多电机速度同步控制
采用DSP的多电机同步控制系统

t e a p o r t o t lag r h t c iv i g e DS y c r n u o t lo u t r y s e d a d p st n h p rp a e c n r l o t m o a h e e a sn l P S n h o o s c n r ff rmo o sb p e n o i o . i o i o o i T i y t m o a e t ii l o to y t m n S + F GA C L c nr ls s m a n d a tg s i h s s se c mp r d wi dg t n r l se a d D P h ac s P / P D o t y t h sma y a v n a e ,sm— o e p e sr cu e,r a-i e n c n a s lw a d t e d v l p n y l h re sg e t . i tu t r e l me d ma d s a d li o n h e eo me t ce s o tn r al t c y
S n h o o s Co t olS se f r M u t S r o t r i g On P y c r n u n r l y t m o l e v mo o sUsn e DS i
Z HU ig. Z NG Ja n HA in
( c ol f lc cl n n r ai nier g J ns nvr t, hni g2 2 1 , hn ) S ho o et a adIf m t nE g e n , i guU i s y Z ej n 10 3 C ia E r i o o n i a ei a
简析多电机同步控制技术

简析多电机同步控制技术我国现代工业的不断发展与机械自动化技术的不断提高,很多生产场合都无法满足现代工业的发展要求,其电机控制系统要求多台电机共同驱动一台设备运作。
在整个生产过程中,应尽量满足现代工业的发展需求,确保这些电机能够协调运行,所以多电机同步控制技术的应用越来越广泛,这种技术在机械传动系统中,尤其是卷接机组中,可以通过多个电机向多个主要机组,传递其生产需要的动力,这种传动方式是控制方式上的一大创新。
一、多电机同步控制技术为了保证多电机能够实现同步控制,可以通过两种方式:机械方式和电方式。
在同步控制技术应用初期,机械同步控制技术在工业自动化生产中广泛应用。
因为机械控制方式与传动连接十分可靠,这种连接在应用初期得到了广泛应用,但是这种机械控制方式有一些常见的缺点,整个系统智能运用一台电机作为动力输出,所以动力分配到各个单元的动力功率都比较小,很难进行系统同的维修工作,且系统只能获得有效的传动范围[1]。
机械同步控制系统通过齿轮、皮带、链条这些零件进行传动,造成整个系统出现劣迹误差,所以在整个控制过程中,系统的控制精度很容易受到影响。
工作人员在一些精度要求较高的环境,电方式的多电机协调控制更加灵活,拥有更高的精度和稳定性,并能在生产实践中,逐渐被完善。
二、卷接机中同步控制技术的应用流程多电机同步控制技术一般选用YJ27卷接机组,其机械设备结构复杂,且各个鼓轮的转速间应保持精准的比例关系。
现阶段,相关单位采用的是传统的机械式齿轮传动方式对各个鼓轮进行同步控制,从而保证系统精度,对于高速环境下的齿轮,工作人员应为其设置润滑系统,确保整个系统的传动链不会太长,机构系统导致传动造成过大,在连续工作时,造成设备损坏,润滑齿轮箱容易出现漏油,以及传动误差较大等现象,设备的维修量会大幅增加,传动系统速度的波动会影响卷接机的运用功能[2]。
