线性代数期末考试试题A及解答
线性代数期末试卷A答案及评分标准
![线性代数期末试卷A答案及评分标准](https://img.taocdn.com/s3/m/ff88a96316fc700aba68fc11.png)
线性代数期末试卷A答案及评分标准IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】A卷2015—2016学年第一学期《线性代数》期末试卷答案(32学时必修)专业班级姓名学号开课系室应用数学系考试日期2016年1月15日题号一二三四五六七总分本题满分15 15 21 16 12 14 7本题得分阅卷人1.请用黑色或蓝色笔在试卷正面答题(请勿用铅笔答题),反面及附页可作草稿纸;2.答题时请注意书写清楚,保持卷面清洁;3.本试卷共七道大题,满分100分;试卷本请勿撕开,否则作废;4.本试卷正文共7页。
说明:试卷中的字母E 表示单位矩阵;*A 表示矩阵A 的伴随矩阵;)(A R 表示矩阵A 的秩;1-A 表示可逆矩阵A 的逆矩阵.一、填空题(请从下面6个题目中任选5个小题,每小题3分;若6个题目都做,按照前面5个题目给分) 1.5阶行列式中,项4513523124a a a a a 前面的符号为【负】.2.设1352413120101311--=D ,)4,3,2,1(4=i A i 是D 的第4行元素的代数余子式,则4443424122A A A A +-+等于【0】.3.设102020103B ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,A 为34⨯矩阵,且()2A =R ,则()AB =R 【2】.4.若向量组123(1,1,0),(1,3,1),(5,3,)t ==-=ααα线性相关,则=t 【1】.5.设A 是3阶实的对称矩阵,⎪⎪⎪⎭⎫ ⎝⎛-=1m m α是线性方程组0=Ax 的解,⎪⎪⎪⎭⎫⎝⎛-=m m 11β是线性方程组0)(=+x E A 的解,则常数=m 【1】.6.设A 和B 是3阶方阵,A 的3个特征值分别为0,3,3-,若AB B E =+,则行列式=+-|2|1E B 【-8】.二、选择题(共5个小题,每小题3分) 1.设A 为3阶矩阵,且21||=A ,则行列式|2|*-A 等于【A 】.(A)2-;(B)21-;(C)1-;(D)2. 2.矩阵110120001⎛⎫ ⎪⎪ ⎪⎝⎭的逆矩阵为【A 】.(A)210110001-⎛⎫ ⎪- ⎪ ⎪⎝⎭;(B)210110001⎛⎫ ⎪ ⎪ ⎪⎝⎭;(C)110120001-⎛⎫ ⎪- ⎪ ⎪⎝⎭;(D)110110001⎛⎫ ⎪⎪ ⎪⎝⎭.3.设A 是n 阶非零矩阵,满足2A A =,若A E ≠,则【A 】. (A)||0A =;(B)||1A =;(C)A 可逆;(D)A 满秩.4.设300300026,110,001342A B ⎛⎫⎛⎫⎪ ⎪==- ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭1-=AB C ,则1C -的第3行第1列的元素为【D 】.(A)4;(B)8;(C)0;(D)1-.5.设323121232221321222222),,(x ax x ax x ax x x x x x x f +++++=,a 是使二次型),,(321x x x f 正定的正整数,则必有【B 】.(A)2=a ;(B)1=a ;(C)3=a ;(D)以上选项都不对.三、求解下列各题(共3小题,每小题7分)1.若,,αβγ线性无关,2,αβ+2k βγ+,3βγ+线性相关,求k解:因为2,αβ+2k βγ+与3βγ+线性相关,所以必定存在不全为零的数321,,λλλ,使得0=3+++2+2+321)()()(γβλγβλβαλk ----------2分 整理得:0=3+++2+2+323211γλλβλλλαλ)()(k 由于,,αβγ线性无关,因此可得由于321,,λλλ不全为零,即上述齐次线性方程组有非零解,因此0=30122001k ,由此得k =分2.设()011201-⎪⎪⎪⎭⎫ ⎝⎛=A ,⎪⎪⎪⎭⎫ ⎝⎛--=03112211a B ,若2)(=+B AB R ,求a .解:由2)(=+B AB R 可知0=+B AB ,由此可得0=+B E A又02=122010012=+≠--E A ----------2分因此0=B因此可得5=-a .----------7分3.设矩阵2001000240021603,A a B t -⎛⎫⎛⎫ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,且,A B 相似,求a 与t 的值.解:由,A B 相似可知,A B 的特征值相同,而易知B 的特征值为-1,t ,3,因此A 的特征值也为-1,t ,3 利用特征值的性质可得21132(4)3ta t a ++=-++⎧⎨-=-⎩----------5分 解得12a t ==,.----------7分四、(共2小题,每小题8分) 1.求向量组的一个最大无关组,并将其余向量用这一最大无关组表示出来.解:令()123410311301,,,217242140A αααα⎛⎫ ⎪--⎪== ⎪⎪⎝⎭,把A 进行行变换,化为行最简形,()123410300110~00010000A C ββββ⎛⎫⎪⎪== ⎪⎪⎝⎭----------6分则421,,βββ是C 的列向量组的一个最大无关组,且421303ββββ++=, 故421,,ααα是A 的列向量组的一个最大无关组,且421303αααα++=.----------8分2.问a 满足什么条件,才能使得21403003A a ⎛⎫ ⎪= ⎪ ⎪⎝⎭共有两个线性无关的特征向量?解:由0=30030412=λλλλ----a E A ,得A 的特征值:3==2=321λλλ, 要使A 有两个线性无关的特征向量,则特征值3对应一个线性无关的特征向量,即0=)3(x E A -的解空间的维数为1,则2=)3(E A R -,----------6分而114300000A E a -⎛⎫ ⎪-= ⎪ ⎪⎝⎭,因此可知0≠a .----------8分五、问λ为何值时,线性方程组13123123,4226423x x x x x x x x +=⎧⎪++=+⎨⎪++=+⎩λλλ无解,有无穷多解,并在有无穷多解时求出其通解.解:记方程组的增广矩阵为,则101412261423B ⎛⎫ ⎪=+ ⎪ ⎪+⎝⎭λλλ,对其进行行变换,化为行阶梯形:101012320001B λλλ⎛⎫ ⎪→--+ ⎪ ⎪-+⎝⎭,易知,当1≠λ时,3)(2)(=≠=B R A R ,方程组无解;当1=λ时,2)()(==B R A R ,方程组有无穷多解;----------6分当1=λ时,101101210000B ⎛⎫⎪→-- ⎪ ⎪⎝⎭,与原方程组同解的方程组为1323121x x x x =-+⎧⎨=-⎩,由此可得原方程组的通解为()123112110x x k k R x -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=+-∈ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.----------12分六、求实二次型32312123222132184444),,(x x x x x x x x x x x x f -+-++=的秩,并求正交变换Py x =,化二次型为标准形.解:记二次型的矩阵为⎪⎪⎪⎭⎫ ⎝⎛----=442442221A ,122~000,000A -⎛⎫⎪ ⎪ ⎪⎝⎭ 故二次型f 的秩为分由0442442221=-------=-λλλλE A ,可得:0,9321===λλλ,当,91=λ求解0)9(=-x E A 的一个基础解系:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=11-211ξ,单位化:⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=3232-311p ,当,032==λλ求解0=Ax 的一个基础解系:⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=102-,01232ξξ, 正交化:[][]⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==⎪⎪⎪⎭⎫⎝⎛==15452--,012222323322ηηηξηξηξη,单位化:⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=3515541552-15452-35,0125132p p ,----------12分 令()321p p p P =,则可得正交变换Py x =,二次型的标准形为:232221321009),,(y y y y y y f ++=.----------14分 七、(请从下面2个题目中任选1个,若2个题目都做,按照第1题给分)1.“设A 是n 阶实的反对称矩阵,则对于任何n 维实的列向量α,α和αA 正交,且E A -可逆”.您认为该结论成立吗?请说明理由.解:该结论成立。
