燃料及燃料燃烧计算

合集下载

燃料及燃烧2 燃烧计算及燃烧理论

燃料及燃烧2 燃烧计算及燃烧理论

Va0 VO0 2
100 8.9Car 26.7 H ar 3.3( Sar Oar )(Nm3 / kg) 21
洛阳理工学院
材料工程基础
②气体燃料
院系:材料科学与工程系
教师:罗伟
可燃组成有CO2、 CO、H2、CH4、CmHn、H2S、H2O、N2、O2(体积百 分含量)
0 百分含量,VO 和 VO0分别为生成RO2和H2O的需氧量( /m3) 2 2

0 0 (VO2 RO2 VO2 H 2 O ) O2
V
0 O2
RO2 V H 2 O
0 O2
令k
0 0 VO2 RO2 VO2 H 2O
RO2
K:单位燃料燃烧时的理论需氧量 与该烟气中RO2百分含量的比值。 组成变动不大的同种燃料的k值近 似为常数。列于表。
洛阳理工学院
材料工程基础
院系:材料科学与工程系
教师:罗伟
第三节
燃烧计算
洛阳理工学院
材料工程基础

院系:材料科学与工程系
教师:罗伟
在设计窑炉时(设计计算) 1、已知燃料的组成及燃烧条件, 2、需计算单位质量(或体积)燃料燃烧所需的空气量、烟气 生成量、烟气组成及燃烧温度 3、以确定空气管道、烟道、烟囱及燃烧室的尺寸,选择风机 型号。
CO2=
VCO2 0 V
0
×100(%)
洛阳理工学院
材料工程基础
② 气体燃料
院系:材料科学与工程系
教师:罗伟
可燃组成有CO2、CO、H2、CH4、CmHn、H2S、H2O、N2、O2(体积百 分含量)
CO + 1/2O2 → CO2 CO2 H2 + 1/2O2 → H2O CH4 + 2O2 → CO2 + 2H2O CmHn +(m+n/4)O2→ m CO2 + n/2 H2O 1Nm3 H2生成 1 Nm3 HO2 …… ...... 1Nm3 CO 生成 1 Nm3

燃料及燃料燃烧计算

燃料及燃料燃烧计算

发电用煤的分类:VAMSST及Q分类方法 例如:V4A1M1S2ST1
焦结性:
煤受热析出挥发分后余下产物的焦结程度。一般炼焦煤 (Vdaf=18~26%)的焦结性最大,适于炼焦炭。 对层燃炉燃烧的影响: • 结焦性过强,导致通风不均,难于燃尽; • 结焦性过弱,易受热而松散,落到炉排下面,而损失掉。
煤样置于105~110℃的烘箱中使干燥至恒重, 失去的水分
化合结晶水分:石膏CaSO4•2H2O,高岭土Al2O3 •2SiO2 •2H2O
水分对锅炉运行的影响
• 煤中的不可燃成分,降低煤的发热量 • 推迟着火,在燃烧过程中汽化吸热,降低炉膛温度,
使着火困难 • 降低锅炉效率 • 易引起低温受热面腐蚀
100 100 Ad
§2-4 煤的工业分析和燃烧特性
煤的工业分析
气态物质 固态物质
水分Mad(%)-测定值
挥发分Vad(%)-测定值 灰分Aad(%)-测定值 固定炭FCad(%)-求定值
还包括发热量Q、焦渣特性、灰熔点、颗粒度
煤的挥发分:
煤在隔绝空气的情况下加热至一定温度时,煤中的部分有机 物和矿物质便发生分解,析出的气态产物。
灰熔点—表示了灰的熔化特性,一般在1000~1600℃之间, 变形温度DT(Deformation Temperature) 开始软化温度ST(Softening Temperature) 熔化温度FT(Fluid Temperature)
易熔灰:ST<1200C,适于液态排渣炉 难熔灰:ST>1400C,适于固态排渣炉
气田煤气: 94~98% CH4 ,压力高,热值36000kJ/Nm3
天 然 气
油田煤气:75~87% CH4,>10%的C2H6和C3H8,5~10% CO2,热值45000kJ/Nm3 煤矿矿井气: 52~60% CH4 ,>35% N2,热值18800kJ/Nm3

燃料燃烧计算

燃料燃烧计算

第三章 燃料及燃烧过程3-2 燃料燃烧计算一、燃料燃烧计算的内容及目的(一)计算内容:①空气需要量 ②烟气生成量 ③烟气成分 ④燃烧温度 (二)目的:通过对以上内容的计算,以便正确地进行窑炉的设计和对运行中的窑炉进行正确的调节。

二、燃烧计算的基本概念 (一)完全燃烧与不完全燃烧。

1、完全燃烧:燃料中可燃成分与完全化合,生成不可再燃烧的产物。

2、不完全燃烧:化学不完全燃烧:产物存在气态可燃物。

物理不完全燃烧:产物中存在固态可燃物。

(二)过剩空气系数 1、过剩空气系数的概念а=V a /V 0a2、影响过剩空气系数的因素:1)燃料种类:气、液、固体燃料,а值不同; 2)燃料加工状态:煤的细度、燃油的雾化粘度。

3)燃烧设备的构造及操作方法。

3、火焰的气氛:①氧化焰:а>1,燃烧产物中有过剩氧气。

②中性焰:а=1③还原焰:а<1,燃烧产物中含还原性气体(CO 、H 2)三、空气需要量、烟气生成量及烟气成分、密度的计算(一)固体、液体燃料:基准:计算时,一般以1kg 或100kg 燃料为基准,求其燃烧时空气需要量、烟气生成量。

方法:按燃烧反映方程式,算得氧气需要量及燃烧产量,然后相加,即可得空气需要量与烟气生成量。

1、理论空气量计算: 1)理论需氧量: V 0O2=12ar C +4ar H +32ar S -32ar O(Nm 3/kgr)2)理论空气量:V 0a =1004.22(12ar C +4ar H +32ar S -32ar O )21100=0.089C ar +0.267H ar +0.033(S ar -O ar ) (Nm 3/kgr)2、实际空气量计算: V a =а×V o a3、理论烟气生成量的计算:V 0L =V CO2+V H2O +V SO2+V N2=1004.22 (12ar C +2ar H +18ar M +32ar S +28arN )×V o a +0.79V o a =0.01865C ar +0.112H ar +0.01243M ar +0.0068S ar +0.008N ar +0.79V o a4、实际烟气生成量的计算: 1)а>1时,V L = V 0L +(а-1)×V o a2)а<1时,在工程上进上近似认为其燃烧产物中只含有CO 一种可燃气体。

