(完整版)宇宙双星模型
双星系统
(2)特点: ①各自所需的向心力由彼此间的万有引力相互提供 ②两颗星的周期及角速度都相同 ③两颗星的半径与它们之间的距离关系为 (3)两颗星到圆心的距离与星体质量成反比,与星体 运动的线速度成反比.
拓展: 1.若在双星模型中,图中L、m1、m2、G为已知量, 双星运动的周期如何表示? 2.若双星运动的周期为T,双星之间的距离为L,G 已知,双星的总质量如何表示?
球的影响,可以将月球和地球看成 上述星球A和B,月球绕其轨道中 心运行的周期记为T1ቤተ መጻሕፍቲ ባይዱ但在近似处 理问题时,常常认为月球是绕地心
做圆周运动的,这样算得的运行周 期为T2。已知地球和月球的质量分 别为5.98×1024 kg和7.35×1022 kg 。求T2与T1两者的平方之比。(结果 保留3位小数)
[典例2] (多选)宇宙间存在一些离其他恒星较远的三星 系统,其中有一种三星系统如图所示,三颗质量均为m 的星位于等边三角形的三个顶点,三角形边长为R,忽略
其他星体对它们的引力作用,三星在同一平面内绕三角 形中心O做匀速圆周运动,万有引力常量为G,则
(1)每颗星做圆周运动的线速度? (2)每颗星做圆周运动的角速度? (3)每颗星做圆周运动的周期?
(二)宇宙三星模型 (1)定义:所研究星体的万有引力的合力提供做圆周运 动的向心力,除中央星体外,各星体的角速度或周期 相同. (2)三星模型: ①三颗星位于同一直线上,两颗环绕
星围绕中央星在同一半径 为R的圆形轨道上运行 ②三颗质量均为m的星体位 于等边三角形的三个顶点 上(如图乙所示).
(三)宇宙四星模型
万有引力的合力提供做圆周运动的向心力,除中央 星体外,各星体的角速度或周期相同.
高一物理【双星问题】专题
高一物理【双星问题】专题1.双星模型宇宙中往往会有相距较近、质量相当的两颗星球,它们离其他星球都较远,因此其他星球对它们的万有引力可以忽略不计。
在这种情况下,它们将各自围绕它们连线上的某一固定点O 做同周期的匀速圆周运动。
这种结构叫作双星模型(如图所示)。
2.双星的特点(1)由于双星和该固定点O 总保持三点共线,所以在相同时间内转过的角度必然相等,即双星做匀速圆周运动的角速度必然相等,因此周期也必然相等。
(2)由于每颗星球的向心力都是由双星间相互作用的万有引力提供的,因此大小必然相等,即m 1ω2r 1=m 2ω2r 2,又r 1+r 2=L (L 是双星间的距离),可得r 1=m 2m 1+m 2L ,r 2=m 1m 1+m 2L ,即固定点离质量大的星球较近。
(3)列式时需注意:万有引力定律表达式中的r 表示双星间的距离,该处按题意应该是L ,而向心力表达式中的r 表示它们各自做圆周运动的轨道半径。
宇宙中两颗相距较近的天体称为双星,它们以二者连线上的某一点为圆心做匀速圆周运动,而不至于因相互之间的引力作用吸引到一起。
设两者相距为L ,质量分别为m 1和m 2。
(1)试证明它们的轨道半径之比、线速度之比都等于质量的反比; (2)试写出它们角速度的表达式。
[解析] 双星之间相互作用的引力满足万有引力定律,即F =G m 1m 2L 2,双星依靠它们之间相互作用的引力提供向心力,又因为它们以二者连线上的某点为圆心,所以半径之和为L 且保持不变,运动中角速度不变,如图所示。
(1)分别对m 1、m 2应用牛顿第二定律列方程, 对m 1有G m 1m 2L 2=m 1ω2r 1①对m 2有G m 1m 2L 2=m 2ω2r 2②由①②得r 1r 2=m 2m 1;由线速度与角速度的关系v =ωr ,得v 1v 2=r 1r 2=m 2m 1。
(2)由①得r 1=Gm 2L 2ω2,由②得r 2=Gm 1L 2ω2,又L =r 1+r 2,联立以上三式得ω=G (m 1+m 2)L 3。
(完整版)“双星”问题及天体的追及相遇问题
在与地球上物体追及时,要根据地球上物体与同步卫星角速度相同的特点进行判断。
题型一 双星规律的应用
【例题】2017年6月15日,我国在酒泉卫星发射中心用长征四号乙运载火箭成功发射硬X射线调制望远镜卫星“慧眼”。“慧眼”的成功发射将显著提升我国大型科学卫星研制水平,填补我国国X射线探测卫星的空白,实现我国在空间高能天体物理领域由地面观测向天地联合观测的超越。“慧眼”研究的对象主要是黑洞、中子星和射线暴等致密天体和爆发现象。在利用“慧眼”观测美丽的银河系时,若发现某双黑洞间的距离为L,只在彼此之间的万有引力作用下做匀速圆周运动,其运动周期为T,引力常量为G,则双黑洞总质量为()
【例题】太阳系中某行星运行的轨道半径为 ,周期为 .但科学家在长期观测中发现,其实际运行的轨道与圆轨道总存在一些偏离,且周期性地每隔 时间发生一次最大的偏离.天文学家认为形成这种现象的原因可能是该行星外侧还存在着一颗未知行星,则这颗未知行星运动轨道半径为 ( )
A. B.
C. D.
【解析】:由题意可知轨道之所以会偏离那是因为受到某颗星体万有引力的作用相距最近时
②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。
二、多星模型
(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.
