多电机速度同步控制

合集下载

采用DSP的多电机同步控制系统

采用DSP的多电机同步控制系统
大, 硬件 电路 复杂 , 制作 困难 。 鉴 于以上 两种 主流 控 制 方式 的局 限性 , 切 迫
t e a p o r t o t lag r h t c iv i g e DS y c r n u o t lo u t r y s e d a d p st n h p rp a e c n r l o t m o a h e e a sn l P S n h o o s c n r ff rmo o sb p e n o i o . i o i o o i T i y t m o a e t ii l o to y t m n S + F GA C L c nr ls s m a n d a tg s i h s s se c mp r d wi dg t n r l se a d D P h ac s P / P D o t y t h sma y a v n a e ,sm— o e p e sr cu e,r a-i e n c n a s lw a d t e d v l p n y l h re sg e t . i tu t r e l me d ma d s a d li o n h e eo me t ce s o tn r al t c y
S n h o o s Co t olS se f r M u t S r o t r i g On P y c r n u n r l y t m o l e v mo o sUsn e DS i
Z HU ig. Z NG Ja n HA in
( c ol f lc cl n n r ai nier g J ns nvr t, hni g2 2 1 , hn ) S ho o et a adIf m t nE g e n , i guU i s y Z ej n 10 3 C ia E r i o o n i a ei a

简析多电机同步控制技术

简析多电机同步控制技术

简析多电机同步控制技术我国现代工业的不断发展与机械自动化技术的不断提高,很多生产场合都无法满足现代工业的发展要求,其电机控制系统要求多台电机共同驱动一台设备运作。

在整个生产过程中,应尽量满足现代工业的发展需求,确保这些电机能够协调运行,所以多电机同步控制技术的应用越来越广泛,这种技术在机械传动系统中,尤其是卷接机组中,可以通过多个电机向多个主要机组,传递其生产需要的动力,这种传动方式是控制方式上的一大创新。

一、多电机同步控制技术为了保证多电机能够实现同步控制,可以通过两种方式:机械方式和电方式。

在同步控制技术应用初期,机械同步控制技术在工业自动化生产中广泛应用。

因为机械控制方式与传动连接十分可靠,这种连接在应用初期得到了广泛应用,但是这种机械控制方式有一些常见的缺点,整个系统智能运用一台电机作为动力输出,所以动力分配到各个单元的动力功率都比较小,很难进行系统同的维修工作,且系统只能获得有效的传动范围[1]。

机械同步控制系统通过齿轮、皮带、链条这些零件进行传动,造成整个系统出现劣迹误差,所以在整个控制过程中,系统的控制精度很容易受到影响。

工作人员在一些精度要求较高的环境,电方式的多电机协调控制更加灵活,拥有更高的精度和稳定性,并能在生产实践中,逐渐被完善。

二、卷接机中同步控制技术的应用流程多电机同步控制技术一般选用YJ27卷接机组,其机械设备结构复杂,且各个鼓轮的转速间应保持精准的比例关系。

现阶段,相关单位采用的是传统的机械式齿轮传动方式对各个鼓轮进行同步控制,从而保证系统精度,对于高速环境下的齿轮,工作人员应为其设置润滑系统,确保整个系统的传动链不会太长,机构系统导致传动造成过大,在连续工作时,造成设备损坏,润滑齿轮箱容易出现漏油,以及传动误差较大等现象,设备的维修量会大幅增加,传动系统速度的波动会影响卷接机的运用功能[2]。

(一)偏差耦合结构控制工作人员以YJ27卷接机组的几个主要的工作鼓轮作为研究对象,并总结这些设备的机械传动关系,得出他们之间的速度比例,然后算出每个鼓轮的负载特点,将与之相对的永磁同步电动机作为这种设备的驱动电机,在一定环境中建立起一个鼓轮的同步控制系统的仿真模型,然后通过这种仿真模型的相关原理,运用改进型屏偏差耦合对结构进行控制,制定模糊滑模控制策略,这也是一种比较理想的控制方法[3]。

分析变频器控制多电机同步方案

分析变频器控制多电机同步方案

CHINA FLIGHTS 中国航班91TECHNOLOGY OUTLOOK科技展望图1 PLC+编码器闭环控制分析变频器控制多电机同步方案王维(中达电通股份有限公司沈阳分公司)摘要:多电机同动/联动在实际生产中有非常多的应用需求。