(完整版)线性代数测试试卷及答案
![(完整版)线性代数测试试卷及答案](https://img.taocdn.com/s3/m/464b9e01c1c708a1294a4401.png)
线性代数(A 卷)一、选择题(每小题3分,共15分)1 .设A 、B 是任意n 阶方阵,那么下列等式必成立的是() (A) AB BA (B) (AB)2 A 2B 2 (C) (A B)2 A 2AB B 2 (D) A B B A2 .如果n 元齐次线性方程组 AX 0有基础解系并且基础解系含有 s(s n)个解向量,那1 0 0210, A *是A 的伴随矩阵,则(A*)4 .设向量 (1, 1,1)T 与向量 (2,5, t)T 正交,则t5 .设A 为正交矩阵,则A1 11 6 .设a,b,c 是互不相同的三个数,则行列式ab c2,22a b c7 .要使向量组 1 (1, ,1)T , 2 (1,2,3)T, 3 (1,0,1)T 线性相关,则8 .三阶可逆矩阵A 的特征值分别为1, 2, 3,那么A 1的特征值分别为么矩阵A 的秩为((A) n (B) )s (C)n s (D)以上答案都不正确 3 .如果三阶方阵A (a j )3 3的特征值为1,2,5 ,那么ana 22a 33 及A 分别等于()(A) 10, 8(B)8, 10(C)10,8(D)10,4 .设实二次型f(x 1,x 2)2 (X ,X 2)4X 1 X 2的矩阵为A, 那么()2 3(A) A3 1 ⑻(C)1 1(D)5.若方阵A 的行列式A0, 则((A) A 的行向量组和列向量组均线性相关 (C) A 的行向量组和列向量组均线性无关 二、填空题(每小题3分,共30分)(B)A (D)A 的行向量组线性相关,列向量组线性无关 的列向量组线性相关,行向量组线性无关1如果行列式D 有两列的元对应成比例,那么该行列式等于2.设A3.设,是非齐次线性方程组AX b 的解若也是它的解,那么关组和秩. 四、(10分)设有齐次线性方程组X 1 ( 1)X 2 X 3 0, (1)X 1 X 2 X 3 0, X 1 X 2 ( 1)X 3 0.问当 取何值时,上述方程组(1)有唯一的零解;(2)有无穷多个解,并求出这些解. 五、(12分)求一个正交变换X PY ,把下列二次型化成标准形:、222f (X 1,X 2, X 3) X 1 X 2 X 3 4X 1X 2 4X 1X 3 4X 2X 3.六、(6分)已知平■面上三条不同直线的方程分别为11 : ax 2by 3c 0, 12 : bx 2cy 3a 0, 13 : cx 2ay 3b 0.试证:这三条直线交于一点的充分必要条件为a b c 0.线性代数(A 卷)答案1. D2. C3. B4. A5. A■-4*11.02. (A ) A3. 14. 35. 16. (c a)(c b)(b a)7. 08. 1,9.411 t 0 10. A I 5 42、1.解由AX(A I ) 1B . (2分)9 .若二次型 f(X i ,X 2,X 3)X 21 x 22 5x 23 2tX i X 2-2X 1X 3 4X 2X 3 是正定的,则 t 的取值范围10 .设A 为n 阶方阵,且满足A 2 2A 4I 0,这里I 为n 阶单位矩阵,那么A 1三、计算题(每小题9分,共27分)1 .已知A 1 00 1 ,求矩阵X 使之满足AX 0 0X B.2 .求行列式的值.3求向量组 (1,0,1,0), 2 ( 2,1,3, 7), 3 (3, 1,0,3,), 4 (4, 3,1, 3,)的一个最大无或-1由于1 23 4 1 2 3 41 2 3 4 0 1 1 3 r r 0 1 1 3 「3 5r 2 0 1 1 3 1 3 01 UUuLu 0 5 3 3 LuiuiUj2 0 0 2 12 0 73 3 0 733424四、解 方程组的系数行列式卜面求 (A I ) 由于(4分)(A I)所以 (A I) (7分)2.解 10 10 10 1010(9 分)10(4 分)(8160 (9 分)3.解 故向量组的秩是UjuniUr31 2 03 12 0(6分)3是它的一个最大无关组。
线性代数期末试卷及详细答案
![线性代数期末试卷及详细答案](https://img.taocdn.com/s3/m/27931bec05a1b0717fd5360cba1aa81144318fc3.png)
线性代数期末试卷及详细答案⼀、填空题(将正确答案填在题中横线上。
每⼩题2分,共10分)1、设1D =3512, 2D =345510200,则D =12D D OO =_____________。
2、四阶⽅阵A B 、,已知A =116,且=B ()1-12A 2A --,则B =_____________。
3、三阶⽅阵A 的特征值为1,-1,2,且32B=A -5A ,则B 的特征值为_____________。
4、若n 阶⽅阵A 满⾜关系式2A -3A-2E O =,若其中E 是单位阵,那么1A -=_____________。
5、设()11,1,1α=,()21,2,3α=,()31,3,t α=线性相关,则t=_____________。
⼆、单项选择题(每⼩题仅有⼀个正确答案,将正确答案的番号填⼊下表内,每⼩题2分,共20分)1、若⽅程13213602214x x x x -+-=---成⽴,则x 是(A )-2或3;(B )-3或2;(C )-2或-3;(D )3或2; 2、设A 、B 均为n 阶⽅阵,则下列正确的公式为(A )()332233A B+3AB +B A B A +=+;(B )()()22A B A+B =A B --;(C )()()2A E=A E A+E --;(D )()222AB =A B3、设A 为可逆n 阶⽅阵,则()**A=(A )A E ;(B )A ;(C )nA A ;(D )2n A A -;4、下列矩阵中哪⼀个是初等矩阵(A )100002?? ???;(B )100010011??;(C )011101001-?? ?- ? ?;(D )010002100??- ;5、下列命题正确的是(A )如果有全为零的数1,k 2k 3,,,m k k 使1122m m k k k αααθ+++= ,则1,α2α,,m α线性⽆关;(B )向量组1,α2α,,m α若其中有⼀个向量可由向量组线性表⽰,则1,α2α,,m α线性相关;(C )向量组1,α2α,,m α的⼀个部分组线性相关,则原向量组本⾝线性相关;(D )向量组1,α2α,,m α线性相关,则每⼀个向量都可由其余向量线性表⽰。
2019-2020-1《线性代数》期末试卷(A)答案及评分标准
![2019-2020-1《线性代数》期末试卷(A)答案及评分标准](https://img.taocdn.com/s3/m/46ac0e484b35eefdc8d333ef.png)
A卷2019-2020-1《线性代数》期末试卷(A)答案及评分标准《线性代数》期末试卷答案(32学时必修)专业班级姓名学号开课系室应用数学系考试日期 2016年1月15日题号一二三四五六七总分本题满分15 15 21 16 12 14 7本题得分阅卷人注意事项:1.请用黑色或蓝色笔在试卷正面答题(请勿用铅笔答题),反面及附页可作草稿纸;2.答题时请注意书写清楚,保持卷面清洁;3.本试卷共七道大题,满分100分;试卷本请勿撕开,否则作废;4. 本试卷正文共7页。
