常微分方程习题解
常微分方程习题及解答
常微分方程习题及解答常微分方程习题及解答常微分方程习题及解答一、问答题:1.常微分方程和偏微分方程有什么区别?微分方程的通解是什么含义?答:微分方程就是联系着自变量,未知函数及其导数的关系式。
常微分方程,自变量的个数只有一个。
偏微分方程,自变量的个数为两个或两个以上。
常微分方程解的表达式中,可能包含一个或几个任意常数,若其所包含的独立的任意常数的个数恰好与该方程的阶数相同,这样的解为该微分方程的通解。
2.举例阐述常数变易法的基本思想。
答:常数变易法用来求线性非齐次方程的通解,是将线性齐次方程通解中的任意常数变易为待定函数来求线性非齐次方程的通解。
例:求()()dy P x y Q x dx=+的通解。
首先利用变量分离法可求得其对应的线性齐次方程的通解为()P x dxy c ?=l ,然后将常数c 变易为x 的待定函数()c x ,令()()P x dxy c x ?=l ,微分之,得到()()()()()P x dxP x dx dy dc x c x P x dx dx=+l l ,将上述两式代入方程中,得到()()()()()()()()()P x dxP x dx P x dxdc x c x P x dxc x P x Q x ??+?=+l l l即 ()()()P x dxdc x Q x dx-?=l积分后得到()()()P x dxc x Q x dx c-?=+?%l进而得到方程的通解()()(())P x dxP x dxy Q x dx c -?=+?%l l3.高阶线性微分方程和线性方程组之间的联系如何?答:n 阶线性微分方程的初值问题()(1)11(1)01020()...()()()(),(),....()n n n n n nx a t x a t x a t x f t x t x t x t ηηη---'?++++=??'===?? 其中12()(),...(),()na t a t a t f t ,是区间a tb ≤≤上的已知连续函数,[]0,t a b ∈,12,,...,nηηη是已知常数。
王高雄版《常微分方程》习题解答2.3
习题2.31、验证下列方程是恰当方程,并求出方程的解。
1. 0)2()(2=-++dy y x dx y x 解: 1=∂∂yM,x N ∂∂=1 . 则xNy M ∂∂=∂∂ 所以此方程是恰当方程。
凑微分,0)(22=++-xdy ydx ydy dx x 得 :C y xy x =-+23312. 0)4()3(2=---dy x y dx x y解: 1=∂∂yM,1=∂∂x N . 则xNy M ∂∂=∂∂ . 所以此方程为恰当方程。
凑微分,0432=--+ydy dx x xdy ydx 得 C y xy x =+-2323. 0])(1[]1)([2222=--+--dy y x x y dx xy x y解: 3422)(2)()1)((2)(2y x xyy x y x y y x y y M -=-----=∂∂ 3422)(2)()(2)(2y x xyy x y x x y x x x N -=-----=∂∂ 则yNx M ∂∂=∂∂ .因此此方程是恰当方程。
x y x y x u 1)(22--=∂∂ (1) 22)(1y x x y y u --=∂∂ (2) 对(1)做x 的积分,则)(1)(22y dx x dx y x y u ϕ+--=⎰⎰ =---yx y 2)(ln y x ϕ+ (3) 对(3)做y 的积分,则dy y d y x y y x y y u )()(2)()1(22ϕ+--+---=∂∂ =dy y d y x y xy )()(222ϕ+-+- =22)(1y x x y -- 则11)(21)(2)(1)(2222222-=-+--=-----=y y x y xy x y y x xy y y x x y dy y d ϕ y y dy yy -=-=⎰ln )11()(ϕyx xyx y y x y xy y x y y y x y x y u --=--+-=-+---=ln ln ln ln 222 故此方程的通解为C yx xyx y =-+ln 4、 0)2(3)23(22232=+++dy y y x dx x xy解:xy yM12=∂∂,xy x N 12=∂∂ . xNy M ∂∂=∂∂ . 则此方程为恰当方程。
常微分方程计算题及答案
计 算 题(每题10分)1、求解微分方程2'22x y xy xe -+=。
2、试用逐次逼近法求方程2y x dxdy+=通过点(0,0)的第三次近似解. 3、求解方程'2x y y y e -''+-=的通解4、求方程组dx dt ydydtx y ==+⎧⎨⎪⎩⎪2的通解5、求解微分方程'24y xy x +=6、试用逐次逼近法求方程2y x dxdy-=通过点(1,0)的第二次近似解。