变频器因其节能效果好,启停对电网冲击小,保护功能多,也得到了越来越多的应用。

本文列出使用变频器实现多电机同步的部分方案,并分析他们的优劣。

关键词:变频器;同步;编码器两个或多个电机的同步及联动,在纺织、汽车、金属加工、运输等行业,是生产中经常需要的一种应用。

而在不同行业,不同应用速度、精度等要求下,哪种方案才最满足客户要求,需要我们工程技术人员仔细研究。

本文列出了常见的几种利用变频器进行同步控制的方案,同大家一同探讨。

1一拖多控制使用一台大容量变频器带动2台或多台电机,只能使用v/f 控制方式。

优点:结构简单,调试方便,尤其是传送带等小功率,精度要求不高场合可以实现一变频器带很多电机,节省安装空间和变频器成本。

缺点:变频器对单台电机保护效果减弱,过流时不一定会报警,如果条件允许建议每台电机上口单独安装热保护器。

电机之间频率给定一致,不可成比例变化。

不能使用矢量控制方式。

2频率同步给定控制使用电位器、PLC、二次仪表等设备,通过模拟量/通讯等方式,同时给多台变频器频率设定。

优点:结构简单,调试方便。

可以通过调整变频器给定的偏差和增益等方式,改变变频器之间的频率比例。

电机之间无主从关系,单台故障不影响其他电机运行。

缺点:使用电位器或PLC 等利用模拟量进行给定时,误差较大。

中国航班 CHINA FLIGHTS92TECHNOLOGY OUTLOOK科技展望3一主多从控制将其中一台变频器作为主变频器,将主变频器的输入/输出频率作为第二台变频器的输入频率,将第二台变频器的输入/输出频率作为第三台变频器的输入频率,以此类推。

信号可以使用模拟量或者脉冲信号。

优点:结构简单,接线少,可以通过设定增益和偏差改变变频器之间的频率比例。

如何用一个PLC控制两个或多个伺服电机同步运行

如何用一个PLC控制两个或多个伺服电机同步运行

如何用一个PLC控制两个或多个伺服电机同步运行
主电机速度改变时,其它伺服电机也跟着同步运行.
用第一个伺服驱动的输出控制第二个伺服驱动器,就可以实现同步运动了,只要要求不是太高这种方法完全可行;
同步分控制精度来确定控制方案的;
1:简单的多个伺服电机转速的同步,完全可以PLC不同输出口发同一个速度出去,这个不是跟随;
2:伺服驱动有脉冲输出功能,可以用这个控制下一台伺服的速度,这个是简单跟随;
3:相应速度和跟随精度要求很高,建议使用多轴运动控制器,以前见过派克的一款,假设有A/B/C三台伺服,使用PLC控制A伺服,然后A伺服有AB反馈,通过AB反馈到B伺服达到对B伺服的控制,再通过B伺服的反馈,接到C伺服,这样就可以达到伺服的联动及同步性,以上的联动可能有毫秒级的偏差.但是使用在一般的机床上是没有什么问题的;
方法一:在一台电机上安装编码器,通过编码器的反馈去控制进另一台电机,来达到同步;
方法二:利用运动型控制PLC,里面带有电子凸轮机构,可以进行同步跟踪控制;。