(2)三星模型: ①三颗ቤተ መጻሕፍቲ ባይዱ位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).
【解析】已知地球绕太阳的公转周期为 设火星的公转周期为 根据开普勒第三定律 得 又根据 化简得
(完整版)双星三星四星问题
双星模型、三星模型、四星模型一、双星问题1.模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角速度、周期相同的匀速圆周运动的恒星称为双星。
2.模型条件: (1)两颗星彼此相距较近。
(2)两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。
(3)两颗星绕同一圆心做圆周运动。
3.模型特点: (1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。
(2)“周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。
(3)三个反比关系:m1r1=m2r2;m1v1=m2v2;m1a1=m2a2推导:根据两球的向心力大小相等可得,m1ω2r1=m2ω2r2,即m1r1=m2r2;等式m1r1=m2r2两边同乘以角速度ω,得m1r1ω=m2r2ω,即m1v1=m2v2;由m1ω2r1=m2ω2r2直接可得,m1a1=m2a2。
(4)巧妙求质量和:Gm1m2L2=m1ω2r1①Gm1m2L2=m2ω2r2②由①+②得:G m1+m2L2=ω2L ∴m1+m2=ω2L3G4. 解答双星问题应注意“两等”“两不等”(1)“两等”: ①它们的角速度相等。
②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。
(2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。
②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。
二、多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).三、卫星的追及相遇问题1、某星体的两颗卫星从相距最近到再次相距最近遵从的规律:内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为2π的整数倍。
万有引力与航天专题:双星模型、变轨问题和地球表面物体的运动
二、变轨问题
卫 星 的 发 射 过 程 动 画
二、卫星的变轨问题
1.变轨原理及过程 人造卫星的发射过程要经过多
次变轨方可到达预定轨道,如图所示。
(1)为了节省能量 ,在赤道上顺着地球自转方向发射卫星到圆 轨道Ⅰ上。 (2)在A点点火加速,由于速度变大,进入椭圆轨道Ⅱ。 (3)在B点(远地点)再次点火加速进入圆形轨道Ⅲ。
期相等,角速度也相等。由 v=rω 得线速度与 两子星圆周运动的半径是成正比的。因为两子 星圆周运动的向心力由两子星间的万有引力提 供,向心力大小相等,
由G
M1M 2 L2
M1r12 , G
M1M 2 L2
M 2r22
可知: M1r1 2 M 2r2 2 ,所以它们的轨道半径
与它们的质量是成反比的。而线速度又与轨 道半径成正比,所以线速度与它们的质量也 是成反比的。正确答案为:BD。
【解析】这两颗星必须各自以一定的速度绕某一中心转 动才不至于因万有引力作用而吸引在一起,从而保持两 星间距离L不变,且两者做匀速圆周运动的角速度ω必 须相同。如图所示,两者轨迹圆的圆心为O,圆半径分 别为R1和R2。由万有引力提供向心力,有
处理方法:
对m1来说:
G
m1m2 L2
=m1ω2R1
对m2来说:
A.飞船在轨道Ⅱ上经过P的速度小于经过Q的速度 B.飞船在轨道Ⅱ上经过P的速度小于在轨道Ⅰ上经 过M的速度 C.飞船在轨道Ⅱ上运动的周期大于在轨道Ⅰ上运 动的周期 D.飞船在轨道Ⅱ上经过P的加速度小于在轨道Ⅰ上 经过M的加速度
反思总结 1.变轨的两种情况
2.相关物理量的比较
(1)两个不同轨道的“切点”处线速度v不相等,图中vⅢ>vⅡB,vⅡA>vⅠ。 (2)同一个椭圆轨道上近地点和远地点线速度大小不相等,vⅡA>vⅡB, (3)两个不同圆轨道上的线速度v不相等,轨道半径越大,v越小,图中vⅠ>vⅢ。 (4)卫星在同一点的不管是椭圆还是圆,加速度一定相等。
多星系统模型(共32张PPT)
例5(微元法)如图所示,在水平面上,有一弯曲的槽道AB,槽道由半径分别为 R/2 和R的两个半圆构成。 例5(微元法)如图所示,在水平面上,有一弯曲的槽道AB,槽道由半径分别为 R/2 和R的两个半圆构成。 三颗行星始终位于同一直线上,中心行星受力平衡,其余两颗行星的引力提供向心力:
例3(图象法)一物体所受的力F随位移x变化的图象如图所示, 求在这一过程中,力F对物体做的功为多少?
