从中任选男、女三好学生各一人去参加座谈会, 有多少种不同的选法?
分析: (1) 完成从三好学生中任选一人去领奖这件事,共有2类办法,
第一类办法, 从男三好学生中任选一人, 共有m1 = 5 种不同的方法; 第二类办法, 从女三好学生中任选一人, 共有m2 = 4 种不同的方法; 所以, 根据分类原理,得到不同选法种数共有N = 5 + 4 = 9 种。
(2) 完成从三好学生中任选男、女各一人去参加座谈会这件事, 需分2步完成,
第一步, 选一名男三好学生,有m1 = 5 种方法;
第二步, 选一名女三好学生,有m2 = 4 种方法;
所以, 根据分步原理, 得到不同选法种数共有N = 5 ×4 = 20 种。
例2
1在图1-1-3(1)的电路中,只合上一只开关以接通电路,有多少种不同的方法?
2在图1-1-3(2)的电路中,合上两只开关以接通电路,有多少种不同的方法
图见书本第7页
分析略
例3为了确保电子信箱的安全,在注册时,通常要设置电子信箱密码,在某网站设置的信箱中,
1密码为4位,每位均为0到9这10个数字中的一个数字,这样的密码共有多少个?
2密码为4位,每位是0到9这10个数字中的一个,或是从A到Z这26个英文字母中的1个,这样的密码共有多少个?
3密码为4-6位,每位均为0到10个数字中的一个,这样的密码共有多少个?
分析略
巩固练习:书本第9页练习1,2,3 习题1. 1 1,2
课外作业:第9页习题1. 1 3 , 4 , 5
教学反思:
分配问题
把一些元素分给另一些元素来接受.这是排列组合应用问题中难度较大的一类问题.因为这涉及到两类元素:被分配元素和接受单位.而我们所学的排列组合是对一类元素做排列或进行组合的,于是遇到这类问题便手足无措了.
事实上,任何排列问题都可以看作面对两类元素.例如,把10个全排列,可以理解为在10个人旁边,有序号为1,2,……,10的10把椅子,每把椅子坐一个人,那么有多少种坐法?这样就出现了两类元素,一类是人,一类是椅子。
于是对眼花缭乱的常见分配问题,可归结为以下小的“方法结构”:
p,这里n m≥.其中m是
①.每个“接受单位”至多接受一个被分配元素的问题方法是m
n
≥.“接受单位”的个数。
至于谁是“接受单位”,不要管它在生活中原来的意义,只要n m 个数为m的一个元素就是“接受单位”,于是,方法还可以简化为p少多.这里的“多”只要≥“少”
②.被分配元素和接受单位的每个成员都有“归宿”,并且不限制一对一的分配问题,方法是
p
分组问题的计算公式乘以k
k。