c 多电机同步算法

c 多电机同步算法

c 多电机同步算法
多电机同步算法是一种控制多个电机协同工作的技术。

在实际应用中,多电机同步算法主要用于确保多个电机在不同速度、不同转向的情况下,能够协同工作,实现精确的位置和速度控制。

以下是一些常见的多电机同步算法:
1.基于PID控制的同步算法:通过调整PID参数,实现对多个电机的速度和位置控制,使各电机能够协同工作。

2.基于矢量控制(场导向控制,Field-Oriented Control,FOC)的同步算法:通过将电机的磁场和转矩分别控制,实现对多个电机的精确控制。

3.基于直接转矩控制(Direct Torque Control,DTC)的同步算法:通过直接控制电机的转矩和磁场,实现对多个电机的快速、精确控制。

4.基于模型预测控制的同步算法:通过预测电机未来的状态,制定控制策略,实现对多个电机的优化控制。

5.基于模糊逻辑控制的同步算法:通过模糊规则,实现对多个电机的实时、灵活控制。

6.基于神经网络控制的同步算法:通过训练神经网络,实现对多个电机的自适应、高性能控制。


在实际应用中,根据不同的场景和需求,可以选择合适的同步算法。

需要注意的是,多电机同步算法的设计和实现需要考虑电机的特性、控制器的性能以及系统的稳定性等因素。

多电机同步操作的常识

多电机同步操作的常识

多电机同步操作的常识多电机同步操作是指多个电机在同一工作环境下相互配合、协调工作,以实现其中一特定任务。

在很多工业生产场景中,例如自动化生产线、机械加工、食品加工等,常常需要多个电机同时工作,以提高生产效率和产品质量。

下面是关于多电机同步操作的一些常识。

1.同步操作的原理:多电机同步操作的关键在于准确控制每个电机的速度、位置和转矩。

通过给每个电机安装编码器或位置传感器,可以实时获取电机的实际运行状态,再根据需求在控制器中进行运算和调整,使得每个电机在时间上保持一致的运动方式。

2.控制方式:多电机同步操作可以通过两种控制方式实现,分别是集中式控制和分布式控制。

集中式控制是将所有电机连接到一个中央控制器,由中央控制器发送指令给每个电机,控制电机的运行。

而分布式控制则是将控制器安装在每个电机上,它们之间通过通信网络进行数据交换和指令传递。

3.控制算法:多电机同步操作的控制算法可以分为两类,即开环控制和闭环控制。

开环控制是指根据预先设定的运动规律和时间序列,通过发送相应的电机指令来控制电机的运行。

闭环控制则是通过不断地反馈电机的实际运行状态,并与预期的运行状态进行比较,对电机的运行进行动态调整和纠正。

4.传动系统的设计:多电机同步操作的设计中,传动系统的选择和设计非常重要。

传动系统包括了电机、减速器、传动带、链条和连杆等组成部分。

它们的选用和调整应能够适应电机的运行要求,以确保电机在运行中具有足够的扭矩和精确的位置转动。

5.同步误差的控制:在多电机同步操作中,由于工艺差异和系统扰动等原因,不同电机之间的运行状态很难完全一致。

此时需要通过控制器不断检测和调整电机的运行状态,以及时纠正同步误差。

常用的同步误差控制方法有前馈控制、自适应控制和模糊控制等。

6.安全保护措施:由于多电机同步操作通常涉及高功率和高速运动,因此在设计和使用中需要采取一些安全保护措施。

例如,为每个电机配备过载保护装置,当电机承受过大的载荷时能及时停止电机的运行。

浅析多电机的同步控制策略析

浅析多电机的同步控制策略析

浅析多电机的同步控制策略析摘要:本文分析了多电机同步控制技术,并讨论了控制策略和控制策略比较,同时展望了多电机的同步控制特性,如何控制多电机的同步精度已成为工业控制中的关键技术。

基于同步控制技术的理论,设计了同步控制系统的硬件平台。

在硬件平台的基础上,设计了软件部分。

通过改进同步控制算法,提高了同步精度。

关键词:多电机;同步控制;策略一、引言随着现代科学技术的发展和机电一体化水平的提高,电机已成为现代工业自动化系统中的重要执行机构。

电机由于其结构紧凑、控制方便、运行稳定、响应快等优良特性,应用于自动化程度高的场合,需要对印刷机械、制造等速度、位置、力矩等进行精确控制。

造纸机械、纺织机械、工业机器人、高速电梯、数控机床等重要行业得到广泛应用。

在许多工业自动化系统中,常常需要同时使用多个电机。

当电机之间存在速度和位置约束时,需要采用适当的控制策略来协调各电机的运行。

为了满足实际需要。

二、多电机同步控制技术多电机同步控制技术有着广泛的应用,如科学、自然科学、工程和社会。

同步控制技术是影响产品质量和生产效率的关键因素。

所谓的电机同步是指系统中的每个电机必须根据要求在自身运行和其他电机运行之间保持一定的关系。

通常有三种类型的不变关系:(1)在系统中的所有电机的速度或位移被保持相同,它是一个同步控制系统里最简单的系统。

(2)同步控制的多台电机的速度或角位移,维持一个不变的比例系数。

例如,在许多情况下,系统中的各个电机速度或位移并不要求保持同一个数据,但要求各台电机之问维持一定的比值。

(3)此外,除了上述两种情况外,还有第三种情况,在某些生产情况下,要求电机之间的速度或位移保持一个固定的差值,而不是要求它们之间保持一种比例系数。

同步控制系统的判断基于两个不同:同步差值和跟踪差值。

同步差异是电机之间的速度或位移的差异。

它反映了不同电机之间的同步。

跟踪差值是单台电机的输出值和给定值的比较,他反应的是电机本身对设定值的响应情况。

利用PLC和变频器实现多电机速度同步控制

利用PLC和变频器实现多电机速度同步控制

利用PLC和变频器实现多电机速度同步控制在传统的传动系统中,要保证多个执行元件间速度的一定关系,其中包括保证其间的速度同步或具有一定的速比,常采用机械传动刚性联接装置来实现。

但有时若多个执行元件间的机械传动装置较大,执行元件间的距离较远时,就只得考虑采用独立控制的非刚性联接传动方法。

下面以两个例子分别介绍利用PLC和变频器实现两个电机间速度同步和保持速度间一定速比的控制方法。

1、利用PLC和变频器实现速度同步控制薄膜吹塑及印刷机组的主要功能是,利用挤出吹塑的方法进行塑料薄膜的加工,然后经过凹版印刷机实现对薄膜的印刷,印刷工艺根据要求不同可以采用单面单色、单面多色、双面单色或双面多色等方法。

在整个机组中,有多个电机的速度需要进行控制,如挤出主驱动电机、薄膜拉伸牵引电机、印刷电机以及成品卷绕电机等。

电机间的速度有一定的关系,如:挤出主电机的速度由生产量要求确定,但该速度确定之后,根据薄膜厚度,相应的牵引速度也就确定,因此挤出速度和牵引速度之间有一确定的关系;同时,多组印刷胶辘必须保证同步,印刷电机和牵引电机速度也必须保持同步,否则,将影响薄膜的质量、印刷效果以及生产的连续性;卷绕电机的速度受印刷速度的限制,作相应变化,以保证经过印刷的薄膜能以恒定的张力进行卷绕。