说明:试卷中的字母E 表示单位矩阵;*A 表示矩阵A 的伴随矩阵;)(A R 表示矩阵A 的秩;1-A 表示可逆矩阵A 的逆矩阵.一、填空题(请从下面6个题目中任选5个小题,每小题3分;若6个题目都做,按照前面5个题目给分)1.5阶行列式中,项4513523124a a a a a 前面的符号为【 负 】.2.设1352413120101311--=D ,)4,3,2,1(4=i A i 是D 的第4行元素的代数余子式,则4443424122A A A A +-+ 等于【 0 】.3.设102020103B ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,A 为34⨯矩阵,且()2A =R ,则()AB =R 【 2 】.4.若向量组123(1,1,0),(1,3,1),(5,3,)t ==-=ααα线性相关,则=t 【 1 】.5.设A 是3阶实的对称矩阵,⎪⎪⎪⎭⎫ ⎝⎛-=1m m α是线性方程组0=Ax 的解,⎪⎪⎪⎭⎫⎝⎛-=m m 11β是线性方程组0)(=+x E A 的解,则常数=m 【 1 】.6.设A 和B 是3阶方阵,A 的3个特征值分别为0,3,3-,若AB B E =+,则行列式=+-|2|1E B 【 -8 】.二、选择题(共5个小题,每小题3分)1. 设A 为3阶矩阵,且21||=A ,则行列式|2|*-A 等于【 A 】.(A) 2-; (B) 21-; (C) 1-; (D) 2.2. 矩阵110120001⎛⎫ ⎪⎪ ⎪⎝⎭的逆矩阵为【 A 】.(A) 210110001-⎛⎫ ⎪- ⎪ ⎪⎝⎭; (B)210110001⎛⎫⎪ ⎪ ⎪⎝⎭; (C) 110120001-⎛⎫ ⎪- ⎪ ⎪⎝⎭; (D) 110110001⎛⎫⎪ ⎪ ⎪⎝⎭.3.设A 是n 阶非零矩阵,满足2A A =,若A E ≠,则【 A 】.(A) ||0A =; (B) ||1A =; (C) A 可逆; (D) A 满秩.4. 设300300026,110,001342A B ⎛⎫⎛⎫⎪ ⎪==- ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭1-=AB C ,则1C -的第3行第1列的元素为【D 】.(A) 4; (B) 8; (C) 0; (D) 1-.5.设323121232221321222222),,(x ax x ax x ax x x x x x x f +++++=,a 是使二次型),,(321x x x f 正定的正整数,则必有【 B 】.(A) 2=a ; (B) 1=a ; (C) 3=a ; (D) 以上选项都不对.三、求解下列各题(共3小题,每小题7分)1. 若,,αβγ线性无关,2,αβ+2k βγ+,3βγ+线性相关,求k . 解:因为2,αβ+2k βγ+与3βγ+线性相关,所以必定存在不全为零的数321,,λλλ,使得0=3+++2+2+321)()()(γβλγβλβαλk ----------2分 整理得:0=3+++2+2+323211γλλβλλλαλ)()(k 由于,,αβγ线性无关,因此可得=3+0=+2+20=323211λλλλλλk 由于321,,λλλ不全为零,即上述齐次线性方程组有非零解,因此0=30122001k ,由此得k = 6. ----------7分 2. 设()011201-⎪⎪⎪⎭⎫ ⎝⎛=A ,⎪⎪⎪⎭⎫ ⎝⎛--=03112211a B ,若2)(=+B AB R ,求a .解:由2)(=+B AB R 可知0=+B AB ,由此可得 0=+B E A又 02=122010012=+≠--E A----------2分因此 0=B因此可得 5=-a . ----------7分3. 设矩阵2001000240021603,A a B t -⎛⎫⎛⎫ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,且,A B 相似,求a 与t 的值.解:由,A B 相似可知,A B 的特征值相同,而易知B 的特征值为 -1,t ,3,因此A 的特征值也为 -1,t ,3 利用特征值的性质可得21132(4)3t a t a ++=-++⎧⎨-=-⎩ ----------5分 解得12a t ==,. ----------7分四、(共2小题,每小题8分)1.求向量组123410311301,,,217242140⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭αααα的一个最大无关组,并将其余向量用这一最大无关组表示出来.解:令()123410311301,,,217242140A αααα⎛⎫ ⎪--⎪== ⎪ ⎪⎝⎭, 把A 进行行变换,化为行最简形, ()123410300110~00010000A C ββββ⎛⎫⎪⎪== ⎪⎪⎝⎭----------6分则421,,βββ是C 的列向量组的一个最大无关组,且421303ββββ++=, 故421,,ααα是A 的列向量组的一个最大无关组,且421303αααα++=.----------8分2. 问a 满足什么条件,才能使得21403003A a ⎛⎫ ⎪= ⎪ ⎪⎝⎭共有两个线性无关的特征向量?解:由0=30030412=λλλλ----a E A ,得A 的特征值:3==2=321λλλ, 要使A 有两个线性无关的特征向量,则特征值3对应一个线性无关的特征向量, 即0=)3(x E A -的解空间的维数为1,则2=)3(E A R -, ----------6分而114300000A E a -⎛⎫⎪-= ⎪ ⎪⎝⎭,因此可知0≠a . ----------8分五、问λ为何值时,线性方程组13123123,4226423x x x x x x x x +=⎧⎪++=+⎨⎪++=+⎩λλλ无解,有无穷多解,并在有无穷多解时求出其通解.解:记方程组的增广矩阵为,则101412261423B ⎛⎫ ⎪=+ ⎪ ⎪+⎝⎭λλλ,对其进行行变换,化为行阶梯形:101012320001B λλλ⎛⎫ ⎪→--+ ⎪ ⎪-+⎝⎭,易知,当1≠λ时,3)(2)(=≠=B R A R ,方程组无解;当1=λ时,2)()(==B R A R ,方程组有无穷多解; ----------6分当1=λ时,101101210000B ⎛⎫⎪→-- ⎪ ⎪⎝⎭,与原方程组同解的方程组为1323121x x x x =-+⎧⎨=-⎩,由此可得原方程组的通解为()123112110x x k k R x -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=+-∈ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ----------12分六、求实二次型32312123222132184444),,(x x x x x x x x x x x x f -+-++=的秩,并求正交变换Py x =,化二次型为标准形.解:记二次型的矩阵为⎪⎪⎪⎭⎫ ⎝⎛----=442442221A ,122~000,000A -⎛⎫⎪ ⎪ ⎪⎝⎭ 故二次型f 的秩为1. ----------4分由0442442221=-------=-λλλλE A ,可得:0,9321===λλλ,当,91=λ求解0)9(=-x E A 的一个基础解系:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=11-211ξ,单位化:⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=3232-311p ,当,032==λλ求解0=Ax 的一个基础解系:⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=102-,01232ξξ,正交化:[][]⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==⎪⎪⎪⎭⎫ ⎝⎛==15452--,012222323322ηηηξηξηξη,单位化:⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=3515541552-15452-35,0125132p p , ----------12分令()321p p p P =,则可得正交变换Py x =,二次型的标准形为:232221321009),,(y y y y y y f ++=. ----------14分七、(请从下面2个题目中任选1个,若2个题目都做,按照第1题给分)1. “设A 是n 阶实的反对称矩阵,则对于任何n 维实的列向量α,α和αA 正交,且E A -可逆”.您认为该结论成立吗?请说明理由. 解:该结论成立。
线性代数考试(A)参考答案及评释学习资料
![线性代数考试(A)参考答案及评释学习资料](https://img.taocdn.com/s3/m/e376770184868762caaed59c.png)