第二章 燃料及燃料燃烧计算

第二章 燃料及燃料燃烧计算
29
(二)各类煤质的燃烧特性
烟煤 含碳量较无烟煤低 40%~70%; 挥发分含量较多 20%~40%,易点燃,燃烧快,火焰长; 氢含量较高 发热量较高。 褐煤
碳化程度低,含碳量低 约为40~50%,
水分及灰分很高 发热量低; 挥发分含量高 约40~50%,甚至60%,挥发分的析出温度 低,着火及燃烧均较容易。
热量。
约占2%~6%。 多以碳氢化合物的形式存在。
3、氧(O)和氮(N)
不可燃元素。 氧含量变化很大,少的约占1%~2%,多的占40% 氮的含量约占0.5%~2.5%。
5
一、煤的成分及分析基准
4、硫(S)
有害成分,约占2%,个别高达8%~10%。 存在形式:
① 有机硫(与C、H、O等结合成复杂的有机物)
第二章 燃料及燃料燃烧计算
燃料的成分及其主要特性 燃料燃烧计算 烟气分析方法 空气和烟气焓的计算
1
§2.1 燃料的成分及其主要特性
燃料:
核燃料 有机燃料 固体燃料(煤、木料、油页岩等)
有机燃料 :
液体燃料(石油及其产品) 气体燃料(天然气、高炉煤气、焦炉煤气等)
电厂锅炉以煤为主要燃料,并尽量利用水分和灰分含
Q Q 226 H d , n, et p d , gr d
干燥基 高位发热量与低位发热量之间的换算: 干燥无灰基 高位发热量与低位发热量之间的换算: Q Q 226 H daf , net , p daf , gr daf
18
(一)煤的发热量
高位发热量(Qgr) 各基准间的换算采用表2-1换算系数
为反映煤的燃烧特性,电厂煤粉锅炉用煤还以VAMST及Q法 分类
28
(二)各类煤质的燃烧特性

热工基础教案第4章:燃料及燃烧计算

热工基础教案第4章:燃料及燃烧计算

第二部分:热工计算(4-6章)第一次课课题: 4. 燃料及燃烧计算§4.1燃料的通性一、本课的基本要求:1.掌握燃料的化学组成及各种成分之间的相互转换。

2.燃料发热量的计算。

3.标准燃料的概念。

二、本课的重点、难点:1. 重点:燃料的化学组成。

2. 难点::燃料成分之间的相互转换。

三、作业:第4章燃料及燃烧计算1.燃料的定义:凡是在燃烧时(剧烈地氧化)能够放出大量的热,并且此热量能有效地被利用在工业或其他方面的物质称为燃料。

. 所谓有效地利用是指利用这些热源在技术上是可能的在经济上是合理的。

2.对燃料的要求:(1)在当今技术条件下,单位质量(体积)燃料燃烧时所放出的热可以有效地利用。

(2)燃烧生成物是气体状态,燃烧后的热量绝大部分含欲其气体生成物之中,而且可以在放热地点以外利用生成物中所含的热量。

(3)燃烧产物的性质时熔炼(加热)设备不起破坏作用,无毒、无腐蚀作用。

(4)燃烧过程易于控制。

(5)有足够多的蕴藏量,便于开采。

§4.1 燃料的通性一、燃料的化学组成1.固(液)体燃料的化学组成(1)固(液)体燃料的基本组成固液体燃料的基本组成有C、H、O、N、S、W(水分)及A(灰分),其中C、H、S 能燃烧放热构成可燃成分,但S燃烧后生成的而氧化硫为有毒气体。

所以视硫为有害成分;氧和氮的存在相对降低了可燃成分的含量,属于有害物质;水分(W)的存在不仅相对降低了可燃成分含量,而且水分在蒸发时要吸收大量的热,所以视水为有害物质;灰分的存在不仅降低了可燃成分的含量,而且影响燃烧过程的进行,在燃烧过程中易溶结成块,阻碍通讯,造成燃料浪费和增加排灰的困难。

(2)固(液)体燃料的成分分析固(液)体燃料的成分分析方法有元素分析法和工业分析法两种。

元素分析法是确定燃料中C、H、O、N、S的重量百分含量,它不能说明燃料由那些化合物组成及这些化合物的形式。

只能进行燃料的近似评价,但元素分析法的结果是燃料计算的重要原始数据。

燃料燃烧及热平衡计算参考

燃料燃烧及热平衡计算参考

燃料燃烧及热平衡计算参考L n 湿=(1+0.00124×18.9)×4.35=4.452 Nm 3/Nm 3 2、天然气燃烧产物生成量 (1)燃烧产物中单一成分生成量CO)H 2C CH (CO 0.01V 6242CO 2+++⨯=’(3.4)2O V 0.21(=⨯′0n-1)L(3.5) 22n N V (N 79L )0.01=+⨯′(3.6))L 0.124g H H 3C (2CH 0.01V n 干O H 2624O H 22+++⨯=(3.7)式中CO 、CH 4 、 C 2H 6 、 H 2 ——每100Nm 3湿气体燃料中各成分的体积含量。