例4(图像法)用锤子击打钉子,设木板对钉子的阻力跟钉子进入 木板的深度成正比,每次击打钉子时锤子对钉子做的功相同。已知第 一次击打钉子后,钉子进入的深度为1 cm,则第二次击打时,钉子进 入的深度是多少?
已知第一次击打钉子后,钉子进入的深度为1 cm,则第二次击打时,钉子进入的深度是多少? (2)三颗质量相等的行星位于三角形的三个顶点上,另一颗恒星位于三角形的中心o点,三颗行星以o点为圆心。 已知第一次击打钉子后,钉子进入的深度为1 cm,则第二次击打时,钉子进入的深度是多少? 质点自P滑到Q的过程中,克服摩擦力所做的功为? 两行星转动的方向相同,周期、角速度、线速度的大小相等
现用大小恒为F的拉力将一光滑小球从A点沿槽道拉至B点,若拉力F的方向时刻与小球运动方向一致,则此过程中拉力所做的功为 (1)四颗质量相等的行星位于正方形的四个顶点上,沿外接于正方形的圆轨道做匀速圆周运动
阻力f
kx
k
2 1
1 cm x
1区面积与2区面积相等 k/2=(k+kx)(x-1)/2
深度x
4.利用微元法求变力做功
将物体的位移分割成许多小段,因小段很小,每一小段上作用
宇宙中的双星及多星问题
【宇宙中的双星及多星问题】宇宙中,因天体间的相互作用而呈现出诸如双星、三星、四星及多星系统组成的自然天文现象,天体之间相互作用遵循万有引力的规律,他们的运动规律也同样遵循开普勒行星运动的三条基本规律。
现代实验观测表明,在天体运动中,将两颗彼此距离较近而绕同一点做圆周运动的行星称为双星模型。
而三星、四星等多星模型则是指彼此相互依存和相互作用且围绕某一点作圆周运动的行星。
多星系统问题的求解方法仍然是建立万有引力方程和牛顿第二定律方程。
由于多星间的引力和运动情况特殊性,从而产生了很多有趣的天文现象。
一、双星问题近年来,天文学家们发现,大部分已知恒星都存在于双星甚至多星系统中。
双星对于天体物理尤其重要,因为两颗星的质量可从通过观测旋转轨道确定。
这样,很多独立星体的质量也可以推算出来。
在银河系中,双星的数量非常多,估计不少于单星。
研究双星,不但对于了解恒星形成和演化过程的多样性有重要的意义,而且对于了解银河系的形成和演化,也是一个不可缺少的方面。
双星系统具有如下特点:(1)它们以相互间的万有引力来提供向心力。
(2)它们共同绕它们连线上某点做圆周运动。
(3)它们的周期、角速度相同。
例题1:(2013•山东)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n 倍,DC运动的周期为()解:设m1的轨道半径为R1,m2的轨道半径为R2.由于它们之间的距离恒定,因此双星在空间的绕向一定相同,同时角速度和周期也都相同.由向心力公式可得:例题2:(2008•宁夏)天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量.(引力常量为G)解:设两颗恒星的质量分别为m1、m2,做圆周运动的半径分别为r1、r2,角速度分别为ω1,ω2.根据题意有ω1=ω2①r1+r2=r②根据万有引力定律和牛顿定律,有二、三星问题三星问题有两种情况:第一种情况三颗星连在同一直线上,两颗星围绕中央的星(静止不动)在同一半径为R 的圆轨道上运行,周期相同;第二种情况三颗星位于等边三角形的三个顶点上,并沿等边三角形的外接圆轨道运行,三颗星运行周期相同。
卫星变轨问题双星模型(含解析)
卫星变轨问题双星模型类型一卫星的变轨和对接问题知识回望1.变轨原理(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上,如图所示.(2)在A点(近地点)点火加速,由于速度变大,万有引力不足以提供卫星在轨道Ⅰ上做圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ.(3)在B点(远地点)再次点火加速进入圆形轨道Ⅲ.2.变轨过程分析(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在轨道Ⅱ上过A点和B点时速率分别为v A、v B.在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B.(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A 点,卫星的加速度都相同,同理,卫星在轨道Ⅱ或轨道Ⅲ上经过B点的加速度也相同.(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3.(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E1、E2、E3,则E1<E2<E3.例1(2019·北京市通州区期中)如图所示,一颗人造卫星原来在椭圆轨道1上绕地球E运行,在A点变轨后进入轨道2做匀速圆周运动,下列说法正确的是()A .在轨道1上,卫星在A 点的速度等于在B 点的速度 B .卫星在轨道2上的周期大于在轨道1上的周期C .在轨道1和轨道2上,卫星在A 点的速度大小相同D .在轨道1和轨道2上,卫星在A 点的加速度大小不同 【答案】B【解析】在轨道1上,卫星由A 点运动到B 点,万有引力做正功,动能变大,速度变大,故选项A 错误;由开普勒第三定律知卫星在轨道2上的周期较大,故选项B 正确;卫星由轨道1变到轨道2,需要在A 点加速,即在轨道1和轨道2上,卫星在A 点的速度大小不相同,故选项C 错误;由G Mm r 2=ma 得a =G Mr 2,可知在轨道1和轨道2上,卫星在A 点的加速度大小相等,故选项D 错误. 故选B 。
双星模型—人教版高中物理必修二课件
n3 A. k2T
n3 B. k T
n2 C. k T
n D. kT
解析:
如图所示,设两恒星的质量分别为 M1 和 M2,轨道半径分别为 r1
和
r2.