7、求解方程''+-=-y y y e x '22的通解8、求方程组dxdt x ydydtx y =+=+⎧⎨⎪⎩⎪234的通解9、求解微分方程xy y x '-2=24 10、试用逐次逼近法求方程2y x dxdy-=通过(0,0)的第三次近似解. 11、求解方程''+-=-y y y e x '24的通解12、求方程组dxdtx y dydtx y =+=+⎧⎨⎪⎩⎪2332的通解13、求解微分方程x y y e x (')-=14、试用逐次逼近法求方程22x y dxdy+=通过点(0,0)的第三次逼近解. 15、求解方程''+-=--y y y e x '22的通解16、求解方程x e y y y -=-+''32 的通解17、求方程组⎪⎩⎪⎨⎧-+=-+=yx dt dydtdx x y dt dy dt dx243452的通解 18、解微分方程22(1)(1)0x y dx y x dy -+-= 19、试用逐次逼近法求方程2dyx y dx=-满足初始条件(0)0y =的近似解:0123(),(),(),()x x x x ϕϕϕϕ.20、利用逐次逼近法,求方程22dyy x dx=-适合初值条件(0)1y =的近似解:012(),(),()x x x ϕϕϕ。
常微分方程王高雄著课后习题答案
常微分方程(第三版)王高雄著课后习题答案.d o c(总86页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--习题1.dxdy =2xy,并满足初始条件:x=0,y=1的特解。
解:ydy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。
解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e特解:y=|)1(|ln 1+x c 3.dx dy =yx xy y 321++ 解:原方程为:dx dy =y y 21+31x x + yy 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0解:原方程为: yy -1dy=-x x 1+dx 两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。
5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +- 令xy =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu即 ln(y 2+x 2)=c-2arctg2x y . 6. x dxdy -y+22y x -=0 解:原方程为:dx dy =x y +x x ||-2)(1x y - 则令xy =u dx dy =u+ x dx du 211u - du=sgnx x 1dx arcsin xy =sgnx ln|x|+c 7. tgydx-ctgxdy=0解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xc cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32+=0解:原方程为:dx dy =ye y 2e x 3 2 e x 3-3e 2y -=c.(lnx-lny)dy-ydx=0解:原方程为:dx dy =x y ln xy 令xy =u ,则dx dy =u+ x dx duu+ xdxdu =ulnu ln(lnu-1)=-ln|cx| 1+ln xy =cy. 10. dxdy =e y x - 解:原方程为:dx dy =e x e y - e y =ce x 11 dxdy =(x+y)2 解:令x+y=u,则dx dy =dx du -1 dxdu -1=u 2 211u+du=dx arctgu=x+carctg(x+y)=x+c 12. dx dy =2)(1y x + 解:令x+y=u,则dx dy =dx du -1 dx du -1=21uu-arctgu=x+cy-arctg(x+y)=c. 13. dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dxxdy+ydx-(2y-1)dy-(2x+1)dx=0dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c 14: dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dxxdy+ydx-(y+2)dy-(x+5)dx=0 dxy-d(21y 2+2y)-d(21x 2+5x)=0y 2+4y+x 2+10x-2xy=c. 15:dxdy =(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy =(x+4y )2+3 令x+4y=u 则dx dy =41dx du -41 41dx du -41=u 2+3 dxdu =4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1). 16:证明方程y x dx dy =f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y + 证明: 令xy=u,则xdx dy +y=dxdu 则dx dy =x 1dx du -2x u ,有: u x dx du =f(u)+1 )1)((1+u f u du=x 1dx 所以原方程可化为变量分离方程。
常微分方程第三版课后习题答案
习题1.21.dxdy =2xy,并满足初始条件:x=0,y=1的特解。