则0.475)5222(100.01V 2CO =+⨯++⨯= Nm 3/Nm 34.4131)(1.050.21V 2O ⨯-⨯==0.046 Nm 3/Nm 3 01.0)35.47910(V 2N ⨯⨯+==3.54 Nm 3/Nm 34.35)18.90.124465322(20.01V O H 2⨯⨯++⨯+⨯⨯==1.152 Nm 3/Nm 3(2)燃烧产物总生成量实际燃烧产物量V n = V CO2+V O2+V N2+V H2O Nm 3/Nm 3(3.8)则V n =0.47+0.046+3.54+1.152=5.208 Nm 3/Nm 3 理论燃烧产物量V 0=V n -(n -1)L O(3.9)V 0=5.208-(1.05-1)×4.143=5.0 Nm 3/Nm 3(3) 燃料燃烧产物成分[2]%100V V CO nCO 22⨯=(3.10) %100V V O nO 22⨯=(3.11)%100V V N nN 22⨯=(3.12)100%V V O H nO H 22⨯=(3.13) 则9%%1005.2080.47CO 2=⨯=0.8%%1005.2080.046O 2=⨯=68%%1005.2083.54N 2=⨯=22.2%100%5.2081.152O H 2=⨯= 3.1.3 天然气燃烧产物密度的计算[3] 已知天然气燃烧产物的成分,则:ρ烟=10022.432O 28N O 18H 44CO 2222⨯+++,kg/Nm 3(3.14)式中:CO 2、H 2O 、N 2、O 2——每100Nm 3燃烧产物中各成分的体积含量ρ烟= 217.110022.40.832682822.218944=⨯⨯+⨯+⨯+⨯ Nm 3/Nm 33.1.4 天然气发热量计算 高发热量Q 高=39842CH 4+70351C 2H 6+12745H 2+12636CO (kJ/Nm 3(3.15)低发热量Q 低= 35902CH 4+64397C 2H 6+10786H 2+12636CO (kJ/ Nm 3)(3.16)式中:CH 4、C 2H 6、 H 2、CO ——分别为天然气中可燃气体的体积分数(%)。

节能基础知识--燃料与燃烧

节能基础知识--燃料与燃烧

(四)煤的分类
煤一般可以分为无烟煤、烟煤、贫煤、褐煤、石煤与煤矸石。见表 ! * %。
表!*% 特性 煤种 石 煤 褐 矸 煤 石 煤 !类 无烟煤 "类 #类 贫 煤 !类 烟 煤 "类 #类
注:!+,-. 6 %&!787+9
工业用煤分类表 水分 灰分 (() 1 )# 1 )# 应用基低位热值 ( +,-. / +0) !### 2 ")## !)## 2 ")## "### 2 3)## 4 )### 1 )### 1 )### 1 %)## 1 "5## 2 35## 1 35## 2 %5## 1 %5##
一、燃料知识 (一)燃料的分类
燃料按状态可分成三类:固体燃料、液体燃料和气体燃料。 固体燃料有煤炭、油页岩、木柴和植物燃料(如农作物秸秆) 。其中煤炭应用最为 普遍,在我国目前和今后相当长时间内都是最基本的能源。 液体燃料有石油(原油)及其加工产品等。石油在常压下蒸馏可分别提炼出汽油、 煤油、柴油等高质量燃料。 气体燃料有天然气及人造煤气。天然气多从油田或煤田附近地层逸出,是一种高质 量的燃料。人造煤气种类很多,有石油气、焦炉煤气、高炉煤气、水煤气、发生炉煤气 及城市煤气等。
注:+"#$% 3 *)+(/("4
(三)煤的工业分析
对煤进行工业分析的主要目的是为了判断其燃料特性,从而在锅炉运行中采取相应 的技术措施,调节和控制燃烧过程。煤的工业分析项目有挥发物、固定碳、灰分、水分 和发热量等。 :煤加热到一定温度,首先排放出一些气体,开始着火燃烧,这些 +) 挥发物(5) 气体就是挥发物,如一氧化碳、氢气和各种碳氢化合物等。挥发物析出后就很快着火燃 烧,使煤粒周围形成一层火膜,将煤粒迅速加热到较高的温度,同时挥发物析出后煤粒 中间出现孔隙,增加煤与空气的接触面积。当煤的挥发物含量相当比例时,容易着火, 有利于燃烧;但当煤的挥发物含量过高时,相对减少了固定碳的含量,使煤发热值降 低。一般锅炉用煤的挥发物含量最好在 2,! 以上。 :煤中的挥发物燃烧后,剩下是固定碳和灰分。固定碳在完全燃烧 2) 固定碳( 6) 时和氧化合成二氧化碳,将放出 00.,*"4 & "’((,-,"#$% & "’)热量。 :煤燃烧后,残留下来不能燃烧的固体杂质便是灰分。主要是混入煤 0) 灰分(7) 中的砂石、灰土、氧化铁、氧化钙等,灰分是煤中的有害成分,它含量过大,使煤发热 —

工程燃烧学 燃烧计算

工程燃烧学 燃烧计算

2020/4/17
河北工业大学能源与环境学院
7
理论产物 与实际产 物分别为
产物成分一般表示为各组成的体积百分数。
讨论: 1、V0只与燃料成分有关,可燃成分越高、发热 量越大,理论产物越多;
2、Vn不仅与燃料成分有关,还与空气过剩系数 n有关;
3、空气过剩系数越大,VO2越大,实际烟气量 也愈大;烟气的氧化性气氛越强。
t理
Q低
Q空 Q燃 Vnc产
Q分
t热
Q低 Vnc产
2020/4/17
河北工业大学能源与环境学院
17
理论发热温度的计算
t热
Q低 Vnc产
c产
CO2' cCO2 H 2O' cH2O N 2' cN2
1 100
Vn c产 VCO2 cCO2 VH2O cH2O VN2 cN2
VRO2 VCO2 VSO2
固、液燃料
RO2' max
VRO2 V0 干
100 21 1
气体燃料
以上关系说明RO2’最大值仅与燃料特性有关
2020/4/17
河北工业大学能源与环境学院
13
对于完全燃烧 对于不完全燃烧,n>1
Vn干 V0干 Ln L0
Vn 完干
Vn
干 不
100
0.5CO '
' 4
1 100
不完全燃烧程度越严重,产物体积增加越多
河北工业大学能源与环境学院
10
当n<1时,如烟气中不再有氧气, 对于第一个反应,由于缺少0.5Nm3氧气 和1.88Nm3的氮气,而不能生成完全燃 烧产物1Nm3二氧化碳和1.88Nm3的氮气, 亦即不完全燃烧产物比完全燃烧产物少 1.88Nm3。同理烟气中每含有1Nm3氢气、 1Nm3甲烷就会使产物比完全燃烧产物少 1.88Nm3和9.52Nm3 。