根
据
万
有
引
力
定
律
及
牛
顿
第
二
定
律
可
得
GM1M2 r2
=
M1
2π
T
2r1
=
M22Tπ2r2,解得GM1r+2 M2=2Tπ2(r1+r2).即GrM3 =2Tπ2 ①,当两星
(3)两颗星球的周期及角速度都相同,即 T1=T2,ω1=ω2,
且 T1=T2=2π
L3 Gm1+m2.
(4)两颗星球的轨道半径与两者间的距离关系为 r1+r2=L,
要注意 r1、r2 和 L 的区别.
(5)由 m1a1=m2a2 可以推出aa21=mm21.
【典例】
天文学家观测河外星系大麦哲伦云时,发现了 LMCX-3 双 星系统,它由可见星 A 和不可见的暗星 B 构成.将两星视为质 点,不考虑其他天体的影响,A、B 围绕两者连线上的 O 点做匀 速圆周运动,它们之间的距离保持不变,如图所示.引力常量为 G,由观测能够得到可见星 A 的速率 v 和运行周期 T.
双星模型
1.模型构建 在天体运动中,将两颗彼此相距较近,且在相互之间万有引 力作用下绕两者连线上的某点做周期相同的匀速圆周运动的星 球称为双星.
2.模型特点 (1)两颗星球角速度相同,间距不变,绕某点旋转,轨迹为 同心圆. (2)两颗星球各自需要的向心力由彼此间的万有引力提供, 即
GmL12m2=m1ω12r1,GmL12m2=m2ω22r2.
第26讲 双星、多星模型(原卷版)
第26讲 双星、多星模型1.(重庆高考)冥王星与其附近的另一星体卡戎可视为双星系统.质量比约为7:1,同时绕它们连线上某点O 做匀速圆周运动.由此可知,冥王星绕O 点运动的( )A .轨道半径约为卡戎的17B .角速度大小约为卡戎的17 C .线速度大小约为卡戎的7倍D .向心力大小约为卡戎的7倍一.知识回顾1.双星模型 (1)两颗星体绕公共圆心转动,如图1所示。
(2)特点①各自所需的向心力由彼此间的万有引力相互提供,即Gm 1m 2L2=m 1ω21r 1, Gm 1m 2L2=m 2ω22r 2。
②两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2。
③两颗星的轨道半径与它们之间的距离关系为:r 1+r 2=L 。
④两颗星到轨道圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1。
⑤双星的运动周期T =2πL 3Gm 1+m 2。
⑥双星的总质量m 1+m 2=4π2L 3T 2G。
2.三星模型(1)三星系统绕共同圆心在同一平面内做圆周运动时比较稳定,三颗星的质量一般不同,其轨道如图2所示。
每颗星体做匀速圆周运动所需的向心力由其他星体对该星体的万有引力的合力提供。
(2)特点:对于这种稳定的轨道,除中央星体外(如果有),每颗星体转动的方向相同,运行的角速度、周期相同。
(3)理想情况下,它们的位置具有对称性,下面介绍两种特殊的对称轨道。
①三颗星位于同一直线上,两颗质量均为m 的环绕星围绕中央星在同一半径为R 的圆形轨道上运行(如图3甲所示)。
②三颗质量均为m 的星体位于等边三角形的三个顶点上(如图3乙所示)。
3.四星模型:(1)如图所示,四颗质量相等的行星位于正方形的四个顶点上,沿外接于正方形的圆轨道做匀速圆周运动。
Gm 2L 2×2×cos 45°+Gm 22L 2=ma ,其中r =22 L 。
四颗行星转动的方向相同,周期、角速度、线速度的大小相等。
宇宙多星系统模型
动旳周期之比
解析:(1)三颗星绕另一颗中心星运动时,其中任意一种绕行星球受 到另三个星球旳万有引力旳合力提供向心力,三个绕行星球旳向心 力一定指向同一点,且中心星受力平衡,因为星球质量相等,具有对 称关系,所以向心力一定指向中心星,绕行星一定分布在以中心星为 重心旳等边三角形旳三个顶点上,如图甲所示。
GLm2 2×2×cos 30°=ma 向 其中 L=2r cos 30°。 三颗行星运行的方向相同,周期、 角速度、线速度的大小相等。
【例3】 宇宙中存在某些离其他恒星较远旳、由质量相等旳 三颗星构成旳三星系统,一般可忽视其他星体对它们旳引力作 用。已观察到稳定旳三星系统存在旳一种形式是三颗星位于 等边三角形旳三个顶点上,并沿外接于等边三角形旳圆轨道运 营,其周期为T。设每个星体旳质量均为m, 万有引力常量为G,则星体之间旳距离应 为多少?