线性代数考试(A)参考答案及评释华南农业大学期末考试试卷(A 卷)2005学年第一学期 考试科目:线性代数 考试类型:闭卷 考试时间:120分钟学号 姓名 年级专业这是题文 这是参考答案 填空题.(每小题3分,共30分)1.若行列式D 各行元素之和等于0,则该行列式等于0. 各行加到第一行上去, 则第一行全为零P98奇数阶实反对称阵的行列式为零P64定理2.7非齐次线性方程组有解的充要条件 41141222222n n n --**⎛⎫===⋅= ⎪⎝⎭A A A重要关系*=AA A E ( P34定理1.9); 1n -*=A A(p44题1.18)5.设()()1,1,5,3,9,2,3,5,TTαβ=--=---则α与β的距离为9.()8,3,2,29-===αβ由正交矩阵的定义T =A A E 立即得到1T -=A A 且1T ===A A A A E若λ是A 的特征值, 则1λ是1-A 的特征值, 因为()110x x x x λλ-=≠⇒=A A x . 参考P87定理4.4: ()ϕA 的特征值是()ϕλ.8.如果()222123123121323,,2246f x x x x x tx x x x x x x =+++++是正定的,则t 的取值范围是5t >.11212323t ⎛⎫⎪= ⎪ ⎪⎝⎭A 1231121110,10,123501223t t ∆=>∆==>∆==-> p100定理5.6由2=AA 推出()()22-+=-A E A E EEnglish!二、单选题(每题3分,共15分)1.n 元齐次线性方程组0,AX =秩()(),R A r r n =<则有基础解系且基础解系 含( D )个解向量.(A )n (B )r (C )r n - (D )n r - P62 line 5: 基础解系含n r -个解向量2. 设四阶方阵A 的秩为2,则其伴随矩阵A *的秩为( D )(A )1 (B )2 (C )3 (D )0.A的余子式(3阶子式)全为零.*A是零矩阵.3. 设A是n阶方阵,满足2A E=,则( B )(A)A的行列式为1 (B),-+不同时可逆.A E A E=(D)A的特征值全是1 (C)A的伴随矩阵*A A2000或.A E A E A E A E A E=⇒+-=⇒+=-=4. 设n阶方阵,,A B C满足ABC E=,其中E是n阶单位阵,则必有( C )(A)ACB E== (D) BAC E= (C) BCA E= (B) CBA E()()A E.p7性质1.2, p35定理1.10=⇒=A BC E BC或者141231234142332,3,4333411111111111111110000111111000101111101111100010000010001001000100010000101001000000i r r i c c c c r r r r r r r r x x x x x x x x x x x xxxxx x x x x-=+++-+-↔↔-------+---==----+-----====.2.给定向量组()()121,1,1,1,1,1,1,1,TTαα==--()32,1,2,1Tα=, ()41,1,1,1,Tα=--求1234,,,αααα的一个最大无关组和向量组的秩.()213141434212341121112111110212,,,112100021111021011211121021202120002000200020000r r r r r r r r r r A αααα---+-⎛⎫⎛⎫⎪ ⎪----- ⎪ ⎪==−−−→ ⎪⎪--⎪ ⎪---⎝⎭⎝⎭⎛⎫⎛⎫⎪ ⎪------⎪ ⎪−−−→−−−→ ⎪ ⎪--⎪ ⎪⎝⎭⎝⎭可见()1234,,,3R αααα=,124,,ααα是一个最大无关组。
线性代数期末考试试卷A答案
![线性代数期末考试试卷A答案](https://img.taocdn.com/s3/m/59626f3b0740be1e650e9a99.png)
…………(2分)
它的特征多项式为
,
…………(4分)
由于其有一特征值,故,所以A的特征值为
,。
…………(6分)
当时,解方程。
,
得基础解系,,
…………(8分)
单位化即得,;
…………(10分)
当时,解方程。
,
得基础解系,单位化即得; …………(12分)
于是正交变换为 ,
且其标准型为.
…………(13分) …………(15分)
八、证明(本题13分)
1、设A、B都是n阶矩阵,且A为对称阵,证明也是对称阵。
得分
(本小题7分)
证明:由于,
A是n次对称阵,故有。
…………(3分)
于是
即是对称阵,故也是对称阵。 …………(7分)
2、设,证明:A的特征值只能取1或2。
(本题6分)
得分
证明:设是A的特征值,是A的属于的特征向量,则
…………(2分)
A) ACB B)ABC C)BAC D)CBA
3、设矩阵A =,则 D 。
A)8 B) -8 C)-16 D)16
4、设三元非齐次程组AX=B的两个解分别为,且系数矩阵A的秩为2,
则对任意常数方程组的通解可表为 C 。
A)
B)
C) D)
5、矩阵A=非零特征值是 B 。
A)4 B)3 C)2
D)1
二、填空题:(每题2分共10分)
…………(6分)
当时,解方程。 ,
得基础解系,故的全部特征向量为…………(8分) 当时,解方程。 ,
得基础解系,故的全部特征向量为…………(10分) 当时,解方程。 ,
得基础解系,故的全部特征向量为………(12分)
线性代数期末试卷A试题答案及评分标准(样卷)
![线性代数期末试卷A试题答案及评分标准(样卷)](https://img.taocdn.com/s3/m/f83c293483c4bb4cf7ecd19f.png)
则 Q 为正交矩阵,且 Q − 1
A Q = Λ ,其中
⎫ ⎛1 ⎞ ⎬n1 = 2 ⎜ ⎟ ……………8 分 =⎜ 1 ⎭ ⎟ ⎜ ⎟ n = 1 − 2 } 2 ⎝ ⎠
A
⎛λ1 ⎞ ⎜ ⎟ ~ Λ=⎜ λ2 ⎟ ⎜ ⎟ ⎜ λ3⎟ ⎝ ⎠ ��� ��� � 对应
γ1 γ 2 γ3
-3-
5.【解】
………4 分
(3)得同解方程组
即
①
………………6 分
其中 x2 , x4 为自由求知量,令 x 2 = x 4 = 0 ,得该非齐次线性方程组的一个特解
γ0
1 ⎞ ⎛1 = ⎜ , 0, , 0 ⎟ 2 ⎠ ⎝2
T
……………………………………………7 分
又,由①式得导出组的同解方程组为 ⎧ x1 = x2 + x4 ⎨ ⎩ x3 = 2 x4
α3 α3
1 1 ⎞ ⎛ 1 = ⎜− ,− , ⎟ 3 3 3 ⎠ ⎝
T
………4 分
(2)令矩阵 ⎛ 1 ⎜ ⎜ 2 ⎜ ⎜ 0 ) = 3 ⎜ ⎜ ⎜ 1 ⎜ 2 ⎝ − 1 6 2 6 1 6 1 ⎞ ⎟ 3⎟ 1 ⎟ ⎟ − 3⎟ ⎟ 1 ⎟ 3 ⎟ ⎠ −
Q = (γ 1 ,γ 2 ,γ
…………………………6 分
T
X
γ0
η 1 = (1,1,
个基础解系. 解法 2
0 ⎞ ⎛ 1 −1 −1 1 ⎛ 1 −1 0 −1 1 2 ⎞ ⎜ ⎟ ⎜ 1 ⎟ (1) A = ⎜ 1 −1 1 −3 1 ⎟ ⎯⎯ → ⎜ 0 0 1 −2 2 ⎟ ⎜ 1 −1 −2 3 − 1 ⎟ ⎜ 0 0 0 0 0⎟ ⎝ 2 ⎠ ⎝ ⎠
由梯矩阵知
完整版)线性代数试卷及答案
![完整版)线性代数试卷及答案](https://img.taocdn.com/s3/m/371a4d245e0e7cd184254b35eefdc8d376ee146f.png)
完整版)线性代数试卷及答案线性代数A试题(A卷)试卷类别:闭卷考试时间:120分钟考试科目:线性代数学号:______ 姓名:______题号得分阅卷人一.单项选择题(每小题3分,共30分)1.设A经过初等行变换变为B,则(B)。
(下面的r(A),r(B)分别表示矩阵A,B的秩)。
A) r(A)。
r(B);(D)2.设A为n(n≥2)阶方阵且|A|=,则(C)。
A) A中有一行元素全为零;(B) A中必有一行为其余行的线性组合;(C) A有两行(列)元素对应成比例;(D) A的任一行为其余行的线性组合。
3.设A,B是n阶矩阵(n≥2),AB=O,则下列结论一定正确的是: (D)A) A=O或B=O。
(B) B的每个行向量都是齐次线性方程组AX=O的解。
(C) BA=O。
(D) R(A)+R(B)≤n.4.下列不是n维向量组α1,α2.αs线性无关的充分必要条件是(A)A) 存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。