第6章 燃料的燃烧计算

第6章 燃料的燃烧计算
12
6.2.1 理论烟气量和实际烟气量
标准状态下,l kg固体及液体燃料在理论空气 量下完全燃烧时所产生的燃烧产物的体积称为固 体及液体燃料的理论烟气量,用下式表示:
V VCO2 VSO2 V V
0 y 0 N2
0 H2O
Vy0 —标准状态下理论烟气量,m3/kg;
VCO2 —标准状态下 CO2 的体积,m3/kg;
2C+ O2 2CO 9270 kJ/kg(碳)
说明:
燃烧计算即燃烧反应计算,是建立在燃烧化学反应 的基础上的。在进行燃烧计算时,将空气和烟气均 看 作 为 理 想 气 体 , 即 每 kmol 气 体 在 标 准 状 态 ( t =273.15K, P =0.1013MPa)下其体积为 22.4m3,燃 料以 1kg 固体及液体燃料或标准状态下 1m3 干气体 燃料为单位。按照国家质量技术监督局规定,“标准 状态”不标在单位上,而是写在文字中。
VSO2 —标准状态下 SO2 的体积,m3/kg;
0 3 — 标准状态下理论 体积, m /kg; N VN 2 2
V
3 0 H2O —标准状态下理论水蒸气体积,m /kg。
13
22.4 1.866 m3 的 标准状态下,1 kg 的碳完全燃烧后产生 12 22 .4 0.7 m3 的 SO2 。 标准状态下, 1 kg 硫完全燃烧后产生 CO2 。 32
第6章 燃料的燃烧计算
6.1 燃烧所需空气量 燃烧是一种化学反应。
C+ O2 CO2 + 32860 kJ/kg(碳)
2H2 + O2 2H2O+120370
S+ O2 SO2 9050
kJ/kg(氢)

燃料燃烧污染物计算

燃料燃烧污染物计算

一、燃料燃烧产生烟尘量的物料衡算方法燃料燃烧时产生的烟尘中包括黑烟和飞灰两部分,黑烟是未完全燃烧的物质,以游离态碳(即碳黑)和挥发物为主,绝大部分是可燃物质,黑烟的粒径一般在0.01—1微米之间。

飞灰是烟尘中不可燃矿物灰分的微粒,粒径一般在1微米以上,它们的产生量与燃料成分、设备、燃烧状况有关。

常用的烟尘量测算办法有燃煤—飞灰计算法和林格曼黑度与烟尘浓度对照法。

1、燃煤—飞灰计算法燃煤—飞灰计算法公式如下:G sd = B . A . d fh .(1 - η)/(1 - C fh)G sd–烟尘排放量,kg ;B –耗煤量,kg;A –煤中灰份含量,%;d fh–烟气中烟尘占灰分量的比率,%,其值与燃烧与方式有关,可参考表1;η- 除尘系统的除尘效率,各种除尘器效率可参考表2选取,未装除尘器时,η= 0;C fh - 烟尘中可燃物的比率,%,烟尘中可燃物的含量C fh 一般可取40%,煤粉炉可取8%,沸腾炉可取25%。

表1烟尘中的灰占煤灰分之百分比d fh值表2各类除尘器的除尘效率η表一般燃煤灰份(A)取28%,烟尘中可燃物的百分含量(C fh)取40%。

在不考虑除尘效率情况下,锅炉不同燃煤方式燃用时的烟尘产污系数见表3。

表3锅炉不同燃煤方式燃用时的烟尘产污系数(kg/t煤)最终计算公式为:G sd= 0.19 .B 。

(1-η), (kg、kg、d fh=40% )二、燃料燃烧产生二氧化硫量的物料衡算方法1、煤炭中硫的成分可分为可燃硫和非可燃硫,可燃硫约占全硫分的80%。

煤燃烧后产生的二氧化硫的排放量计算公式如下:Cso2 = 2 。

80% 。

B 。

S 。

(1 - η)2、燃油燃烧后产生的二氧化硫的排放量计算公式如下:Cso2 = 2 。

B 。

S 。

(1 - η)Cso2 -- 二氧化硫排放量,kg;B –消耗的燃料煤(油)量,kg;S –燃料中的全硫分含量,%;η- 脱硫装置的二氧化硫去除率,%,各种脱硫技术的平均效果见表5。

燃料与燃烧计算

燃料与燃烧计算

3.凝点
• 燃料油由液态变为固态时的温度
• 复杂的混合物,没有一定的凝固点:随温度逐渐降 低时,变得越来越稠,直到完全丧失流动性
• 测定方法
• 将试样油放在试管中冷却,倾斜450,试管中的油面 经过5~10s保持不变时的油温 • 汽油:<-80℃;柴油:-30~-50℃;重油:15~36℃
• 低温下输送凝点高的油时,油管易阻塞不通, 应采取加热或防冻措施
二、燃料成分分析数据的基准与换算
• 燃料各成分百分数经常变化,提供或应用燃料成 分分析数据,须表明其分析基准(计算基数) • 元素分析和工业分析,常采用四种分析基准
稳定成分,用于判断煤的燃烧特性和分类 不受水分影响 实验室条件下风干后的成分 燃料的实际应用成分
各种基换算
• 已知Cdaf,求Car
• 爆炸上限、爆炸下限
• 轻质燃料油的爆炸范围较小,重质燃料油的爆 炸范围较大,即其爆炸危险性大
• 汽油1.4~8% • 原油1.7~11.3%
三、锅炉常用燃料油
• 锅炉常用燃料油分柴油、重油
• 柴油一般用于中、小型供热锅炉、生活锅炉以及大 型锅炉的点火和稳定燃烧 • 重油大多用于电站锅炉
• 燃料油成分与煤一样,主要元素是碳和氢—— 清洁型燃料
• 燃点
• 油温继续升高,当油面上的油气与空气的混合物遇明火能着 火持续燃烧(持续时间不少于5s) 时的油温
• 燃点高于闪点,重油的闪点为80~130℃,燃点比闪点 高10~30℃ • 闪点是防止油发生火灾的一个重要指标,燃料油的预 热温度必须低于闪点
6.爆炸极限
• 引发爆炸时空气中含有燃料油蒸气的体积分数 或浓度
4.比热容
• 1kg燃料油温度升高1℃所需要的热量 • Ct=1.73+0.002t kJ/(kg .℃)

