(完整版)导数讨论含参单调性习题(含详解答案).doc

合集下载

(完整版)用导数求函数的单调区间含参问题

(完整版)用导数求函数的单调区间含参问题

用导数求函数的单调区间——含参问题一、问题的提出应用导数研究函数的性质:单调性、极值、最值等,最关键的是求函数的单调区间,这是每年高考的重点,这也是学生学习和复习的一个难点。

其中,学生用导数求单调区间最困难的是对参数分类讨论。

尽管学生有分类讨论的意识,但是找不到分类讨论的标准,不能全面、准确分类二、课堂简介请学生求解一下问题,写出每一题求单调区间的分类讨论的特点。

例1、 求函数R a a x x x f ∈-=),()(的单调区间。

解:定义域为),0[+∞ ,23)('x ax x f -=令,0)('=x f 得,3a x = (1) 0≤a ,0)('≥x f 恒成立,)(x f 在),0[+∞上单调递增;(2) 0>a ,令0)('>x f 得∴>3a x )(x f 在)3,0[a 上单调递减,在),3[+∞a 上单调递增。

所以,当0≤a 时,)(x f 在),0[+∞上单调递增;当0>a 时,)(x f 在)3,0[a 上单调递减,在),3[+∞a 上单调递增。

分类讨论特点:一次型,根3a 和区间端点0比较 例2、 求函数R a x a ax x x f ∈+-+-=,1)1(2131)(23的单调区间。

解:定义域R),1)](1([1)('2---=-+-=x a x a ax x x f令,0)('=x f 得1,121=-=x a x(1) 211>>-a a 即,令0)('>x f 得∴<->11x a x 或)(x f 在)1,(-∞上单调递增,)1,1(-a 上单调递减,),1(+∞-a 上单调递增。

(2) 211==-a a 即,0)('≥x f 恒成立,所以)(x f 在R 上单调递增。

(3) 211<<-a a 即,令0)('>x f 得∴>-<11x a x 或)(x f 在)1,(--∞a 上单调递增,)1,1(-a 上单调递减,),1(+∞上单调递增。

含参单调性讨论 解析版

含参单调性讨论 解析版

x 1 x)2 ,
令 g(x) ln x x 1,所以 g(x) 1 1 1 x ,
x
x

x
0,
1 2
时,
g ( x)
0,
g(x)
单调递增,
g( x)max
g(1 2
)
ln
2
1 2
0,
即 h(x)
0
,所以 h(x)
x 1 x ln x

0,
1 2
单调递减,所以
h(
x)
min
h( 1) 2
【分析】(1)求出函数的导数,讨论 a 的取值情况,结合解不等式即可求得答案;
(2)根据所给范围,讨论 a 的取值范围,确定导数正负,判断函数的单调性,即可求
得函数最小值.
【详解】(1)由题意得 f (x) 2x (2a 1) a (2x 1)(x a) ,
x
x
f (x) 定义域是{x | x 0} ,
当 0 a 1 时,由 f (x) 0 得 0 x a 或 x 1 ,
含参单调性讨论解析
一、解答题 1.讨论函数 f (x) ax 1 (a 1) ln x 的单调性
x
【答案】答案见解析
【分析】求导
f
x
ax
1 x
x2
1
,再分
a
0

a
0,1

a
1,
a
1,
讨论求
解.
【详解】解: f x 的定义域为 0, ,
f x a
1 x2
a 1 x
ax 2
a 1x 1
时,
f
x
0,
f

专题5__导数的应用-含参函数的单调性讨论(答案)

专题5__导数的应用-含参函数的单调性讨论(答案)

[典例 1] 讨论 f ( x ) = x + ax 的定义域为 (-∞,0) Y (0,+∞)x 2 = x = 〖专题 5〗 导数的应用—含参函数的单调性讨论“含参数函数的单调性讨论问题”是近年来高考考查的一个常考内容,也是我们高考复习的重点.从这几年来的高考试题来看,含参数函数的单调性讨论常常出现在研究函数的单调性、极值以及最值中,因此在高考复习中更应引起我们的重视.一、思想方法:f '( x ) > 0 ⇔ x ∈ A Y B Y ... ⇔ f ( x )增区间为A, B 和... f '( x ) < 0 ⇔ x ∈ C Y D Y ... ⇔ f ( x )增区间为C, D 和... x ∈ D 时f '( x ) > 0 ⇒ f ( x )在区间D 上为增函数 x ∈ D 时f '( x ) < 0 ⇒ f ( x )在区间D 上为减函数 x ∈ D 时f '( x ) = 0 ⇒ f ( x )在区间D 上为常函数讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论.二、典例讲解x 的单调性,求其单调区间.解: f ( x ) = x + af '( x ) = 1 - a x 2 - ax 2 ( x ≠ 0) (它与 g ( x) = x 2 - a 同号)I )当 a ≤ 0 时, f '( x ) > 0( x ≠ 0) 恒成立,此时 f ( x ) 在 (-∞,0) 和 (0,+∞) 都是单调增函数,即 f ( x ) 的增区间是 (-∞,0) 和 (0,+∞) ;II) 当 a > 0 时f '( x ) > 0( x ≠ 0) ⇔ x < - a 或x > af '( x ) < 0( x ≠ 0) ⇔ - a < x < 0或0 < x < a此时 f ( x ) 在 (-∞,- a ) 和 ( a ,+∞) 都是单调增函数,f ( x ) 在 (- a ,0) 和 (0, a ) 都是单调减函数,即 f ( x ) 的增区间为 (-∞,- a ) 和 ( a ,+∞) ;f ( x ) 的减区间为 (- a ,0) 和 (0, a ) .步骤小结:1、先求函数的定义域,2、求导函数(化为乘除分解式,便于讨论正负)3、先讨论只有一种单调区间的(导函数同号的)情况,4、再讨论有增有减的情况(导函数有正有负,以其零点分界)5、注意函数的断点,不连续的同类单调区间不要合并.[变式练习 1] 讨论 f ( x ) = x + a ln x 的单调性,求其单调区间.解: f ( x ) = x + a ln x 的定义域为 (0,+∞)f '( x ) = 1 + a x + ax ( x > 0) (它与 g ( x) = x + a 同号)I )当 a ≥ 0 时, f '( x ) > 0( x > 0) 恒成立,此时 f ( x ) 在 (0,+∞) 为单调增函数,(0,-所以,此时f(x)在(0,-)为单调增函数,f(x)在(-1,+∞)是单调减函数,即f(x)的增区间为(0,+∞),不存在减区间;II)当a<0时f'(x)>0(x>0)⇔x>-a;f'(x)<0(x>0)⇔0<x<-a此时f(x)在(-a,+∞)为单调增函数,f(x)在(0,-a)是单调减函数,即f(x)的增区间为(-a,+∞);f(x)的减区间为(0,-a).[典例2]讨论f(x)=ax+ln x的单调性.解:f(x)=ax+ln x的定义域为(0,+∞)I)1ax+1f'(x)=a+=(x>0)(它与g(x)=ax+1同号)x x当a=0时,f'(x)>0(x>0)恒成立(此时f'(x)=0⇔x=-1a没有意义)II)此时f(x)在(0,+∞)为单调增函数,即f(x)的增区间为(0,+∞)当a>0时,f'(x)>0(x>0)恒成立,(此时f'(x)=0⇔x=-1a不在定义域内,没有意义)此时f(x)在(0,+∞)为单调增函数,即f(x)的增区间为(0,+∞)III)当a<0时,令f'(x)=0⇔x=-1 a于是,当x变化时,f'(x),f(x)的变化情况如下表:(结合g(x)图象定号)x 1)a-1a1(-,+∞)af'(x) f(x)+增↗0-减↘1a a11即f(x)的增区间为(0,-);f(x)的减区间为(-,+∞).a a小结:导函数正负的相应区间也可以由导函数零点来分界,但要注意其定义域和连续性.即先求出f'(x)的零点,再其分区间然后定f'(x)在相应区间内的符号.一般先讨论f'(x)=0无解情况,再讨论解f'(x)=0过程产生增根的情况(即解方程变形中诸如平方、去分母、去对数符号等把自变量x范围扩大而出现有根,但根实际上不在定义域内的),即根据f'(x)零点个数从少到多,相应原函数单调区间个数从少到多讨论,最后区间(最好结合导函数的图象)确定相应单调性.[变式练习2]讨论f(x)=12ax2+ln x的单调性.解:f(x)=12ax2+ln x的定义域为(0,+∞) 1ax2+1f'(x)=ax+=x x(x>0),它与g(x)=ax2+1同号.3a af '( x ) > 0 ⇔ x < - 或x > 所以此时, f ( x ) 的增区间为 (-∞,- )和( ,+∞) ; f ( x ) 的减区间为 (- , )令 f '( x ) = 0 ⇔ ax 2 + 1 = 0( x > 0) ,当 a ≥ 0 时,无解;当 a < 0 时, x = -1 - a=- a a(另一根不在定义域内舍去)1i)当 a = 0 时, f '( x ) > 0( x > 0) 恒成立 (此时 f '( x ) = 0 ⇔ x 2 = - 没有意义)a此时 f ( x ) 在 (0,+∞) 为单调增函数,即 f ( x ) 的增区间为 (0,+∞)ii)当 a > 0 时, f '( x ) > 0( x > 0) 恒成立,(此时 方程 ax 2 + 1 = 0 判别式 ∆ < 0 ,方程无解)此时 f ( x ) 在 (0,+∞) 为单调增函数,即 f ( x ) 的增区间为 (0,+∞) iii)当 a < 0 时,当 x 变化时, f '( x ), f ( x ) 的变化情况如下表:(结合 g(x)图象定号)x1(0, - )a -1 a1( - ,+∞)af '( x )f ( x )+增↗ 0-减↘所以,此时 f ( x ) 在 (0, -即 f ( x ) 的增区间为 (0, - 1 1) 为单调增函数, f ( x ) 在 ( - ,+∞) 是单调减函数, a a1 1) ; f ( x ) 的减区间为 ( - ,+∞) .a a小结:一般最后要综合讨论情况,合并同类的,如 i),ii)可合并为一类结果.对于二次型函数(如 g ( x ) = ax 2 + 1 )讨论正负一般先根据二次项系数分三种类型讨论. [典例 3] 求 f ( x ) = a 2 x 3 + ax 2 - x - 1 的单调区间. 解: f ( x ) = a 2 x 3 + ax 2 - x - 1 的定义域为 R ,f '( x ) = 3a 2 x 2 + 2ax - 1 = (3ax - 1)(ax + 1)I) 当 a = 0 时, f '( x ) = -1 < 0 ⇒ f ( x ) 在 R 上单调递减, f ( x ) 减区间为 R ,无增区间.II) 当 a ≠ 0 时 3a 2 > 0 , f '( x ) 是开口向上的二次函数,令 f '( x ) = 0得x = 1 1 1, x = - (a ≠ 0) , 因此可知(结合 f '( x ) 的图象)2i)当 a > 0 时, x > x 121 1 1 1; f '( x ) < 0 ⇔ - < x <a 3a a 3a1 1 1 1a 3a a 3aii)当 a < 0 时, x < x12或x > - ;所以此时, f ( x ) 的增区间为 (-∞, )和(- ,+∞) ; f ( x ) 的减区间为 ( ,- ) .[变式练习 3] 求 f ( x ) = 1 ,。

导数讨论含参单调性习题含详细讲解问题详解

导数讨论含参单调性习题含详细讲解问题详解

实用标准文案m(x + n)f(x) = lnx z g(x) = --- (m > 0)1.设函数X + 1 (D 当m = 1时,函数y = f(x)与y = g(x)在x = i 处的切线互相垂直,求n 的值:(2)若函数y = f(x)-g(x)在定义域不单调,求m-n 的取值国; 满足条件的实数a ;若不存在,请说明理由.2. 已知函数= (ax + l)lnx-ax + 3z a € R /g (x)^f(x)^导函数,e 为自然对数的底数. (1) 讨论g(x)的单调性; (2) 当a>e 时,证明:g(e _a)>0.(3) 当a>e 时,判断函数f(x)零点的个数,并说明理由. bf(x) = a(x + -)+ blnx3. 已知函数 x (其中,a,b 6 R).(1) 当b = -4时,若f(x)在其定义域为单调函数,求a 的取值围;(2) 当a = 7时,是否存在实数b,使得当xe [e,e 2]时,不等式f(x)>0恒成立,如果存在, 求b的取值围,如果不存在,说明理由(其中e 是自然对数的底数,e = 2.71828 -).4. 已知函数g(x) = x 2+ ln(x + a),其中a 为常数. (1) 讨论函数g(x)的单调性;g(xj + g(x 2) x x + x 2 > g( --------- )(2) 若g(x)存在两个极值点X/2,求证:无论实数a 取什么值都有2 2・5. 已知函数f(x) = ln(e x+ a) (a 为常数)是实数集R 上的奇函数,函数g(x) = Xf(x) + sinx 是 区间【-1, 1]上的减函数.(1)求a 的值;(2)若g(x)<t 2+ Xt + l 在xEHL, 1]及入所在的取值国上恒成立,求t 的取值国:Inx 2—=x -2ex + m(3)讨论关于x 的方程f(x)的根的个数.(3)是否存在正实数6使得 2a xf(;)・f 声屮(寿 <0对任意正实数X 恒成立?若存在,求出文档大全实用标准文案6. 已知函数 f (x) = ax-\nx,F (x) = e x + ax ,其中 x>O,a <0.(1) 若/(X)和F(x)在区间(0,ln3)上具有相同的单调性,数a 的取值围;(2) 若aw -oo,-—,且函数 g (x) = xe a ^1 - 2av+ f (x)的最小值为 M,求M 的X €-最小值.7. 已知函数 f(x) = e x+m -\nx.(1 )如X = 1是函数/(X)的极值点,数〃7的值并讨论的单调性/(X):(2)若X = A O 是函数/(X)的极值点,且f(x) > 0恒成立,数加的取值围(注:已知 常数a 满足<71116/= 1)・牙3(1) 当加=1 时,求证:-lvxS 0 时,f (x) < —:(2) 试讨论函数y = /(A )的零点个数.9. 已知£ 是自然对数的底数,F(x) = 2e'~1+x+liix,/(x) = d r(x-l) + 3.⑴设T(x) = F(x)-/(x),当0 = 1 + 2以时,求证:T(x)在(0,+oo)±单调递增;(2)若 Vx>l,F(x)>/(x),数a 的取值囤. 10. 已知函数 /(x) = e v+ax-2(1) 若a = -l 求函数/(%)在区间[-1,1]的最小值; (2) 若a G /?,讨论函数/(X)在(0,+co)的单调性; (3) 若对于任意的為,耳丘(°,+8),且兀 <耳,都有xJ/CG + a ] vxJ/Vj + a ]成立,求a 的取值囲。

导数应用之含参函数单调性的讨论(含答案)

导数应用之含参函数单调性的讨论(含答案)

1
导数应用之含参函数单调性的讨论
一.预备知识:
(一)二次方程根的分布:
1.已知方程4x 2+2(m-1)x+(2m+3)=0(m ∈R )有两个正根,求实数m 的取值范围。

2.已知方程2x 2-(m+1)x+m=0有一正根和一负根,求实数m 的取值范围。

(二)穿根法拓展:
1.
02
2
2>--+x x x 2.(e x -1)(x-1)>0 3.(e x -1)(x-1)2>0
4.(e -x -1)(x-1)>0 5.(1-lnx)(x-1)>0
二.导后“一次”型:
1.已知函数f(x)=ax-(a+1)·ln(x+1),a ≥-1,求函数f(x)的单调区间。

2.已知函数f(x)=e x -ax ,讨论函数f(x)的单调性。

三.导后“二次型”:
3.已知函数f(x)=lnx+x 2-ax(a ∈R),求函数f(x)的单调区间。

2
4.已知函数f(x)=m ·ln(x+2)+2
1x 2
+1,讨论函数f(x)的单调性。

5.求函数f(x)=(1-a)lnx-x+2
2
ax 的单调区间。

6.已知函数f(x)=(ax 2-x)·lnx-2
1ax 2
+x ,讨论f(x)的单调性。

四.导后求导型
7.已知函数f(x)=e x -x 2,求函数f(x)的单调区间。

8.已知函数f(x)=
x
e
x 1
ln ,求函数f(x)的单调区间。

9.已知函数f(x)=e mx +x 2-mx ,讨论函数f(x)的单调性。

3
4。

专题5导数的应用-含参函数的单调性讨论(答案)

专题5导数的应用-含参函数的单调性讨论(答案)