解:ydy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1特解为y= e2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。
解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e特解:y=|)1(|ln 1+x c 3.dx dy =yx xy y 321++ 解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0解:原方程为: y y -1dy=-xx 1+dx 两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。
5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +- 令xy =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu即 ln(y 2+x 2)=c-2arctg2x y . 6. x dxdy -y+22y x -=0 解:原方程为:dx dy =x y +x x ||-2)(1x y - 则令xy =u dx dy =u+ x dx du 211u - du=sgnx x 1dx arcsin xy =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xc cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +ye xy 32+=0 解:原方程为:dx dy =ye y 2e x 3 2 e x 3-3e 2y -=c.9.x(lnx-lny)dy-ydx=0解:原方程为:dx dy =x y ln xy 令xy =u ,则dx dy =u+ x dx duu+ x dxdu =ulnu ln(lnu-1)=-ln|cx| 1+lnx y =cy. 10. dxdy =e y x - 解:原方程为:dx dy =e x e y - e y =ce x 11 dxdy =(x+y)2 解:令x+y=u,则dx dy =dx du -1 dxdu -1=u 2 211u+du=dx arctgu=x+carctg(x+y)=x+c 12. dx dy =2)(1y x + 解:令x+y=u,则dx dy =dx du -1 dx du -1=21uu-arctgu=x+cy-arctg(x+y)=c. 13. dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dxxdy+ydx-(2y-1)dy-(2x+1)dx=0dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c 14: dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dxxdy+ydx-(y+2)dy-(x+5)dx=0dxy-d(21y 2+2y)-d(21x 2+5x)=0y 2+4y+x 2+10x-2xy=c. 15:dxdy =(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy =(x+4y )2+3 令x+4y=u 则dx dy =41dx du -41 41dx du -41=u 2+3 dxdu =4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1). 16:证明方程y x dxdy =f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y + 证明: 令xy=u,则xdx dy +y=dxdu 则dx dy =x 1dx du -2xu ,有: u x dx du =f(u)+1 )1)((1+u f u du=x1dx 所以原方程可化为变量分离方程。
《常微分方程》_(方道元_著)_课后习题答案__浙江大学出版社
X +Y X °Y
arctan u ° ln C 3. u=
y °1 x+2
p
1 + u2 = ln |x| + C
dy ax + by + m = dx cx + dy + n a b c d m n ad ° bc 6= 0 dY aX + bY = dX cX + dY ad = bc ad ° bc 6= 0
(1) (2) (3) (4) (5) (6) 3. (1) (2) (3) (4)
y = Cx + x2 xy = C
y=9 2C +
C 2 xx
x (1)y 00 = 2 (2)y + xy 0 = 0 (3)y 000 + (y 0 )2 y 000 = 3y 0 (y 00 )2 (4)y 000 = 0
(5) (6) (7)
e°y + ex+3 = C sin y = 0 C y = k º (k 2 Z)
2 y = tan(x ° 1 2 x + C)
ln |x| +
xy = °1
1 xy +1
=C C
C
xy 6= °1
C sin y 6= 0
(8) z = y 2
sin2 y ° C sin2 x = 0
1. (1) (2)
dy dx d y dx2