+ksαs≠O;(B) 不存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。
+ksαs=O(C) α1,α2.αs的秩等于s;(D) α1,α2.αs 中任意一个向量都不能用其余向量线性表示。
5.设n阶矩阵(n≥3)A=,若矩阵A的秩为n-1,则a必为()。
11;(C) -1;(D)。
(A) 1;(B)6.四阶行列式a1a2a3a4b1b2b3b4的值等于()。
A) a1a2a3a4+b1b2b3b4;(B) (a1a2-b1b2)(a3a4-b3b4);(C)a1a2a3a4-b1b2b3b4;(D) (a2a3-b2b3)(a1a4-b1b4)。
1.设A为四阶矩阵且A=b,则A的伴随矩阵A的行列式为b^3.(C)2.设A为n阶矩阵满足A+3A+In=O,In为n阶单位矩阵,则A=−A−3In。
(C)9.设A,B是两个相似的矩阵,则下列结论不正确的是A与B的行列式相同。
线性代数试题A答案[大全5篇]
![线性代数试题A答案[大全5篇]](https://img.taocdn.com/s3/m/eb46ab063868011ca300a6c30c2259010202f3fd.png)
线性代数试题A答案[大全5篇]第一篇:线性代数试题A答案2006-2007学年第二学期线性代数试题A卷参考答案及评分标准一.填空题(本题满分12分,每小题3分)⎛1-20 0 -25 -111、1;2、-3;3、A=00 3 1 00-3⎝0⎫⎪0⎪2⎪;4、2 ⎪3⎪1⎪⎪3⎭二、选择题(本题满分12分,每小题3分,.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内)1.C;2.C;3.A;4、B 三.计算行列式(本题满分6分)解 1 10Dn=001-110010Λ00-111000-11=100010100200Λ03ΛΛ1Λ00Λ0100Λ00n3-1ΛΛ011ΛΛΛΛΛΛΛΛΛΛΛΛ分Λn-1=n3分解2 10Dn=001-110010Λ00-111000=Dn-1+13分-1ΛΛ011ΛΛΛΛΛΛΛΛ-11=n3分四.(本题满分12分)解:⑴ 由等式A+B=AB,得A+B-AB+E=E,即(A-E)(B-E)=E3分因此矩阵A-E可逆,而且(A-E)=B-E.2分-1⑵ 由⑴知,A-E=(B-E),即A=(B-E)+E-1-1A=(B-E)+E或A=B(B-E)-12分-1⎛0-10-30100⎛⎫⎛⎫⎪⎪1=200⎪+010⎪=-3 001⎪001⎪0⎝⎭⎝⎭⎝⎛1 1=-3 0 ⎝1210⎫0⎪⎪0⎪ 2分⎪2⎪⎪⎭1200⎫0⎪100⎫⎪⎛⎪0⎪+010⎪3分⎪⎪1⎪⎝001⎭⎪⎭五.(本题满分14分)解:110⎤⎡1⎡11⎢01⎥⎢0221⎥→⎢A=⎢⎢0-1a-3-2b⎥⎢0⎢⎥⎢321a-1⎣⎦⎣01110⎤1221⎥⎥4分0a-10b+1⎥⎥00a-10⎦所以,⑴ 当a≠1时,rA=r(A)=4,此时线性方程组有唯一解.2分⑵ 当a=1,b≠-1时,r(A)=2,rA=3,此时线性方程组无解.2分⑶ 当a=1,b=-1时,rA=r(A)=2,此时线性方程组有无穷多组解.2分此时,原线性方程组化为()()()⎧x1+x2+x3+x4=0 ⎨⎩x2+2x3+2x4=1因此,原线性方程组的通解为⎧x1=x3+x4-1⎪x=-2x-2x+1⎪234 ⎨x=x3⎪3⎪x4⎩x4=或者写为⎡x1⎤⎡1⎤⎡1⎤⎡-1⎤⎢x⎥⎢-2⎥⎢-2⎥⎢1⎥2⎢⎥=k⎢⎥+k⎢⎥+⎢⎥4分⎢x3⎥1⎢1⎥2⎢0⎥⎢0⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣0⎦⎣1⎦⎣0⎦⎣x3⎦六.(本题满分12分)3-λ解 A-λE=-101202-λ1=(2-λ)(3-λ),2分03-λ所以得特征值λ1=2,λ2=λ3=32分⎛101⎫⎪对λ1=2,解方程组(A-2E)x=0,由A-2E=-101⎪,得特征向量001⎪⎝⎭⎛0⎫⎪ξ1=1⎪0⎪⎝⎭⎛0⎫⎪所以对应λ1=2的全部特征向量为c1 1⎪,c1≠03分0⎪⎝⎭⎛0 1对λ2=λ3=3,解方程组(A-3E)x=0,由A-3E=-0⎝01⎫1⎛10⎪r 1-1⎪−−→0 0100⎪0 ⎭⎝00⎫⎪⎪,⎪⎭⎛1⎫⎛1⎫⎪⎪得特征向量ξ2=-1⎪,全部特征向量为c2 -1⎪,c2≠03分0⎪0⎪⎝⎭⎝⎭A没有三个线性无关的特征向量,所以不能对角化.2分七.(本题满分12分)⎛1λ解:f的矩阵为A=λ4 -12⎝-1⎫⎪2⎪.…………2分 4⎪⎭因此,二次型f为正定二次型.⇔矩阵A为正定矩阵.⇔矩阵A的各阶顺序主子式全大于零.…………2分而矩阵A的各阶顺序主子式分别为D1=1>0,D2=1λ=4-λ2,…………2分λ41D3=A=λλ-12=-4(λ-1)(λ+2).…………2分 44-12所以,二次型f 为正定二次型.⇔D2=4-λ2>0,且D3=-4(λ-1)(λ+2)>0由 D2=4-λ2>0,得-2<λ<2 .由 D3=-4(λ-1)(λ+2)>0,得-2<λ<1 .因此,得-2<λ<1 .即,二次型f为正定二次型.⇔-2<λ<1…………4分八.(本题满分8分)已知三维向量空间的一组基为α1=(1,1,0),α2=(1,0,1),α3=(0,1,1)求向量β=(2,0,0)在上述基下的坐标.解:设向量β在基(α1,α2,α3)下的坐标为(x1,x2,x3),则有x1α1+x2α2+x3α3=β,2分写成线性方程组的形式,有⎛1⎫⎛1⎫⎛0⎫⎛2⎫⎪⎪⎪⎪x1 1⎪+x2 0⎪+x3 1⎪=0⎪2分 0⎪1⎪1⎪0⎪⎝⎭⎝⎭⎝⎭⎝⎭即⎧x1+x2=2⎪⎨x1+x3=0,⎪x+x=03⎩2得唯一解x1=1,x2=1,x3=-1,3分,1,-1).1分因此所求坐标为(1九.(本题满分12分)证法1:记A=(α1,α2,Λ,αm),B=(α1,α2,Λ,αm,β),显然r(A)≤r(B).1°因为α1,α2,Λ,αm线性无关,知r(A)=m1分2°因为α1,α2,Λ,αm,β线性相关,知r(B)<m+1 1分因此r(B)=m,1分Ax=(α1,α2,Λ,αm)x=b有解且唯一。
线代期末考试A卷及答案
![线代期末考试A卷及答案](https://img.taocdn.com/s3/m/140cd6c06294dd88d1d26b0f.png)
2011-2012学年第一学期期末考试《线性代数》试卷 (A )评阅人:_____________ 总分人:______________一、单项选择题。
(本大题共10小题,每小题3分,共30分) 1.设1111011x x x xx x++=+,则实数x =A .1 ;B .-1;C .0;D .4. 2.设A 为n 阶方阵,则kA =A .A k n; B. A k ; C. A k ; D. nA k )(. 3.设B A ,均为n 阶矩阵,且AB =O ,则下列命题中一定成立的是( ) A. A =O 或B =O ; B. A ,B 都不可逆;C. A +B =O ;D. A ,B 至少有一个不可逆.4.下列矩阵中与矩阵123218001A ⎛⎫⎪= ⎪ ⎪⎝⎭同秩的矩阵是 A .()456; B.123456⎛⎫⎪⎝⎭; C.12111011⎛⎫ ⎪- ⎪ ⎪⎝⎭; D.122101402⎛⎫ ⎪ ⎪ ⎪⎝⎭. 5.设A 是正交矩阵,则下列结论错误的是( ) A. A 2必为1; B. A 必为1; C. T A A=-1; D. A 的行(列)向量组是正交单位向量组.6.设非齐次线性方程组Ax =b 的导出组为Ax =0,则下列结论中正确的是( )A.若Ax =0仅有零解,则Ax =b 有唯一解;B.若Ax =0有非零解,则Ax =b 有无穷多解;C.若Ax =b 有无穷多解,则Ax =0仅有零解;D.若Ax =b 有唯一解,则Ax =0仅有零解。
__________________系__________专业___________班级 姓名_______________ 学号_______________………………………………(密)………………………………(封)………………………………(线)………………………………27.已知λ=3是可逆矩阵A 的一个特征值,则1-A 有一特征值是( )A.49; B. 94; C. 13; D. 19 .8.设n 维向量α与β满足α,β()=0,则有( )A. α,β 全为零向量;B. α,β中至少有一个是零向量;C. α与β的对应分量成比例;D. α与β 正交. 9.设向量组A 与向量组B 等价,则有( )A. B A R R <B. B A R R >C. B A R R =D. 不能确定A R 和B R 的大小.10.设齐次线性方程组0AX =的系数矩阵A 为m n ⨯矩阵,()()R A s s n =<,则此方程组基础解系的秩为A .m s - ; B. s n - ; C. n s - ; D. m n -.二、填空题。
(本科)线性代数期末考试题及答案AB卷