a2
( 2a)2
T22 2
解得T2
2
=
4(4
2)
7Gm
2
a3
④
故 T1 = (4 2)(3 3) 。
T2
4
(1)三星同线模型 ①如图所示,三颗质量相等的行星,一颗行星位于中心位 置不动,另外两颗行星围绕它做圆周运动。这三颗行星始终位 于同一直线上,中心行星受力平衡。运转的行星由其余两颗行 星的引力提供向心力:Grm2 2+G2mr22=ma 向
两行星运营旳方向相同,周期、角 速度、线速度旳大小相等。
②如图所示,三颗质量相等的行星位于一正三角形的顶点处, 都绕三角形的中心做圆周运动。每颗行星运行所需向心力都由其 余两颗行星对其万有引力的合力来提供。
3GmT2
4 2
“双星”模型
“双星”模型河北省鸡泽县第一中学 057350 吴社英两颗质量可以相比的恒星相互绕着旋转的现象,叫双星。
双星问题是万有引力定律在天文学上的应用的一个重要内容,现就这类问题的处理作简要分析。
一、 要明确双星中两颗子星做匀速圆周运动的向心力来源双星中两颗子星相互绕着旋转可看作匀速圆周运动,其向心力由两恒星间的万有引力提 供。
由于力的作用是相互的,所以两子星做圆周运动的向心力大小是相等的,利用万有引力定律可以求得其大小。
二、 要明确双星中两颗子星匀速圆周运动的运动参量的关系两子星绕着连线上的一点做圆周运动,所以它们的运动周期是相等的,角速度也是相等 的,所以线速度与两子星的轨道半径成正比。
三、 要明确两子星圆周运动的动力学关系。
设双星的两子星的质量分别为M 1和M 2,相距L ,M 1和M 2的线速度分别为v 1和v 2,角 速度分别为ω1和ω2,由万有引力定律和牛顿第二定律得:M 1: 22121111121M M v G M M r L r ω==M 2: 22122222222M M v G M M r L r ω==在这里要特别注意的是在求两子星间的万有引力时两子星间的距离不能代成了两子星做圆周运动的轨道半径。
【例题一】两颗靠得很近的天体称为双星,它们都绕两者连线上某点做匀速圆周运动,因而不至于由于万有引力而吸引到一起,以下说法中正确的是:A 、它们做圆周运动的角速度之比与其质量成反比。
B 、它们做圆周运动的线速度之比与其质量成反比。
C 、它们做圆周运动的半径与其质量成正比。
D 、它们做圆周运动的半径与其质量成反比。
解析:两子星绕连线上的某点做圆周运动的周期相等,角速度也相等。
由v=r ω得线速度与两子星圆周运动的半径是成正比的。
因为两子星圆周运动的向心力由两子星间的万有引力提供,向心力大小相等,由212112M M G M r L ω=,212222M M G M r Lω=可知:221122M r M r ωω=,所以它们的轨道半径与它们的质量是成反比的。
宇宙多星系统模型资料讲解
[解析] 设两颗星的质量分别为m1、m2,做圆周运动
的半径分别为r1、r2,根据万有引力提供向心力可得: Grm1+1mr222=m1r14Tπ22,Grm1+1mr222=m2r24Tπ22,联立解得:m1+ m2=4π2Gr1T+2 r23,即T2=4Gπ2mr11++mr223,因此,当两星总质量
(5)双星的运动周期 T=2π
L3 Gm1+m2
(6)双星的总质量公式 m1+m2=4Tπ22GL3
[典例 1] 冥王星与其附近的星体卡戎可视为双星系统,它们的质量
比约为 7∶1,同时绕它们连线上某点 O 做匀速圆周运动.由此可知
卡戎绕 O 点运动的 ( )
CD
A.角速度大小约为冥王星的 7 倍
B.向心力大小约为冥王星的 1/7 C.轨道半径约为冥王星的 7 倍
T22 2
解得T2=2
4(4④ 2) 2a3
7Gm
故 T1 = (4 。 2)(3 3)
T2
4
(1)各自需要的向心力由彼此间的万有引力相互提供,即
GmL12m2=m1ω1 2r1,GmL12m2=m2ω2 2r2
(2)两颗星的周期及角速度都相同,即 T1=T2,ω1=ω2
(3)两颗星的半径与它们之间的距离关系为:r1+r2=L
(4)两颗星到圆心的距离 r1、r2 与星体质量成反比,即mm12=rr21
做周期相同的匀速圆周运动。研究发现,双星系统演化过
程中,两星的总质量、距离和周期均可能发生变化。若某
双星系统中两星做圆周运动的周期为 T,经过一段时间演
化后,两星总质量变为原来的 k 倍,两星之间的距离变为
原来的 n 倍,则此时圆周运动的周期为
()
n3
双星模型半径公式推导
双星模型半径公式推导