〖专题5〗 导数的应用—含参函数的单调性讨论“含参数函数的单调性讨论问题”是近年来高考考查的一个常考内容,也是我们高考复习的重点.从这几年来的高考试题来看,含参数函数的单调性讨论常常出现在研究函数的单调性、极值以及最值中,因此在高考复习中更应引起我们的重视. 一、思想方法:上为常函数在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('⇒=∈⇒<∈⇒>∈⇔∈⇔<⇔∈⇔>Y Y Y Y讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论. 二、典例讲解[典例1] 讨论xax x f +=)(的单调性,求其单调区间. 解:xax x f +=)(的定义域为),0()0,(+∞-∞Y )0(1)('222≠-=-=x xa x x a x f (它与a x x g -=2)(同号) I )当0≤a 时,)0(0)('≠>x x f 恒成立,此时)(x f 在)0,(-∞和),0(+∞都是单调增函数, 即)(x f 的增区间是)0,(-∞和),0(+∞; II) 当0>a 时 a x a x x x f >-<⇔≠>或)0(0)('a x x a x x f <<<<-⇔≠<00)0(0)('或此时)(x f 在),(a --∞和),(+∞a 都是单调增函数,)(x f 在)0,(a -和),0(a 都是单调减函数,即)(x f 的增区间为),(a --∞和),(+∞a ;)(x f 的减区间为)0,(a -和),0(a .步骤小结:1、先求函数的定义域,2、求导函数(化为乘除分解式,便于讨论正负),3、先讨论只有一种单调区间的(导函数同号的)情况,4、再讨论有增有减的情况(导函数有正有负,以其零点分界),5、注意函数的断点,不连续的同类单调区间不要合并.[变式练习1] 讨论x a x x f ln )(+=的单调性,求其单调区间.解:x a x x f ln )(+=的定义域为),0(+∞)0(1)('>+=+=x xa x x a x f (它与a x x g +=)(同号) I )当0≥a 时,)0(0)('>>x x f 恒成立,此时)(x f 在),0(+∞为单调增函数, 即)(x f 的增区间为),0(+∞,不存在减区间; II) 当0<a 时 a x x x f ->⇔>>)0(0)('; a x x x f -<<⇔><0)0(0)('此时)(x f 在),(+∞-a 为单调增函数,)(x f 在),0(a -是单调减函数,即)(x f 的增区间为),(+∞-a ;)(x f 的减区间为),0(a -.[典例2] 讨论x ax x f ln )(+=的单调性. 解:x ax x f ln )(+=的定义域为),0(+∞)0(11)('>+=+=x xax x a x f (它与1)(+=ax x g 同号) I )当0=a 时,)0(0)('>>x x f 恒成立 (此时ax x f 10)('-=⇔=没有意义)此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞ II )当0>a 时,)0(0)('>>x x f 恒成立, (此时ax x f 10)('-=⇔=不在定义域内,没有意义) 此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞III)当0<a 时, 令ax x f 10)('-=⇔= 于是,当x 变化时,)(),('x f x f 的变化情况如下表:(结合g(x)图象定号)所以, 此时)(x f 在),0(a-为单调增函数,)(x f 在),1(+∞-a是单调减函数, 即)(x f 的增区间为)1,0(a -;)(x f 的减区间为),1(+∞-a.小结:导函数正负的相应区间也可以由导函数零点来分界,但要注意其定义域和连续性.即先求出)('x f 的零点,再其分区间然后定)('x f 在相应区间内的符号.一般先讨论0)('=x f 无解情况,再讨论解0)('=x f 过程产生增根的情况(即解方程变形中诸如平方、去分母、去对数符号等把自变量x 范围扩大而出现有根,但根实际上不在定义域内的),即根据)('x f 零点个数从少到多,相应原函数单调区间个数从少到多讨论,最后区间(最好结合导函数的图象)确定相应单调性. [变式练习2] 讨论x ax x f ln 21)(2+=的单调性. 解:x ax x f ln 21)(2+=的定义域为),0(+∞ )0(11)('2>+=+=x xax x ax x f , 它与1)(2+=ax x g 同号. 令)0(010)('2>=+⇔=x ax x f ,当0≥a 时,无解;当0<a 时,aaa x --=-=1(另一根不在定义域内舍去)i)当0=a 时,)0(0)('>>x x f 恒成立 (此时ax x f 10)('2-=⇔=没有意义) 此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞ii)当0>a 时,)0(0)('>>x x f 恒成立,(此时 方程012=+ax 判别式0<∆,方程无解)此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞iii)当0<a 时,当x 变化时,)(),('x f x f 的变化情况如下表:(结合g(x)图象定号))+∞是单调减函数,即)(x f 的增区间为)1,0(a -;)(x f 的减区间为),1(+∞-a. 小结:一般最后要综合讨论情况,合并同类的,如i),ii)可合并为一类结果.对于二次型函数(如1)(2+=ax x g )讨论正负一般先根据二次项系数分三种类型讨论.[典例3] 求1)(232--+=x ax x a x f 的单调区间. 解:1)(232--+=x ax x a x f 的定义域为R ,)1)(13(123)('22+-=-+=ax ax ax x a x fI) 当0=a 时,⇒<-=01)('x f )(x f 在R 上单调递减,)(x f 减区间为R ,无增区间. II) 当0≠a 时032>a ,)('x f 是开口向上的二次函数,令)0(1,310)('21≠-===a ax a x x f 得, 因此可知(结合)('x f 的图象) i)当0>a 时,21x x >ax a x f a x a x x f 3110)(';3110)('<<-⇔<>-<⇔>或 所以此时,)(x f 的增区间为),31()1,(+∞--∞aa 和;)(x f 的减区间为)31,1(a a -ii) 当0<a 时,21x x <ax a x f ax a x x f 1310)(';1310)('-<<⇔<-><⇔>或所以此时,)(x f 的增区间为),1()31,(+∞--∞aa 和;)(x f 的减区间为)1,31(aa -. 小结:求函数单调区间可化为导函数的正负讨论(即分讨论其相应不等式的解区间),常见的是化为二次型不等式讨论,当二次函数开口定且有两根时,一般要注意讨论两根大小(分大、小、等三种情况)。

导数讨论含参单调性习题(含详解答案)

导数讨论含参单调性习题(含详解答案)

导数讨论含参单调性习题(含详解答案)1.设函数当若函数时,函数与.在处的切线互相垂直,求的值;的取值范围;在定义域内不单调,求是否存在正实数,使得满足条件的实数;若不存在,请说明理. 2.已知函数讨论当当的单调性;时,证明:时,判断函数;是对任意正实数恒成立?若存在,求出的导函数,为自然对数的底数.零点的个数,并说明理.3.已知函数当当时,若.在其定义域内为单调函数,求的取值范围;时,不等式恒成立,如果存在,).时,是否存在实数,使得当求的取值范围,如果不存在,说明理讨论函数,其中为常数.的单调性;若存在两个极值点,求证:无论实数取什么值都有. 是5.已知函数区间上的减函数.是实数集上的奇函数,函数求的值;若在及所在的取值范围上恒成立,求的取值范围;讨论关于的方程的根的个数.试卷第1页,总2页6.已知函数f?x??ax?lnx,F?x??ex?ax,其中x?0,a?0.若f?x?和F?x?在区间?0,ln3?上具有相同的单调性,求实数a的取值范围;若a,?最小值.7.已知函数f(x)?ex?m?lnx.如x?1是函数f(x)的极值点,求实数m的值并讨论的单调性f(x);若x?x0是函数f(x)的极值点,且f(x)?0恒成立,求实数m的取值范围.1?,且函数g?x??xeax?1?2ax?f?x?的最小值为M,求M的2?e?x2?mx,其中0?m?1.8.已知函数f?x??ln?1?mx??2x3当m?1时,求证:?1?x?0时,f?x??; 3试讨论函数y?f?x?的零点个数. 9.已知e是自然对数的底数,F?x??2ex?1?x?lnx,f?x??a?x?1??3.1设T?x??F?x??f?x?,当a?1?2e时, 求证:T?x?在?0,上单调递增;若?x?1,F?x??f?x?,求实数a的取值范围. 10.已知函数f?x??e?ax?2x若a??1,求函数f?x?在区间[?1,1]的最小值;若a?R,讨论函数f?x?在(0,??)的单调性;若对于任意的x1,x2?(0,??),且x1?x2,求a的取值范围。

导数讨论含参单调性习题(含详解答案)

导数讨论含参单调性习题(含详解答案)

1.设函数.(1)当时,函数与在处的切线互相垂直,求的值;(2)若函数在定义域内不单调,求的取值范围;(3)是否存在正实数,使得对任意正实数恒成立若存在,求出满足条件的实数;若不存在,请说明理由.2.已知函数是的导函数,为自然对数的底数.(1)讨论的单调性;(2)当时,证明:;(3)当时,判断函数零点的个数,并说明理由.3.已知函数(其中,).(1)当时,若在其定义域内为单调函数,求的取值范围;(2)当时,是否存在实数,使得当时,不等式恒成立,如果存在,求的取值范围,如果不存在,说明理由(其中是自然对数的底数,). 4.已知函数,其中为常数.(1)讨论函数的单调性;(2)若存在两个极值点,求证:无论实数取什么值都有. 5.已知函数(为常数)是实数集上的奇函数,函数是区间上的减函数.(1)求的值;(2)若在及所在的取值范围上恒成立,求的取值范围;(3)讨论关于的方程的根的个数.6.已知函数()()ln ,x f x ax x F x e ax =-=+,其中0,0x a ><.(1)若()f x 和()F x 在区间()0,ln3上具有相同的单调性,求实数a 的取值范围; (2)若21,a e ⎛⎤∈-∞- ⎥⎝⎦,且函数()()12ax g x xe ax f x -=-+的最小值为M ,求M 的最小值.7.已知函数()ln x mf x ex +=-. (1)如1x =是函数()f x 的极值点,求实数m 的值并讨论的单调性()f x ;(2)若0x x =是函数()f x 的极值点,且()0f x ≥恒成立,求实数m 的取值范围(注:已知常数a 满足ln 1a a =).8.已知函数()()2ln 12x f x mx mx =++-,其中01m <≤. (1)当1m =时,求证:10x -<≤时,()33x f x ≤;(2)试讨论函数()y f x =的零点个数. 9.已知e 是自然对数的底数,()()()12ln ,13x F x ex x f x a x -=++=-+.(1)设()()()T x F x f x =-,当112a e -=+时, 求证:()T x 在()0,+∞上单调递增; (2)若()()1,x F x f x ∀≥≥,求实数a 的取值范围. 10.已知函数()2xf x e ax =+-(1)若1a =-,求函数()f x 在区间[1,1]-的最小值; (2)若,a R ∈讨论函数()f x 在(0,)+∞的单调性; (3)若对于任意的1212,(0,),,x x x x ∈+∞<且[][]2112()()x f x a x f x a +<+都有成立,求a 的取值范围。

专题03 利用导函数图象研究函数的单调性问题(含参讨论问题)(典型题型归类训练) (原卷版)

专题03 利用导函数图象研究函数的单调性问题(含参讨论问题)(典型题型归类训练) (原卷版)

专题03 利用导函数图象研究函数的单调性问题(含参讨论问题)(典型题型归类训练)目录一、必备秘籍 ......................................................................................................... 1 二、典型题型 ......................................................................................................... 2 题型一:导函数有效部分是一次型(或可化为一次型) ................................ 2 题型二:导函数有效部分是二次型(或可化为二次型)且可因式分解型 ..... 3 题型三:导函数有效部分是二次型且不可因式分解型 ................................... 4 三、专项训练 (5)1、导函数有效部分是一次型(或可化为一次型) 借助导函数有效部分()g x 的图象辅助解题: ①令()0g x =,确定其零点0x ,并在x 轴上标出 ②观察()y g x =的单调性, ③根据①②画出草图2、导函数有效部分是二次型(或可化为二次型)且可因式分解型借助导函数有效部分()g x 的图象辅助解题:①对()g x 因式分解,令()0g x =,确定其零点1x ,2x 并在x 轴上标出这两个零点 ②观察()y g x =的开口方向, ③根据①②画出草图3、导函数有效部分是二次型(或可化为二次型)且不可因式分解型 ①对()y g x =,求24b ac ∆=- ②分类讨论0∆≤③对于0∆>,利用求根公式求()0g x =的两根1x ,2x ④判断两根1x ,2x 是否在定义域内:对称轴+端点正负 ⑤画出()y g x =草图二、含参问题讨论单调性的原则 1、最高项系数含参,从0开始讨论 2、两根大小不确定,从两根相等开始讨论 3、考虑根是否在定义域内二、典型题型题型一:导函数有效部分是一次型(或可化为一次型)1.(2024·全国·高三专题练习)已知函数()()ln f x x a x =-,讨论()f x '的单调性.2.(2023·全国·高三专题练习)已知函数()()()ln R f x a x a x a =+-∈,讨论()f x 的单调性.3.(2023上·四川成都·高三成都外国语学校校考开学考试)已知函数()()e xf x a a x =+-,()R a ∈(1)当1a =时,求()f x 的最值; (2)求()f x 的单调区间.。

导数讨论含参单调性习题(含详细讲解答案解析)

导数讨论含参单调性习题(含详细讲解答案解析)

1.设函数.(1)当时,函数与在处的切线互相垂直,求的值;(2)若函数在定义域内不单调,求的取值范围;(3)是否存在正实数,使得对任意正实数恒成立?若存在,求出满足条件的实数;若不存在,请说明理由.2.已知函数是的导函数,为自然对数的底数.(1)讨论的单调性;(2)当时,证明:;(3)当时,判断函数零点的个数,并说明理由.3.已知函数(其中,).(1)当时,若在其定义域内为单调函数,求的取值范围;(2)当时,是否存在实数,使得当时,不等式恒成立,如果存在,求的取值范围,如果不存在,说明理由(其中是自然对数的底数,). 4.已知函数,其中为常数.(1)讨论函数的单调性;(2)若存在两个极值点,求证:无论实数取什么值都有. 5.已知函数(为常数)是实数集上的奇函数,函数是区间上的减函数.(1)求的值;(2)若在及所在的取值范围上恒成立,求的取值范围;(3)讨论关于的方程的根的个数.6.已知函数()()ln ,x f x ax x F x e ax =-=+,其中0,0x a ><.(1)若()f x 和()F x 在区间()0,ln3上具有相同的单调性,求实数a 的取值范围; (2)若21,a e ⎛⎤∈-∞- ⎥⎝⎦,且函数()()12ax g x xe ax f x -=-+的最小值为M ,求M 的最小值.7.已知函数()ln x mf x ex +=-. (1)如1x =是函数()f x 的极值点,求实数m 的值并讨论的单调性()f x ;(2)若0x x =是函数()f x 的极值点,且()0f x ≥恒成立,求实数m 的取值范围(注:已知常数a 满足ln 1a a =).8.已知函数()()2ln 12x f x mx mx =++-,其中01m <≤. (1)当1m =时,求证:10x -<≤时,()33x f x ≤;(2)试讨论函数()y f x =的零点个数. 9.已知e 是自然对数的底数,()()()12ln ,13x F x ex x f x a x -=++=-+.(1)设()()()T x F x f x =-,当112a e -=+时, 求证:()T x 在()0,+∞上单调递增; (2)若()()1,x F x f x ∀≥≥,求实数a 的取值范围. 10.已知函数()2xf x e ax =+-(1)若1a =-,求函数()f x 在区间[1,1]-的最小值; (2)若,a R ∈讨论函数()f x 在(0,)+∞的单调性; (3)若对于任意的1212,(0,),,x x x x ∈+∞<且[][]2112()()x f x a x f x a +<+都有成立,求a 的取值范围。

(完整word版)导数单调性分类讨论

(完整word版)导数单调性分类讨论

类型二:导数单调性专题类型1。

导数不含参。

类型2.导数含参。

类型3:要求二次导 求单调性一般步骤:(1) 第一步:写出定义域,一般有()0ln >⇒x x(2) 第二步:求导,(注意有常数的求导)若有分母则通分。

一般分母都比0大,故去死若无分母,因式分解(提公因式,十字相乘法)或求根(观察分子)判断导函数是否含参,再进行讨论(按恒成立与两个由为分界)(3) 第三步由()()⎩⎨⎧≤≥解出是减区间解出是增区间00x f x f(4) 下结论类型一:导函数不含参:()()()⎪⎩⎪⎨⎧-+=--++=++=21223,22,,x x e m e x f x x c bx ax x f x b kx x f 如指数型如:二次型如:一次型对于这类型的题,直接由导函数大于0,小于0即可(除非恒成立) 例题1求函数()()x e x x f 3-=的单调递增区间 解:()()()23'-=-+=x e e x e x f x x x 由()()202'>⇒>-=x x e x f x 所以函数在区间()+∞,2单调递增 由()()202'<⇒<-=x x e x f x所以函数在区间()2,∞-单调递减例题2:求函数()()2211x e x x f x --=的单调区间解:()()()()x e e x e x xe e x f x x x x x +-=-+-=-+-=11111'由()()()01011'>-<⇒>+-=x x x e x f x 或所以函数在区间(][)∞+-∞-,和01,单调递增由()()()01011'<<-⇒<+-=x x e x f x 所以函数在区间()0,1-单调递减 例题3:求函数()xxx f ln =的单调区间例题4:已知函数()()()R k kx e x x f x ∈--=21 (1)若1=k 时,求函数()x f 的单调区间例题5.(2010·新课标全国文,21)设函数f (x )=x (e x -1)-ax 2.(1)若a =错误!,求f (x )的单调区间;例题6:已知函数()()112++-=x e ax x f x (1)若0=a ,求函数()x f 的单调区间7。