![(本科)线性代数期末考试题及答案AB卷](https://img.taocdn.com/s3/m/f69ba1956037ee06eff9aef8941ea76e58fa4ab6.png)
线性代数试题测试卷及答案2套一、填空题1.四阶行列式中含有因子112432a a a 的项为_________.2.行列式222111ab c a b c 的值为_________. 3.设矩阵1000010000210022⎛⎫⎪⎪= ⎪⎪⎝⎭A ,则1-=A _________.4.设四元齐次线性方程组的系数矩阵的秩为1,则其解空间的维数为_________.5.设矩阵1234(,,,)=A αααα,其中234,,ααα线性无关,12342=-+αααα,向量41i i ==∑βα,则方程=AX β的通解为_________.6.已知三阶矩阵A 的特征值为1,2,3,则32--=A A E _________.二、选择题1.若两个三阶行列式1D 与2D 有两列元素对应相同,且123,2D D ==-,则12D D +的值为( ).A.1B.6-C.5D.02.对任意的n 阶方阵,A B 总有 ( ). A.=AB BA B.=AB BA C.()111---=AB B A D.()222=AB A B3.若矩阵X 满足方程=AXB C ,则矩阵X 为( ).A.11--A B C B.11--A CB C.11--CA B D.条件不足,无法求解4.设矩阵A 为四阶方阵,且()3R =A ,则*()R =A ( ). A.4 B.3 C.2 D.15.下列说法与非齐次线性方程组=AX β有解不等价的命题是( ).A.向量β可由A 的列向量组线性表示B.矩阵A 的列向量组与(,)A β的列向量组等价C.矩阵A 的行向量组与(,)A β的行向量组等价D.(,)A β的列向量组可由A 的列向量组线性表示6.设n 阶矩阵A 和B 相似,则下列说法错误的是( ). A.=A B B.()()R R =A BC.A 与B 等价D.A 与B 具有相同的特征向量7.设222123121323()224f x x x x ax x x x x x =+++-+为正定二次型,则a 满足( ).A.11a a ><-或B.12a <<C.11a -<<D.21a -<<- 三、计算题1.已知12111111111n na a D a ++=+,其中120n a a a ≠,求12n n nn A A A +++.2.设矩阵022110123⎛⎫ ⎪= ⎪ ⎪-⎝⎭A ,且2=+AX A X ,求X .3.求矩阵123451122102151(,,,,)2031311041⎛⎫ ⎪-⎪== ⎪- ⎪-⎝⎭A ααααα的列向量组的一个最大无关组,并把其余列向量用最大无关组线性表示.4.求非齐次线性方程组12341234123431,3344,5980x x x x x x x x x x x x +--=⎧⎪--+=⎨⎪+--=⎩的通解.5.求一个正交变换=X PY ,将二次型123121323(,,)222f x x x x x x x x x =--化成标准形.四、证明题已知n 阶方阵A 和B 满足124-=-A B B E ,证明2不是A 的特征值。
2012-2013-1-线性代数A 期末试卷及答案
![2012-2013-1-线性代数A 期末试卷及答案](https://img.taocdn.com/s3/m/a2481ecbdaef5ef7bb0d3c16.png)
②若秩 (A) ≥ 秩 (B) ,则 Ax = 0 的解均是 Bx = 0 的解;
③若 Ax = 0 与 Bx = 0 同解,则秩 (A) = 秩 (B) ;
④若秩 (A) = 秩 (B) ,则 AX = 0 与 BX = 0 同解。
以上命题中正确的是
。
(A)①②
(B)①③
(C)②④
(D)③④
5. 方阵 A 与 B 相似的充分必要条件是
北京科技大学 2012--2013 学年第一学期
线性代数 试卷(A 卷)
院(系)
班级
学号
姓名
试卷卷面成绩
题 号
一
二
三
四
五
六
七
八
得
分
评
阅
审
核
小计
占课程 考核成 绩 70%
平时 成绩 占 30%
课程考 核成绩
注意事项: (1)本试卷共八道大题,共八页,请认真核对。 (2)正确填写学院、班级、姓名、学号等个人信息,空填或错填的试卷为无效试卷。 (3)请使用钢笔、签字笔或者圆珠笔答卷,使用铅笔答卷无效。
(A)2000
(B)-2000
。 (C)2300
(D)-2300
3.设向量组α1,α2 ,α3 线性无关,向量 β1 可由α1,α2 ,α3 线性表示,而向量 β2 不能由α1,α2 ,α3 线性表示,
则对于任意常数 k ,必有
。
(A)α1,α2 ,α3, kβ1 + β2 线性无关;
(B)α1,α2 ,α3, kβ1 + β2 线性相关;
⎟ ⎟ ⎟
,
α
3
⎜
=
⎜ ⎜
0 7
⎟
线性代数A及答案
![线性代数A及答案](https://img.taocdn.com/s3/m/620609d95022aaea998f0fbe.png)
2005学年第2学期线性代数期末考试试卷( A 卷 )一. 填空题 (本题共有10个小题, 每小题3分)1. 设305021311121A ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,则矩阵A 的秩()r A =__________. 2. 设A 为3阶方阵,行列式2A =,则3A =________.3. 设矩阵20003101A x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦与400020002B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦相似,则x =_________. 4. 设A 是n 阶方阵且240A A E +-=, 则()1A E --=_________.5.()222,,2332f x y z x y z ayz =+++是正定二次型,则a 的取值范围是______.6. 若向量()1,2,0与(),,0x y 线性无关,则x 与y 的关系应为__________.7. 向量[]1,4,0,2T∂=与[]2,2,1,3Tβ=-的距离和内积分别为_________和___________.8. 设10246311A a -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,B 为3阶非零矩阵,且0AB =,则a =___________.9. 设0是矩阵10102010A a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦的特征值,则a =___________. 10. 在MA TLAB 软件中,det(A ) 表示求__________.二. 选择题(本题共有5个小题, 每个小题都给出代号 (A), (B), (C), (D) 的四个结论, 其中只有一个结论是正确的。
每小题3分。
)1. 设A 是n 阶方阵,则下列4个式子中表明A 是正交矩阵的式子为( )(A) 1AA E -=(B) AA E = (C) 1TA A -=(D) 1A =±2. 已知,A B ,C 为n 阶方阵,则下列性质不正确的是( )(A) AB BA = (B) ()()AB C A BC =(C)()A B C AC BC +=+(D) ()C A B CA CB +=+3. 已知方程组Ax b =对应的齐次方程组为0Ax =,则下列命题正确的是( )(A) 若0Ax =只有零解,则Ax b =一定有唯一解。
广西科技大学-2011-2012-线性代数A(A卷)期末试题及答案
![广西科技大学-2011-2012-线性代数A(A卷)期末试题及答案](https://img.taocdn.com/s3/m/2a23d489ddccda38376bafef.png)