大球M 小球m 距离L 轨道半径为RrGMm/L²=M4π²R/T²GMm/L²=m4π²r/T²r+R=L 两式相除得m/M=R/r 联立最后一式子得r=ML/M+m代入第二个式子得T²=4π²L³/G﹙m+M﹚在银河系中,双星的数量非常多,估计不少于单星。
研究双星,不但对于了解恒星形成和演化过程的多样性有重要的意义,而且对于了解银河系的形成和演化,也是一个不可缺少的方面。
其中一个的万有引力由另一个星体提供,反之相同。
它们的向心加速度之比为他们质量的反比。
注意:行星围绕恒星做匀速圆周运动,或者卫星绕行星做圆周运动时,万有引力作用的距离,刚好是行星(或卫星)圆周运动的轨道半径,但是在双星系统中的引力作用的距离与双星运动的轨道半径是不同的,双星系统中两星做圆周运动时的角速度和周期是一定相同的。
它们的线速度之比与其各自运行的轨道半径之比相同。
模型 双星或多星模型(解析版)
模型双星或多星模型学校:_________班级:___________姓名:_____________模型概述1.双星问题(1)模型构建:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统.(2)特点:①各自所需的向心力由彼此间的万有引力提供,即G m 1m 2L 2=m 1ω21r 1,G m 1m 2L2=m 2ω22r 2.②两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2.③两颗星的轨道半径与它们之间的距离关系为:r 1+r 2=L .④两星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1.⑤双星的运动周期T =2πL 3G (m 1+m 2).⑥双星的总质量m 1+m 2=4π2L 3GT 22.多星模型:所研究星体所受万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度、周期相同。
常见的多星模型及其规律:Gm 2(2R )2+GMmR2=ma 向Gm 2L2×cos30°×2=ma 向Gm 2L 2×cos45°×2+Gm 2(2L )2=ma 向Gm 2L2×cos30°×2+GMmL 32=ma 向典题攻破1.双星问题1.(2024·重庆·高考真题)在万有引力作用下,太空中的某三个天体可以做相对位置不变的圆周运动,假设a 、b 两个天体的质量均为M ,相距为2r ,其连线的中点为O ,另一天体(图中未画出)质量为m (m <<M ),若c 处于a 、b 连线的垂直平分线上某特殊位置,a 、b 、c 可视为绕O 点做角速度相同的匀速圆周,且相对位置不变,忽略其他天体的影响。
引力常量为G 。
则()A.c 的线速度大小为a 的3倍B.c 的向心加速度大小为b 的一半C.c 在一个周期内的路程为2πrD.c 的角速度大小为GM8r 3【答案】A【详解】D .a 、b 、c 三个天体角速度相同,由于m <<M ,则对a 天体有G MM(2r )2=Mω2r 解得ω=GM4r 3故D 错误;A .设c 与a 、b 的连线与a 、b 连线中垂线的夹角为α,对c 天体有2G Mmrsin α2cos α=mω2rtan α解得α=30°则c 的轨道半径为r c =rtan30°=3r由v =ωr ,可知c 的线速度大小为a 的3倍,故A 正确;B .由a =ω2r ,可知c 的向心加速度大小是b 的3倍,故B 错误;C .c 在一个周期内运动的路程为s =2πr =23πr 故C 错误。
第28课时卫星变轨问题双星模型2025届高考物理一轮复习课件
2π
解析:由于在彼此绕行的周期逐渐减小,根据公式ω= 可知,每颗
星球的角速度都在逐渐变大,设双星转动的角速度为ω,双星间距离
1 2
为L,星球的质量分别为m1、m2,由万有引力提供向心力有 2 =
m1ω2r1=m2ω2r2,解得ω=
(1 +2 )
,可知距离L逐渐的变小,故
3
1 2
2
230°
目录
高中总复习·物理
【典例3】 宇宙中存在一些离其他恒星较远的、由质量相等的三颗
星组成的三星系统,可忽略其他星体对三星系统的影响。稳定的三星
系统存在两种基本形式:一种是三颗星位于同一直线上,两颗星围绕
中央星在同一半径为R的轨道上运行,如图甲所示,周期为T1;另一
种是三颗星位于边长为R的等边三角形的三个顶点上,并沿等边三角
空间站向祖国人民送上新春祝福。空间站的运行轨道可近似看作圆
形轨道Ⅰ,椭圆轨道Ⅱ为神州十五号载人飞船与空间站对接前的运行
轨道,已知地球半径为R,两轨道相切于P点,地球表面重力加速度
大小为g,下列说法正确的是(
)
目录
高中总复习·物理