(一)偏差耦合结构控制工作人员以YJ27卷接机组的几个主要的工作鼓轮作为研究对象,并总结这些设备的机械传动关系,得出他们之间的速度比例,然后算出每个鼓轮的负载特点,将与之相对的永磁同步电动机作为这种设备的驱动电机,在一定环境中建立起一个鼓轮的同步控制系统的仿真模型,然后通过这种仿真模型的相关原理,运用改进型屏偏差耦合对结构进行控制,制定模糊滑模控制策略,这也是一种比较理想的控制方法[3]。
分析变频器控制多电机同步方案

CHINA FLIGHTS 中国航班91TECHNOLOGY OUTLOOK科技展望图1 PLC+编码器闭环控制分析变频器控制多电机同步方案王维(中达电通股份有限公司沈阳分公司)摘要:多电机同动/联动在实际生产中有非常多的应用需求。
变频器因其节能效果好,启停对电网冲击小,保护功能多,也得到了越来越多的应用。
本文列出使用变频器实现多电机同步的部分方案,并分析他们的优劣。
关键词:变频器;同步;编码器两个或多个电机的同步及联动,在纺织、汽车、金属加工、运输等行业,是生产中经常需要的一种应用。
而在不同行业,不同应用速度、精度等要求下,哪种方案才最满足客户要求,需要我们工程技术人员仔细研究。
本文列出了常见的几种利用变频器进行同步控制的方案,同大家一同探讨。
1一拖多控制使用一台大容量变频器带动2台或多台电机,只能使用v/f 控制方式。
优点:结构简单,调试方便,尤其是传送带等小功率,精度要求不高场合可以实现一变频器带很多电机,节省安装空间和变频器成本。
缺点:变频器对单台电机保护效果减弱,过流时不一定会报警,如果条件允许建议每台电机上口单独安装热保护器。
电机之间频率给定一致,不可成比例变化。
不能使用矢量控制方式。
2频率同步给定控制使用电位器、PLC、二次仪表等设备,通过模拟量/通讯等方式,同时给多台变频器频率设定。
优点:结构简单,调试方便。
可以通过调整变频器给定的偏差和增益等方式,改变变频器之间的频率比例。
电机之间无主从关系,单台故障不影响其他电机运行。
缺点:使用电位器或PLC 等利用模拟量进行给定时,误差较大。
中国航班 CHINA FLIGHTS92TECHNOLOGY OUTLOOK科技展望3一主多从控制将其中一台变频器作为主变频器,将主变频器的输入/输出频率作为第二台变频器的输入频率,将第二台变频器的输入/输出频率作为第三台变频器的输入频率,以此类推。
信号可以使用模拟量或者脉冲信号。
优点:结构简单,接线少,可以通过设定增益和偏差改变变频器之间的频率比例。
如何用一个PLC控制两个或多个伺服电机同步运行

如何用一个PLC控制两个或多个伺服电机同步运行
主电机速度改变时,其它伺服电机也跟着同步运行.
用第一个伺服驱动的输出控制第二个伺服驱动器,就可以实现同步运动了,只要要求不是太高这种方法完全可行;
同步分控制精度来确定控制方案的;
1:简单的多个伺服电机转速的同步,完全可以PLC不同输出口发同一个速度出去,这个不是跟随;
2:伺服驱动有脉冲输出功能,可以用这个控制下一台伺服的速度,这个是简单跟随;
3:相应速度和跟随精度要求很高,建议使用多轴运动控制器,以前见过派克的一款,假设有A/B/C三台伺服,使用PLC控制A伺服,然后A伺服有AB反馈,通过AB反馈到B伺服达到对B伺服的控制,再通过B伺服的反馈,接到C伺服,这样就可以达到伺服的联动及同步性,以上的联动可能有毫秒级的偏差.但是使用在一般的机床上是没有什么问题的;
方法一:在一台电机上安装编码器,通过编码器的反馈去控制进另一台电机,来达到同步;
方法二:利用运动型控制PLC,里面带有电子凸轮机构,可以进行同步跟踪控制;。
c 多电机同步算法

c 多电机同步算法
多电机同步算法是一种控制多个电机协同工作的技术。
在实际应用中,多电机同步算法主要用于确保多个电机在不同速度、不同转向的情况下,能够协同工作,实现精确的位置和速度控制。
以下是一些常见的多电机同步算法:
1.基于PID控制的同步算法:通过调整PID参数,实现对多个电机的速度和位置控制,使各电机能够协同工作。