第二章-燃料及燃料燃烧计算

第二章-燃料及燃料燃烧计算

灰分(Ash): 煤中不可燃矿物杂质,成分十分复杂,大多数煤的灰分 含量7%~40%。
1)A 可燃物减少,Qdw ,着火困难,灰渣量增加,运行 操作繁重;
2)A 且ST ,炉内易结渣,使受热面传热恶化, D
3)A
,烟气流速wy
wy wy
对流受热面磨损严重 对流受热面积灰、堵灰,传热系数K
Car+Har+Oar+Nar+Sar+Aar+Mar=100% 2.空气干燥基ad; 表示在不含外在水分的条件下,燃料各组成成分的质量 百分数总和, 是实验室煤质分析所用煤样的成分组成。
Cad+Had+Oad+Nad+Sad+Aad+Mad=100%
3. 干燥基d; 表示在不含水分的条件下干燥燃料各组成成分的质量百 分数总和 干基中各成分不受水分变化的影响
与燃烧容易。
VAMST分类标准
四、液体燃料和气体燃料
锅炉燃用的液体燃料主要是重油和渣油。
重油——是石油提炼汽油、煤油和柴油后的剩余物, 渣油——是进一步提炼后的剩余物。 重油
重油的成分与煤一样,也是由碳、氢、氧、氮、硫和灰 分、水分组成。它的主要元素成分是碳和氢,其含量甚 高(Car=81~87%,Har=11~14%),而灰分、水分的含量很
空气中只有O2和N2成分,其容积比为: 气体容积计算的单位均为Nm3/kg。
Cd+Hd+Od+Nd+Sd+Ad=100% 4. 干燥无灰基daf; 表示在不含水分和灰分的条件下,干燥无灰燃料各组成 成分的质量百分数总和, 干燥无灰基中只包含燃料的可燃成分,各成分不受水分 和灰分变化的影响, 煤炭交易。