广西工学院 2011 — 2012 学年第 二 学期期末考试线性代数A 试题( A 卷)考试班级 相关专业 学生总数 印数 考试时间 120 分钟 考生注意:出题教师 出题组 审核人(签名)1.系别、班别、学号、姓名要填写 准确、工整。
2.考试作弊者, 本门课程成绩以零 分记,并取消补考 资格,同时给予留 校察看以上处分。
第二次作弊者,给 以勒令退学或开除 学籍处分。
装订线内 不要答题第1页(共6页)第2页(共6页)三(12分):设矩阵2111021100210002A ⎛⎫ ⎪⎪= ⎪⎪⎝⎭,12112111B ⎛⎫ ⎪-⎪= ⎪- ⎪⎝⎭,若AX X B =+,求矩阵X . 四(14分):设有向量组:1(1,1,0,1)T α=-,2(1,1,1,1)T α=--,3(1,1,1,0)T α=,4(2,0,1,2)T α=-,5(1,1,0,1)T α=-.(1)求向量组12345,,,,ααααα的秩r ;(2)求向量组12345,,,,ααααα的一个极大线性无关组,并将其余向量用此极大线性无关组线性表示.五(14分):设有非齐次线性方程组12345123451234512123224x x x x x x x x x x x x x x x x x -+-+=⎧⎪+-+-=⎪⎨--+-=⎪⎪-=⎩(1)求方程组的一个特解;(2)求方程组对应的齐次线性方程组(即导出组)的一个基础解系;(3)写出方程组的一般解.六(14分):设矩阵300011011⎛⎫⎪= ⎪ ⎪⎝⎭A .(1)求A 的特征值和特征向量;(2)求正交矩阵T ,使T T AT 为对角矩阵并写出对角阵. 七(6分):设向量组1234,,,αααα线性无关,而向量组11βα=,212βαα=-,3123βααα=-+,41234βαααα=-+-,证明向量组1234,,,ββββ也线性无关.2011-2012学年第二学期线性代数A (A 卷)期末考试参考答案一.填空题(每题3分,共30分):1、12;2、0;3、2,2211111232123⎛⎫ ⎪⎪ ⎪⎝⎭ ; 4、1- ; 5、 ()R A n < ; 6、相 ;7、11 1.2213()()k k ηηηηηη=+-+- ; 8、0,8,24 ; 9、4 ,1-; 10、1 二(10分):解:1234234134124123D =123410101010234134124123r r r r +++ 1213141111101211,2,3,4100121100321r r r r r r r ---------32424311110121,3,1000400004r r r r r r --++--160=三(12分): 解:解法一:由AX X B =+,有()A E X B -=.∵1111011100110001A E ⎛⎫ ⎪⎪-= ⎪ ⎪⎝⎭ ∴()|A E B -=1111120111110011210111⎛⎫ ⎪-⎪ ⎪- ⎪⎝⎭342414,,111001011020001012000111r r r r r r ---⎛⎫⎪- ⎪−−−−−→⎪-⎪⎝⎭231312,,100021010032001012000111r r r r r r ---⎛⎫⎪- ⎪−−−−−→ ⎪- ⎪⎝⎭从而 1()X A E B -=-21321211⎛⎫ ⎪-⎪= ⎪- ⎪⎝⎭ 解法二:1111011100110001A E ⎛⎫ ⎪⎪-= ⎪ ⎪⎝⎭ ()1111100001110100|0011001000010001A E E ⎛⎫ ⎪ ⎪-= ⎪ ⎪⎝⎭11101001011001010010001100010001-⎛⎫⎪- ⎪→ ⎪- ⎪⎝⎭11001010010001100010001100010001-⎛⎫ ⎪- ⎪→ ⎪- ⎪⎝⎭1000110001000110001000110010001-⎛⎫⎪- ⎪→ ⎪-⎪⎝⎭∴ 111000110()00110001A E --⎛⎫ ⎪-⎪-= ⎪- ⎪⎝⎭ 从而 1()X A E B -=-1100011000110001-⎛⎫ ⎪-⎪= ⎪- ⎪⎝⎭12112111⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭21321211⎛⎫ ⎪- ⎪=⎪- ⎪⎝⎭解法三:(用伴随矩阵来求解,根据具体情况评分) 四(14分): 解: ()123451112111101,,,,0111011021A ααααα⎛⎫⎪--⎪== ⎪⎪---⎝⎭2141,11121020220111000102r r r r -+⎛⎫ ⎪--- ⎪−−−−→ ⎪ ⎪⎝⎭ 21211121010110111000102r -⎛⎫ ⎪ ⎪−−−→⎪⎪⎝⎭ 1232,10110011100010100102r r r r --⎛⎫⎪ ⎪−−−−→⎪- ⎪⎝⎭13234341,,,310011010110010100001r r r r r r r ---⎛⎫⎪⎪−−−−−−→ ⎪- ⎪⎝⎭ 142434,,10010010100010001r r r r r r --+⎛⎫ ⎪⎪−−−−−→ ⎪ ⎪⎝⎭所以(1)12345,,,,ααααα的秩为4r =(2)1235,,,αααα为向量组12345,,,,ααααα的一个极大线性无关组 且 412ααα=+五(14分):解:(|)A A b ==111111111112111113220004--⎛⎫⎪--⎪⎪---⎪-⎝⎭213141,,2111111022221002222002222r r r r r r -----⎛⎫⎪--⎪−−−−−−→ ⎪--⎪--⎝⎭433211,,221111111011112001111000000r r r r ----⎛⎫ ⎪⎪--−−−−−→ ⎪ ⎪-- ⎪ ⎪⎝⎭1223,31000021010002001111000000r r r r ++⎛⎫ ⎪⎪ ⎪-−−−−→ ⎪ ⎪-- ⎪ ⎪⎝⎭(1)方程组的同解方程组为123453 21 21x x x x x ⎧=⎪⎪⎪=-⎨⎪-+=-⎪⎪⎩,即123453 21 21x x x x x ⎧=⎪⎪⎪=-⎨⎪=-+-⎪⎪⎩令450x x ==,得特解 31,,1,0,022Tη*⎛⎫=-- ⎪⎝⎭(2)方程组对应的齐次线性方程组(即导出组)的同解组为123450 0x x x x x =⎧⎪=⎨⎪=-⎩ 分别取45(,)(1,0),(0,1)T T T x x =,得基础解系()10,0,1,1,0T η=,()10,0,1,0,1Tη=-(3)方程组的一般解为:1122x C C ηηη*=++ 12(,)C C R ∈ .六(14分):解:(1)300011011E A λλλλ--=---- ()()2311λλ⎡⎤=---⎣⎦=(2)(3)λλλ=--特征值为10λ= 22λ= 33λ=当10λ=时,3001000011011011000E A -⎛⎫⎛⎫⎪ ⎪-=--→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭,(0)0E A x -=即为1230 x x x =⎧⎨=-⎩取31x =得1(0,1,1)T η=-,特征向量为1111(0,1,1),0T k k k η=-≠当22λ=时,1001002011011011000E A -⎛⎫⎛⎫⎪ ⎪-=-→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,(2)0E A x -=即为1230 x x x =⎧⎨=⎩取31x =得2(0,1,1)T η=,特征向量为2222(0,1,1),0T k k k η=≠当33λ=时,0000103021001012000E A ⎛⎫⎛⎫⎪ ⎪-=-→ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,(3)0E A x -=即为230 0 x x =⎧⎨=⎩取11x =得3(1,0,0)T η=,征向量为3333(1,0,0),0T k k k η=≠七(6分):证明:设11223344k k k k ββββ+++=0 即 11212312341234()()()k k k k αααααααααα+-+-++-+-=0 亦即 12341234234344()()()k k k k k k k k k k αααα+++-++++-=0 ∵向量组1234,,,αααα线性无关∴ 12342343440()000k k k k k k k k k k +++=⎧⎪-++=⎪⎨+=⎪⎪-=⎩此方程组只有零解,即12340k k k k ====. 故向量组1234,,,ββββ也线性无关.得证.。