在上述机组的传动系统中,多组印刷胶辘的同步驱动可利用刚性的机械轴联接,整个印刷胶辘的驱动由一台电机驱动,这样就保证了它们之间的同步。

印刷电机的速度必须保证与牵引电机的速度同步,否则,在此两道工艺之间薄膜会出现过紧或过松的现象,影响印刷质量和生产的连续性。

但是印刷生置与牵引装置相距甚远,无法采用机械刚性联接的方法。

为实现牵引与印刷间的同步控制,牵引电机和印刷电机各采用变频器进行调速,再用PLC对两台变频器直接控制。

牵引电机和印刷电机采用变频调速,其控制框图如图1所示。

在这个闭环控制中,以牵引辘的速度为目标,由印刷电机变频器调节印刷辘速度来跟踪牵引辘的速度。

多永磁电机传动系统的同步控制策略研究

多永磁电机传动系统的同步控制策略研究

多永磁电机传动系统的同步控制策略研究多永磁电机传动系统是指由多个永磁电机组成的传动系统。

在这种系统中,多个永磁电机可以合作完成一项任务,通过协调各个电机的运行状态和输出功率,实现对传动系统的同步控制。

同步控制策略是指采用何种方法和算法来实现多永磁电机传动系统的同步控制。

下面将从传动系统调速、负载分配、控制算法等方面进行论述,总结多永磁电机传动系统同步控制策略的研究。

首先,传动系统调速是多永磁电机传动系统同步控制的关键环节。

在传动系统中,每个永磁电机都有不同的速度和转矩特性,通过控制各个电机的转速,可以实现传动系统的同步运行。

传动系统调速涉及到速度控制算法的设计和实现,可以采用闭环控制或开环控制方式。

闭环控制通过测量每个电机的转速反馈信号,并与给定的转速进行比较来调整电机输出功率,实现传动系统的同步运行。

开环控制则根据预先设定的转速模式控制各个电机的输出功率,实现传动系统的同步控制。

不同的调速方法和算法对传动系统的同步控制效果有影响,可以根据具体的应用场景选择合适的调速方法。

其次,负载分配是多永磁电机传动系统同步控制策略的另一个重要方面。

在传动系统中,不同的电机承担着不同的负载。

通过合理地分配负载,可以避免某个电机过载或负载不均衡的情况,保证传动系统的同步运行。

负载分配可以根据电机的转矩特性、转速和工作状态进行调整,可以采用静态负载分配或动态负载分配策略。

静态负载分配是根据电机的额定转矩和负载需求进行分配,而动态负载分配则是根据电机的实际转速和转矩来动态调整负载分配。

负载分配的合理性和准确性对传动系统的同步控制效果有着重要的影响,需要根据实际情况进行研究和调整。

最后,控制算法是实现多永磁电机传动系统同步控制的核心。

传统的控制算法包括PID控制、模糊控制和神经网络控制等方法。

PID控制是一种经典的控制方法,通过调整比例、积分和微分系数来实现对传动系统的同步控制。

模糊控制则采用模糊集合和模糊推理来处理传动系统的非线性和不确定性,实现同步控制。

两台电机如何通过变频器实现同步控制呢

两台电机如何通过变频器实现同步控制呢

两台电机如何通过变频器实现同步控制呢在工业控制系统中,变频器是一种常见的设备,用于控制电动机的转速和运行状态。

通过变频器,可以实现对电机的精确控制,包括速度、转矩、加速度等。

而在一些应用中,需要实现多台电机的同步控制,即多台电机的转速和运动状态保持一致。

本文将介绍如何通过变频器实现两台电机的同步控制。

首先,要实现电机的同步控制,需要确保两台电机的转速保持一致。

为此,可以将一台电机作为主电机,另一台电机作为从电机。

主电机通过变频器控制其转速,而从电机通过接收主电机的转速信号来实现同步运动。

具体实施时,可以按照以下步骤进行:1.首先,需要确保主电机的位置和转速精确可控。

可以通过编码器或位置传感器来获取主电机的位置和转速信息,并将其传递给变频器。

变频器根据这些信息来调整主电机的转速。

2.从电机需要与主电机保持同步,因此需要获取主电机的位置和转速信息。

可以通过编码器或位置传感器获取从电机的位置和转速信息,并将其传递给从变频器。

4.从变频器接收到主电机的转速信号后,根据这一信号调整从电机的转速。

从变频器将通过调整从电机的电压和频率来控制其转速,以保持与主电机的同步。

需要注意的是,在实际操作中,还需要考虑到一些因素,以确保同步控制能够稳定有效。

例如,变频器之间通信的稳定性和可靠性,编码器或位置传感器的精度和信号的及时性等。

此外,还要根据具体的应用需求和环境条件,调整控制系统的参数和算法,以实现更精确的同步控制。

通过变频器实现两台电机的同步控制,可以应用在许多工业场景中。

例如,自动化生产线中的输送带、同步驱动机械臂等。

通过有效地实现同步控制,不仅可以提高生产线的工作效率和精度,还可以减少因电机运动不同步而引起的故障和损耗。