燃料燃烧及热平衡计算参考

燃料燃烧及热平衡计算参考

燃料燃烧及热平衡计算参考城市煤气的燃料计算燃料成分表 城市煤气成分%2成分 CO 2 CO CH 4 C 2H 6 H 2 O 2 N 2 合计 含量10522546210100城市煤气燃烧的计算 1、助燃空气消耗量 2 1理论空气需要量Lo=21O O 0.5H H 3.5C CH 20.5CO 22624-++⨯+ Nm 3/Nm 3式中:CO 、CH 4 、 C 2H 6 、 H 2 、 O 2——每100Nm 3湿气体燃料中各成分的体积含量Nm 3;则Lo=212465.055.322255.0-⨯+⨯+⨯+⨯= Nm 3/Nm 32实际空气需要量L n =nL 0, Nm 3/Nm 3式中:n ——空气消耗系数,气体燃料通常n=现在n 取,则L n =×= Nm 3/Nm 3(3)实际湿空气需要量L n 湿=1+2H O g 干L n ,Nm 3/Nm 3则L n 湿=1+××= Nm 3/Nm 3 2、天然气燃烧产物生成量 1燃烧产物中单一成分生成量CO)H 2C CH (CO 0.01V 6242CO 2+++⨯=’2O V 0.21(=⨯′0n-1)L22n N V (N 79L )0.01=+⨯′)L 0.124g H H 3C (2CH 0.01V n 干O H 2624O H 22+++⨯=式中CO 、CH 4 、 C 2H 6 、 H 2 ——每100Nm 3湿气体燃料中各成分的体积含量; 则0.475)5222(100.01V 2CO =+⨯++⨯= Nm 3/Nm 3 4.4131)(1.050.21V 2O ⨯-⨯== Nm 3/Nm 3 01.0)35.47910(V 2N ⨯⨯+== Nm 3/Nm 34.35)18.90.124465322(20.01V O H 2⨯⨯++⨯+⨯⨯== Nm 3/Nm 32燃烧产物总生成量实际燃烧产物量V n = V CO2+V O2+V N2+V H2O Nm 3/Nm 3则V n =+++= Nm 3/Nm 3 理论燃烧产物量V 0=V n -n -1L OV 0=--×= Nm 3/Nm 3 3 燃料燃烧产物成分2%100V V CO nCO 22⨯=%100V V O n O 22⨯=%100V V N nN 22⨯=100%V V O H nO H 22⨯=则9%%1005.2080.47CO 2=⨯=0.8%%1005.2080.046O 2=⨯=68%%1005.2083.54N 2=⨯=22.2%100%5.2081.152O H 2=⨯=天然气燃烧产物密度的计算3 已知天然气燃烧产物的成分,则:ρ烟=10022.432O 28N O 18H 44CO 2222⨯+++,kg/Nm 3式中:CO 2、H 2O 、N 2、O 2——每100Nm 3燃烧产物中各成分的体积含量ρ烟= 217.110022.40.832682822.218944=⨯⨯+⨯+⨯+⨯ Nm 3/Nm 3天然气发热量计算 高发热量Q 高=39842CH 4+70351C 2H 6+12745H 2+12636COkJ/Nm 3低发热量Q 低= 35902CH 4+64397C 2H 6+10786H 2+12636CO kJ/ Nm 3式中:CH 4、C 2H 6、 H 2、CO ——分别为天然气中可燃气体的体积分数%; 则Q 高=39842×+70351×+12745×+12636×=18777kJ/Nm 3 Q 低=35902×+64397×+10786×+12636×=16710kJ/ Nm 3 天然气理论燃烧温度的计算n 1Q t V C =低理式中:t 理——理论燃烧温度℃Q 低——低发热量kcal/ Nm 3,Q 低=16710kJ/ Nm 3 V n ——燃烧产物生成量Nm 3/Nm 3, V n =Nm 3C 1——燃烧产物的平均比热KJ/Nm 3 •℃;估计理论燃烧温度在1900℃左右,查表3取C 1= kJl/Nm 3 •℃则201859.1208.516710t =⨯=理℃加热阶段的热平衡计算采用热平衡计算法, 热平衡方程式:Q收1=Q支1热收入项目天然气燃烧的化学热Q烧Q烧=BQ低式中:B1——熔化室燃料的消耗量Nm3/h 8热量支出项目1、加热工件的有效热量是物料所吸收的热量Q,用下式计算4 5:料Q料=Gt料-t初C料式中:G——物料的重量kg/h ,炉子加热能力为G=15×18×13=3510 kg/h.t料——被加热物料的出炉温度℃, 查表得t料=160℃,t初——被加热物料的进炉温度℃,为室温,则t初=20℃C料——物料的平均热容量,kJ/kg •℃查表得C料= kJ /kg •℃则Q料=3510×160-20×=432432 kJ/40min2、加热辅助工具的有效热Q料筐的吸热辅=G辅×t辅-t初Q辅G——辅助工具的重量kg/h , G=200×15=300 0 kgC料——物料的平均热容量,kJ/kg •℃查表得C料= kJ /kg •℃则Q=3000×160-20×=188160 KJ/40min辅3、通过炉体的散热损失Q散11炉墙平均面积炉墙面积包括外表面面积和内表面面积;简化计算可得:F外墙=+××2= m2F内墙=+××2= m2F 墙均 = F 外墙+ F 内墙÷2=+÷2= m 2 2炉底平均面积炉底面积包括外底面面积和内底面面积;简化计算可得:F 底均=×+×÷2= m 23炉顶平均面积由于炉子是规则的长方形,故炉底和炉顶近似看做相等的面积,故 F 顶均=F 底均= m 2计算炉墙散热损失:根据经验,参照生产中应用的同类炉子,本炉子炉墙所用材料及厚度如下选用: 外层为不锈钢钢板:s 4=6mm,λ4=m•℃钢板是外壳,厚度较薄,计算炉体散热损失时,最外层温度计算到炉衬材料的最外层,钢板不计算在内;以下都是这样; 内层也采用不锈钢板:s 1=,λ1=m•℃炉衬材料:第二层为硅酸铝耐火纤维,s 2=100mm, λ2=m•℃ 第三层硅钙板,s 3=75mm, λ3=+×10-3 tW /m•℃炉墙结构如下图:图 时效炉炉墙结构图计算炉墙散热,根据下式:1n 1ni i 1i it t Q s F +=-=λ∑散首先,炉内温度达到250℃才可以满足要求,因为炉膛内壁为不锈钢板,导热极好,可以计算可以忽略;第二层耐火纤维内侧温度为t 2=250℃;我们假定界面上的温度及炉壳温度,3t ′=135℃,4t ′=60℃,则耐火纤维的平均温度s2t 均=250+135/2=℃,硅钙板的平均温度 s3t 均=135+60/2=℃,则2λ= W /m•℃3λ=××10-3 ×= W /m•℃当炉壳温度为60℃,室温t a =20℃时,查表得∑α= W/m 2•℃ ①求热流②验算交界面上的温度3t 、4t083.01.04.95250t 2223⨯-=-=λs qt = ℃ ∆=%4.013506.135135t '33'3=-=-t t 〈5%,满足设计要求; ③计算炉壳温度t 17.270667.01.04.9506.135t t 33345=⨯-=-==λs qt ℃t 5=℃〈60℃,满足满足炉壳表面平均温度≤60℃的要求;④计算炉墙散热损失Q 墙散=q •F 墙均=×=10058W=36207 KJ/40min 计算炉底散热损失:根据经验,参照生产中应用的同类炉子,本炉子炉底和炉顶结构和炉墙类似,它们的热流密度平均综合起来计算;通过查表得知炉顶炉底的综合传热系数为:=∑顶α W/m 2.℃, =∑底α W/m 2.℃Q 顶底=∑顶α+∑底α÷2= W/m 2.℃ 则炉底和炉顶的散热量为 Q 顶底= q 1×F 底均+F 顶均23322a 295.4W/m12.1710.06670.0750.0830.120250α1λs λs t t q =++-=++-=∑=×+=5029 W =12069KJ/40min 通过炉体的散热量为Q 散= Q 顶底+Q 墙散=36207+12069=48276 KJ/40min 4、废烟气带走的热量Q 烟Q 烟=BV n t 烟c 烟式中:V n ——实际燃烧产物量N Nm 3/Nm 3,前面计算得V n = N Nm 3/Nm 3 t 烟——出炉废烟气温度℃, t 烟=160℃c 烟——出炉烟气的平均比热容,查表得c 烟= kJ/Nm 3•℃则Q 烟=B ××160×=1183B5、炉子的蓄热Q 蓄炉体的蓄热可分为三部分,金属的蓄热Q 金、耐火纤维毡的蓄热Q 耐、和硅钙板、蓄热Q 板;查表可知:金属的比热容C 金= KJ/Kg.℃ 耐火纤维毡的比热容C 耐= KJ/Kg.℃ 硅钙板的比热容C 板= KJ/Kg.℃ Q=GC 金t 均-t o则Q 金=435708 KJ/40min Q 耐=110565 KJ/40min Q 板=166725 KJ/40min Q 蓄=Q 金+Q 耐+Q 板=435708+110565+166725=712998 KJ/40min 6、燃料漏失引起的热损失Q 漏Q 漏=BKQ 低式中:K ——燃料漏失的百分数,对于气体燃料,指经储气器和气管漏气,取K=1% 则Q 漏=B ×1%×16710=7、燃料不完全燃烧的热损失Q 不在有焰燃烧炉中,废烟气中通常含有未燃烧的可燃气体,对于城市煤气,它的不完全燃烧的热损失用下式:Q 不=BV n bQ 低式中b 为不完全燃烧气体的百分比,取2%;Q不=B××2%×16710=1740B8、其它热损失Q它例如炉子计算内外表面积时,实际炉子比计算中的要复杂,表面积要比计算的大,这部分还有能量损失;等还有其它的损失;其它热损失约为上述热损失之和的5% 7%,取7%,故Q它=Q料+Q辅+Q散+Q蓄+Q烟+Q漏+Q不根据热量的收支平衡,由公式,可从中求出每小时的平均燃料消耗量B;Q烧=Q料+Q辅+Q散+Q蓄+Q烟+Q漏+Q不+Q它代入前面计算数值得16710B=+则B= Nm3/40min= Nm3/h在工程设计中,炉子的最大燃料消耗量应比理论消耗量大,即:B max=式中:为燃料储备系数;取,则B max=×= Nm3/40min=h根据最大燃料消耗量来确定燃烧器的数目,其总燃烧能力应大于B max利用求得的B值计算上面的未知量天然气燃烧的化学热Q烧= BQ低=×16710=1843113 kJ/40min废烟气带走的热量Q烟=1183B=1183×= 130485 kJ/40min燃料漏失引起的热损失Q漏==×=18431 kJ/40min燃料不完全燃烧的热损失Q不=1740B=1740×=191922 kJ/40minQ它=Q料+Q辅+Q散+Q蓄+Q烟+Q漏+Q不=×432432+188160+48276+712998+130485+18431+191922=120589 kJ/40min。