A. 空间站在轨道Ⅰ上的运行速度小于
B. 神州十五号载人飞船在P点的加速度小于空间站在P点的加速度
5
关系知,三颗星体做圆周运动的半径为R'=
力充当向心力,即有F合=2G 2 cos
2πR
1
,则 =2
3
2
3
R,任一星体所受的合
3
4π2
30°=m 2
2
×
3
R,解得T2=
3
3
,故B正确。
《宇宙双星模型》课件
《宇宙双星模型》 ppt课件
REPORTING
2023
目录
• 双星模型简介 • 双星系统的运动规律 • 双星模型在天文学中的应用 • 双星模型的研究前景与挑战 • 总结与展望
2023
PART 01
双星模型简介
REPORTING
定义与概念
总结词
双星模型是指由两个恒星组成的相对稳定的系统,它们通过引力相互作用,围 绕彼此旋转。
双星演化理论的完善
虽然已经建立了一套相对完善的双星演化理论,但随着观 测数据的不断增多和理论研究的不断深入,需要进一步完 善双星演化理论。
2023
PART 05
总结与展望
REPORTING
双星模型的意义与价值
理论意义
双星模型在天文学中具有重要的理论 意义,它为研究恒星演化、星系形成 和演化等提供了重要的理论基础。
双星系统中的两颗恒星通过相互吸引和旋转,形成稳定的双星结构。在星系形成 过程中,双星系统可以聚集周围的物质,形成更大的恒星群或行星系统,从而影 响整个星系的形状和演化。
双星在恒星演化中的作用
总结词
双星在恒星演化中起到关键作用,它们通过相互作用加速恒 星的演化进程。
详细描述
在双星系统中,两颗恒星之间存在相互作用,如物质交换和 轨道扰动等,这些作用可以加速恒星的演化进程。例如,双 星中的一颗恒星可能因为吸收了另一颗恒星的物质而迅速膨 胀,最终导致超新星爆发。
详细描述
双星模型是研究恒星系统的一个重要概念,它涉及到两个恒星在相互引力的作 用下,形成一个相对稳定的系统。这两个恒星可以是类似太阳的恒星,也可以 是其他类型的天体,如白矮星、中子星等。
双星系统的形成
总结词
双星系统的形成通常发生在恒星形成过程中,当两颗恒星在引力作用下逐渐靠近,最终形成一个双星系统。
星表模型公式
星表模型公式
天体运动双星模型公式为R1+R2=L 、GMm/L^2=m(2π/T)^2R1、GMm/L^2=m(2π/T)^2R2;其中中心距离为L,运动周期T。
天体运动是指宇宙中各类天体发生的运动,而且天体运动,是在宇宙大爆炸发生后,形成空间天体运动的本原动力,也就是物质运动的动力源
星标计算方法主要用来计算恒星等星体之间的距离。
恒星之间的相对位置变化极小,因而恒星在天球上形成几乎固定不变的图形。
为表达恒星在天球上的位置,需要采用坐标系。
由于赤道坐标、黄道坐标和银道坐标与地球的自转没有关系,恒星坐标在这些参考系中的变化都很小,因此可以采用这两种坐标系统来表达恒星位置。
由于传统最精确,最方便的测定恒星位置的方法是利用子午环测定恒星中天时刻和中天时的天顶距,而这两个数据又很容易化为赤经和赤纬,因而赤道坐标系成为表达恒星位置的最常用的体系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则 RC=
43a2+12a2=
47a⑥
(4)三星体运动周期相同,对 C 星体,由
FC=FB= 7Gma22=m(2Tπ)2RC⑦
可得 T=π 6am3 ⑧
答案
m2 (1)2 3G a2
m2 (2) 7G a2
7 (3) 4 a
(4)π
a3 6m
物理建模 宇宙四星模型
(三)宇宙四星模型
(1)如图4-5-11所示,四颗质量相
等的行星位于正方形的四个顶点上,
沿外接于正方形的圆轨道做匀速圆周
运动,GLm2 ×2×cos 45°+ G2mL22=
ma,其中r=
2 2
L。
图4-5-11
四颗行星转动的方向相同,周期、角速度、线速度的
大小相等。
(2)如图4-5-12所示:三颗质量相等 的行星位于正三角形的三个顶点,另一 颗恒星位于正三角形的中心O点,三颗 行星以O点为圆心。
第四章 曲线运动 万有引力与航天
物理建模: 宇宙多星模型
➢1.模型特点
解题模板
物理建模 宇宙双星模型
模型特点
绕公共圆心转动的两个星体称为“双星”
(1) “向心力等大反向”--向心力由它们间的
r1
万有引力提供,大小为F向= GMm/L2,方向相反
(2) “周期、角速度相同”--两星体做匀速圆周
L r2
运动的周期、角速度相等,即ω1=ω2,T1=T2 (3) “半径反比”--两星体绕同一圆心做圆周运动,圆心在两颗行
星的连线上,且r1+r2=L,两颗行星做匀速圆周运动的半径与行 星的质量成反比.