总结起来,通过变频器实现两台电机的同步控制需要确保主电机的位置和转速精确可控,从电机通过接收主电机的转速信号来实现同步运动。

同时,还需要考虑通信稳定性、传感器精度和环境因素等因素,以优化同步控制系统的性能。

浅析plc控制的多电机同步系统

浅析plc控制的多电机同步系统

浅析PLC控制的多电机同步系统摘要:通过对不同控制方法的分析,介绍了利用Omron系列PLC做为主控元件的多电机同步运行系统。

关键词:PLC 同步随动闭环电动机近年来,随着我国包装,分切,印刷,涂层等行业的蓬勃发展,做为配套的电气控制环节则对产品的质量起着关键的作用,目前以PLC做为中心控制元件的设备占有相当大的比重,并以其精确的控制,稳定的工作状态占据了十分重要的地位。

而在这些控制系统中核心问题便是各动力驱动轴的同步运行,即各电机的同步运行。

本文将介绍分析几种以OMRON系列PLC作为主控元件来实现多电机同步运行的方案。

1 系统控制方案1.1 随动系统随动系统,即一台电机作为主电机,另外一台或多台作为随动电机,随动电机紧跟着主电机运行;控制系统的基本组如图1所示。

在该系统中由PLC接受来自上位机发来的控制信号,经过一定的运算转换为执行装置的控制信号,如变频器的频率,进而驱动主电机运行,通过编码器监测电机的实际运行速度,并将这一信号作为随动电机的控制命令,随动电机紧随这一速度便可实现两台电机的同步运行。

1.2 闭环系统闭环控制系统,即两台电机由同一控制器(PLC)发出控制信号,然后再各自构成闭环系统,紧随控制器发出的信号,即可实现多电机的同步运行;控制系统的基本组如图2所示。

在这个系统中由PLC接受来自上位机发来的控制信号,经过运算转换为执行装置的控制信号,同时发到两台电机的驱动器中,由于控制命令是相同的, 通过编码器监测电机的实际速度,与控制命令进行比较,构成闭环控制系统,这样只要两台电机的都紧随控制命令运行便可实现同步。

1.3 随动闭环系统随动闭环控制系统,综合了随动系统和闭环控制系统的特点,在随动控制系统的基础上构成了闭环控制。

两台电机驱动器由同一控制器(PLC)发出控制信号,并各自构成闭环系统,将辅电机的实际速度实时的与主电机进行比较,综合调整,使辅电机紧随主电机的运行速度,即可实现多电机的同步运行。

两台电机如何通过变频器实现同步控制

两台电机如何通过变频器实现同步控制

两台电机如何通过变频器实现同步控制掌握要求及方式:
1两台电机同步掌握的方式是以一台为主机,另一台为从机来进行掌握。

2.同步用的变频器均采纳0-10V电压给定速度,我们使用1号电位器为主调电位器,2号,3号为微调电位器。

接线步骤:
1)分别将两台变频器的10V短接,GND短接,主调电位器1号脚接入10V,3号脚接GND,两个微调电位器1号接入主调电位器的2号脚,2号脚接入AI1,3号脚接GND,
2)运行信号分别接入D11,COM
变频器参数设置:
P0-02 命令源选择,设置成1,端子命令通道
P0-03 主频率源X选择,设置成2,AI1端子
P0-14 下限频率,设置成0.4HZ,
P0-17 加速时间设置成5S P0-18 减速时间设置成5S
启动变频器,旋动主电位器观看两台变频器的频率变化,变化是否有规律,分别通过两台微调电位器进行修正,把频率下降5HZ,再观看是否符合规律,松开运行键,变频器停止运行
留意两点:
1)多台变频器的10V端子肯定要短接,不然由于压降而导致不能正
常工作
2)同步掌握不是频率一样,是否同步的依据是线速度。

如何用一个PLC控制两个或多个伺服电机同步运行完整版

如何用一个PLC控制两个或多个伺服电机同步运行完整版

如何用一个P L C控制两个或多个伺服电机同
步运行
HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】
如何用一个PLC控制两个或多个伺服电机同步运行
主电机速度改变时,其它伺服电机也跟着同步运行.
用第一个伺服驱动的输出控制第二个伺服驱动器,就可以实现同步运动了,只要要求不是太高这种方法完全可行。

同步分控制精度来确定控制方案的。

1:简单的多个伺服电机转速的同步,完全可以PLC不同输出口发同一个速度出去,这个不是跟随。

2:伺服驱动有脉冲输出功能,可以用这个控制下一台伺服的速度,这个是简单跟随。

3:相应速度和跟随精度要求很高,建议使用多轴运动控制器,以前见过派克的一款,假设有A/B/C三台伺服,使用PLC控制A 伺服,然后A伺服有AB反馈,通过AB反馈到B伺服达到对B伺服的控制,再通过B伺服的反馈,接到C伺服,这样就可以达到伺服的联动及同步性,以上的联动可能有毫秒级的偏差.但是使用在一般的机床上是没有什么问题的。