导数专题:含参函数单调性讨论问题(解析版)

导数专题:含参函数单调性讨论问题(解析版)

导数专题:含参函数单调性讨论问题一、导数与函数的单调性1、用导数求函数的单调性的概念:在某个区间(,)a b 内,如果()0f x '≥,那么函数()y f x =在这个区间内单调递增;如果()0f x '≤,那么函数()y f x =在这个区间内单调递减.【注意】(1)在某区间内()0(()0)f x f x ''><是函数()f x 在此区间上为增(减)函数的充分不必要条件.(2)可导函数()f x 在(,)a b 上是增(减)函数的充要条件是对(,)x a b ∀∈,都有()0(()0)f x f x ''><且()f x '在(,)a b 上的任何子区间内都不恒为零.2、确定函数单调区间的求法(1)确定函数()f x 的定义域;(2)求()f x ';(3)解不等式()0f x '>,解集在定义域内的部分为单调递增区间;(4)解不等式()0f x '<,解集在定义域内的部分为单调递减区间.二、含参函数单调性讨论依据讨论含参函数的单调性,其本质是导函数符号的变化情况,所以讨论的关键是抓住导函数解析式中的符号变化部分,即导数的主要部分,简称导主。

讨论时要考虑参数所在的位置及参数取值对导函数符号的影响,一般需要分四个层次来分类:(1)最高次幂的系数是否为0,即“是不是”;(2)导函数是都有变号零点,即“有没有”;(3)导函数的变号零点是否在定义域或指定区间内,即“在不在”;(4)导函数有多个零点时大小关系,即“大不大”。

三、两大类含参导函数的具体方法1、含参一次函数单调性讨论(1)讨论最高次项是否为0,正负情况;(2)求解导函数的根;(3)定义域划分为若干个单调区间,分别讨论每个区间上导函数的正负值.2、含参二次函数单调性的讨论(1)确定函数的定义域;(2)讨论最高次项是否为0,正负情况;(3)可因式分解型,解得12,x x (注意讨论12x x =);不可因式分解型,讨论0∆≤及0∆>;(4)讨论1x 和2x 的大小,能因式分解的,注意讨论12x x =;(5)12,x x 将定义域划分为若干个单调区间,分别讨论每个区间上导函数的正负值,判断根和区间端点位置关系的方法有3种:端点函数值+对称轴;韦达定理;求根公式。

专题10 导数含参单调性讨论详述版(解析版)

专题10 导数含参单调性讨论详述版(解析版)

导数章节知识全归纳专题10 导数含参单调性讨论(详述版)一.知识点归纳:核心知识:1.函数的单调性与导数(1)设函数)(x f y =在某个区间),(b a 可导,如果'f )(x 0>,则)(x f 在此区间上为增函数; 如果'f 0)(<x ,则)(x f 在此区间上为减函数。

(2)如果在某区间内恒有'f 0)(=x ,则)(x f 为常函数。

总结:含参单调性讨论主要针对学生对于含有参数的函数进行单调性讨论存在严重问题,时常分不清楚何时讨论参数,以及先哪一步在哪一步:这里君哥给大家总结如下:第一类:简单含参--独立含参,先讨论恒成立,再分类。

第二类:多位置含参数:首先考虑是否可以进行十字相乘,在讨论根的大小,再讨论单调性。

第三类:二次函数型含参:必考虑∆,在讨论根的大小,最后讨论单调性。

第四类:其他函数型含参:画图看交点。

二.导数含参单调性讨论典型例题:类型一:独立含参讨论:例:1.已知函数()()ln f x x ax a R =-∈.(1)讨论函数()f x 的单调性;解:【分析】(1)求导,对参数a 进行分类讨论判断导函数的正负,最后判断原函数的单调。