【例4】 2015年4月,科学家通过欧航局天文望远镜在一个河外星系中, 发现了一对相互环绕旋转的超大质量双黑洞系统,如图所示。这也是天 文学家首次在正常星系中发现超大质量双黑洞。这对验证宇宙学与星 系演化模型、广义相对论在极端条件下的适应性等都具有十分重要的 意义。我国今年底也将发射全球功能最强的暗物质探测卫星。若图中 双黑洞的质量分别为M1和M2,它们以两者连线上的某一点为圆心做 匀速圆周运动。根据所学知识,下列选项 正确的是( ) A.双黑洞的角速度之比ω1∶ω2=M2∶M1 B.双黑洞的轨道半径之比r1∶r2=M2∶M1 C.双黑洞的线速度之比v1∶v2=M1∶M2 D.双黑洞的向心加速度之比a1∶a2=M1∶M2
2a 4+ 2Gm
解析
【备选】 (2013·山东卷,20)双星系统由两颗恒星组成,两恒星
在相互引力的作用下,分别围绕其连线上的某一点做周期相同
的匀速圆周运动.研究发现,双星系统演化过程中,两星的总
质量、距离和周期均可能发生变化.若某双星系统中两星做圆
周运动的周期为T,经过一段时间演化后,两星总质量变为原来
图5
(1)A星体所受合力大小FA; (2)B星体所受合力大小FB; (3)C星体的轨道半径RC; (4)三星体做圆周运动的周期T。
解析 (1)由万有引力定律,A 星体所受 B、C 星体引力大小 为 FBA=GmArm2 B=G2am22=FCA① 方向如图所示
则合力大小为 FA=FBAcos 30°+FCAcos 30°=2 3Gma22② (2)同上,B 星体所受 A、C 星体引力大小分别为 FAB=GmArm2 B=G2am22③ FCB=Gmacm2 B=Gma22④ 方向如图所示 由余弦定理得合力 FB= F2AB+F2CB-2FABFCBcos 120°= 7Gma22⑤ (3)由于 mA=2m,mB=mC=m 通过分析可知,圆心 O 在 BC 的中垂线 AD 的中点
用。设四星系统中每个星体的质量均为 m,半径均为 R,四颗
星稳定分布在边长为 a 的正方形的四个顶点上。已知引力常量
为 G。关于宇宙四星系统,下列说法错误的是
()
A.四颗星围绕正方形对角线的交点做匀速圆周运动
B.四颗星的轨道半径均为a2
C.四颗星表面的重力加速度均为GRm2
D.四颗星的周期均为 2πa
由万有引力提供向心力得 GML1M2 2=M1(2Tπ)2r1=M2(2Tπ)2r2,
得 M2=G4πT22r1L2,M1=G4πT22r2L2,
总质量 M1+M2=4GπT2L23,选项 C 正确。
答案 C
解析显隐
物理建模
(二)宇宙三星模型
宇宙三星模型
(1)如图 4-5-8 所示,三颗质量相等的行
根据双星模型的特点分析 本题各物理量的比值
转解析
【拓展延伸】在【例 4】中若双黑洞间的距离为 L,其运动周期为
T,引力常量为 G,则双黑洞总质量为( )
GL3
4π2L3 4π2L3 4π2T3
A.4π2T2 B.3GT2 C. GT2 D. GL2
解析 设双黑洞质量分别为 M1 和 M2,绕连线上 O 点做匀速圆周 运动的半径分别为 r1、r2, 则有 r1+r2=L。
星,一颗行星位于中心位置不动,另外两颗
行星围绕它做圆周运动。这三颗行星始终位 于同一直线上,中心行星受力平衡。运转的行 图 4-5-8
星由其余两颗行星的引力提供向心力:Grm2 2+G2mr22=ma
两行星转动的方向相同,周期、角速度、线速度的大小
相等。
(2)如图 4-5-9 所示,三颗质量相等的行
绕正三角形的外接圆做匀速圆周运动。 图4-5-12 GLm2 2×2×cos 30°+GMr2m=ma。 其中L=2rcos 30°。 外围三颗行星转动的方向相同,周期、角速度、线速 度的大小均相等。
[典例 3] 宇宙中存在一些质量相等且离其他恒星较远的
四颗星组成的四星系统,通常可忽略其他星体对它们的引力作
星位于一正三角形的顶点处,
都绕三角形的中心做圆周运动。每颗行
星运行所需向心力都由其余两颗行星对其万 有引力的合力来提供。
图 4-5-9
GLm2 2×2×cos 30°=ma
其中 L=2rcos 30°。
三颗行星转动的方向相同,周期、角速度、线速度的
大小相等。
5.[三星模型](2015·安徽理综,24)由三颗星体构成的系统,忽略其 它星体对它们的作用,存在着一种运动形式;三颗星体在相互之 间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某 一共同的圆心O在三角形所在的平面内做相同角速度的圆周运动 (图示为A、B、C三颗星体质量不相同时的一般情况)。若A星体 质量为2m、B、C两星体的质量均为m,三角形的边长为a,求: