水泵电机发热原因及排除故障方法

水泵电机发热原因及排除故障方法
水泵电机发热原因及排除故障方法

水泵电机发热原因及排除故障方法

水泵电机发热及排除故障方法

水泵电机发热的原因:

1、选用机泵不配套

2、轴承损坏;

3、滚动轴承或托架盖间隙过小;

4、泵轴弯曲或两轴不同心;胶带太紧;

5、缺油或油质不好;

6、水泵叶轮上的平衡孔堵塞,叶轮失去平衡,增大了向一边的推力;

7、电压偏高或偏低;

8、接法错误,将△形误接成Y形,使电动机的温度迅速升高;

9、环境温度过高。

10、水泵工作环境方面的原因:电动机绕组受潮或灰尘、油污等附着在绕组上,导致绝缘降低。

水泵电机发热的排除故障方法:

1、及时更换水泵电机,以免烧坏;

2、更换轴承;

3、拆除后盖,在托架与轴承座之间加装垫片;

4、调查泵轴或调整两轴的同心度;

5、加注干净的黄油,黄油占轴承内空隙的60%左右;

6、清除平衡孔内的堵塞物;

7、查找原因,及时处理;

8、发现问题,及时调整;

9、应设法改善其工作环境;

10、应测量电动机的绝缘电阻并进行清扫、干燥处理。

变频控制电机发热的原因分析及其对策

变频控制电机发热的原因分析及其对策 近年来变频控制电机在井区使用更加广泛,电机发热问题总是困扰着使用方,下面我就《变频控制电机发热的原因分析及其对策》这一课题加以阐述: 一、变频控制电机发热的原因分析 1、高次谐波引起电机的效率和功率因数变差,电机损耗增加。变频装置用交-直-交控制,变频器输出的电压、电流波形均有高次谐波。由于普遍电机是按正弦波电源制造的,当有高次谐波流过电动机绕组时,铜损增大,并引起附加损耗,从而引起绕组发热。有资料表明,变频器传动与工频电源传动相比,电流约增加10%,温升约增加20%。 2、电机低速运转,散热能力变差使用变频调速后电机往往处于低于额定转速的运行状态,标准电机的冷却风扇装在转子轴上,所以在低频下运转的电机,因电机转速降低而使冷却效果大幅度下降。 3、电压变化率du/dt增高,电机故障率增加。目前市场上的变频器大部分是交-直-交变频器,其逆变部分是将直流电压转换为三相交流电压,通过控制六个桥臂的开关元件导通、关断来实现三相交流电压的输出。如常见的改变变频器输出电压的PWM方式,它虽与正弦波电压幅值等效,但实际上是由一系列矩形波组成,由于电机绕组匝间电压变化率du/dt很高,电机绕组的电压分布变得很不均匀,使绕组匝间短路的故障增加。从我维修变频控制电机的故障情况来看,几乎全是由匝间短路引起,由此可见,变频控制对电机的绝缘等级的要求更高。

4、电机发热除上述原因外,还由于电机长期运行在粉尘含量较高的环境中,未定期清扫,造成定转子风道堵塞,致使气流不畅,散热效果降低,尤其是夏季,环境温度高,电机工作温度大大增加,导致电机过热烧毁。 二、变频控制电机发热问题的相应对策: 1、合理选用变频控制电机,原电机如果工作频率达不到30Hz,在峰值电流不致引起过电流保护动作的情况下,可以极数更高的电机替代,尤其对于恒转矩负载要适当加大电机的功率等级与电机极数,以提高其带载能力;有条件的地方,应采用变频专用电机。 2、加强电机的计划检修,尤其在夏季来临前,要对定转子风道进行清扫,改善电机的散热条件。在夏季时应采用外加风机对电机强迫风冷。 3、将电子过热保护器的整定值调小,配外加热过载继电器,最好在电机绕组内配PTC热保护。 4、提高电机的绝缘材料等级,如在电机检修时,将B级绝缘提高为F级绝缘,以提高匝间绝缘性能及绕组的耐热能力,这样可从根本上解决变频控制电机使用寿命短的问题。 5、尽可能提高电机的运行频率。使用证明电机工作频率30Hz 以上时,基本可以解决变频电机的散热问题。 这是我工作多年来的对变频控制电机发热问题的维修技术总结,供大家参考。 旗四转徐东