2.基于矢量控制(场导向控制,Field-Oriented Control,FOC)的同步算法:通过将电机的磁场和转矩分别控制,实现对多个电机的精确控制。
3.基于直接转矩控制(Direct Torque Control,DTC)的同步算法:通过直接控制电机的转矩和磁场,实现对多个电机的快速、精确控制。
4.基于模型预测控制的同步算法:通过预测电机未来的状态,制定控制策略,实现对多个电机的优化控制。
5.基于模糊逻辑控制的同步算法:通过模糊规则,实现对多个电机的实时、灵活控制。
6.基于神经网络控制的同步算法:通过训练神经网络,实现对多个电机的自适应、高性能控制。
在实际应用中,根据不同的场景和需求,可以选择合适的同步算法。
需要注意的是,多电机同步算法的设计和实现需要考虑电机的特性、控制器的性能以及系统的稳定性等因素。
多电机同步操作的常识

多电机同步操作的常识多电机同步操作是指多个电机在同一工作环境下相互配合、协调工作,以实现其中一特定任务。
在很多工业生产场景中,例如自动化生产线、机械加工、食品加工等,常常需要多个电机同时工作,以提高生产效率和产品质量。
下面是关于多电机同步操作的一些常识。
1.同步操作的原理:多电机同步操作的关键在于准确控制每个电机的速度、位置和转矩。
通过给每个电机安装编码器或位置传感器,可以实时获取电机的实际运行状态,再根据需求在控制器中进行运算和调整,使得每个电机在时间上保持一致的运动方式。
2.控制方式:多电机同步操作可以通过两种控制方式实现,分别是集中式控制和分布式控制。
集中式控制是将所有电机连接到一个中央控制器,由中央控制器发送指令给每个电机,控制电机的运行。
而分布式控制则是将控制器安装在每个电机上,它们之间通过通信网络进行数据交换和指令传递。
3.控制算法:多电机同步操作的控制算法可以分为两类,即开环控制和闭环控制。
开环控制是指根据预先设定的运动规律和时间序列,通过发送相应的电机指令来控制电机的运行。
闭环控制则是通过不断地反馈电机的实际运行状态,并与预期的运行状态进行比较,对电机的运行进行动态调整和纠正。
4.传动系统的设计:多电机同步操作的设计中,传动系统的选择和设计非常重要。
传动系统包括了电机、减速器、传动带、链条和连杆等组成部分。
它们的选用和调整应能够适应电机的运行要求,以确保电机在运行中具有足够的扭矩和精确的位置转动。
5.同步误差的控制:在多电机同步操作中,由于工艺差异和系统扰动等原因,不同电机之间的运行状态很难完全一致。
此时需要通过控制器不断检测和调整电机的运行状态,以及时纠正同步误差。
常用的同步误差控制方法有前馈控制、自适应控制和模糊控制等。
6.安全保护措施:由于多电机同步操作通常涉及高功率和高速运动,因此在设计和使用中需要采取一些安全保护措施。
例如,为每个电机配备过载保护装置,当电机承受过大的载荷时能及时停止电机的运行。
浅析多电机的同步控制策略析

浅析多电机的同步控制策略析摘要:本文分析了多电机同步控制技术,并讨论了控制策略和控制策略比较,同时展望了多电机的同步控制特性,如何控制多电机的同步精度已成为工业控制中的关键技术。
基于同步控制技术的理论,设计了同步控制系统的硬件平台。
在硬件平台的基础上,设计了软件部分。
通过改进同步控制算法,提高了同步精度。
关键词:多电机;同步控制;策略一、引言随着现代科学技术的发展和机电一体化水平的提高,电机已成为现代工业自动化系统中的重要执行机构。
电机由于其结构紧凑、控制方便、运行稳定、响应快等优良特性,应用于自动化程度高的场合,需要对印刷机械、制造等速度、位置、力矩等进行精确控制。
造纸机械、纺织机械、工业机器人、高速电梯、数控机床等重要行业得到广泛应用。
在许多工业自动化系统中,常常需要同时使用多个电机。
当电机之间存在速度和位置约束时,需要采用适当的控制策略来协调各电机的运行。
为了满足实际需要。
二、多电机同步控制技术多电机同步控制技术有着广泛的应用,如科学、自然科学、工程和社会。
同步控制技术是影响产品质量和生产效率的关键因素。
所谓的电机同步是指系统中的每个电机必须根据要求在自身运行和其他电机运行之间保持一定的关系。
通常有三种类型的不变关系:(1)在系统中的所有电机的速度或位移被保持相同,它是一个同步控制系统里最简单的系统。
(2)同步控制的多台电机的速度或角位移,维持一个不变的比例系数。
例如,在许多情况下,系统中的各个电机速度或位移并不要求保持同一个数据,但要求各台电机之问维持一定的比值。
(3)此外,除了上述两种情况外,还有第三种情况,在某些生产情况下,要求电机之间的速度或位移保持一个固定的差值,而不是要求它们之间保持一种比例系数。
同步控制系统的判断基于两个不同:同步差值和跟踪差值。
同步差异是电机之间的速度或位移的差异。
它反映了不同电机之间的同步。
跟踪差值是单台电机的输出值和给定值的比较,他反应的是电机本身对设定值的响应情况。
利用PLC和变频器实现多电机速度同步控制

利用PLC和变频器实现多电机速度同步控制在传统的传动系统中,要保证多个执行元件间速度的一定关系,其中包括保证其间的速度同步或具有一定的速比,常采用机械传动刚性联接装置来实现。
但有时若多个执行元件间的机械传动装置较大,执行元件间的距离较远时,就只得考虑采用独立控制的非刚性联接传动方法。
下面以两个例子分别介绍利用PLC和变频器实现两个电机间速度同步和保持速度间一定速比的控制方法。
1、利用PLC和变频器实现速度同步控制薄膜吹塑及印刷机组的主要功能是,利用挤出吹塑的方法进行塑料薄膜的加工,然后经过凹版印刷机实现对薄膜的印刷,印刷工艺根据要求不同可以采用单面单色、单面多色、双面单色或双面多色等方法。
在整个机组中,有多个电机的速度需要进行控制,如挤出主驱动电机、薄膜拉伸牵引电机、印刷电机以及成品卷绕电机等。
电机间的速度有一定的关系,如:挤出主电机的速度由生产量要求确定,但该速度确定之后,根据薄膜厚度,相应的牵引速度也就确定,因此挤出速度和牵引速度之间有一确定的关系;同时,多组印刷胶辘必须保证同步,印刷电机和牵引电机速度也必须保持同步,否则,将影响薄膜的质量、印刷效果以及生产的连续性;卷绕电机的速度受印刷速度的限制,作相应变化,以保证经过印刷的薄膜能以恒定的张力进行卷绕。
在上述机组的传动系统中,多组印刷胶辘的同步驱动可利用刚性的机械轴联接,整个印刷胶辘的驱动由一台电机驱动,这样就保证了它们之间的同步。
印刷电机的速度必须保证与牵引电机的速度同步,否则,在此两道工艺之间薄膜会出现过紧或过松的现象,影响印刷质量和生产的连续性。
但是印刷生置与牵引装置相距甚远,无法采用机械刚性联接的方法。
为实现牵引与印刷间的同步控制,牵引电机和印刷电机各采用变频器进行调速,再用PLC对两台变频器直接控制。
牵引电机和印刷电机采用变频调速,其控制框图如图1所示。
在这个闭环控制中,以牵引辘的速度为目标,由印刷电机变频器调节印刷辘速度来跟踪牵引辘的速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多电机速度同步控制
在传统的传动系统中,要保证多个执行元件间速度的一定关系,其中包括保证其间的速度同步或具有一定的速比,常采用机械传动刚性联接装置来实现。
但有时若多个执行元件间的机械传动装置较大,执行元件间的距离较远时,就只得考虑采用独立控制的非刚性联接传动方法。
下面以两个例子分别介绍利用PLC和变频器实现两个电机间速度同步和保持速度间一定速比的控制方法。
薄膜吹塑及印刷机组的主要功能是,利用挤出吹塑的方法进行塑料薄膜的加工,然后经过凹版印刷机实现对薄膜的印刷,印刷工艺根据要求不同可以采用单面单色、单面多色、双面单色或双面多色等方法。
在整个机组中,有多个电机的速度需要进行控制,如挤出主驱动电机、薄膜拉伸牵引电机、印刷电机以及成品卷绕电机等。
电机间的速度有一定的关系,如:挤出主电机的速度由生产量要求确定,但该速度确定之后,根据薄膜厚度,相应的牵引速度也就确定,因此挤出速度和牵引速度之间有一确定的关系;同时,多组印刷胶辘必须保证同步,印刷电机和牵引电机速度也必须保持同步,否则,将影响薄膜的质量、印刷效果以及生产的连续性;卷绕电机的速度受印刷速度的限制,作相应变化,以保证经过印刷的薄膜能以恒定的张力进行卷绕。
在上述机组的传动系统中,多组印刷胶辘的同步驱动可利用刚性的机械轴联接,整个印刷胶辘的驱动由一台电机驱动,这样就保证了它们之间的同步。
印刷电机的速度必须保证与牵引电机的速度同步,否则,在此两道工艺之间薄膜会出现过紧或过松的现象,影响印刷质量和生产的连续性。
但是印刷生置与牵引装置相距甚远,无法采用机械刚性联接的方法。
为实现牵引与印刷间的同步控制,牵引电机和印刷电机各采用变频器进行调速,再用PLC对两台变频器直接控制。
牵引电机和印刷电机采用变频调速,其控制框图如图1所示。
在这个闭环控制中,以牵引辘的速度为目标,由印刷电机变频器调节印刷辘速度来跟踪牵引辘的速度。
利用旋转编码器1和旋转编码器2分别采集上述两个电机的脉冲信号(编码器位置参见图3),并送到PLC的高速计数口或接在CPU的IR00000~IR00003。
以这两个速度信号数据为输入量,进行比例积分(PI)控制算法,运算结果作为输出信号送PLC的模拟量模块,以控制印刷电机的变频器。
这样,就可以保证印刷速度跟踪牵引速度的变化而发生变化,使两个速度保持同步。
采用PI控制算法进行速度调节,程序设计框图见图2。
图中取自编码器采集的脉冲信号,转换成电机的速度数据,经上下限处理后,存储于某个DM区中,以作为运算中的y值。
计算后的p值,送到模拟量输出通道,经过上下限标定后,换算成变频器能接受的电流或电压信号,以控制印刷电机的变频器。
为确保薄膜在牵引和印刷两道工序间保持恒定的张力,在这两个装置之间增加一组浮动辘调节装置,其结构如图3所示。
上面的浮动辘调节装置,也用于减少因电源系统波动等因素引起的外来干扰。
但波动引起的速度差别,经过一段时间后,会使两个浮动辘位置升得太高或降得太低。
因此在设计PI控制算法时,考虑了这些干扰因素的影响,利用积分环节I来调节累积误差,使得牵引辘和印刷辘能进行同步控制,并且同步精度较高,从而确保这个控制系统的稳定性。
一、利用PLC和变频器实现稳定速比的控制
在聚丙烯(PP)纺丝设备中,经过预拉伸的纤维需要进行热拉伸。
热拉伸在两个经过加热的辘筒与预拉伸辘之间进行,各辘筒由电机分别驱动。
原有的电机调速是采用直流电机驱动,由电位器调节的。
在生产中经常出现速度波动现象,速比不能稳定,加工过程易出现“缠辘”现象,成品纤维出现“毛丝”和“硬头丝”,影响化纤成品的质量。
在纺丝时,预拉伸辘的速度受PP原料、分子线形取向等工艺要求的变化,应能方便地进行调节。
确定了拉伸比后,热拉伸辘的速度要快速地进行眼踪和变化。
采用可编程控制器(PLC)和变频器进行控制,能较好地稳定两个热拉伸辘与预拉伸辘之间的速比。
图4是PP纺丝机中热拉伸的结构原理图。
预拉伸棍和两个热拉伸辘由3台电机分别驱动,热拉伸两辘速度相同,化纤无拉伸,起稳定纤维性能作用;热拉伸辑与预拉伸辗间具有一定的速比,某一个速度发生变化时,另一个也需要根据速比同时进行相应的变化。
由旋转编码器采集的脉冲信号,送PLC的高速计数口或接CPU的
IR00000~IR00003,转换成速度数据后,作为比例积分(PI)控制算法的输入参数。
运算结果作为输出参数,经PLC的模拟量输出模块标定后,以电流或电压形成控制各电机的调速变频器。
控制算法中,预拉伸辘速度数据V1乘上某个速比u后(速比可调),作为目标值,使热拉伸辑的速度数据V2跟踪(V1・u)的变化。
二、结束语
随着变频器技术的成熟和使用范围的扩大,可利用可编程控制器(PLC)对其进行控制,从而适应传动系统中对速度控制灵活性、准确性和可靠性等的不同要求。
上述两个例子均是实际生产中应用PLC和变频器进行速度控制的实例,均较好地达到预期的同步或给定速比控制要求。