方法一:在一台电机上安装编码器,通过编码器的反馈去控制进另一台电机,来达到同步;
方法二:利用运动型控制PLC,里面带有电子凸轮机构,可以进行同步跟踪控制;。

多电机同步操作的常识

多电机同步操作的常识

多电机同步操作的常识随着现代制造业的发展与机械控制技术的深入研究,多电机同步操作已成为当今工业自动化领域最为重要的控制技术之一。

在实际生产中,多电机同步操作能够使多个电机互相配合、协同工作,从而提高生产效率、降低生产成本、提高产品质量。

本文将从多电机同步操作的原理、应用、常见问题等方面进行探讨。

一、多电机同步操作原理多电机同步操作实质上是通过对多个电机之间的相对位置关系进行精细计算和控制,使得不同电机输出的信号能够始终保持同步。

在实际应用中,多电机同步操作依赖于精准的控制算法和精确的位置反馈传感器。

简单地说,多电机同步操作可以分为两类:硬件同步和软件同步。

硬件同步指的是通过硬件电路将多个电机进行同步,实现电机在控制时采用同步脉冲信号,从而实现多电机的同步。

这种同步方式通常适用于需要高精度的控制环境,如自动化加工线等。

而软件同步则是通过计算机算法控制,实现多个电机之间软件同步。

该方法使用成本较低,可以适用于各种不同场景,如自动化生产线、机器人控制等。

二、多电机同步操作应用多电机同步操作通常适用于生产线上需要将多个电机同步控制的场景,例如切割、加工、装配等过程。

其中,多电机同步操作在包装行业中的应用尤为广泛,由于产品体积较小,高效的包装生产通常需要通过高速连续的包装过程来实现。

多电机同步操作能够保证机器运行时间和稳定性,从而提高生产效率。

另外,在机器人工业中,自动化生产链使用了许多不同的机器人,机器人之间通常需要同步工作以提高生产效率。

多电机同步操作在这种情况下可以保证不同机器人之间的动作协调,并能够实现高效的生产。

三、多电机同步操作的常见问题在实际应用中,多电机同步操作需要面对许多常见问题。

其中最为常见的问题包括:1. 时序精度问题:不完美的信号周期可能导致时序接受误差,从而导致电机同步失败。

2. 位置共振问题:多电机同步需要非常精细的位置反馈传感器,并且需要避开可能产生机械共振的频率范围。

3. 电机导致的振动问题:如果多个电机的振动不同步,则会导致整个工作环境的振动。

永磁同步电机多电机同步控制策略

永磁同步电机多电机同步控制策略

永磁同步电机多电机同步控制策略金 花 宁 涛(大连交通大学软件学院,辽宁大连116045)摘 要 针对永磁同步电机提出基于单神经元PID的偏差耦合多电机同步控制策略。

建立了数学模型,设计了自适应能力强、结构简单的单神经元PID控制器,并采用S函数编写单神经元学习模型。

在交叉耦合控制方式的基础上提出了改进的偏差耦合控制,将各个电机转速反馈值经MUX和DEMUX环节进行整合后,通过转速补偿对电机转速进行调节。

仿真实验表明有监督Hebb学习算法的单神经元PID运用到偏差耦合多电机同步控制系统中,使系统不仅具有良好的自适应能力,还能够有效地减小超调甚至无超调,提高系统响应能力,增加系统的鲁棒性。

关键词 永磁同步电机 同步控制 单神经元 PID 偏差耦合中图分类号 TH862 文献标识码 A 文章编号 1000-3932(2015)05-0479-05 永磁同步电机(PMSM)由于转子结构采用永磁体替代了异步电机励磁绕组的机构,降低了转子的发热问题,并且由于永磁同步电机体积小、功率因数高、密度高及低速转矩大等优势逐渐被应用在需要高速运行、负载变化大和短时工作制的领域,同时使得在PMSM上采用全封闭结构和直驱控制方式成为了可能。

但是由于永磁同步电机自身结构对同步性的要求,每台电机需单独配备一套牵引变流器,并且与异步电机存在转速、转差不同,PMSM对转速同步性要求较高,电机之间转速差过大会使擦轮严重,如果控制不当,会降低传动系统的性能[1~3]。

因此,笔者针对以上问题提出一种多电机同步控制策略。

1 永磁同步电机简介多电机同步控制是指系统中的电机按照相同转速运行,并且转速变化是同步的[4,5]。

目前多电机同步控制策略主要有并行控制方式、主从控制方式、虚拟总轴控制方式、交叉耦合控制方式及偏差耦合控制方式[6]等。

PMSM的物理结构如图1所示。

建立数学模型之前,先做如下假设:a.忽略铁心饱和,不计涡流和磁滞损耗;b.永磁材料的电导率为零;c.转子上没有阻尼绕组。

同轴多电机同步控制

同轴多电机同步控制

浅谈同轴多电机同步控制在数控系统中,有时采用多台电机联动虚拟为一个坐标轴,来驱动机床坐标的运动。

最常用的多电机驱动为同步(Synchronous)运动的形式,比如,要求两台以相同的速度和位移运动的电机带动齿轮与齿条啮合作为一个坐标轴运动,这样的坐标轴被称为“同步轴”。

同步技术被广泛应用在数控技术中,比如大跨距龙门机床的龙门直线移动、大型三坐标测量机的双柱直线移动,为保持运动的均匀,都需要两个电机同步驱动。

一、同步控制系统本文主要从TFT-LCD产线内Stoker实现自动搬送的村田Crane Y-Axis四个私服电机的精确同步控制来讨论,使用在伺服系统中的驱动电机要求具有响应速度快、定位准确、转动惯量较大等特点。

现在我们所需要讨论的是为什么四个伺服电机的转速、定位达到同步,如图1所示。

图1实现同步一般有两种方法:一是机械同步:同步系统由机械装置组成。

这种同步方法容易实现,但机械传动链复杂,传动件加工精度要求高,所需的零件多,难以更换传动比,且占用的空间大。

二是电伺服同步:同步系统由控制器、电子调节器、功率放大器、伺服电机和机械传动箱等组成。

所需机械传动链简单、调试方便、精度高、容易改变电子齿轮比。

在电伺服同步系统中,“同步”的概念是指系统中具有两个或两个以上由电子控制的伺服放大器和伺服电机组成的“控制对象”,其中一个为“主(Master)控制对象”,另外一个或多个为“从(Slave)控制对象”,控制量为机械的位移或速度(对旋转运动为转角或转速)。

通过控制器使“从控制对象”和“主控制对象”的输出控制量保持一定的严格比例关系,这种运动系统称为同步系统。

一般同步系统的输出控制量为位置和速度。

前面所提到的“同步轴”,“主控制对象”与“从控制对象”的输出控制量相等。

为了简化讨论,同步系统中的控制装置可被简化为具有一个积分环节的位置系统,其框图如图2所示。

其中KV为简化后控制装置的位置控制器的开环增益,XC、XO为位置输入、输出;FC为速度指令,Δ为位置误差,KF为速度环增益。

多电机同步运动控制技术综述

多电机同步运动控制技术综述

多电机同步运动控制技术综述1. 本文概述随着现代工业自动化的快速发展,多电机同步运动控制技术在诸多领域,如机器人、数控机床、生产线自动化等方面得到了广泛应用。

本文旨在对多电机同步运动控制技术进行全面的综述,以期为读者提供清晰、系统的技术理解和应用指导。

本文将简要介绍多电机同步运动控制技术的基本概念和原理,包括其定义、发展历程以及主要的应用场景。

接着,本文将重点分析多电机同步运动控制技术的关键技术和挑战,如同步策略、误差补偿、动态性能优化等。

本文还将对多电机同步运动控制技术的不同实现方法进行比较和评价,包括传统的PID控制、现代的控制算法如模糊控制、神经网络控制等。

在综述的过程中,本文将结合近年来国内外在多电机同步运动控制技术方面的重要研究成果和案例,深入剖析其技术特点、应用效果以及可能的发展方向。

本文将总结多电机同步运动控制技术的发展趋势和前景,以期对未来的研究和应用提供参考和启示。

通过本文的综述,读者可以对多电机同步运动控制技术有一个全面、深入的了解,为实际应用和研究提供参考和指导。

2. 多电机同步运动控制的基本原理首先是速度同步控制。

在多电机系统中,为了实现同步运动,需要确保各个电机的转速一致。

这通常通过采用速度反馈控制策略来实现,即通过传感器实时检测电机的实际转速,并与期望的转速进行比较,然后根据误差调整电机的控制输入,使其逐渐接近期望的转速。

其次是位置同步控制。

除了速度同步外,位置同步也是多电机同步运动控制中的重要方面。

为了确保各个电机在运动中保持相对位置不变,需要采用位置反馈控制策略。

这通常通过编码器或传感器实时检测电机的实际位置,并与期望的位置进行比较,然后根据误差调整电机的控制输入,使其逐渐达到期望的位置。

最后是力同步控制。

在某些多电机系统中,除了速度和位置同步外,还需要实现力的同步。

例如,在机器人抓取物体时,需要确保各个电机产生的合力与期望的抓取力一致。

这通常通过力传感器实时检测物体受到的力,并根据误差调整电机的控制输入,使其产生的合力逐渐接近期望的抓取力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多电机速度同步控制
在传统的传动系统中,要保证多个执行元件间速度的一定关系,其中包括保证其间的速度同步或具有一定的速比,常采用机械传动刚性联接装置来实现。

但有时若多个执行元件间的机械传动装置较大,执行元件间的距离较远时,就只得考虑采用独立控制的非刚性联接传动方法。

下面以两个例子分别介绍利用PLC和变频器实现两个电机间速度同步和保持速度间一定速比的控制方法。

薄膜吹塑及印刷机组的主要功能是,利用挤出吹塑的方法进行塑料薄膜的加工,然后经过凹版印刷机实现对薄膜的印刷,印刷工艺根据要求不同可以采用单面单色、单面多色、双面单色或双面多色等方法。