电动机过热的原因及处理方法

电动机过热的原因及处理方法 根据多年来从事电动机维护与检修的经验,总结出电动机常见的过热原因及处理方法。 1、负荷过大。应减轻负荷或换大容量的电动机。 2、绕组局部短路或接地,轻时电动机局部过热,严重时绝缘烧坏,散发焦味甚至冒烟。应测量绕组各相的直流电阻,或寻找短路点,用兆欧表检查绕组是否接地。 3、电动机外部接线错误,有一下两种情况: (1)应当△接法误接成Y接法,以致空载时电流很小,轻载时虽然可带动负荷,但电流超过额定值,使电动机发热。 (2)应当Y接法误接成△接法以致空载时电流可能大于额定电流,使电动机温度迅速升高。 如属上述原因,可按正确方法更改接线。 4、电源电压波动太大,应将电源电压波动范围控制在-5~10%之间,否则要控制电动机的负荷。 5、大修后线圈匝数错误或某极、相、组接线错误,可通过测量电动机三相电流与铭牌或本身三相电流比较,发现问题予以解决。 6、大修后导线截面比原来截面小,要降低负荷或更换绕组。 7、定、转子铁芯错位严重,虽然空载电流三相平衡,但大于规定值,应校正铁芯位置并设法固定。 8、电动机绕组或接线一相断路,使电动机仅两相工作。应检查三相电流,并立即切除电源,找出断路点并重新结好。

9、鼠笼转子断条或存在缺陷,电动机运转1~2h,铁芯温度迅速上升,甚至超过绕组温度,重载或满载时,定子电流超过额定值。应查出故障点,重焊或更换转子。 10、绕线式电动机的转子绕组焊接点脱焊,或检查时焊接不良,致使转子过热,转速和转矩明显下降。可检查转子绕组的直流电阻和各焊接点,重新焊接。 11、电动机绕组受潮,或有灰尘、油污等附着在绕组上,以致绝缘降低,应测量电动机的绝缘电阻并进行清扫、干燥。 12、电动机在短时间内启动过于频繁。应限制启动次数,正确选用热保护。 13、定子、转子相碰,电动机发出金属撞击声,铁芯温度迅速上升,严重时电动机冒烟,甚至线圈烧毁。应拆开电动机,检查铁芯上是否有扫膛的痕迹,找出原因,进行处理。 14、环境温度太高,应改善通风、冷却条件或更换耐热等级更高的电动机。 15、通风系统发生故障,应检查风扇是否损坏,旋转方向是否正确,通风孔道是否堵塞。 电动机发热的原因可能还有其他方面,但是我们平时要严格按照操作规程正确使用电动机,正确维护电动机,使电动机表明清洁,电流不超过额定值,振动值在范围之内,运行声音正常,轴承正切维护等,电动机的使用寿命一定会延长的。

导致电机烧的原因

烧电机的原因总结起来都有哪些呢 电源问题or负载问题... ①电源电压过高,使铁芯发热大大增加;②电源电压过低,电动机又带额定负载运行,电流过大使绕组发热;③修理拆除绕组时,采用热拆法不当,烧伤铁芯;④定转子铁芯相擦; ⑤电动机过载或频繁起动;⑥笼型转子断条;⑦电动机缺相,两相运行;⑧重绕后定于绕组浸漆不充分;⑨环境温度高电动机表面污垢多,或通风道堵塞;⑩电动机风扇故障,通风不良;定子绕组故障(相间、匝间短路;定子绕组内部连接错误)。 2.故障排除:①降低电源电压(如调整供电变压器分接头),若是电机Y、Δ接法错误引起,则应改正接法;②提高电源电压或换粗供电导线;③检修铁芯,排除故障;④消除擦点(调整气隙或挫、车转子);⑤减载;按规定次数控制起动; ⑥检查并消除转子绕组故障;⑦恢复三相运行;⑧采用二次浸漆及真空浸漆工艺;⑨清洗电动机,改善环境温度,采用降温措施;⑩检查并修复风扇,必要时更换 这个原因很多。 1.电源问题 a.三相电源不对称

b.接法错误包括三角形接成星形,星形接成三角形 c.电压过高或过低 2.负载问题 过载; 负载被卡住 3.电机问题 线圈匝间短路 线圈断开 电机内有异物 定转子相擦 4.其它问题 轴承问题 油脂不好 通风有问题 楼上的比较全面。一般在用户使用过程中烧毁的电机主要原因是:过载、单相、缺相、匝间。 拆开电机后检查绕组线包,可以判断出烧毁的大致原因:1、过载机过载烧毁时,线包一般会全部烧黑。