2
= y + sin x; °
1 1°x2 y = 1 + x, Rx ex + 0 y (t) dt; x4 +y 3 xy 2 ;
y (0) = 1;
常微分方程课后习题答案
常微分方程课后习题答案常微分方程课后习题答案在学习常微分方程的过程中,课后习题是巩固知识和提高能力的重要环节。
通过解答习题,我们可以更好地理解和应用所学的概念和方法。
下面是一些常见的常微分方程习题及其答案,供大家参考。
一、一阶常微分方程1. 求解方程:dy/dx = 2x。
解:对方程两边同时积分,得到y = x^2 + C,其中C为常数。
2. 求解方程:dy/dx = x^2 - 1。
解:对方程两边同时积分,得到y = (1/3)x^3 - x + C,其中C为常数。
3. 求解方程:dy/dx = 3x^2 + 2。
解:对方程两边同时积分,得到y = x^3 + 2x + C,其中C为常数。
二、二阶常微分方程1. 求解方程:d^2y/dx^2 + 4dy/dx + 4y = 0。
解:首先求解特征方程:r^2 + 4r + 4 = 0,解得r = -2。
因此,方程的通解为y = (C1 + C2x)e^(-2x),其中C1和C2为常数。
2. 求解方程:d^2y/dx^2 + 2dy/dx + y = x^2。
解:首先求解特征方程:r^2 + 2r + 1 = 0,解得r = -1。
因此,方程的通解为y = (C1 + C2x)e^(-x) + (1/6)x^2 - (1/2)x + (1/2),其中C1和C2为常数。
3. 求解方程:d^2y/dx^2 + 3dy/dx + 2y = e^(-x)。
解:首先求解特征方程:r^2 + 3r + 2 = 0,解得r = -1和r = -2。
因此,方程的通解为y = (C1e^(-x) + C2e^(-2x)) + (1/3)e^(-x),其中C1和C2为常数。
三、应用题1. 一个物体在空气中的速度满足以下方程:dv/dt = -9.8 - 0.1v,其中v为速度,t为时间。
求物体的速度随时间的变化情况。
解:这是一个一阶线性常微分方程。
将方程改写为dv/(9.8 + 0.1v) = -dt,再两边同时积分,得到ln|9.8 + 0.1v| = -t + C,其中C为常数。
常微分方程习题与答案
第十二章常微分方程(A)、是非题1.任意微分方程都有通解。
()2 •微分方程的通解中包含了它所有的解。
()3. 函数y =3si nx-4cosx是微分方程y,y=0的解。
()4. 函数y = x2・e x是微分方程y';"-2y ' y = 0的解。
()5. 微分方程xy"T nx=0的通解是y =丄(1 nx)2+C (C为任意常数)。
()26. y"=siny是一阶线性微分方程。
()7. / = x3y3 xy不是一阶线性微分方程。
()8 . /-2/ 5^0的特征方程为『-2—5=0。
()9. dy = 1 x y2 xy2是可分离变量的微分方程。
()dx、填空题1 .在横线上填上方程的名称①y _ 3 ln xdx _ xdy 二0 是__________________________ 。
②xy2 x dx y _ x2 y dy = 0 是__________________________ 。
③x-d^ = y l n 丫是。
dx x④xy := y x2 sin x 是__________________ 。
⑤y y -2y =0是________________________ 。
2 . y si nxy"-x=cosx的通解中应含____________ 个独立常数。
3. _____________________________________ y “ = e Qx的通解是。
4. ______________________________________ y = sin 2x - cos x 的通解是。
5. _______________________________ x^ 2x2y 2,x3y=x4,1是阶微分方程。
6•微分方程y y - y Q =0是________________ 阶微分方程。
i7. y-丄所满足的微分方程是。
[理学]常微分方程教程_丁同仁第二版_习题解答
∂y x ∂x x
∂y ∂x
则 ( y dx + ln xdy) + x2dx − 2 ydy = 0 x
两边积分得: x3 + y ln x − y 2 = C. 3
8. (ax2 + by 2 )dx + cxydy = 0 (a,b和c为常数)
解: P(x, y) = ax2 + by 2 , Q(x, y) = cxy,
两边积分得: (2 + y)e x + xy 2 = C.
7. ( y + x2 )dx + (ln x − 2 y)dy = 0 x
解: P(x, y) = y + x2 Q(x, y) = ln x − 2 y, x
则 ∂P = 1 , ∂Q = 1 , 所以 ∂P = ∂Q ,即 原方程为恰当方程
常微分方程教程(第二版)-丁同仁等编-高等教育出版社-对恰当方程求解:
1. (3x2 −1)dx + (2x + 1)dy = 0
解: P(x, y) = 3x2 −1, Q(x, y) = 2x + 1 ,
则 ∂P = 0 , ∂Q = 2 ,所以 ∂P ≠ ∂Q 即,原方程不是恰当方程.
则 ∂P = 2by, ∂Q = cy, 所以 当 ∂P = ∂Q ,即 2b = c 时, 原方程为恰当方程
∂y
∂x
∂y ∂x
-2-
常微分方程教程(第二版)-丁同仁等编-高等教育出版社-参考答案
则 ax2dx + (by 2dx + cxydy) = 0
两边积分得: ax3 + bxy 2 = C. 3
∂y
∂x
常微分习题解答1
u
'
=
−
2y x3
+
y' x2
=
f (u) − 2u 。 x
(4) f (xy) y + g(xy)xy ' = 0 , f (u) ≠ g(u) , f , g 连续。
解: u
=
xy
,u'
=
y
+
xy
'
,
f
(u)
u x
+
g (u )
⎛ ⎜⎝
u
'−
u x
⎞ ⎟⎠
=
0,
( f (u) − g(u)) u + g(u)u ' = 0 。
7.人工繁殖细菌,其增长速度和当时的细菌数成正比。 1)如果过 4 小时的细菌数既为原细菌数的 2 倍,那么经过 12
小时应有多少?
2)如在 3 小时的时候,有细菌 104 个,那么在开始时有多少个
细菌?
解:1)
dy dx
=
kx
,
y
=
y0ekx
y(4) = 2 y0 ⇔ e4k = 2 ⇒ y(12) = y0e12k = 8 y0
2xy = c2 − x2 , 2xdy + 2 ydx = −2xdx ,是。 (4) y′′ = x2 + y2 , y = 1 。否。
x
3
1.2 变量可分离方程 方程 dy = f (x)g( y) 有特解和通解:
dx A) g( y) = 0 ;
B)
g( y)
≠
0 时, ∫
dy g( y)
解 dy = 2x, y(3) = 4 , y = x2 − 5 dx
常微分方程习题 (1)
习题 2.51. 求解下列方程的解(1) ysinx+dxdy cosx=1 解:移项得,dxdy cosx=1-ysinx 两边同除cosx 得dx dy =—x x cos sin y+x cos 1 所以,y=e ⎰x x d cos )(cos 1(⎰x cos 1e ⎰-x x d cos )(cos 1dx+c )y=cosx(2)cos 1(⎰xdx+c) y=cosx(⎰2sec xdx+c) y=cosx(tanx+c)所以 y=sinx+cosxc 为方程的通解(2)ydx-xdy=x 2ydy解:两边同除x 2得,2xxdy ydx -=ydy 则d (xy -)=d (22y ) 所以,xy y +22=c 为方程的通解。
(3)dxdy =4e -y sinx-1 解:两边同乘以e y 得,e y dx dy=4sinx-e y 所以dxe d y )(=4sinx-e y 令u=e y 得,u x dx du -=sin 4 u=e ⎰-dx 1 (⎰⎰dx xe sin 4dx+c)u=e -x (⎰x xe sin 4dx+c)又因为⎰x xe sin 4dx=4⎰x xde sin =4sinxe x -4⎰x e dsinx=4sinxe x -4⎰x xe cos dx=4sinxe x -4 ⎰x xde cos =4sinxe x -4e x cosx+4⎰x e d (cosx )=4sinxe x -4e x cosx-4⎰x xe sin dx所以dx xe x ⎰sin 4=2e x sinx-2e x cosx (分步积分法) 即e y =e -x (2e x sinx-2e x cosx+c )所以e y =2(sinx-cosx )+ce -x 为方程的通解。
(4)dx dy =xyx y - 解:分子分母同除x 得,x yxydx dy -=1令u=x y ,则y=ux,由此u dx du x dx dy +=,代入原方程得,x dx du +u=uu -1 化简得,xdx du =uu u -1 当u u ≠0时,du uu u -1=x 1dx (dx x du uu u 1)11=- (dx xdu u u 1)123=-- c x u u+=--ln ln 21 1ln ln 2c u x u++=- )21(ln 2111c y u-+-= 令-c c =121 则c y u +-=ln 211 即c y y x +-=ln 21,2)ln 21(c y y x +-= 即x=y (-2)ln 21c y + 经验证,y=0也是方程的解。
常微分方程-习题作业-第四章第一节作业及详细解答
1习题 4.11.求齐次线性方程的实通解:(1)d 2x dt 2+4x =0.(2)d 3x dt 3−d 2x dt 2+2dx dt −2x =0.(3)d 4x dt 4+4x =0.(4)d 4xdt 4−2d 3x dt 3+2dx dt −x =0.解:(1)该方程的特征多项式为λ2+4,因此特征根为±2i .故原方程有实基本解组cos 2t ,sin 2t .由此得实通解x (t )=C 1cos 2t +C 2sin 2t,其中C 1,C 2为任意常数.(2)该方程的特征多项式为λ3−λ2+2λ−2=(λ−1)(λ2+2),因此特征根为1,±√2i .故原方程有实基本解组e t ,cos √2t ,sin √2t .由此得实通解x (t )=C 1e t +C 2cos √2t +C 3sin √2t,其中C 1,C 2,C 3为任意常数.(3)该方程的特征多项式为λ4+4,因此特征根为1±i ,−1±i .故原方程有实基本解组e t cos t ,e t sin t ,e −t cos t ,e −t sin t .由此得实通解x (t )=e t (C 1cos t +C 2sin t )+e −t (C 3cos t +C 4sin t ),其中C 1,C 2,C 3,C 4为任意常数.(4)该方程的特征多项式为λ4−2λ3+2λ−1=(λ−1)3(λ+1),因此特征根为1(三重根),−1.故原方程有实基本解组e t ,te t ,t 2e t ,e −t .由此得实通解x (t )=e t (C 1+C 2t +C 3t 2)+C 4e −t ,其中C 1,C 2,C 3,C 4为任意常数.3∗.分析振动方程d 2x dt 2+2δdx dt+ω2x =0的特征根并给出通解.这里δ≥0,ω>0.解:从该振动方程的特征方程λ2+2δλ+ω2=0求得特征根为λ1,2=−δ± δ2−ω2.根据δ2−ω2的符号可分为如下三种情况:2(i)当δ>ω时,有二个相异实特征根−δ±√δ2−ω2,方程的实通解为x (t )=e−δt (C 1e √δ2−ω2t +C 2e −√δ2−ω2t ),其中C 1,C 2为任意常数.(ii)当δ=ω时,有一个实二重特征根−δ,方程的实通解为x (t )=e −δt (C 1+C 2t ),其中C 1,C 2为任意常数.(iii)当δ<ω时,有一对共轭复特征根−δ±√ω2−δ2i ,方程的实通解为x (t )=e −δt (C 1cos ω2−δ2t +C 2sin ω2−δ2t ),其中C 1,C 2为任意常数.。
常微分方程课后答案
d2 y dx2
−
1 1−x2
y
=
1
+
x,
y(0) = 1;
(3) y = ex +
x 0
y(t)
dt;
(4)
dy dx
=
; x4 +y 3
xy2
(5) 2xydy − (2y2 − x)dx = 0;
(6) (y ln x − 2)ydx = xdy;
(7)
3xy2
dy dx
+
y3
+
x3
=
0;
(8)
y
=
0(其中c是任意常数);
(5)
y = ecx,
(
dy dx
)2
−
y
d2 y dx2
= 0(其中c是任意常数);
2
−
(x−C1 4
)2
,
−∞ < x < C1;
(6)
y =
0, C1 < x < C2,
(x−C1 4
)2
,
C2 < x < +∞,
dy dx
=
|y|.
答:将解代入验证就可得知是否为微分方程的解:
dy dx
=
y x+y
3
.
3
解: (1)方程两边同时乘以因子e−x,由此得到方程的通解为
y
=
C ex
−
sin
x
+ 2
cos x
其中C为任意常数;
R
(2)方程两边同时乘以因子e−
1 1−x2
dx,由此得到方程的通解为
常微分方程习题2.doc
常微分方程习题2・11.— = 2xy,并求满足初始条件:x=O,y=l的特解.dx解:对原式进行变量分离得丄dy = 2衣仕,两边同时积分得:111卜|=兀2 +(?,即『=(?幺兀把x = 0, y = 1代入得c = 1,故它的特解为y =幺“。
22.y dx + (兀+ l)dy = 0,并求满足初始条件:x=0,y=l的特解.解:对原式进行变量分离得:dx =当y北0时,两边同时积分得;ln|x + l| = —+ c,即丁 = \x + 1 y y c + ln|x +1|r当y = 0时显然也是原方程的解。
当兀=0』=1时,代入式子得c = l,故特解是1歹 1 + ln|l + x|23 4 = Idx兀》+兀、解:原式可化为:2 2空=•丄显然工0,故分离变量得~^dy = —^dxdx y x+x y i+y~ x + x两边积分得*lnl+)/ =ln|x|-|ln|l + %2|+ ln|c|(c 0),即(1+才)(1 + %2) = c/ 故原方程的解为(1 +)/)(1+ +)= d4:(1 + x)ydx + (1- y)xdy = 0解:由y = 0或兀=0是方程的解,当xy ^0时,变量分离^-^-dx = -― dy = 0两边积分In卜| + 兀 + In卜| 一y = c,BPln|xy| + x - y = c.故原方程的解为ln|兀y| = x-y = c;y = 0;x = 0.解:^ — = u, y = ux, — = u + x —,则原方程化为:x dx dx du 二 sgn x^^-dx 兀 / 2 2、du_Jx(1~U\分离变量得 dx x /i2 两边积分得:arcsinu = sgnx • ln|x| + c 代回原来变量,得arcsin — = sgn x • ln|x| + c另外,y=x 也是方程的解。
7: tgydx - ctgxdy = 0 解:变量分离,得:ctgydy = tgxdx 两边积分得:ln|sin y\ = - ln|cos x| + c.dx y解:变量分离,得-=-扎% + c y 3e9: x(ln x - In y)dy 一 ydx = 0解:方程可变为:-\n — 9dy-—dx = 0x x令u =—,贝U 有丄必 = dlnux x 1 + In w代回原变量得:cy = 1 +In —ox10:红厂dx解:变量分离$ dy = d dx5: (y + x)dy + (y - x)dx = 0解:史,令“ 坯空斗+二空 dx y + x x dx dx 贝I 拉+ x —= U +\变量分离,得:_弘?+1 du = — dxdx w +1 眈 +1 x两边积分得:arctgu + *ln(l + /) = —ln|T + c 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.2齐次方程
§2.3一阶线性方程与伯努利方程
§2.4黎卡提方程
§2.5全微分方程与积分因子
§2.6一阶隐式微分方程
§2.7高阶方程的降阶
§2.8小结习题
第三章一般理论
§3.1毕卡逐次逼近法与存在惟一性定理
§3.2初值问题的近似计算与误差估计
§5.1一阶微分方程组
§5.2线性微分方程组的一般概念及理论
§5.3常系数齐次线性微分方程组
§5.4常系数非齐次线性微分方程组
第六章定性与稳定性理论初步
§6.1二维自治系统与相平面
§6.2初等奇点附近轨线的分布
§6 3极限环
§6.4稳定性理论初步
§6.5李雅普诺夫第二方法
§3.3解的延展
§3.4解对初值和对参数的连续依赖性和可微性
§3.5微分方程组的基本理论
第四章线性微分方程
§4.1线性微分方程的一般理论
§4.2常系数齐次线性微分方程
§4.3常系数非齐次线性微分方程
§4.4变系数线性微分方程
§4.5幂级数解法
§4.6应用实例
第五章常微分方程组
第七章一阶偏微分方程
§7.1首次积分
§7.2一阶线性齐次偏微分方程
§7.3一阶拟线性偏微分方程
参考文献
[General Information]
书名=常微分方程习题解
作者=庄万主编
页3年09月第1版
前言
目录
第一章绪论
§1.1基本概念
§1.2导出微分方程的实例
§1.3线索场——微分方程的几何意义
第二章初等积分法