【详解】(1)解:函数()f x 的定义域为()0,∞+,()()110ax f x a x x x-'=-=>, 当0a ≤时,()0f x '>恒成立,所以()f x 在()0,∞+内单调递增;当0a >时,令()0f x '=,得1x a =,所以当10,x a ⎛⎫∈ ⎪⎝⎭时()0f x '>,()f x 单调递增; 当1,x a ⎛⎫∈+∞ ⎪⎝⎭时()0f x '<,()f x 单调递减, 综上所述,当0a ≤时,()f x 在()0,∞+内单调递增;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭内单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭内单调递减. 例:2.已知函数()ln ()f x x ax a R =+∈.(1)讨论()f x 的单调性;解:【分析】(1)对参数a 分类讨论,分别求得对于范围内的单调区间;【详解】(1)函数()ln f x x ax =+的定义域为()0,∞+当0a ≥时,()10f x a x'=+>恒成立,故函数f (x )在()0,∞+上单调递增 当0a <时,令()10ax f x x +'=>,得10x a<<-;令()0f x '<,得1x a>-. 故函数()ln f x x ax =+在10,a ⎛⎫-⎪⎝⎭上递增,在1,a ⎛⎫-+∞ ⎪⎝⎭递减 变式:1.函数()ln 2.f x x mx =-+(1)求函数()y f x =的单调区间;解:【分析】(1)求导,分别讨论0m ≤和0m >两种情况()f x '的正负,即可求得()y f x =的单调区间.【详解】(1)()11,(0).mx f x m x x x-'=-=> 当0m ≤时,()0f x '>,所以()y f x =在()0,∞+为增函数,当0m >时,令()0f x '=,解得1x m=; 当10,x m ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()y f x =为增函数, 当1,x m ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<, ()y f x =为减函数, 综上:当0m ≤时,()y f x =的单调增区间为()0,∞+,当0m >时,()y f x =的单调增区间为10,m ⎛⎫ ⎪⎝⎭,单调减区间为1,m ⎛⎫+∞ ⎪⎝⎭. 变式:2.已知函数()21ln 2f x x a x =-,其中a ∈R .(1)讨论函数()f x 的单调性;解:【分析】(1)对参数a 进行分类讨论,根据导函数的正负判断函数的单调性;【详解】(1)()2a x a f x x x x-'=-=,0x >, 当0a ≤时,()0f x '>,故()f x 在()0,∞+上单调递增,当0a >时,令()0f x '=,得x =从而()f x 在(上单调递减,在)+∞上单调递增.变式:3.已知函数()e xf x ax =-,()ln xg x x a =-. (1)求函数()g x 的单调区间;解:【分析】(1)先求导得到()'g x ,再分0a <和0a >两种情况讨论()g x 的单调性和单调区间;【详解】解:(1)由题意知()g x 的定义域是()0,∞+,()11g x x a '=-, 当0a <时,()110g x x a-'=>恒成立,所以()g x 在()0,∞+上单调递增; 当0a >时,由()110a x g x x a ax -'=-=>得0x a <<,所以()g x 在()0,a 上单调递增, 由()110a x g x x a ax-'=-=<得x a >,所以()g x 在(),a +∞上单调递减.综上所述,当0a <时,()g x 的单调递增区间为()0,∞+,无单调递减区间;当0a >时,()g x 的单调递增区间为()0,a ,单调递减区间为(),a +∞.类型二:独立含参难:例:1.已知函数()x f x e ax =-,()212g x ax ax x =-+. (1)讨论函数()f x 的单调性;解:【分析】(1)求导()x f x e a '=-,分0a ≤,0a >讨论求解;【详解】(1)∵()x f x e a '=-,当0a ≤时,()0xf x e a '=->在R 上恒成立, ∵()f x 在(),-∞+∞上是递增的.当0a >时,令()0f x '>,则ln x a >;令()0f x '<,则ln x a <.∵()f x 在(),ln a -∞上递减,在()ln ,a +∞上递增.综上所述,当0a ≤时,()f x 是(),-∞+∞上的增函数,当0a >时,()f x 在(),ln a -∞是减函数,在()ln ,a +∞上是增函数.例2.已知函数()ln 1()f x a x x a =++∈R .(1)讨论()f x 的单调性;解:【分析】(1)首先对函数进行求导,通过对a 进行分类讨论,可得()f x 的单调性;【详解】(1)函数()f x 的定义域为(0,)+∞,'()1a x a f x x x+=+=, 当0a ≥时,0f x ,所以()f x 在(0,)+∞上单调递增;当0a <时,若0x a <<-,则0f x ;若x a >-,则0f x , 所以()f x 在(0,)a -上单调递减,在(,)a -+∞上单调递增.综上:当0a ≥时,()f x 在(0,)+∞上单调递增,当0a <时,()f x 在(0,)a -上单调递减,在(,)a -+∞上单调递增;例3.已知函数()2ln(1)1f x ax x =-++,a R ∈.(1)讨论()f x 的单调性;解:【分析】(1)先写定义域,对函数求导,再讨论0a ≤时和0a >时导数的正负情况,即得函数的单调性;【详解】解:(1)()f x 的定义域为 (1,)-+∞,1()21f x a x =-+', ①当0a ≤时,()0f x '<,即()f x 在(1,)-+∞上单调递减; ②当0a >时,221()1ax a f x x '+-=+,由()0f x '>解得122a x a ->,由()0f x '<解得1212a x a--<<, 即()f x 在121,2a a -⎫⎛- ⎪⎝⎭上单调递减,在12 ,2a a -⎫⎛+∞ ⎪⎝⎭上单调递增; 综上所述,当0a ≤时,()f x 在(1,)-+∞上单调递减; 当0a >时,()f x 在121,2a a -⎫⎛- ⎪⎝⎭上单调递减,在12 ,2a a -⎫⎛+∞ ⎪⎝⎭上单调递增. 变式:1.已知函数()()1x f x ax e =+.(1)讨论()f x 的单调性;解:【分析】(1)先求导函数,然后分析导函数符号只与含参一次因式有关,所以对a 分0,0,0a a a >=<三种情况进行讨论;【详解】解:(1)因为()()1x f x ax e =+,所以()()()11x x x f x ae ax e ax a e '=++=++. 若0a =,则()0f x '>,()f x 是R 上的增函数;若0a >,则当1a x a -->时,()0f x '>;当1a x a--<时,()0f x '<. 故()f x 的单调递增区间为1,a a --⎛⎫+∞⎪⎝⎭,单调递减区间为1,a a --⎛⎫-∞ ⎪⎝⎭; 若0a <,则当1a x a -->时,()0f x '<;当1a x a--<时,()0f x '>, 故()f x 的单调递减区间为1,a a --⎛⎫+∞ ⎪⎝⎭,单调递增区间为1,a a --⎛⎫-∞ ⎪⎝⎭.变式:2.已知函数2()(1)12ln f x m x x =+--.(1)讨论()f x 的单调性;解:【分析】(1)求导()22()1f x mx mx x'=+-,分0m =,0m >,0m <讨论求解; 【详解】(1)函数2()(1)12ln f x m x x =+--, 求导得:()222()2(1)1f x m x mx mx x x'=+-=+-, 当0m =时,2()0f x x=-<',所以()f x 在()0,∞+上递减; 当0m >时,240m m ∆=+>,令()0f x '=,则方程210mx mx +-=有两个不同的根,.10x =<,20x =>, 当()20,x x ∈时,()0f x '<,当()2,x x ∈+∞时,()0f x '>,所以()f x 在()20,x 上递减,在()2,x +∞上递增;当0m <时,()21y m x =+在()0,∞+上递减,1ln y x =--在()0,∞+上递减, 所以()f x 在()0,∞+递减;类型三:二次函数类型含参:例:1.已知函数()31f x x ax =-+,a R ∈. (1)讨论函数()f x 的单调性;解:【分析】(1)先求函数的导数,()23f x x a '=-,再分0a ≤和0a >两种情况讨论函数的单调性;【详解】(1)由题意()f x 的定义域为R ,()23f x x a '=-, ①若0a ≤,则()0f x '≥,所以()f x 在R 上为单调递增函数;②若0a >,由()230f x x a '=-=解得13x =-,23x =,()0f x '>的解为3x <-或3x >,()0f x '<的解为33x -<<,即()f x 的增区间为,3⎛-∞- ⎝⎭,,3⎛⎫+∞ ⎪ ⎪⎝⎭,减区间为33⎛⎫- ⎪ ⎪⎝⎭. 例2.已知函数()2()12ln ,f x a x x a R =--∈. (1)2a =时,求在(1,(1))f 处的切线方程;(2)讨论()f x 的单调性;解:【分析】(1)利用导数的几何意义,直接求切线方程;(2)首先求函数的导数()22222ax f x ax x x-'=-=,()0x >,分0a ≤和0a >两种情况讨论函数的单调性; 【详解】当2a =时,()()2212ln f x x x =--,0x >, ()22424x f x x x x-'=-=,()10f =,()12f '=, ()f x ∴在1x =处的切线方程是()21y x =-.(2)()22222ax f x ax x x-'=-=,()0x > 当0a ≤时,()0f x '<,()f x ∴在()0,∞+上单调递减,当0a >时,令()0f x '>,解得:x >,令()0f x '<,解得:0x <<,()f x ∴的增区间是⎫+∞⎪⎪⎝⎭,减区间是0,a ⎛⎫ ⎪ ⎪⎝⎭,综上可知:0a ≤时,函数的减区间是()0,∞+,无增区间;0a >时,函数的增区间是⎫+∞⎪⎪⎝⎭,减区间是⎛ ⎝⎭. 变式:1.已知函数()2ln 1f x a x x =++,其中a R ∈且0a ≠ (1)求函数()f x 的单调区间;解:【分析】(1)求出()222a x a f x x x x='+=+,然后分a >0、a <0两种情况讨论即可; 【详解】(1)函数的定义域为(0,+∞),()222a x a f x x x x ='+=+,当a >0时,()0f x '>,f (x )在(0,+∞)上单调递增,此时()f x 的增区间为(0,+∞);当a <0时,令()0f x '=,解得x =x =),则0,2x ⎛⎫∈ ⎪ ⎪⎝⎭时,()0f x '<,()f x 单调递减;,2x ⎛⎫∈+∞ ⎪ ⎪⎝⎭时,()0f x '>,()f x 单调递增.此时()f x 的单调减区间是⎛ ⎝⎭,单调增区间是⎫+∞⎪⎪⎝⎭综上,当a >0时,()f x 的增区间为(0,+∞);当a <0时,()f x 的单调减区间是⎛ ⎝⎭,单调增区间是⎫+∞⎪⎪⎝⎭变式:2.已知函数2()2ln 3f x x ax x =-+-. (1)讨论()f x 的单调性. 解:【分析】(1)求导,分2160a ∆=-≤,2160a ∆=->情况讨论导函数的正负,可得原函数的单调性; 【详解】(1)解:2222'()2x ax f x x a x x-+=-+=. 当2160a ∆=-≤,即44a -≤≤时,'()0f x ≥,所以()f x 在()0,∞+上单调递增.当2160a ∆=->,即4a或4a >时,令2220x ax -+=,得x =.当4a时,两根均为负数,则'()0f x >,所以()f x 在()0,∞+上单调递增;当4a >时,两根均为正数,所以()f x 在⎛ ⎝⎭,⎫+∞⎪⎪⎝⎭上单调递增,在44a a ⎛+⎪⎝⎭,上单调递减. 综上所述,当4a ≤时,()f x 在()0,∞+上单调递增;当4a >时,()f x 在⎛ ⎝⎭,⎫+∞⎪⎪⎝⎭上单调递增,在44a a ⎛+ ⎪⎝⎭,上单调递减.变式:3.已知函数()22ln kx f x x x +-=.(1)讨论()f x 的单调性; 解:【分析】(1)明确函数的定义域,求出导函数,对参数分类讨论,结合导函数与单调性的关系得到结果; 【详解】(1)()f x 的定义域是()0,∞+,求导得()()21221220kx x f x kx x x x+-'=+-=>.记()2221g x kx x =+-,①当0k =时,令()102g x x =⇒=, 当10,2x ⎛⎫∈ ⎪⎝⎭时,()()()00g x f x f x '<⇒<⇒单调递减,当1,2x ⎛⎫∈+∞⎪⎝⎭时,()()()00g x f x f x '>⇒>⇒单调递增;②当0k >时,480k ∆=+>,()0g x x =⇒==,当10,2x k ⎛⎫∈ ⎪ ⎪⎝⎭时,()()()00g x f x f x '<⇒<⇒单调递减,当x ⎫∈+∞⎪⎪⎝⎭时,()()()00g x f x f x '>⇒>⇒单调递增; ③当0k <时,令480k ∆=+≤得1,2k ⎛⎤∈-∞- ⎥⎝⎦,则()22210g x kx x =+-≤在()0,∞+恒成立,于是()0f x '≤在()0,∞+恒成立,()f x 在定义域()0,∞+上单调递减.若1,02k ⎛⎫∈-⎪⎝⎭,则480k ∆=+>,令()10g x x =⇒=2x =()0f x '=有2个不相等正根,()f x 在10,2k ⎛⎫ ⎪ ⎪⎝⎭上单调递减,在11,22k k ⎛⎫ ⎪ ⎪⎝⎭单调递增,在1,2k ⎛⎫+∞ ⎪ ⎪⎝⎭单调递减. 综上,当0k =时,函数增区间为1,2⎛⎫+∞⎪⎝⎭,减区间为10,2⎛⎫⎪⎝⎭;当0k >时,函数增区间为⎫+∞⎪⎪⎝⎭,减区间为⎛ ⎝⎭; 当12k ≤-时,函减区间为()0,∞+,无增区间;当102k -<<时,函数增区间为⎝⎭,减区间为10,2k ⎛⎫ ⎪ ⎪⎝⎭,1,2k ⎛⎫+∞ ⎪ ⎪⎝⎭; 类型四:多参函数讨论: 例:1.已知函数()(1),()af x x a lnx a R x=--+∈. (1)当2a =时,求()f x 的极值; (2)若0a >,求()f x 的单调区间. 解:【分析】(1)首先求函数的导数,2232()(0)x x f x x x -+'=>,判断函数的单调性后得到函数的极值;(2)222(1)()(1)()x a a x x a x f x x x +-+--'==,分1a >,1a =和01a <<三种情况讨论求函数的单调递减区间. 【详解】解:(1)因为当2a =时,2()3f x x lnx x=--, 所以2232()(0)x x f x x x-+'=>,由()0f x '=得1x =或2x =, 当x 变化时,()f x ',()f x 的变化情况列表如下:所以当1x =时,()f x 取极大值1-;当2x =时,()f x 取极小值132ln -. (2)222(1)()(1)()x a a x x a x f x x x +-+--'==,12()0,1f x x a x '=⇒==①当1a >时,当(0,1)x ∈,()0f x '>,()f x 单调递增,当(1,)x a ∈,()0f x '<,()f x 单调递减,当(,)x a ∈+∞,()0f x '>,()f x 单调递增.②当1a =时,()0f x '≥在(0,)+∞恒成立,所以()f x 在(0,)+∞上单调递增;③当01a <<时,当(0,)x a ∈,()0f x '>,()f x 单调递增,当(,1)x a ∈,()0f x '<,()f x 单调递减,当(1,)x ∈+∞,()0f x '>,()f x 单调递增,综上所述,①当1a >时,()f x 单调递增区间为(0,1),(,)a +∞.单调递减区间为(1,)a ;②当1a =时,()f x 单调增区间为(0,)+∞,无减区间;③当01a <<时,()f x 单调递增区间为(0,)a ,(1,)+∞,单调递减区间为(,1)a .例2.已知函数()221()2ln 2()2f x x ax x x ax a =--+∈R . (1)若0a =,求()f x 的最小值; (2)求函数()f x 的单调区间. 解:【分析】(1)若0a =,221()ln 2f x x x x =-利用导数得出()f x 在()0,∞+的单调性即可求解.(2)()()22ln f x x a x '=-再讨论0a ≤、01a <<、1a =、1a >函数()f x 的单调区间即可. 【详解】(1)若0a =,221()ln 2f x x x x =-定义域为()0,∞+, 21()2ln 2ln f x x x x x x x x'=+⨯-=,由()0f x '>可得1x >, 由()0f x '<可得01x <<,所以()f x 在()0,1单调递减,在()1,+∞单调递增,所以()f x 的最小值为1(1)2f =-; (2)()()()21()22ln 2222ln f x x a x x ax x a x a x x'=-+-⋅-+=- ①当0a ≤时,220x a ->,由()0f x '>可得1x >, 由()0f x '<可得01x <<,此时()f x 的单调递减区间为()0,1,单调递增区间为()1,+∞, ②当01a <<时,由()0f x '>可得0x a <<或1x > 由()0f x '<可得1<<a x ,此时()f x 的单调递减区间为(),1a ,单调递增区间为()0,a 和()1,+∞, ③当1a =时,()0f x '≥恒成立,此时()f x 的单调递增区间为()0,∞+,④当1a >时,由()0f x '>可得01x <<或x a >, 由()0f x '<可得1x a <<,此时()f x 的单调递减区间为()1,a ,单调递增区间为()0,1和(),a +∞,综上所述:当0a ≤时,()f x 的单调递减区间为()0,1,单调递增区间为()1,+∞, 当01a <<时,()f x 的单调递减区间为(),1a ,单调递增区间为()0,a 和()1,+∞, 当1a =时, ()f x 的单调递增区间为()0,∞+,当1a >时,()f x 的单调递减区间为()1,a ,单调递增区间为()0,1和(),a +∞,变式:1.已知函数()()24ln 22f x x a x a x =-+-,a R ∈.(1)当1a =时,求证:()4ln 2f x ≥-; (2)当0a ≤时,讨论函数()f x 的单调性. 解:【分析】(1)当1a =时,可得()24ln 2f x x x x =--,利用导数求得()min 4ln 2f x =-,由此可证得结论成立;(2)求得()()()22x a x f x x+-'=,对实数a 的取值进行分类讨论,分析导数的符号变化,由此可得出函数()f x 单调递增区间和递减区间. 【详解】(1)当1a =时,()24ln 2f x x x x =--,该函数的定义域为()0,∞+,()()()2212422422x x x x f x x x x x+---'=--==, 当02x <<时,()0f x '<,此时函数()f x 单调递减; 当2x >时,()0f x '>,此时函数()f x 单调递增.所以,()()min 24ln 2f x f ==-,因此,当1a =时,求证:()4ln 2f x ≥-;(2)当0a ≤时,函数()()24ln 22f x x a x a x =-+-的定义域为()0,∞+,()()()()()22224224222x a x a x a x af x x a x x x+--+-'=-+-==. ①当0a -=时,即当0a =时,则()()22f x x '=-. 由()0f x '<可得02x <<,由()0f x '>可得2x >.此时,函数()f x 的单调递减区间为()0,2,单调递增区间为()2,+∞; ②当02a <-<时,即当20a -<<时,由()0f x '<可得2a x -<<,由()0f x '>可得0x a <<-或2x >.此时,函数()f x 的单调递减区间为(),2a -,单调递增区间为()0,a -、()2,+∞;③当2a -=时,即当2a =-时,则()()2220x f x x-'=≥对任意的0x >恒成立,此时,函数()f x 的单调递增区间为()0,∞+; ④当2a ->时,即当2a <-时,由()0f x '<可得2x a <<-,由()0f x '>可得02x <<或x a >-.此时,函数()f x 的单调递减区间为()2,a -,单调递增区间为()0,2、(),a -+∞. 综上所述,当0a =时,函数()f x 的单调递减区间为()0,2,单调递增区间为()2,+∞; 当20a -<<时,函数()f x 的单调递减区间为(),2a -,单调递增区间为()0,a -、()2,+∞; 当2a =-时,函数()f x 的单调递增区间为()0,∞+;当2a <-时,函数()f x 的单调递减区间为()2,a -,单调递增区间为()0,2、(),a -+∞.变式:2.已知函数()ln ()mf x x mx m x=--∈R . (1)讨论函数()f x 的单调性; 解:【分析】(1)2221()m mx x m f x m x x x++'=---=-,0x >,分0m =,0m ≠两种情况,根据二次函数的性质,利用判别式结合函数的定义域,由导数的正负判断; 【详解】(1)2221()m mx x mf x m x x x++'=---=-,0x >, 若0m =,则1()0f x x'=-<,函数()f x 在(0,)+∞上单调递减. 若0m ≠,则二次函数2y mx x m =++的判别式214m ∆=-,当0∆≤,即12m ≤-或12m ≥时,若12m ≤-,则()0f x '≥,等号不恒成立,函数()f x 在(0,)+∞上单调递增; 若12m ≥,则()0f x '≤,等号不恒成立,函数()f x 在(0,)+∞上单调递减.当0∆>,即1122m -<<且0m ≠时, 令()0f x '=,即20mx x m ++=,此时112x m -=212x m-+=,121x x m +=-,121=x x ,若102m <<,则1x ,20x <,此时()0f x '<恒成立,函数()f x 在(0,)+∞上单调递减; 若102m -<<,则210x x <<,当()20,x x ∈时,()0f x '>, 当()21,x x x ∈时()0f x '<,当()1,x x ∈+∞时,()0f x '>, 即函数()f x 在()20,x 和()1,x +∞上单调递增,在()21,x x 上单调递减. 综上,当0m ≥时,函数()f x 在(0,)+∞上单调递减;当12m ≤-时,函数()f x 在(0,)+∞上单调递增;当102m -<<时,函数()f x 在⎛ ⎝⎭和⎫+∞⎪⎪⎝⎭上单调递增,在⎝⎭上单调递减. 变式:3.已知实数0a >,函数()22ln f x a x a x x=++,(0,10)x ∈. (1)讨论函数()f x 的单调性; 解【分析】(1)求导后得()()()()221010ax ax f x x x +-'=<<;分别在110a ≥和1010a<<两种情况下,根据()f x '的符号可确定()f x 的单调性;【详解】(1)()()()()222212010ax ax a f x a x x x x+-'=-++=<<. 0a >,010x <<,20ax ∴+>.①当110a ≥,即当10,10a ⎛⎤∈ ⎥⎝⎦时,()0f x '<, ()f x ∴在()0,10上单调递减;②当1010a <<,即1,10a ⎛⎫∈+∞ ⎪⎝⎭时, 当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<; 当1,10x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>, ()f x ∴在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,10a ⎛⎫ ⎪⎝⎭上单调递增. 综上所述:当10,10a ⎛⎤∈ ⎥⎝⎦时,()f x 在()0,10上单调递减; 当1,10a ⎛⎫∈+∞ ⎪⎝⎭时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,10a ⎛⎫ ⎪⎝⎭上单调递增. 类型五:其他函数含参讨论:例:1.已知函数()1x f x ke x -=-.(1)讨论()f x 的单调性;解:【分析】(1)对函数求导,分0k ≤和0k >两种情况,分别得出函数的单调性;【详解】(1)()11x f x ke -=-',当0k ≤时,()0f x '<,()f x 在(),-∞+∞上单调递减;当0k >时,令()0f x '=,得1ln x k =-,当(),1ln x k ∈-∞-时,()0f x '<;当()1ln ,x k ∈-+∞时,()0f x '>.故()f x '在(),1ln k -∞-上单调递减,在()1ln ,k -+∞上单调递增.例2..已知函数()22x f x xe ax ax =++,e 为自然对数的底数. (1)讨论()f x 的单调性;解:【分析】(1)求导()()()12x f x x e a '=++,分0a ≥,102a e-<<,12a e =-,12a e <-讨论求解.【详解】(1)()()()12x f x x e a '=++, ①当0a ≥时,20x e a +>,(),1x ∈-∞-,()0f x '<,()f x 单调递减,()1,x ∈-+∞,()0f x '>,()f x 单调递增.②当102a e-<<时,()ln 21a -<-, ()(),ln 2x a ∈-∞-,20x e a +<,()0f x '>,()f x 单调递增,()()ln 2,1x a ∈--,20x e a +>,()0f x '<,()f x 单调递减,()1,x ∈-+∞,20x e a +>,()0f x '>,()f x 单调递增,③当12a e =-时,()()()110x f x x e e -'=+-≥,(),x ∈-∞+∞,()f x 单调递增 ④当12a e<-时,()ln 21a ->-, (),1x ∈-∞-,20x e a +<,()0f x '>,()f x 单调递增,()()1,ln 2x a ∈--,20x e a +<,()0f x '<,()f x 单调递减,()()ln 2,x a ∈-+∞,20x e a +>,()0f x '>,()f x 单调递增.例3.已知函数()e 1xx a f x =-+(a ∈R ). (1)讨论函数()f x 的单调性;解:【分析】(1)求导后,分类讨论a ,利用导数的符号可得函数()f x 的单调性;【详解】(1)()f x 的定义域为(),-∞+∞,且()1e xf x a ='-.当0a ≤时,()0f x '>,则()f x 在(),-∞+∞上单调递增.当0a >时,若(),ln x a ∈-∞-,则()0f x '>,()f x 在(),ln a -∞-上单调递增; 若()ln ,x a ∈-+∞,则()0f x '<,()f x 在()ln ,a -+∞上单调递减.综上所述,当0a ≤时,()f x 在(),-∞+∞上单调递增;当0a >时,()f x 在(),ln a -∞-上单调递增,在()ln ,a -+∞上单调递减.变式:1.设()()ln a f x ax x =+,()11ln x g x b e x x-=⋅+,其中,a b ∈R ,且0a ≠. (1)试讨论()f x 的单调性;解:【分析】(1)分别在0a <和0a >两种情况下,结合定义域,根据导函数的正负可确定原函数的单调性;【详解】(1)()221a x a f x x x x'-=-=, ①当0a <时,由0ax >得:0x <,即()f x 定义域为(),0-∞;∴当(),x a ∈-∞时,()0f x '<;当(),0x a ∈时,()0f x '>;()f x ∴在(),a -∞上单调递减,在(),0a 上单调递增;②当0a >时,由0ax >得:0x >,即()f x 定义域为()0,∞+;∴当()0,x a ∈时,()0f x '<;当(),x a ∈+∞时,()0f x '>;()f x ∴在()0,a 上单调递减,在(),a +∞上单调递增;综上所述:当0a <时,()f x 在(),a -∞上单调递减,在(),0a 上单调递增;当0a >时,()f x 在()0,a 上单调递减,在(),a +∞上单调递增.变式:2.已知函数()()()ln 1f x a a x x a =++∈R .(1)求讨论函数()f x 的单调性;解:【分析】(1)当0a =时,()1f x =是常数函数,可得结论,当0a ≠时,求出()f x '分0a >和0a <进行讨论得到答案.【详解】(1)函数()()()ln 1f x a a x x a =++∈R 的定义域是()0,∞+,()()1a a x a f x a x x +⎛⎫'=+= ⎪⎝⎭. 当0a =时,()1f x =是常数函数,不具有单调性;当0a >时,()0f x '>对任意()0,x ∈+∞恒成立,故函数()f x 在()0,∞+上单调递增; 当0a <时,令()0f x '<,得x a >-,令()0f x '>,得0x a <<-,故函数()f x 在()0,a -上单调递增,在(),a -+∞上单调递减.综上:当0a >时,函数()f x 在()0,∞+上单调递增;当0a =时,()f x 不具有单调性;当0a <时,函数()f x 在()0,a -上单调递增,在(),a -+∞上单调递减.变式:3.已知函数()()2e 21x f x x a x x =+++,a ∈R .(1)求()f x 的单调区间;解:【分析】(1)利用导数的基本运算可得()()()12x f x x e a '=++,讨论0a ≥、102a e -<<或12a e <-,利用导数与函数单调性之间的关系即可得出结果.【详解】解:(1)由题意得()()()12xf x x e a '=++, 令()()()12xg x x e a =++, 当0a ≥时,()10g -=,即当(),1x ∈-∞-时,()()0g x f x ='<;当()1,x ∈-+∞时,()()0g x f x '=>,故()f x 的单调递减区间为(),1-∞-,单调递增区间为()1,-+∞; 当12a e<-时,令()()0g x f x '==, 则11x =-,()2ln 2x a =-,12x x <,故()f x 的单调递减区间为()()1,ln 2a --,单调递增区间为(),1-∞-,()()ln 2,a -+∞; 当12a e-=时,令()()0g x f x '==, 则11x =-,()2ln 2x a =-,12x x =,满足()()0g x f x '=≥,故()f x 在R 上单调递增;当102a e-<<时,令()()0g x f x '==, 则11x =-,()2ln 2x a =-,12x x >,故()f x 的单调递减区间为()()ln 2,1a --,单调递增区间为()(),ln 2a -∞-,()1,-+∞. 综上,当0a ≥时,()f x 的单调递减区间为(),1-∞-,单调递增区间为()1,-+∞; 当12a e -<时,()f x 的单调递减区间为()()1,ln 2a --, 单调递增区间为(),1-∞-,()()ln 2,a -+∞; 当12a e-=时,()f x 的单调递增区间为(),-∞+∞; 当102a e -<<时,()f x 的单调递减区间为()()ln 2,1a --, 单调递增区间为()(),ln 2a -∞-,()1,-+∞.。

专题02 利用导数研究函数单调性问题(含参数讨论) (解析版)

专题02 利用导数研究函数单调性问题(含参数讨论) (解析版)

导数及其应用专题二:利用导数研究函数单调性问题(含参数讨论)一、知识储备往往首先考虑是否导数恒大于零或恒小于零,再考虑可能大于零小于零的情况。

常与含参数的一元二次不等式的解法有关,首先讨论二次项系数,再就是根的大小或判别式,能表示出对应一元二次方程的根时讨论根的大小、端点实数的大小,不能时讨论判别式。

二、例题讲解1.(2022·山东莱州一中高三开学考试)已知函数()1ln f x x a x =--(其中a 为参数). (1)求函数()f x 的单调区间; 【答案】(1)答案见解析; 【分析】(1)求导可得()af x x x'-=,分0a ≤和0a >进行讨论即可; 【详解】 (1)()af x x x'-=,(0,)x ∈+∞, 当0a ≤时,()0f x '>,()f x ∴在(0,)+∞上递增, 当0a >时,令()0f x '=,得x a =,()0,x a ∈时,()f x 单调递减, (,)x a ∈+∞时,()f x 单调递增;综上:0a ≤时,()f x 在(0,)+∞上递增,无减区间,当0a >时,()f x 的单调递减区间为()0,a ,单调递增区间为(,)a +∞;2.(2022·宁夏银川一中高三月考(文))已知函数2()(2)ln f x x a x a x =---(a R ∈) (1)求函数()y f x =的单调区间; 【分析】(1)先求出函数的定义域,然后对函数求导,分0a ≤和0a >两种情况判断导数的正负,从而可求得函数的单调区间, 【详解】(1)函数()f x 的定义域是(0,)+∞,(1)(2)()2(2)a x x a f x x a x x'+-=---= 当0a ≤时,()0f x '>对任意(0,)x ∈+∞恒成立, 所以,函数()f x 在区间(0,)+∞单调递增; 当0a >时,由()0f x '>得2a x >,由()0f x '<,得02ax <<, 所以,函数在区间,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,在区间0,2a ⎛⎫ ⎪⎝⎭上单调递减;综上:0a ≤时,()f x 的单调增区间为(0,)+∞,无单调减区间. 0a >时,()f x 的单调增区间为,2a ⎛⎫+∞ ⎪,单调减区间为0,2a ⎛⎫ ⎪.3.(2022·广西高三开学考试(理))函数()322f x x x ax =++,(1)讨论()f x 的单调性;【答案】(1)答案不唯一,具体见解析; 【分析】(1)求得()'f x ,对a 进行分类讨论,由此求得()f x 的单调性.【详解】(1)()'234f x x x a =++,1612a ∆=-①若43a ≥,则0∆≤,()'0f x ≥;()f x 单调递增; ②若43a <则0∆>,当x <x >()'0f x >,()f x 单调递增;x <<,()'0f x <,()f x 单调递减; 【点睛】若函数的导函数含有参数,则需要对参数进行分类讨论,分类讨论要做到不重不漏.三、实战练习1.(2022·全国高三月考)设函数()()()21ln 11f x x x ax x a =++--+-,a R ∈.(1)求()f x '的单调区间 【答案】(1)答案见解析; 【分析】(1)先对函数()f x 进行求导,构造函数再分0a ≤,0a >两种情况进行讨论,利用导数研究函数的单调性即可求解; 【详解】(1)由题意可得()f x 的定义域为{}1x x >-,()()ln 12f x x ax +'=-. 令()()()ln 121g x x ax x =+->-, 则()1122211a axg x a x x --=-='++. 当0a ≤时,当()1,x ∈-+∞时,()0g x '>,函数()g x 单调递增; 当0a >时,当11,12x a ⎛⎫∈-- ⎪⎝⎭时,()0g x '>,函数()g x 单调递增;当11,2x a ⎛⎫∈-+∞ ⎪⎝⎭时,()0g x '<,函数()g x 单调递减,所以当0a ≤时,()f x '的单调递增区间为()1,-+∞; 当0a >时,()f x '的单调递增区间为11,12a ⎛⎫-- ⎪⎝⎭,单调递减区间为11,2a ⎛⎫-+∞ ⎪⎝⎭.2.(2022·浙江舟山中学高三月考)已知函数()22ln (R)f x x x a x a =-+∈(1)当0a >时,求函数()f x 的单调区间; 【答案】(1)当12a ≥时,函数在()0+∞,递增;当102a <<时,函数在()10,x 递增,()12,x x 递减,()2,x +∞递增其中12x x =; 【分析】(1)求()f x ',令()0f x '=可得2220x x a -+=,分别讨论0∆≤和0∆>时,求不等式()0f x '>,()0f x '<的解集,即可求解;【详解】(1)()22ln (R)f x x x a x a =-+∈定义域为()0,∞+, ()22222a x x af x x x x-+'=-+=()0x >, 令()0f x '=可得2220x x a -+=, 当480a ∆=-≤即12a ≥时,()0f x '≥对于()0,x ∈+∞恒成立, 所以()f x 在()0,∞+上单调递增,当480a ∆=->即102a <<时,由2220x x a -+=可得:x =,由()0f x '>可得:0x <<或x >由()0f x '<x <<所以()f x 在⎛ ⎝⎭和⎫+∞⎪⎪⎝⎭上单调递增,在⎝⎭上单调递减, 综上所述:当12a ≥时,()f x 的单调递增区间为()0,∞+;当102a <<时,()f x 的单调递增区间为⎛ ⎝⎭和⎫+∞⎪⎪⎝⎭单调递减区间为⎝⎭. 3.(2022·山东济宁一中)已知函数()ln f x x a x =-,a ∈R . (1)求函数()f x 的单调区间; 【答案】(1)答案见解析; 【分析】(1)对函数求导,进而讨论a 的范围,最后得到函数的单调区间; 【详解】(1)函数()f x 的定义域为{}0x x >,()1a x a f x x x'-=-=0a ≤时,()0f x '>恒成立,函数()f x 在()0,∞+上单调递增;0a >时,令()0f x '=,得x a =.当0x a <<时,()0f x '<,函数()f x 为减函数; 当x a >时,()0f x '>,函数()f x 为增函数.综上所述,当0a ≤时,函数()f x 的单调递增区间为()0,∞+,无单调递减区间; 当0a >时,函数()x 的单调递减区间为()0,a ,单调递增区间为(),a +∞. 4.(2022·仪征市精诚高级中学高三月考)已知函数()()1n f x x ax a =-∈R . (1)讨论函数()f x 的单调性;【答案】(1)答案不唯一,具体见解析;(2)证明见解析. 【分析】(1)求出函数导数,讨论a 的范围结合导数即可得出单调性; 【详解】 (1)11()(0)axf x a x xx-'=-=> 当0a ≤时,()0f x '>,所以()f x 在(0,)+∞上单调递增; 当0a >时,令()0f x '=,得到1x a=, 所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单调递增, 当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,()f x 单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞上单调递增;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.5.(2022·嘉峪关市第一中学高三模拟预测(理))已知函数()21xf x e ax =--,()()2ln 1g x a x =+,a R ∈.(1)求()f x 的单调区间; 【答案】(1)答案见解析; 【分析】(1)求出函数()f x 的导函数()f x ',按a 分类解不等式()0f x '<、()0f x '>即得;【详解】(1)对函数()21x f x e ax =--求导得,()2xf x e a '=-,当0a ≤时,()0f x '>,()f x 在R 上为增函数,当0a >时,由()20xf x e a '=-=,解得:()ln 2x a =,而()f x '在R 上单调递增,于是得当(,ln(2))∈-∞x a 时,()0f x '<,()f x 在(,ln(2))a -∞上为减函数, 当()()ln 2,x a ∈+∞时,()0f x '>,()f x 在()()ln 2,a +∞上为增函数, 所以,当0a ≤时,()f x 的单调递增区间为R ,当0a >时,()f x 的单调递减区间是(,ln(2))a -∞,单调递增区间是()()ln 2,a +∞;6.(2022·榆林市第十中学高三月考(文))已知函数()2ln f x ax x x =--,0a ≠.(1)试讨论函数()f x 的单调性;【答案】(1)当0a <时,函数()f x 在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. 【分析】(1)求出导函数()212121ax x f x ax x x -'-=--=,设()221g x ax x =--,对a 分类讨论:当0a <时,函数()f x在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. 【详解】函数()2ln f x ax x x =--的定义域为()0+∞,. (1)()212121ax x f x ax x x-'-=--=,设()221g x ax x =--当0a <时,因为函数()g x 图象的对称轴为104x a=<,()01g =-. 所以当0x >时,()0g x <,()0f x '<,函数()f x 在()0,∞+上单调递减;当0a >时,令()0g x =.得1x =2x =当20x x <<时,()0<g x ,()0f x '<,当2x x >时,()0>g x ,()0f x '>.所以函数()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. 7.(2022·嘉峪关市第一中学高三三模(理))设函数()2ln f x ax a x =--,其中a ∈R .(1)讨论()f x 的单调性; 【答案】(1)答案见解析; 【分析】(1)求导,当0a ≤时,可得()0f x '<,()f x 为单调递减函数;当0a >时,令()0f x '=,可得极值点,分别讨论在⎛ ⎝和+⎫∞⎪⎭上,()'f x 的正负,可得()f x 的单调区间,即可得答案.【详解】(1)()()212120.ax f x ax x x x-'=-=>当0a ≤时,()0f x '<,()f x 在()0,∞+内单调递减. 当0a >时,由()0f x '=,有x =此时,当x ∈⎛⎝时,()0f x '<,()f x 单调递减;当x ∈+⎫∞⎪⎭时,()0f x '>,()f x 单调递增. 综上:当0a ≤时,()f x 在()0,∞+内单调递减,当0a >时,()f x 在⎛ ⎝内单调递减,在+⎫∞⎪⎭单调递增. 8.(2022·贵州省思南中学高三月考(文))设函数()22ln 1f x x mx =-+.(1)讨论函数()f x 的单调性; 【答案】(1)函数()f x 的单调性见解析; 【分析】(1)求出函数()f x 的定义域及导数,再分类讨论导数值为正、为负的x 取值区间即得; 【详解】(1)依题意,函数()f x 定义域为(0,)+∞,()222(1)2mx f x mx x x-'=-=,当0m ≤时,()0f x '>,()f x 在(0,)+∞上单调递增,当0m >时,由()0f x '=得x =,当0x <<()0f x '>,当x >时,()0f x '<,于是得()f x 在上单调递增,在)+∞上单调递减,所以,当0m ≤时,()f x 在(0,)+∞上单调递增,当0m >时,()f x 在上单调递增,在)+∞上单调递减;9.(2022·河南(理))已知函数()()2ln f x x m x x =--(8m ≥-,且0m ≠).(1)讨论函数()f x 的单调性;【答案】(1)答案不唯一,具体见解析; 【分析】(1)求导得到221()mx mx f x x --'=-,转化为二次函数2()21g x mx mx =--的正负进行讨论,分0∆≤,0∆>两种情况讨论,即得解; 【详解】(1)函数()f x 的定义域为()0,∞+,2121()(21)mx mx f x m x x x--'=--=-, 令2()21g x mx mx =--,()g x 为二次函数,28m m ∆=+, ①当80m -≤<时,0∆≤,()0g x ≤, 所以()0f x '≥,故()f x 在()0,∞+单调递增; ②当0m >时,0∆>, 令()0g x =,得1x =2x =,显然120x x <<,所以当()20,x x ∈,()0g x <, 所以()0f x '>,故()f x 单调递增;当()2,x x ∈+∞时,()0g x >, 所以()0f x '<,()f x 单调递减.综上,当0m >时,()f x 在⎛ ⎝⎭单调递增,在⎫+∞⎪⎪⎝⎭上单调递减; 当80m -≤<时,()f x 在()0,∞+单调递增.10.(2022·河南高三月考(文))已知函数()()2ln f x x m x x =--(8m ≥-,且0m ≠).(1)讨论函数()f x 的单调性;【答案】(1)答案见解析;(2)证明见解析. 【分析】(1)求导2121()(21)mx mx f x m x x x --'=--=-,令2()21g x mx mx =--,然后由0∆≤,0∆>讨论求解;【详解】(1)函数()f x 的定义域为()0,∞+,2121()(21)mx mx f x m x x x--'=--=-, 令2()21g x mx mx =--,()g x 为二次函数,28m m ∆=+, ①当80m -≤<时,0∆≤,()0g x ≤, 所以()0f x '≥,故()f x 在()0,∞+单调递增; ②当0m >时,0∆>,令()0g x =,得1x =2x =,显然120x x <<,所以当()20,x x ∈,()0g x <, 所以()0f x '>,()f x 单调递增; 当()2,x x ∈+∞时,()0g x >, 所以()0f x '<,()f x 单调递减.综上,当80m -≤<时, ()f x 在()0,∞+单调递增;当0m >时,()f x 在⎛ ⎝⎭单调递增,在⎫+∞⎪⎪⎝⎭上单调递减. 11.(2022·湖南高三模拟预测)设函数1()ln ,()3a f x x g x ax x-=+=-. (1)求函数()()()x f x g x ϕ=+的单调递增区间; 【答案】(1)答案见解析;(2)存在符合题意的整数λ,其最小值为0.【分析】(1)求出函数的导数,通过讨论a 的范围,求出函数的单调区间即可;【详解】解:(1)函数()ϕx 的定义域为()0,∞+,函数()ϕx 的导数2(1)(1)()x ax a x x ϕ'++-=, 当0a <时,()ϕx 在10,a a -⎛⎫ ⎪⎝⎭上单调递增,在1,a a -⎛⎫+∞ ⎪⎝⎭上单调递减 当01a 时,()ϕx 在R +上单调递增.当1a >时,()ϕx 在10,a a -⎛⎫ ⎪⎝⎭上单调递减,在1,a a -⎛⎫+∞ ⎪⎝⎭上单调递增. 综上可知,当0a <时,()ϕx 的单调递增区间是10,a a -⎛⎫ ⎪⎝⎭;当01a 时,()ϕx 的单调递增区间是(0,)+∞;当1a >时,()ϕx 的单调递增区间是1,a a -⎛⎫+∞ ⎪⎝⎭. 12.(2022·安徽高三月考(文))已知函数21()ln 2f x x a x =-. (1)讨论()f x 的单调性; 【答案】(1)答案不唯一,具体见解析;(2)12a =. 【分析】 (1)求导函数()'f x ,分类讨论确定()'f x 的正负,得单调区间;【详解】解:(1)由题意,可得0x >且2 ()a x a f x x x x-'=-= ①若0a ≤,()0f x '>恒成立,则()f x 在(0,)+∞上是增函数②0a >,则2()a x a f x x x x -==='-所以当x ∈时,()0f x '<,当)x ∈+∞时,()0f x '>则()f x 在上是减函数,在)+∞上是增函数综上所述,若0a ≤,()y f x =在(0,)+∞上是增函数若0a >,()y f x =在上是减函数,在)+∞上是增函数13.(2022·湖北武汉·高三月考)已知函数2()ln (1),2a f x x x a x a R =+-+∈ (1)讨论函数()f x 的单调区间;【答案】(1)答案见解析;【分析】(1)求得(1)(1)()x ax f x x '--=,分0a ≤,01a <<,1a =和1a >四种情况讨论,结合导数的符号,即可求解; 【详解】(1)由题意,函数2()ln (1)2a f x x x a x =+-+的定义域为(0,)+∞, 且21(1)1(1)(1)()(1)ax a x x ax f x ax a x x x-++--=+-+==', ①当0a ≤时,令()0f x '>,解得01x <<,令()0f x '<,解得1x >,所以()f x 在(0,1)上单调递增,在(1,)+∞上单调递减;②当01a <<时,令()0f x '>,解得01x <<或1x a>, 令()0f x '<,解得11x a <<, 所以()f x 在(0,1),1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,在11,a ⎛⎫ ⎪⎝⎭上单调递减; ③当1a =时,则()0f x '≥,所以在(0,)+∞上()f x 单调递增,④当1a >时,令()0f x '>,解得10x a<<或1x >, 令()0f x '<,解得11x a <<, 所以()f x 在10,a ⎛⎫ ⎪⎝⎭,(1,)+∞上单调递增,在1,1a ⎛⎫ ⎪⎝⎭上单调递减; 综上,当0a ≤时,()f x 在(0,1)上单调递增,在(1,)+∞上单调递减;当01a <<时,()f x 在(0,1),1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,在11,a ⎛⎫ ⎪⎝⎭上单调递减;当1a =时,()f x 在(0,)+∞上单调递增;当1a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭,(1,)+∞上单调递增,在1,1a ⎛⎫ ⎪⎝⎭上单调递减; 14.(2022·双峰县第一中学高三开学考试)已知函数()2()1e x f x x ax =-+.(1)讨论()f x 的单调性;【答案】(1)当0a =时,()f x 在R 上单调递增;当0a <时,()f x 在(),1a -∞-和(1,)-+∞上单调递增,在()1,1a --上单调递减;当0a >时,()f x 在(),1-∞-和(1,)a -+∞上单调递增,在()1,1a --上单调递减;【分析】(1)先对函数求导,然后结合导数与单调性的关系,讨论0a =,0a >和0a <情况下,导数的正负,即可得到()f x 的单调性;【详解】(1)函数()2()1e x f x x ax =-+,求导()()()()21e 11e 2x x f x x a x a x a x '⎡⎤+=⎣+-⎦=-+-+由()0f x '=,得11x a =-,21x =-①当0a =时,()()21e 0x f x x '+≥=,()f x ∴在R 上单调递增;②当0a <时, 在(),1x a ∈-∞-有()0f x '>,故()f x 单调递增;在()1,1x a ∈--有()0f x '<,故()f x 单调递减;在(1,)x ∈-+∞有()0f x '>,故()f x 单调递增;③当0a >时, 在(),1x ∈-∞-有()0f x '>,故()f x 单调递增;在()1,a 1x ∈--有()0f x '<,故()f x 单调递减;在(1,)x a ∈-+∞有()0f x '>,故()f x 单调递增;综上所述,当0a =时,()f x 在R 上单调递增;当0a <时,()f x 在(),1a -∞-和(1,)-+∞上单调递增,在()1,1a --上单调递减;当0a >时,()f x 在(),1-∞-和(1,)a -+∞上单调递增,在()1,1a --上单调递减;。

导数讨论含参单调性习题(含详解答案)

导数讨论含参单调性习题(含详解答案)

m(x + n}f(x) - lnx T g(x) = --------- m > 0)1 •设函数x T .(1)当m= l|时,函数¥訂(刈与¥ =創刈在"1处的切线互相垂直,求n的值;(2)若函数¥“仪卜創对在定义域内不单调,求m-n的取值范围;2a 3K xf(T 他M f(—) < 0(3)是否存在正实数使得x 2a 对任意正实数K恒成立?若存在,求出满足条件的实数;若不存在,请说明理由.2•已知函数fW = (^ + l)lnx-ax + 3f aG R,g(x)是f闵的导函数,*为自然对数的底数.(1)讨论:的单调性;(2)当白X时,证明:寓(3)当白X时,判断函数f凶零点的个数,并说明理由.bf(«) = + ) + blnx3.已知函数x(其中,忆b€R).(1)当b = Y时,若f")在其定义域内为单调函数,求臼的取值范围;(2)当::八」时,是否存在实数H,使得当’■ ■时,不等式卜心■冷恒成立,如果存在,求b的取值范围,如果不存在,说明理由(其中电是自然对数的底数,“ 2一7182旷).4 •已知函数gW = x2 + ln(x + a)|,其中臼为常数.(1)讨论函数•的单调性;S(Xj) +g(x?) x t +x z(2)若或叮存在两个极值点叫*刈,求证:无论实数臼取什么值都有 2 £ 2 .5 .已知函数肛"油盧2)(玄为常数)是实数集"上的奇函数,函数屮“用刈卡商帥是区间Il上的减函数.(1)求的值;(2)若恥;-「:在卜G 及所在的取值范围上恒成立,求的取值范围;Irx ?=x -2e* + m(3)讨论关于丸的方程f⑷的根的个数.6 •已知函数f x ax ln x, F x e x ax,其中x 0, a 0.(1)若f x和F x在区间0,ln3上具有相同的单调性,求实数a的取值范围;(2) 若a最小值.1,二,且函数g x eax 1 xe 2 ax f x的最小值为M,求M的7.已知函数 f (x) e x m In x .(1)如x1是函数f(x)的极值点,求实数m的值并讨论的单调性 f (x);(2) 若x x。

专题5 导数的应用-含参函数的单调性讨论(答案)

专题5  导数的应用-含参函数的单调性讨论(答案)

〖专题5〗 导数的应用—含参函数的单调性讨论“含参数函数的单调性讨论问题”是近年来高考考查的一个常考内容,也是我们高考复习的重点.从这几年来的高考试题来看,含参数函数的单调性讨论常常出现在研究函数的单调性、极值以及最值中,因此在高考复习中更应引起我们的重视. 一、思想方法:上为常函数在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('⇒=∈⇒<∈⇒>∈⇔∈⇔<⇔∈⇔>讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论. 二、典例讲解[典例1] 讨论xax x f +=)(的单调性,求其单调区间. 解:xax x f +=)(的定义域为),0()0,(+∞-∞ )0(1)('222≠-=-=x xa x x a x f (它与a x x g -=2)(同号) I )当0≤a 时,)0(0)('≠>x x f 恒成立,~此时)(x f 在)0,(-∞和),0(+∞都是单调增函数, 即)(x f 的增区间是)0,(-∞和),0(+∞;II) 当0>a 时 a x a x x x f >-<⇔≠>或)0(0)('a x x a x x f <<<<-⇔≠<00)0(0)('或此时)(x f 在),(a --∞和),(+∞a 都是单调增函数,)(x f 在)0,(a -和),0(a 都是单调减函数,即)(x f 的增区间为),(a --∞和),(+∞a ;)(x f 的减区间为)0,(a -和),0(a .步骤小结:1、先求函数的定义域,2、求导函数(化为乘除分解式,便于讨论正负), `3、先讨论只有一种单调区间的(导函数同号的)情况,4、再讨论有增有减的情况(导函数有正有负,以其零点分界),5、注意函数的断点,不连续的同类单调区间不要合并.[变式练习1] 讨论x a x x f ln )(+=的单调性,求其单调区间.解:x a x x f ln )(+=的定义域为),0(+∞)0(1)('>+=+=x xa x x a x f (它与a x x g +=)(同号) I )当0≥a 时,)0(0)('>>x x f 恒成立,此时)(x f 在),0(+∞为单调增函数, 即)(x f 的增区间为),0(+∞,不存在减区间; ]II) 当0<a 时 a x x x f ->⇔>>)0(0)(';a x x x f -<<⇔><0)0(0)('此时)(x f 在),(+∞-a 为单调增函数,)(x f 在),0(a -是单调减函数,即)(x f 的增区间为),(+∞-a ;)(x f 的减区间为),0(a -.[典例2] 讨论x ax x f ln )(+=的单调性. 解:x ax x f ln )(+=的定义域为),0(+∞)0(11)('>+=+=x xax x a x f (它与1)(+=ax x g 同号) I )当0=a 时,)0(0)('>>x x f 恒成立 (此时ax x f 10)('-=⇔=没有意义)此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞ II )、III )当0>a 时,)0(0)('>>x x f 恒成立,(此时ax x f 10)('-=⇔=不在定义域内,没有意义) 此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞III)当0<a 时, 令ax x f 10)('-=⇔= 于是,当x 变化时,)(),('x f x f 的变化情况如下表:(结合g(x)图象定号)所以, 此时)(x f 在)1,0(a-为单调增函数,)(x f 在),1(+∞-a是单调减函数,即)(x f 的增区间为)1,0(a -;)(x f 的减区间为),1(+∞-a.…小结:导函数正负的相应区间也可以由导函数零点来分界,但要注意其定义域和连续性.即先求出)('x f 的零点,再其分区间然后定)('x f 在相应区间内的符号.一般先讨论0)('=x f 无解情况,再讨论解0)('=x f 过程产生增根的情况(即解方程变形中诸如平方、去分母、去对数符号等把自变量x 范围扩大而出现有根,但根实际上不在定义域内的),即根据)('x f 零点个数从少到多,相应原函数单调区间个数从少到多讨论,最后区间(最好结合导函数的图象)确定相应单调性. [变式练习2] 讨论x ax x f ln 21)(2+=的单调性. 解:x ax x f ln 21)(2+=的定义域为),0(+∞ )0(11)('2>+=+=x xax x ax x f , 它与1)(2+=ax x g 同号. 令)0(010)('2>=+⇔=x ax x f ,当0≥a 时,无解;当0<a 时,aaa x --=-=1(另一根不在定义域内舍去)i)当0=a 时,)0(0)('>>x x f 恒成立 (此时ax x f 10)('2-=⇔=没有意义) 此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞ii)当0>a 时,)0(0)('>>x x f 恒成立,(此时 方程012=+ax 判别式0<∆,方程无解)@此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞iii)当0<a 时,当x 变化时,)(),('x f x f 的变化情况如下表:(结合g(x)图象定号)所以,此时)(x f 在)1,0(a -为单调增函数,)(x f 在),1(+∞-a 是单调减函数,即)(x f 的增区间为)1,0(a -;)(x f 的减区间为),1(+∞-a. 小结:一般最后要综合讨论情况,合并同类的,如i),ii)可合并为一类结果.对于二次型函数(如1)(2+=ax x g )讨论正负一般先根据二次项系数分三种类型讨论. [典例3] 求1)(232--+=x ax x a x f 的单调区间. 解:1)(232--+=x ax x a x f 的定义域为R ,~)1)(13(123)('22+-=-+=ax ax ax x a x fI) 当0=a 时,⇒<-=01)('x f )(x f 在R 上单调递减,)(x f 减区间为R ,无增区间.II) 当0≠a 时032>a ,)('x f 是开口向上的二次函数,令)0(1,310)('21≠-===a ax a x x f 得, 因此可知(结合)('x f 的图象) i)当0>a 时,21x x >ax a x f a x a x x f 3110)(';3110)('<<-⇔<>-<⇔>或 所以此时,)(x f 的增区间为),31()1,(+∞--∞aa 和;)(x f 的减区间为)31,1(a a -ii) 当0<a 时,21x x <ax a x f ax a x x f 1310)(';1310)('-<<⇔<-><⇔>或所以此时,)(x f 的增区间为),1()31,(+∞--∞aa 和;)(x f 的减区间为)1,31(aa -. |小结:求函数单调区间可化为导函数的正负讨论(即分讨论其相应不等式的解区间),常见的是化为二次型不等式讨论,当二次函数开口定且有两根时,一般要注意讨论两根大小(分大、小、等三种情况)。

导数单调性极值讨论求参(解析版)

导数单调性极值讨论求参(解析版)

专题23导数单调性、极值讨论求参目录专题23导数单调性、极值讨论求参 (1)【题型一】导函数图像判断极值.....................................................................................................1【题型二】原函数与导函数图像互相判断.....................................................................................3【题型三】原函数导函数图像解不等式.........................................................................................6【题型四】求函数最值极值(不含参).........................................................................................8【题型五】极值求参.........................................................................................................................9【题型六】单调性求参...................................................................................................................11【题型七】不是单调函数求参.......................................................................................................13【题型八】存在单调区间求参数...................................................................................................15【题型九】多个单调区间求参.......................................................................................................17【题型十】“两根型”极值点不等式与范围................................................................................18【题型十一】多参型极值求范围...................................................................................................20培优第一阶——基础过关练...........................................................................................................23培优第二阶——能力提升练...........................................................................................................26培优第三阶——培优拔尖练.. (32)【题型一】导函数图像判断极值【典例分析】已知函数()f x 的导函数的图象如图所示,则()f x 极值点的个数为()A .4B .5C .6D .7【答案】A【分析】根据函数的极值点要满足两个条件,结合导函数的图象逐个分析即可.【详解】对于处处可导的函数,函数的极值点要满足两个条件,一个是该点的导数为0,另一个是该点左、右的导数值异号,由图象可知,导函数与x 轴有5个交点,因为在0附近的左侧()0f x '<,右侧()0f x '<,所以0不是()f x 极值点.其余四个点的左、右的导数值异号,所以是极值点,故()f x 极值点的个数是4.故选:A.1.函数()f x 的定义域为开区间(),a b ,导函数()f x '在(),a b 内的图象如图所示,则函数()f x 在开区间(),a b 内有极小值点()A .1个B .2个C .3个D .4个【答案】A【分析】观察函数()f x '在(),a b 内的图象与x 轴有四个公共点,利用极小值点的定义分析得解.【详解】解:由导函数()f x '在区间(),a b 内的图象可知,函数()f x '在(),a b 内的图象与x 轴有四个公共点,在从左到右第一个交点处导数左正右负,它是极大值点;在从左到右第二个交点处导数左负右正,它是极小值点;在从左到右第三个交点处导数左正右正,它不是极值点;在从左到右第四个交点处导数左正右负,它是极大值点.所以函数()f x 在开区间(),a b 内的极小值点有1个.故选:A.2.如图是函数()y f x =的导函数()y f x '=的图象,给出下列命题:①x =-2是函数()y f x =的极值点;②x =1是函数()y f x =的极值点;③()y f x =的图象在0x =处切线的斜率小于零;④函数()y f x =在区间(2,2)-上单调递增.则正确命题的序号是()A .①②B .②④C .②③D .①④【答案】D【分析】根据导数的几何意义,与函数的单调性,极值点的关系,结合图象即可作出判断.【详解】对于①,根据导函数图像可知,-2是导函数的零点,且-2的左右两侧导函数值符号异号,故-2是极值点,故①正确;对于②,1不是极值点,因为1的左右两侧导函数符号一致,故②错误;对于③,0处的导函数值即为此点的切线斜率显然为正值,故③错误;对于④,导函数在()2,2-恒大等于零,故为函数的增区间,故④正确.故选:D3.已知函数()f x 的导函数是()f x ',()f x '的图象如图所示,下列说法正确的是()A .函数()f x 在()2,1--上单调递减B .函数()f x 在()0,2上单调递增C .函数()f x 在3x =处取得极小值D .函数()f x 共有1个极大值点【答案】D【分析】根据导数正负与原函数单调性的关系即可判断求解.【详解】对于A ,在()2,1--,()f x '>0,f (x )单调递增,故A 错误;对于B ,在()0,2,()f x '不恒为正或负,故f (x )不单调,故B 错误;对于C ,在(1,)+∞,()0f x '≥恒成立,故f (x )单调递增,故x =3不是极值点,故C 错误;对于D ,在()3,1--,()f x '>0,f (x )单调递增,在(-1,1),()f x '<0,f (x )单调递减,故x =-1是f (x )的极大值点,且是唯一的极大值点,故D 正确.故选:D.【题型二】原函数与导函数图像互相判断【典例分析】设()f x '是函数()f x 的导函数,在同一个直角坐标系中,()y f x =和()y f x '=的图象不可能是()A .B .C .D .【答案】D【分析】根据常见函数的导函数分析,结合导函数为原函数的切线斜率关系判断即可【详解】对A ,()212f x x =和()f x x '=可满足,故A 可能成立;对B ,()ln f x x =和()()10f x x x'=>可满足,故B 可能成立;对C ,()2x f x =和()2ln 2xf x '=可满足,故C 可能成立;对D ,因为导函数为原函数的斜率函数,易得若任一一个函数图象为导函数,则原函数的切线斜率应该恒非负或非正,故不满足,故D 错误;故选:D1.在同一坐标系中作出三次函数()()320ax bx d a f x cx =+++≠及其导函数的图象,下列可能正确的序号是()A .①②B .①③C .③④D .①④【答案】A【分析】利用导数与函数之间的关系.把握住导数的正负确定出函数的单调区间,根据变化趋势选出不恰当的图象,从而可得出答案.【详解】解:根据()0f x '>时,()y f x =递增,()0f x '<时,()y f x =递减可得,①②中函数的图象的增减趋势与导函数的正负区间是吻合的,可能正确;而③中导函数为负的区间内相应的函数不为递减,故错误,④中导函数为负的区间内相应的函数不为递减,故错误.故选:A.2..设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一直角坐标系中,下列不可能正确的是()A .B .C .D .【答案】D【分析】根据导函数与函数的的单调性之间的关系,判断图象的变化情况,可得答案.【详解】对于A ,如果把1C 作为()f x '的图象,则()0f x '≥,原点处取等号,则()f x 单调递增,故A 正确;对于B ,如果把2C 作为()f x '的图象,则()0f x ¢>,则()f x 单调递增,故B 正确;对于C ,如果把2C 作为()f x '的图象,则()0f x ¢>,则()f x 单调递增,故C 正确;对于D ,如果把1C 作为()f x '的图象,则()0f x '≥,在个别点处取等号,则()f x 单调递增,与图中2C 不符;如果把2C 作为()f x '的图象,则在图象所对应的范围内()0f x '≤,在个别点处取等号,则()f x 单调递减,与图中1C 不符;故D 不可能,故选:D3.已知函数32()f x x bx cx d =+++,若1x =是()x e f x -的一个极小值点,则()y f x =及其导函数()y f x '=的图象可能是()A .B .C .D .【答案】D【分析】设()()x g x e f x -=,则[]()()()xg x e f x f x -''=-,由题意得(1)0g '=,即(1)(1)f f '=,再根据极小值点的定义,采用排除法即可求出答案.【详解】解:设()()x g x e f x -=,则()()()()()x x x g x e f x e f x e f x f x '--'-'⎡⎤=-+=-⎣⎦,由题意得(1)0g '=,且在1的左侧附近时,()0g x '<,在1的右侧附近时,()0g x '>,∴(1)(1)f f '=,且在1的左侧附近时,()()f x f x '<,在1的右侧附近时,()()f x f x '>,故排除A ,C ;而B 选项中,函数()f x 在()0,1上存在一个极小值点,但由图可知,在()0,1上,()0f x '<恒成立,故排除B ;故选:D .【题型三】原函数导函数图像解不等式【典例分析】已知R 上可导函数()f x 的图像如图所示,则不等式()()2230x x f x '-->的解集为()A .()(),13,-∞-⋃+∞B .()()212-∞-,,U C .()()(),11,02,-∞-⋃-⋃+∞D .()()(),11,13,-∞-⋃-⋃+∞【答案】D【分析】根据原函数单调性与导函数符号之间的关系,分类讨论,结合一元二次不等式的解法运算求解.【详解】由()f x 的图像可得:x (),1-∞-1-()1,1-1()1,+∞()f x '0>0<0>对于()()()()()223130x x f x x x f x ''--=+->可得:当(),1x ∈-∞-时,则()0f x ¢>,∴()()130x x +->,解得1x <-;当=1x -时,则()0f x '=,故()()2230x x f x '--=,不合题意,舍去;当()1,1x ∈-时,则()0f x '<,∴()()130x x +-<,解得11x -<<;当1x =时,则()0f x '=,故()()2230x x f x '--=,不合题意,舍去;当()1,x ∈+∞时,则()0f x ¢>,∴()()130x x +->,解得3x >;综上所述:不等式()()2230x x f x '-->的解集为()()(),11,13,-∞-⋃-⋃+∞.故选:D.1.已知函数()y f x =在定义域3,32⎛⎫- ⎪⎝⎭内可导,其图象如图所示.记()y f x =的导函数为()y f x '=,则不等式()0xf x '≤的解集为()A .[][)31,0,12,323⎛⎤--⋃⋃ ⎥⎝⎦B .[]18,01,2,333⎡⎤⎡⎫-⋃⋃⎪⎢⎥⎢⎣⎦⎣⎭C .[)1,12,33⎡⎤-⎢⎥⎣⎦D .31148,,,323233⎛⎫⎡⎤⎡⎫--⋃⋃ ⎪⎪⎢⎥⎢⎝⎭⎣⎦⎣⎭【答案】A【分析】根据原函数图象与导函数的关系,即可得到结果.【详解】对于不等式对()0xf x '≤,当302x -<<时,()0f x '≥,则结合图象,知原不等式的解集为31,23⎛⎤-- ⎥⎝⎦;当03x ≤<时,()0f x '≤,则结合图象,知原不等式的解集为[][)0,12,3⋃.综上,原不等式的解集为31,[0,1][2,3)23⎛⎤--⋃⋃ ⎥⎝⎦.故选:A2.已知函数()f x 的图象如图所示,()f x '是()f x 的导函数,则不等式2(2)()0x x f x '+<-的解集为()A .()32,1,2⎛⎫--⋃+∞ ⎪⎝⎭B .()32,11,2⎛⎫--⋃ ⎪⎝⎭C .()3,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭D .()3,1,22⎛⎫-∞-⋃ ⎪⎝⎭【答案】B【分析】根据函数的单调区间判断导数的正负性,列不等式组求解即可.【详解】因为()f x 的单调递增区间为(,1)-∞-和3,2⎛⎫+∞ ⎪⎝⎭,单调递减区间为31,2⎛⎫- ⎪⎝⎭,所以当()3,1,2x ⎛⎫∈-∞-+∞ ⎪⎝⎭时,()0f x '>,当31,2x ⎛⎫∈- ⎪⎝⎭时,()0f x '<,2(2)()0x x f x '+<-等价于()220,0x x f x '⎧+->⎪⎨<⎪⎩,或()220,0,x x f x ⎧+->'<⎪⎨⎪⎩,解得2<<1x --或312x <<.故选:B3.函数()f x 的图象如图所示,则不等式(2)()0x f x '+<的解集()A .(,2)(1,1)-∞--B .()(,2)1,2-∞-⋃C .(,2)(1,)-∞-+∞D .()2,1(1,)--⋃+∞【答案】A【分析】先通过原函数的单调性判断导函数的正负,在判断(2)()x f x '+的正负即可【详解】由函数()f x 的单调性可得,在()(),1,1,∞∞--+上()0f x '>,在()1,1-上()0f x '<又因为2x +在()2-∞,-为负,在()2-+∞,为正故(2)()0x f x '+<的区间为(,2)(1,1)-∞--故选:A【题型四】求函数最值极值(不含参)【典例分析】函数()21e 22xx y x x =+--的极小值为()A .212e-B .1C .2D .e【答案】B【分析】求出函数的导函数,即可得到函数的单调区间,从而求出函数的极小值.【详解】解:由()()21e 22xx y f x x x ==+--,得()()e (1)e 2(2)e 1x x xf x x x x '=++--=+-,当<2x -或0x >时,()0f x ¢>,当20x -<<时,()0f x '<,所以函数()21e 22xx y x x =+--在(),2-∞-上单调递增,在()2,0-上单调递减,在()0,∞+上单调递增,所以函数()()21e 22xx f x x x =+--的极小值为()01f =.故选:B.1.已知函数()233e++=xx x f x ,则该函数的极小值为()A .e B .3C .0D .1【答案】A【分析】利用函数的极小值的定义求解.【详解】解:由题意得()()1e -+='xx x f x ,令()0f x '=,得0x =或-1,当1x <-或0x >时,()0f x '<,当10x -<<时,()0f x ¢>,所以()()()()1e,03极小值极大值=-===f x f f x f ,所以极小值为e .故选:A .2.已知函数()ln 1f x x x =-+,()0,x ∈+∞,则函数()f x 的最大值为______.【答案】0【分析】先对函数求导,由导数的方法判定函数单调性,进而可求出最值.【详解】由()ln 1f x x x =-+得11()1xf x x x-='-=,当()0,1x ∈时,()0f x '>,所以函数()f x 单调递增;当()1,x ∈+∞时,()0f x '<,所以函数()f x 单调递减;因此函数()f x 在1x =处取得极大值,也是最大值;即max ()(1)ln111=0f x f ==-+.故答案为:0.3.设()()sin cos xf x e x x =-,其中02019x π≤≤,则()f x 的极大值点个数是()A .1009B .1010C .2019D .2020【答案】A【分析】先求出其导函数()'2sin xf x e x =,求得函数的单调区间,结合极值点的概念,即可求解.【详解】由题意,函数()()sin cos xf x e x x =-,可得()()()'sin cos cos sin 2sin x x xf x e x x e x x e x =-++=,令()0f x ¢>,即sin 0x >,解得22,k x k k Z πππ<<+∈,令()0f x '<,即sin 0x <,解得222,k x k k Z ππππ+<<+∈,所以函数()f x 在(2,2)k k πππ+递增,在(2,22),k k k Z ππππ++∈递减,故函数()f x 的极大值点为2,x k k Z ππ=+∈,因为02019x π≤≤,即,3,5,7,2017x πππππ=,共1009个.故选:A.【题型五】极值求参【典例分析】已知函数()()21e R 2xf x x ax a =--∈有两个极值点,则实数a 的取值范围()A .(),1-∞B .()0,1C .[]0,1D .()1,+∞【答案】D【分析】利用多次求导的方法,列不等式来求得a 的取值范围.【详解】()f x 的定义域是R ,()e x f x x a '=--,令()()e ,e 1x xh x x a h x '=--=-,所以()h x 在区间()()(),0,0,h x h x '-∞<递减;在区间()()()0,,0,h x h x '+∞>递增.要使()f x 有两个极值点,则()()0010,1f h a a '==-<>,此时()()e e 0a af a a a --'-=---=>,构造函数()()()11ln 21,1xg x x x x g x x x-'=->=-=,所以()g x 在()1,+∞上递增,所以()1ln 20g x >->,所以()ln 2ln 2e ln 2ln 20a f a a a a a '=--=->,所以实数a 的取值范围()1,+∞.故选:D1.已知函数()()211e ln 2xf x x m x x x x ⎛⎫=-++- ⎪⎝⎭存在极大值点和极小值点,则实数m 可以取的一个值为()A .3-B .52-C .32-D .12-【答案】A【分析】求得()f x 的导数,可得()0f x '=有两个不等的正根,等价于()()g x f x '=的最小值小于0,分别讨论0m ≥、0m <,求得()g x 的导数,判断()g x 的单调性和最值,解不等式可得m 的取值范围,再结合选项即可得答案.【详解】解:因为()()211e ln 2xf x x m x x x x ⎛⎫=-++- ⎪⎝⎭,0x >,所以()()()e 1ln 1e ln x x f x x m x x x m x x '=+++-=++,由题意可得()0f x '=有两个不等的正根,则()()g x f x '=的最小值小于0,又因为()1(1)e (1)(1)(e )x x mg x x m x x x '=+++=++,0x >,当0m ≥时,e 0,10,()0,()x mx g x g x x'+>+>>单调递增,不合题意;当0m <时,由e ,xm y y x ==-图象可得,=e xm y x+一定有变号的正零点,令e 0x mx+=的根为0x ,解得00e x m x =-,当00x x <<时,()g x 单调递减,当0x x >时,()g x单调递增,所以当0x x =时,()g x 取极小值,且为最小值,所以00000000000()e (ln )e e (ln )0x x x g x x m x x x x x x =++=-+<,化为001(ln )0x x -+<,由于ln y x x =+在(0,)+∞上单调递增,且1x =时,1y =,所以00ln 1x x +>的解为01x >,则00e e xm x =-<-,只有A 选项才满足,故选:A.2.在等比数列{}n a 中,37,a a 是函数321()4413f x x x x =-+-的极值点,则a 5=()A .2-或2B .2-C .2D .【答案】C【分析】根据题意可知:37,a a 是方程()0f x '=的两根,利用韦达定理和等比数列的性质即可求解.【详解】因为321()4413f x x x x =-+-,所以2()84f x x x '=-+.又因为37,a a 是函数321()4413f x x x x =-+-的极值点,即37,a a 是方程2()840f x x x '=-+=的两根,则有374a a =,由{}n a 为等比数列可知:25374a a a ==,因为3780a a +=>,且374a a =,所以370,0a a >>,则有50a >,所以52a =,故选:C .3.若函数()33f x x ax =-在()0,1内无极值,则实数a 的取值范围是()A .[)1,+∞B .(],0-∞C .][(),01,∞∞-⋃+D .[]0,1【答案】C【分析】()233f x x a '=-在在()0,1内无变号零点,根据函数的单调性确定最小值和最大值的范围即可求解.【详解】因为函数()33f x x ax =-在()0,1内无极值,所以()233f x x a '=-在在()0,1内无变号零点,根据二次函数的对称性和单调性知,233y x a =-在区间()0,1单调递增,所以()0030f a =-≥'或()1330f a =-≤'即可,解得0a ≤或1a ≥,故选:C.【题型六】单调性求参【典例分析】已知函数()2()2e xf x x ax =-,若()f x 在[]1,1-上是单调减函数,则实数a 的取值范围是()A .3,4⎡⎫+∞⎪⎢⎣⎭B .1,2⎡⎫+∞⎪⎢⎣⎭C .13,24⎡⎫⎪⎢⎣⎭D .10,2⎡⎫⎪⎢⎣⎭【答案】A【分析】先求出函数()f x 的导函数()f x ',根据题意()0f x '≤对[]1,1x ∈-恒成立,转化为关于a 的不等式组求解.【详解】解:由()()22e xf x x ax =-,得()()()()2222e 2e 222e x x x f x x a x ax x ax x a '=-+-=-+-,函数()f x 在[]1,1-上为单调减函数,()()2222e 0x f x x ax x a '∴=-+-≤对[]1,1x ∈-恒成立,即22220x ax x a -+-≤对[]1,1x ∈-恒成立,()()()221212012120a a a a ⎧----≤⎪∴⎨+--≤⎪⎩,解得34a ≥,∴a 的取值范围是3,4⎡⎫+∞⎪⎢⎣⎭.故选:A.1.已知2()ln 1f x x x mx =++-在区间(1,2)上为单调递增函数,则实数m 的取值范围是()A .4m ≥-B .4m >-C .3m >-D .3m ≥-【答案】D【分析】求出导函数,推出12m x x ⎛⎫≥-+ ⎪⎝⎭在区间(1,2)上恒成立,构造函数,求解函数的最值,从而求出实数m 的取值范围.【详解】2()ln 1f x x x mx =++-在区间(1,2)上为单调递增函数。

专题5__导数的应用-含参函数的单调性讨论(答案)

专题5__导数的应用-含参函数的单调性讨论(答案)

〖专题5〗导数的应用—含参函数的单调性讨论“含参数函数的单调性讨论问题”是近年来高考考查的一个常考内容,也是我们高考复习的重点.从这几年来的高考试题来看,含参数函数的单调性讨论常常出现在研究函数的单调性、极值以及最值中,因此在高考复习中更应引起我们的重视.一、思想方法:讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论.二、典例讲解[典例1] 讨论的单调性,求其单调区间.解:的定义域为(它与同号)I)当时,恒成立,此时在和都是单调增函数,即的增区间是和;II) 当时此时在和都是单调增函数,在和都是单调减函数,即的增区间为和;的减区间为和.步骤小结:1、先求函数的定义域,2、求导函数(化为乘除分解式,便于讨论正负),3、先讨论只有一种单调区间的(导函数同号的)情况,4、再讨论有增有减的情况(导函数有正有负,以其零点分界),5、注意函数的断点,不连续的同类单调区间不要合并.[变式练习1] 讨论的单调性,求其单调区间.解:的定义域为(它与同号)I)当时,恒成立,此时在为单调增函数,即的增区间为,不存在减区间;II) 当时;此时在为单调增函数,在是单调减函数,即的增区间为;的减区间为.[典例2] 讨论的单调性.解:的定义域为(它与同号)I)当时,恒成立(此时没有意义)此时在为单调增函数,即的增区间为II)当时,恒成立,(此时不在定义域内,没有意义)此时在为单调增函数,即的增区间为III)当时, 令于是,当x变化时,的变化情况如下表:(结合g(x)图象定号)即的增区间为;的减区间为.小结:导函数正负的相应区间也可以由导函数零点来分界,但要注意其定义域和连续性.即先求出的零点,再其分区间然后定在相应区间内的符号.一般先讨论无解情况,再讨论解过程产生增根的情况(即解方程变形中诸如平方、去分母、去对数符号等把自变量x范围扩大而出现有根,但根实际上不在定义域内的),即根据零点个数从少到多,相应原函数单调区间个数从少到多讨论,最后区间(最好结合导函数的图象)确定相应单调性.[变式练习2] 讨论的单调性.解:的定义域为, 它与同号.令,当时,无解;当时,(另一根不在定义域内舍去)i)当时,恒成立(此时没有意义)此时在为单调增函数,即的增区间为ii)当时,恒成立,(此时方程判别式,方程无解)此时在为单调增函数,即的增区间为iii)当时,当x变化时,的变化情况如下表:(结合g(x)图象定号)即的增区间为;的减区间为.小结:一般最后要综合讨论情况,合并同类的,如i),ii)可合并为一类结果.对于二次型函数(如)讨论正负一般先根据二次项系数分三种类型讨论.[典例3] 求的单调区间.解:的定义域为R,I) 当时,在R上单调递减,减区间为R,无增区间.II) 当时,是开口向上的二次函数,令, 因此可知(结合的图象)i)当时,所以此时,的增区间为;的减区间为ii)当时,所以此时,的增区间为;的减区间为.小结:求函数单调区间可化为导函数的正负讨论(即分讨论其相应不等式的解区间),常见的是化为二次型不等式讨论,当二次函数开口定且有两根时,一般要注意讨论两根大小(分大、小、等三种情况)。

专题5导数的应用-含参函数的单调性讨论(答案)word精品文档13页

专题5导数的应用-含参函数的单调性讨论(答案)word精品文档13页

〖专题5〗 导数的应用—含参函数的单调性讨论“含参数函数的单调性讨论问题”是近年来高考考查的一个常考内容,也是我们高考复习的重点.从这几年来的高考试题来看,含参数函数的单调性讨论常常出现在研究函数的单调性、极值以及最值中,因此在高考复习中更应引起我们的重视. 一、思想方法:上为常函数在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('⇒=∈⇒<∈⇒>∈⇔∈⇔<⇔∈⇔>讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论. 二、典例讲解[典例1] 讨论xax x f +=)(的单调性,求其单调区间. 解:xax x f +=)(的定义域为),0()0,(+∞-∞ )0(1)('222≠-=-=x xa x x a x f (它与a x x g -=2)(同号) I )当0≤a 时,)0(0)('≠>x x f 恒成立,此时)(x f 在)0,(-∞和),0(+∞都是单调增函数, 即)(x f 的增区间是)0,(-∞和),0(+∞; II) 当0>a 时 a x a x x x f >-<⇔≠>或)0(0)('a x x a x x f <<<<-⇔≠<00)0(0)('或此时)(x f 在),(a --∞和),(+∞a 都是单调增函数,)(x f 在)0,(a -和),0(a 都是单调减函数,即)(x f 的增区间为),(a --∞和),(+∞a ;)(x f 的减区间为)0,(a -和),0(a .步骤小结:1、先求函数的定义域,2、求导函数(化为乘除分解式,便于讨论正负),3、先讨论只有一种单调区间的(导函数同号的)情况,4、再讨论有增有减的情况(导函数有正有负,以其零点分界),5、注意函数的断点,不连续的同类单调区间不要合并.[变式练习1] 讨论x a x x f ln )(+=的单调性,求其单调区间.解:x a x x f ln )(+=的定义域为),0(+∞)0(1)('>+=+=x xa x x a x f (它与a x x g +=)(同号) I )当0≥a 时,)0(0)('>>x x f 恒成立,此时)(x f 在),0(+∞为单调增函数, 即)(x f 的增区间为),0(+∞,不存在减区间; II) 当0<a 时 a x x x f ->⇔>>)0(0)('; a x x x f -<<⇔><0)0(0)('此时)(x f 在),(+∞-a 为单调增函数,)(x f 在),0(a -是单调减函数,即)(x f 的增区间为),(+∞-a ;)(x f 的减区间为),0(a -.[典例2] 讨论x ax x f ln )(+=的单调性. 解:x ax x f ln )(+=的定义域为),0(+∞)0(11)('>+=+=x xax x a x f (它与1)(+=ax x g 同号) I )当0=a 时,)0(0)('>>x x f 恒成立 (此时ax x f 10)('-=⇔=没有意义)此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞ II )当0>a 时,)0(0)('>>x x f 恒成立, (此时ax x f 10)('-=⇔=不在定义域内,没有意义) 此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞III)当0<a 时, 令ax x f 10)('-=⇔= 于是,当x 变化时,)(),('x f x f 的变化情况如下表:(结合g(x)图象定号)所以, 此时)(x f 在),0(a-为单调增函数,)(x f 在),1(+∞-a是单调减函数, 即)(x f 的增区间为)1,0(a -;)(x f 的减区间为),1(+∞-a.小结:导函数正负的相应区间也可以由导函数零点来分界,但要注意其定义域和连续性.即先求出)('x f 的零点,再其分区间然后定)('x f 在相应区间内的符号.一般先讨论0)('=x f 无解情况,再讨论解0)('=x f 过程产生增根的情况(即解方程变形中诸如平方、去分母、去对数符号等把自变量x 范围扩大而出现有根,但根实际上不在定义域内的),即根据)('x f 零点个数从少到多,相应原函数单调区间个数从少到多讨论,最后区间(最好结合导函数的图象)确定相应单调性. [变式练习2] 讨论x ax x f ln 21)(2+=的单调性. 解:x ax x f ln 21)(2+=的定义域为),0(+∞ )0(11)('2>+=+=x xax x ax x f , 它与1)(2+=ax x g 同号. 令)0(010)('2>=+⇔=x ax x f ,当0≥a 时,无解;当0<a 时,aaa x --=-=1(另一根不在定义域内舍去)i)当0=a 时,)0(0)('>>x x f 恒成立 (此时ax x f 10)('2-=⇔=没有意义) 此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞ii)当0>a 时,)0(0)('>>x x f 恒成立,(此时 方程012=+ax 判别式0<∆,方程无解)此时)(x f 在),0(+∞为单调增函数,即)(x f 的增区间为),0(+∞iii)当0<a 时,当x 变化时,)(),('x f x f 的变化情况如下表:(结合g(x)图象定号))+∞是单调减函数,即)(x f 的增区间为)1,0(a-;)(x f 的减区间为),1(+∞-a .小结:一般最后要综合讨论情况,合并同类的,如i),ii)可合并为一类结果.对于二次型函数(如1)(2+=ax x g )讨论正负一般先根据二次项系数分三种类型讨论. [典例3] 求1)(232--+=x ax x a x f 的单调区间. 解:1)(232--+=x ax x a x f 的定义域为R ,)1)(13(123)('22+-=-+=ax ax ax x a x fI) 当0=a 时,⇒<-=01)('x f )(x f 在R 上单调递减,)(x f 减区间为R ,无增区间. II) 当0≠a 时032>a ,)('x f 是开口向上的二次函数,令)0(1,310)('21≠-===a ax a x x f 得, 因此可知(结合)('x f 的图象) i)当0>a 时,21x x >ax a x f a x a x x f 3110)(';3110)('<<-⇔<>-<⇔>或 所以此时,)(x f 的增区间为),31()1,(+∞--∞aa 和;)(x f 的减区间为)31,1(a a -ii) 当0<a 时,21x x <ax a x f ax a x x f 1310)(';1310)('-<<⇔<-><⇔>或所以此时,)(x f 的增区间为),1()31,(+∞--∞aa 和;)(x f 的减区间为)1,31(a a -.小结:求函数单调区间可化为导函数的正负讨论(即分讨论其相应不等式的解区间),常见的是化为二次型不等式讨论,当二次函数开口定且有两根时,一般要注意讨论两根大小(分大、小、等三种情况)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.设函数.( 1)当时,函数与在处的切线互相垂直,求的值;( 2)若函数在定义域内不单调,求的取值范围;( 3)是否存在正实数,使得对任意正实数恒成立?若存在,求出满足条件的实数;若不存在,请说明理由.2.已知函数是的导函数,为自然对数的底数.( 1)讨论的单调性;( 2)当时,证明:;( 3)当时,判断函数零点的个数,并说明理由.3.已知函数(其中,).( 1)当时,若在其定义域内为单调函数,求的取值范围;( 2)当时,是否存在实数,使得当时,不等式恒成立,如果存在,求的取值范围,如果不存在,说明理由(其中是自然对数的底数,). 4.已知函数,其中为常数.( 1)讨论函数的单调性;( 2)若存在两个极值点,求证:无论实数取什么值都有.5 .已知函数(为常数)是实数集上的奇函数,函数是区间上的减函数 .( 1)求的值;( 2)若在及所在的取值范围上恒成立,求的取值范围;6.已知函数ln , x ,其中.f x ax x F x e ax x 0, a 0( 1)若f x 和 F x 在区间 0,ln3 上具有相同的单调性,求实数 a 的取值范围;( 2)若a , 1 ,且函数 g x xe ax 1 2ax f x 的最小值为 M ,求 M 的e2最小值 .7.已知函数 f ( x) e x m ln x .( 1)如x 1 是函数 f (x) 的极值点,求实数m 的值并讨论的单调性 f (x) ;( 2)若x x0是函数f ( x)的极值点,且f ( x) 0 恒成立,求实数m 的取值范围(注:已知常数 a 满足 a ln a 1 ) .8.已知函数 f x ln 1 mx x2mx ,其中0 m 1 .2( 1)当m 1时,求证: 1 x 0 时, f x x3;3( 2)试讨论函数y f x 的零点个数.9.已知e 是自然对数的底数 , F x 2e x 1 x ln x, f x a x 1 3 .(1)设T x F x f x , 当a 1 2e 1时, 求证: T x 在 0, 上单调递增;(2)若x 1, F x f x , 求实数a的取值范围 .10 .已知函数f x e x ax 2(1)若a 1 ,求函数f x 在区间[ 1,1]的最小值;(2)若a R, 讨论函数 f x 在 (0, ) 的单调性;(3)若对于任意的x1, x2 (0, ), 且 x1 x2,都有 x2 f ( x1) a x1 f ( x2 ) a 成立,求 a 的取值范围。

参考答案1.( 1);( 2);(3).【解析】试题分析: (1) 本小题主要利用导数的几何意义,求出切线斜率;当时,,可知在处的切线斜率,同理可求得,然后再根据函数与在处的切线互相垂直,得,即可求出结果.(2) 易知函数的定义域为,可得,由题意,在内有至少一个实根且曲线与x 不相切,即的最小值为负,由此可得,进而得到,由此即可求出结果. (3) 令,可得,令,则,所以在区间内单调递减,且在区间内必存在实根,不妨设,可得,(*),则在区间内单调递增,在区间内单调递减,∴,,将(*)式代入上式,得.使得对任意正实数恒成立,即要求恒成立,然后再根据基本不等式的性质,即可求出结果.试题解析:(1) 当时,,∴在处的切线斜率,由,得,∴,∴.(2) 易知函数的定义域为,又,由题意,得的最小值为负,∴. (注:结合函数图象同样可以得到),∴∴,∴;(3) 令,其中,则,则,则,∴在区间内单调递减,且在区间内必存在实根,不妨设,即,可得,(*)则在区间内单调递增,在区间内单调递减,∴,,将 (*) 式代入上式,得.根据题意恒成立,又∵,当且仅当时,取等号,∴,∴,代入 (*) 式,得,即,又,∴,∴存在满足条件的实数,且.点睛 :对于含参数的函数在闭区间上函数值恒大于等于或小于等于常数问题,可以求函数最值的方法 , 一般通过变量分离,将不等式恒成立问题转化为求函数的最值问题,然后再构造辅助函数,利用恒成立;恒成立,即可求出参数范围 .2.( 1)①当时,在上为减函数;②当时,的减区间为,增区间为;(2)证明见解析;(3)一个零点,理由见解析.【解析】试题分析:( 1)讨论函数单调性,先求导,当时,,故在上为减函数;当时,解可得,故的减区间为,增区间为;(2)根据,构造函数,设,,当时,,所以数的增减性及极值端点,由(1)可知,当时,是先减再增的函数,其最小值为,而此时,且,故恰有两个零点,从而得到的增减性,当时,;当时,;当时,,从而在两点分别取到极大值和极小值,再证明极大值,所以函数不可能有两个零点,只能有一个零点.试题解析:( 1)对函数求导得,,①当时,,故在上为减函数;②当时,解可得,故的减区间为,增区间为;( 2),设,则,易知当时,,;( 3)由( 1)可知,当时,是先减再增的函数,其最小值为,而此时,且,故恰有两个零点,∵当时,;当时,;当时,,∴在两点分别取到极大值和极小值,且,由知,∴,∵,∴,但当时,,则,不合题意,所以,故函数的图象与轴不可能有两个交点.∴函数只有一个零点.3.( 1);(2)存在,且.【解析】试题分析:( 1 )当时,首先求出函数的导数,函数的定义域是,得到,分和两种情况讨论讨论二次函数恒成立的问题,得到的取值范围;(2),分和两种情况讨论函数的单调性,若能满足当时,当满足函数的最小值大于0,即得到的取值范围.试题解析:( 1)由题①当时,知,则是单调递减函数;②当时,只有对于,不等式恒成立,才能使为单调函数,只需,解之得或,此时.综上所述,的取值范围是( 2),其中.()当时,,于是在上为减函数,则在上也为减函数. 知恒成立,不合题意,舍去.()当时,由得,列表得最大值①若,即,则在上单调递减.知,而,于是恒成立,不合题意,舍去.②若,即.则在上为增函数,在上为减函数,要使在恒有恒成立,则必有则,所以由于,则,所以.综上所述,存在实数,使得恒成立.【点睛】导数问题经常会遇见恒成立的问题:( 1)根据参变分离,转化为不含参数的函数的最值问题;( 2 )若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;( 3)若恒成立,可转化为.4.( 1)当时,在区间上单调递增;当时,在上单调递减,在上单调递增 ;( 2)见解析 .【解析】试题分析:(1)先求导数,研究导函数在定义域上零点情况,本题实质研究在上零点情况:当方程无根时,函数单调递增;当方程有两个相等实根时,函数单调递增;当方程有两个不等实根时,比较两根与定义区间之间关系,再确定单调区间,( 2)先由( 1)知,且两个极值点满足. 再代入化简得, 利用导数研究单调性,最后根据单调性证明不等式.试题解析 : ( 1)函数的定义域为.,记,判别式.① 当即时,恒成立,,所以在区间上单调递增 .② 当或时,方程有两个不同的实数根,记,,显然(ⅰ)若,图象的对称轴,.两根在区间上,可知当时函数单调递增,,所以,所以在区间上递增.(ⅱ)若,则图象的对称轴,.,所以,当时,,所以,所以在上单调递减.当或时,,所以,所以在上单调递增.综上,当时,在区间上单调递增;当时,在上单调递减,在上单调递增 .( 2 )由( 1 )知当时,没有极值点,当时,有两个极值点,且.,∴又,.记,,则,所以在时单调递增,,所以,所以.5.( 1);(2);(3)详见解析.【解析】试题分析:(1 )根据奇函数定义可得,再根据恒等式定理可得.( 2)而在恒成立等价于,从而有对恒成立,再根据一次函数单调性可得只需端点处函数值非负即可,解不等式组可得的取值范围( 3)研究方程根的个数,只需转化为两个函数,交点个数,先根据导数研究函数图像,再根据二次函数上下平移可得根的个数变化规律试题解析:( 1)是奇函数,则恒成立,∴,即,∴,∴.( 2)由( 1)知,∴,∴,又∵在上单调递减,∴,且对恒成立,即对恒成立,∴,∵在上恒成立,∴,即对恒成立,令,则,∴,而恒成立,∴.( 3)由( 1)知,∴方程为,令,,∵,当时,,∴在上为增函数;当时,,∴在上为减函数;当时,,而,∴ 函数、在同一坐标系的大致图象如图所示,∴ ① 当,即时,方程无解;② 当,即时,方程有一个根;③当,即时,方程有两个根.点睛:对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决. 但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.6.( 1)M的最小值为0 .(2), 3 .【解析】试题分析:( 1)由 f ′xa1 ax 1, F ′x e x a, x 0f ′x 0 在 0,上x x恒成立f x 在 0,上单调递减当 1 a 0 时,F ′x 0 ,即 F x 在 0,上单调递增,不合题意;当 a 1 时 , 利 用 导 数 工 具 得 F x 的 单 调 减 区 间 为0,ln a, 单 调 增 区 间 为ln a ,f x 和 Fx 在区间0,ln3 上具有相同的单调性 ln a ln3a3 a 的取值 范 围 是, 3 ;( 2 ) 由 g ′xax 1 e ax 11 0 a1 ln x , 设xxp x1ln x, p ′xln x 2 利 用导 数工具得x x 2p xg x211 ln x ax 11 minp e2ae0 , 再 根 据 单 调 性exxg1 mina设 t1 0, e2 , g 1h tt ln t 1 0 t e 2h ′t1 1 0, h taae 2e 2 t在 0,e 2 上递减h t h e 20 M 的最小值为 0 .试题解析: ( 1) f ′xa 1 ax 1, F ′x e x a, x 0,x xQ a 0, f ′x0 在 0,上恒成立,即 f x 在 0,上单调递减 .当 1 a 0 时, F ′x 0 ,即 F x 在 0,上单调递增,不合题意;当 a 1 时,由 F ′x 0 ,得 x ln a ,由 F ′x0 ,得 0 x ln a .∴ Fx 的单调减区间为 0,ln a ,单调增区间为 lna ,.Q f x 和 F x 在区间 0,ln3 上具有相同的单调性,∴ ln aln3 ,解得 a 3 ,综上, a 的取值范围是, 3 .( 2) ′ax 1ax 11 ax 1 eax 11 ,g xeaxea由 e ax 11 0 得到 a 1 ln x ,设 p x 1 ln x , p ′x ln x2 ,xx xx 2当 xe 2 时, p ′x 0 ;当 0 xe 2 时, p ′x 0 .从而 p22上递增 . ∴ pxmin21x 在 0,e 上递减,在e ,p e2.11 ln x1e当 a时, aax 10 ,2x,即 exe在 0,1 上, ax 1 0, g ′x0, g x 递减;a在1 , 上, ax1 0, g ′x 0, g x 递增 . ∴ gxming1 ,aa设 t1 0, e2 , g1 h tt ln t 1 0 t e 2 ,aae 2h ′t1 1 0,h t 在 0,e2 上递减 . ∴ h th e 20 ;e 2 t∴ M 的最小值为 0 .考点: 1、函数的单调性; 2、函数的最值;3、函数与不等式 .【方法点晴】本题考查函数的单调性、函数的最值、函数与不等式,涉及分类讨论思想、数 形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较 强,属于较难题型 . 利用导数处理不等式问题 . 在解答题中主要体现为不等式的证明与不等 式的恒成立问题 . 常规的解决方法是首先等价转化不等式,然后构造新函数,利用导数研究 新函数的单调性和最值来解决,当然要注意分类讨论思想的应用.7.( 1)m 1, f ( x) 在 (0,1) 上单调递减, 在 (1, ) 上单调递增;( 2)m [ a ln a,) .【解析】试题分析:( 1)由 x 1是函数 f ( x) 的极值点,得 f 1 0 可得 m 得值,由导数和单调性的关系得其单调区间; ( 2)由题意知f '(x)e x m1 ,设 h( x) e xm1 ,知 h x0 得xxh x 单调递增,即 x x 0 是 f '(x) 0 在 (0, ) 上的唯一零点,得 mx 0 ln x 0 ,fxminf x 0 ,使得 f x 0 0 即可,结合 a ln a 1,得参数 m 范围 .试题解析:( 1)∵ x 1 是函数 f (x) 的极值点,∴ f '(1) 0e 1 m1 0 .∴ m1, f '( x) e x 1 1 xe x 11 .x x令 g( x) xe x 11, g '( x) e x 1xe x 1 (x 1)ge x 10 ,本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

相关文档
最新文档