燃料及燃烧

燃料及燃烧

成分表示方法:供用成分、干燥成分、可燃成分、有机成分。
供用成分:实际组成,包括C、H、O、N、S和灰分(A)、水分(W)
C 用 H 用 O 用 N 用 S 用 A用 W 用 100%
干干 S 干 A干 100%
可燃成分:无水无灰为基准

干 H2 15.4%
干 CH 4 3.08%
C2 H 0.62%
干 4
CO
g
干 2
干 O 7.71% 2 0.21%
N
干 2
43.18%
干 H 2O
22.3 g / m 干气体。
3
2.液体和固体燃料的化学组成及各成分的换算 元素分析法:C、H、O、S、N和水分、灰分 ①碳(C): C O2 CO2 33915( KJ / Kg )
分析成分是干成分,实际成分为湿成分;
干成分和湿成分之间的换算方法以CO为例:
湿 100 H O 2 CO湿 CO干 % 100
其余成分均照此类推。
式中H2O湿为湿气体燃料中水分的体积百分含量。 从饱和水蒸汽表中(见表2-2):1立方米干气体所 干 能吸收的水蒸汽的质量(克),g H g/m3。 O
1.粘度
温度的升高而下降
表示方法:恩氏粘度( 0 E ),用恩氏拉粘度计测得:
0
Et
t℃时200毫升油的流出时间 20℃时200毫升水的流出时间
2.发热量计算式
固、液体燃料发热量的计算公式:
Q低 339.1C 用 1256H 用 108.9(O用 S 用 ) 25.12(9H 用 W 用 )(KJ / Kg )
气体燃料发热量的计算公式:
Q低 127.7CO用 108H 2用 359.6CH 4湿 598.7C2 H 4湿 711.8Cm H n湿 231H 2 S 湿

燃料燃烧计算

燃料燃烧计算

燃料燃烧计算第三章燃料及燃烧过程3-2 燃料燃烧计算一、燃料燃烧计算的内容及目的(一)计算内容:①空气需要量②烟气生成量③烟气成分④燃烧温度(二)目的:通过对以上内容的计算,以便正确地进行窑炉的设计和对运行中的窑炉进行正确的调节。

二、燃烧计算的基本概念(一)完全燃烧与不完全燃烧。

1、完全燃烧:燃料中可燃成分与完全化合,生成不可再燃烧的产物。

2、不完全燃烧:化学不完全燃烧:产物存在气态可燃物。

物理不完全燃烧:产物中存在固态可燃物。

(二)过剩空气系数 1、过剩空气系数的概念а=V a /V 0a2、影响过剩空气系数的因素:1)燃料种类:气、液、固体燃料,а值不同;2)燃料加工状态:煤的细度、燃油的雾化粘度。

3)燃烧设备的构造及操作方法。

3、火焰的气氛:①氧化焰:а>1,燃烧产物中有过剩氧气。

②中性焰:а=1③还原焰:а<1,燃烧产物中含还原性气体(CO 、H 2)三、空气需要量、烟气生成量及烟气成分、密度的计算(一)固体、液体燃料:基准:计算时,一般以1kg 或100kg 燃料为基准,求其燃烧时空气需要量、烟气生成量。

方法:按燃烧反映方程式,算得氧气需要量及燃烧产量,然后相加,即可得空气需要量与烟气生成量。

1、理论空气量计算: 1)理论需氧量: V 0O2=12ar C +4ar H +32ar S -32ar O(Nm 3/kgr)2)理论空气量:V 0a =1004.22(12ar C +4ar H +32ar S -32ar O )21100=0.089C ar +0.267H ar +0.033(S ar -O ar ) (Nm 3/kgr)2、实际空气量计算:V a =а×V o a3、理论烟气生成量的计算:V 0L =V CO2+V H2O +V SO2+V N2=1004.22 (12ar C +2ar H +18ar M +32ar S +28arN )×V o a +0.79V o a =0.01865C ar +0.112H ar +0.01243M ar +0.0068S ar +0.008N ar +0.79V o a4、实际烟气生成量的计算: 1)а>1时,V L = V 0L +(а-1)×V o a2)а<1时,在工程上进上近似认为其燃烧产物中只含有CO 一种可燃气体。