线性代数A卷 本科(48学时)答案 (1)
![线性代数A卷 本科(48学时)答案 (1)](https://img.taocdn.com/s3/m/743ec32dbcd126fff7050bc5.png)
a3
1 证明:由 A A 4 E O 可得 A( A E ) 4 E ,且 A [ ( A E )] E ,…………3 分 4
2
an
an
则
1 A ( A E ) 1 0 ,所以 A 0 ,则 A 为可逆矩阵 4
(a1
1 )a2 a3 .....an ..........2分 a k 2 k
根据实际情况可得 0
1 k 3 1 ( k 3 0 )……………………….…….2 分 0
x1 600 x5 , x 2 200 x5 , x3 400, x 4 500 x5
x5 500 …4
则
A E
1 ( A 2 E ) 1 0 ,所以 A E 0 故 A E 可逆………1 分 2 1 1 E )[ ( A 2 E )] E ,故 ( A E ) 1 ( A 2 E ) ……….1 分 2 2
又因为 ( A
1 0 1 ,求 X . 2、设 A 1 2 0 ,且 AX E A 2 X (期中 E 为 3 阶单位矩阵) 1 0 1
0 1 k1 1 k 2 0 ( k1 , k 2 不同时为零)………………3 分 1 0
② 解 ( A E ) x 0 ,得属于 3 1 的特征向量为:
1 0 0 1 0
得 分
1 1 0 0 0
0 0 800 1 0 1 1 0 300 r 0 0 1 1 500 0 0 1 600 0 1 0 0 400 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
线性代数A答案
![线性代数A答案](https://img.taocdn.com/s3/m/8946dd3c581b6bd97f19eae7.png)
一、 单项选择题(每小题4分,共20分)1. A,B,C,I 为同阶矩阵,I 为单位矩阵,若ABC=I ,则下列各式总是成立的是(A ) (A) BCA=I (B) ACB=I (C) BAC=I (D) CBA=I2. 已知方阵A 满足234A A E O ++=, 则矩阵()12A E -+=( C )(A )A E + (B )1()2A E + (C )1()2A E -+ (D )2A E +3. 设3阶矩阵A 有特征值1,2,3,其对应的特征向量分别为123,,ξξξ,令[]321d i a g Λ=,则使得1P AP -=Λ的可逆矩阵P 可以是下面四个选项中的 ( B ) (A )[]123ξξξ (B )[]32123ξξξ(C )[]12332ξξξ (D )[]231ξξξ4.设向量12(3,1,0),(2,0,4),(1,2,)k ααβ==-=,则k=( D )时,β才能由α1,α2线性表示。
(A) 2 (B) 4 (C) 7 (D) 105.如果( D ),则矩阵A 与矩阵B 相似 (A)B A = (B)r(A)=r(B) (C)A 与B 有相同的特征多项式(D)n 阶矩阵A 与B 有相同的特征值且n 个特征值各不相同二、 填空题(每题4分,共20分)1.行列式624210312--中的元素a 23的代数余子式23A 的值为 8 .2.设A=310120⎛⎫⎪⎪ ⎪⎝⎭,则A T A=13332⎛⎫ ⎪⎝⎭.3.设3阶方阵1020002a A b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦与对角矩阵100020003B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦相似,则1,2==b a4.已知方程组12310101202110x k x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦有非零解,则k= -1 . 5.设3阶方阵A 的特征值为1,1,3,-A *是A 的伴随矩阵, 则18/3A A *-+=.二.计算题(50分)1.计算行列式x aa a x aa ax解:x a a a x a a ax(1)1(1)1((1))(1)1x n a a a a a x n a x a x a x n a x n a axax+-+-==+-+-110010((1))((1))()1n x a x n a x n a x a x a--=+-=+---………8分2.已知两个三阶方阵,A B 满足2AB E A B +=+,其中101020,101A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦求矩阵B .(10分)解:由2AB E A B +=+()()()A E B A E A E ⇒-=-+………………4分因为0A E -≠,………………6分所以B A E =+=201030102⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦………………10分3.求向量组1(1,1,3,1),T α=2(1,1,1,3),T α=--3(5,2,8,9),T α=--4(1,3,1,7),Tα=-的一个极大无关组,并把其余向量用该极大无关组线性表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、此二次型矩阵特征值有负值,,故二次型不正定。--------------------(14分)
六、
1、证明: -------------(3分)
,故 可逆,且 ----(5分)
2、证明:因为 为正交矩阵且 , ------------(1分)
-------(4分)
,故 -----------------(5分)
六 证明题
1、若 阶矩阵 满足 ,求证 可逆,并求 。
2、设五阶正交矩阵 满足 ,求证:矩阵 的秩 。
线性代数A参考答案及评分标准
一、填空
1、负;46。2、4;2; 与 。
3、 ; 。4、 。
5、 6、 。
7、0; 。8、 ;2; 。
二、计算
1、 --(3分)=
--------------(5分)= ------------------(6分)
得到齐次线性方程组的基础解系
三、 --------(2分)
故 时, ,方程组有解---------(4分)
此时方程组的一般解为: ,得一个特解
导出组的一个基础解系, -----------------(10分)
通解为 ( , 为任意常数)…(12分)
四、 ,
得到 的特征值 ---------------(4分)
三(12 )设线性方程组 ,当 为何值时 能与对角形矩阵相似,求参数 的值。
五(14 )二次型
(1)写出二次型的矩阵 。
(2)用正交变换法将此二次型化为标准形并写出所做的正交变换 以及二次型的标准形。
(3)此二次型是否正定,说明理由。
5.四阶矩阵 的行列式 则 , , 的列向量组线性关。
6.
7. 则 。又若 则 。
8.三阶矩阵 的行列式 矩阵 不可逆, 则 的三个特征值为。实对称矩阵 与 相似,则 ,二次型 的规范形为。
共2页第2页
二 计算题
1、求行列式值 (其中 )
2、三阶矩阵 ,矩阵 满足 ,化简此矩阵方程并求矩阵 。
3、设四阶矩阵 ,问 取何值时矩阵 的秩 ,并在 时求出齐次线性方程组 的一个基础解系。
2、解:原式两边左乘 得 ,所以 ---------(2分)
------(4分), ---------(7分) --------(8分)
3、解:由 --------------------------------(1分)= ----(2分),所以 --------------------(1分)
-------------------------(3分)
时, ,所以 ,
从而 属于特征值1有两个线性无关的特征向量,
因此 有三个线性无关的特征向量。
所以 , 能够与对角形矩阵相似。-------(8分)
五、解:1、 ---------------(2分)
2、据题意 的特征值为 -------(4分)
时,得标准正交向量 -----------(8分)
时,得 ---------------(10分)
线性代数期末考试试题A及解答
学年第2学期线性代数A试题
考试时间:阅卷教师:
考试班级学号姓名成绩
一 填空
1.五阶行列式 展开式中有一项为 ,此项前面应带的符号为。三阶行列式 第二行元素的代数余子式之和 =。
2.向量组 = , ,当
时线性相关,此时 ,其中一个极大无关组为。
3.若 , ,则 , 。
4. 若 ,则 。