在整个机组中,有多个电机的速度需要进行控制,如挤出主驱动电机、薄膜拉伸牵引电机、印刷电机以及成品卷绕电机等。

电机间的速度有一定的关系,如:挤出主电机的速度由生产量要求确定,但该速度确定之后,根据薄膜厚度,相应的牵引速度也就确定,因此挤出速度和牵引速度之间有一确定的关系;同时,多组印刷胶辘必须保证同步,印刷电机和牵引电机速度也必须保持同步,否则,将影响薄膜的质量、印刷效果以及生产的连续性;卷绕电机的速度受印刷速度的限制,作相应变化,以保证经过印刷的薄膜能以恒定的张力进行卷绕。

在上述机组的传动系统中,多组印刷胶辘的同步驱动可利用刚性的机械轴联接,整个印刷胶辘的驱动由一台电机驱动,这样就保证了它们之间的同步。

印刷电机的速度必须保证与牵引电机的速度同步,否则,在此两道工艺之间薄膜会出现过紧或过松的现象,影响印刷质量和生产的连续性。

但是印刷生置与牵引装置相距甚远,无法采用机械刚性联接的方法。

为实现牵引与印刷间的同步控制,牵引电机和印刷电机各采用变频器进行调速,再用PLC对两台变频器直接控制。

牵引电机和印刷电机采用变频调速,其控制框图如图1所示。

在这个闭环控制中,以牵引辘的速度为目标,由印刷电机变频器调节印刷辘速度来跟踪牵引辘的速度。

利用旋转编码器1和旋转编码器2分别采集上述两个电机的脉冲信号(编码器位置参见图3),并送到PLC的高速计数口或接在CPU的IR00000~IR00003。

以这两个速度信号数据为输入量,进行比例积分(PI)控制算法,运算结果作为输出信号送PLC的模拟量模块,以控制印刷电机的变频器。

这样,就可以保证印刷速度跟踪牵引速度的变化而发生变化,使两个速度保持同步。

采用PI控制算法进行速度调节,程序设计框图见图2。

图中取自编码器采集的脉冲信号,转换成电机的速度数据,经上下限处理后,存储于某个DM区中,以作为运算中的y值。

计算后的p值,送到模拟量输出通道,经过上下限标定后,换算成变频器能接受的电流或电压信号,以控制印刷电机的变频器。

为确保薄膜在牵引和印刷两道工序间保持恒定的张力,在这两个装置之间增加一组浮动辘调节装置,其结构如图3所示。

上面的浮动辘调节装置,也用于减少因电源系统波动等因素引起的外来干扰。

但波动引起的速度差别,经过一段时间后,会使两个浮动辘位置升得太高或降得太低。

因此在设计PI控制算法时,考虑了这些干扰因素的影响,利用积分环节I来调节累积误差,使得牵引辘和印刷辘能进行同步控制,并且同步精度较高,从而确保这个控制系统的稳定性。

一、利用PLC和变频器实现稳定速比的控制
在聚丙烯(PP)纺丝设备中,经过预拉伸的纤维需要进行热拉伸。

热拉伸在两个经过加热的辘筒与预拉伸辘之间进行,各辘筒由电机分别驱动。

原有的电机调速是采用直流电机驱动,由电位器调节的。

在生产中经常出现速度波动现象,速比不能稳定,加工过程易出现“缠辘”现象,成品纤维出现“毛丝”和“硬头丝”,影响化纤成品的质量。

在纺丝时,预拉伸辘的速度受PP原料、分子线形取向等工艺要求的变化,应能方便地进行调节。

确定了拉伸比后,热拉伸辘的速度要快速地进行眼踪和变化。

采用可编程控制器(PLC)和变频器进行控制,能较好地稳定两个热拉伸辘与预拉伸辘之间的速比。

图4是PP纺丝机中热拉伸的结构原理图。

预拉伸棍和两个热拉伸辘由3台电机分别驱动,热拉伸两辘速度相同,化纤无拉伸,起稳定纤维性能作用;热拉伸辑与预拉伸辗间具有一定的速比,某一个速度发生变化时,另一个也需要根据速比同时进行相应的变化。

由旋转编码器采集的脉冲信号,送PLC的高速计数口或接CPU的
IR00000~IR00003,转换成速度数据后,作为比例积分(PI)控制算法的输入参数。

运算结果作为输出参数,经PLC的模拟量输出模块标定后,以电流或电压形成控制各电机的调速变频器。

控制算法中,预拉伸辘速度数据V1乘上某个速比u后(速比可调),作为目标值,使热拉伸辑的速度数据V2跟踪(V1・u)的变化。

二、结束语
随着变频器技术的成熟和使用范围的扩大,可利用可编程控制器(PLC)对其进行控制,从而适应传动系统中对速度控制灵活性、准确性和可靠性等的不同要求。

上述两个例子均是实际生产中应用PLC和变频器进行速度控制的实例,均较好地达到预期的同步或给定速比控制要求。

相关文档
最新文档