锅炉燃料及燃烧计算

锅炉燃料及燃烧计算
分的干燥煤作 为分析基准。
(4)干燥无灰基daf(可燃基r ):以除去全部水分和灰份 的煤作为分析基准。
换算关系详见表2-1
四、煤的发热量
煤的发热量是指1kg煤完全燃烧时所放出的热量, 单位kJ/kg。 煤的发热量分为高位发热量(Qgr)和低位 发热量(Qnet)。1kg煤完全燃烧时放出的全部热量称为 高位发热量,它包含煤燃烧时产生的水蒸气的汽化潜 热,即认为烟气中的水蒸气凝结成水放出它的汽化潜 热。但是,锅炉实际运行时,烟气还具有相当高的温 度,烟气中的水蒸气不可能凝结成水而放出汽化潜热, 故锅炉实际能利用的热量不包括水蒸气的汽化潜热。 从高位发热量中扣除烟气中水蒸气汽化潜热后,称为 煤的低位发热量,实际工程中常利用收到基低位发热 量,用符号Q ar,net表示。
燃料的燃烧计算包括燃烧所需提供的空气量、 燃烧生成的烟气量和空气及烟气的焓的计算,是锅 炉热力计算的一部分,燃烧计算的结果为锅炉的热 平衡计算、传热计算和通风设备选择提供可靠的依 据。
基本要求
1、应掌握煤中成分对锅炉工作的影响(重点); 2、应掌握燃料成分的几种表示方法及换算; 3、了解液体燃料、气体燃料的特性; 4、熟练掌握燃料的燃烧计算方法(难点); 5、重要的基本概念:低位发热量、标准煤、过量空气 系数、灰的特征温度。
§3-1 锅炉用燃料
锅炉设备(包括电站锅炉和工业锅炉)燃烧所用的燃料按 物理状态可分为固体燃料、液体燃料和气体燃料三大类。具 体表示如下:
煤——无烟煤、贫煤、烟煤、褐煤、泥煤 固体燃料——油页岩
木材
液体燃料——石油及其制品——轻油、柴油、重油 气体燃料——天然气、液化石油气
煤气——城市煤气、高炉煤气、焦炉煤气
二、煤中某些成分对锅炉工作的影响
3、灰分 灰分是燃料中不可燃的固体矿物杂质。由于灰分的 存在,使固体燃料的发热量降低,燃料着火、燃烧 困难,增加运煤、出灰的工作量和运输费用。此外, 灰分中的一部分飞灰在锅炉中随烟气流动,造成受 热面和引风机磨损,排入大气污染环境。若灰的熔 点过低,会造成炉排和受热面结渣,影响传热和正 常燃烧。固体燃料中灰分含量变化很大,一般为5 -40%。通常将灰分含量超过40%的煤称为劣质煤。

燃料燃烧计算程序参考

燃料燃烧计算程序参考

kJ/kg
1 m3/kg m3/kg
m3/kg m3/kg m3/kg m3/kg m3/kg m3/kg
空气需要量 理论燃烧产物
%
%
%
%
%
实际燃烧产物
CO2量
Vn(CO2) m3/kg
SO2量
Vn(SO2) m3/kg
RO2量(CO2与SO2)
Vn(RO2) m3/kg
H2O量
Vn(H2O) m3/kg
值Q0变化数据 1.6
理论燃烧温度
2039.8829 2198.314197 2356.745494 2515.176792 2673.608089 2832.039387
n的变化数据 10
锅炉总热负荷 kJ/kg
7129.650458 7171.117126 7212.583794 7254.050462
设定值(100℃<tk<500℃) 查表,插值
Qwr=nH0k(忽略冷空气焓) Qr=Qar,net+ir+Qwr
Hash=0.01Aarαfh(cθ)h
消耗单位质量燃料的散热量 各环节热负荷计算
Qash=Hash
插值差分 插值差分 插值差分 插值差分 插值差分
已知条件
已知条件
已知条件
已知条件
已知条件 tmax的计算(令Q1=0时)
1.1
21515.3851 14343.25111
1.2
21627.61431 14420.09905
1.3
21739.84352 14496.94699
1.4
21852.07273 14573.79493
Байду номын сангаас

燃料燃烧计算

燃料燃烧计算
(1)余热利用效率
窑系统废气余热利用效率是指烧成系统的废气被利用的热量与废气热焓的
比值。余热回收是节能降耗的必需,是考核企业节能成效重要指标。
余热利用效率:
Q η=
Q
(5 − 6)
式中 η —余热回收效率,%;
Q —余热利用量,kJ/kg 或 kJ/h;
Q —入系统热量,kJ/kg 或 kJ/h。
Q −Q −Q 燃烧室 η =
Q
Q —入燃烧室燃料燃烧热,kJ/kg Q —燃烧室散热量,kJ/kg Q —不完全燃烧损失热量,Kj/kg
2. 余热利用技术指标
余热利用是指水泥生产系统中的“余热”利用。要高温废气已广泛应用于烘 干(生料、燃料、混合材等),还可用于发电和供热。以下主要论述是在不影响 水泥生产线的消耗指标(指不能提高熟料热耗、熟料电耗和降低熟料产量,否则 将造成又一次能源浪费)为前提下,熟料生产过程中回转窑和冷却机排放的废气 热量,在水泥生产工艺线利用后所剩余的“余热”用于发电的一些技术指标。
一、 热工技术指标
1. 热效率
热效率 η 是指工业窑炉中有限热Q 相对于供给热Q 的比值。预分解窑系统 的热效率比其他类型水泥窑的高,目前一般为 50%~65%。冷却机热效率数篦式冷 却机高,可高达 70%~80%。各类水泥热工设备的热效率计算见表 5-22。
表 5-22 水泥主要热工设备的热效率(%)计算式
按燃料成分分析 V = V + V + V + V + V
资料来源
参考文献 [17]
按燃料发热量 近似经验式
0.203 + (2.0 × 1000) V=
Q。
0.213Q 。
V=
+ 1.65
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
燃料是能用来燃烧以取得热量的物质,包括天然燃料和人工燃料。气体燃料如天然气、液化石油气等,其热,其热值表示每千克燃料完全燃烧所放出的热量,单位MJ/kg。煤是重要的固体燃料,含有炭、氢、氧、氮、硫等元素,其热值受成分影响,如无烟煤含炭量高,热值也相对较高。炭是燃料的主要成分,完全燃烧时放出的热量远高于不完全燃烧。虽然文档详细介绍了各种燃料的成分及热值,但需注意,燃烧值的实际计算可能还需考虑燃烧条件、燃料形态等因素。总的来说,了解燃料的成分及性质是计算燃烧值的基础。
相关文档
最新文档