2、单相、缺相烧毁一相线圈或两相线圈 3、匝间在线包或是线槽上会有铜线烧熔化后烧出来的洞和铜珠 另外轴承内盖配合不好或是轴承故障抱死轴烧坏电机的情 况也会有,这个可以直接看到。这个属于机械方面的故障 造成电动机过负荷的原因主要有: (1)电源电压低。当机械负载不变时,电源电压降低,就会造成电动机工作电流加大。由于电动机工作电流的增大,电动机的温度就会上升。当过负荷时间较长,电动机的温度就会超过允许温度而烧毁。实际工作表明:电动机的实际工作温度每超过允许温度8℃,其使用寿命就减少一半。 (2)频繁启动。异步电动机的启动电流为正常工作电流的5倍~7倍,如果电动机频繁启动,就会使电动机的温度上升。井下采区工作面输送机和采煤机容易出现这种过负荷现象。 (3)启动时间长。带负荷启动往往会造成启动时间长,电动机温度高的过负荷情况。例如,工作面输送机上堆满了煤,这时启动电机就会出现堵转、启动时间长的问题。 (4)机械卡堵。由于电动机轴承损坏,转子被卡,或电动机所拖动的负荷被卡等都会造成电动机过负荷。

浅谈水泵三相异电动机运行过热原因分析及对策_New

浅谈水泵三相异电动机运行过热原因分析及对策

————————————————————————————————作者:————————————————————————————————日期:

浅谈水泵三相异步电动机运行过热原因分析及对策-机电论 文 浅谈水泵三相异步电动机运行过热原因分析及对策 于惠东 (中卫市中宁县红寺堡扬水管理处宁夏中宁751200) 【摘要】随着改革开放的不断深入,生产力不断发展,工、农业生产技术不断进步,各种类型及功率等级的电动机在工业、农业生产及人们的日常生活中所扮演的角色也越来越重要,可以想象如果它们都集体“罢工”的话,那我们的生产、生活将乱到什么程度,比如:停水、停电、电梯停运、冷、暖气停送等等,将让我们无法想象,所以了解它的结构及工作原理,在运行中的维护及停机保养,使我们能够在以后的工作生活中更好使用它们,让它们更好的为我们的生产、生活服务。 关键词水泵;三相异步电动机;过热 Shallow talk water a pump three dissimilitudes step electric motor circulate to lead hot reason analysis and counterplan Yu Hui-dong 【Abstract】Along with reform open of continuously thorough, productivity continuously development, work, agriculture produce the technique progress unremittingly, the electric motor of various type and power grade is in the industry, the agriculture the produce and people of the daily life role for play also more and more importance, can imagination if they all collective”strike” of words, that our produce, life

电动机发热过载的原因

电动机发热过载的原因 电动机在正常运行情况下,就是负载转矩在额定转矩以下情况时,电动机总能维持负载转矩与电机输出转矩的平衡,并且保持转速变化很小,但当负载转矩过大,超过额定转矩时,电动机仍然要维持转矩平衡,只有降低转速,继续提高转矩,(如果转矩超过最大负载转矩电机将堵转)转矩的继续提高,必然导致定子电流的升高,从而导致定子绕组发热增加,如果持续大过载,会造成电动机烧毁. 电机会发热的原因是由21种原因造成:1、室温过高 2、散热不良3、过载 4、过压欠压或电压不平衡 5、频繁起停或频繁正反转 6、缺相 7、风扇坏或进出风口堵 8、轴承缺油 9、机械卡住堵转 10、负载转动惯量过大启动时间过长 11、匝间短路 12、新电机内部接线有误 13、星三角接线有误 14、星三角或自偶降压启动负载重启动时间长或因故障未正常转换 15、电机受潮 16、鼠笼式异步电机转子断条 17、绕线式异步电机转子绕组断线或电阻不平衡 18、转子扫膛19、电源谐波过大,例如附近有大型整流设备,高频设备等 20、多次维修的电机铁心磁通减小 21、有些电机绕线工艺差 电机发热故障原因分析方法: 在分析电机发热故障时,用非接触式的红外线温度计,或万用表的温度测量挡位(带温度测量的万用表),测量电机端盖的温度超过

环境温度25℃以上时,表明电机的温升已经超出了正常范围,一般电机的温升应在20℃以下。电机发热的直接原因是由于电流大引起的。电机电流I,电机的输入电动势E1,电机旋转的感生电动势(又叫反电动势)E2,与电机线圈电阻R之间的关系是:I=(E1-E2)÷R,I增大,说明R变小或E2减小了。R变小一般是线圈短路或开路引起的。E2减小一般是磁钢退磁引起的或者是线圈短路、开路引起的。在电动车的整车的维修实践中,处理电机发热故障的方法,一般是更换电机。

水泵电机烧了请查看原因,有可能您买了个二手泵

水泵电机烧了请查看原因,有可能您买了个二手泵 首先,先搞清楚电机烧是烧了轴承(机械故障)还是烧了线圈(电气故障)。电气故障包括:定子和转子绕组的短路、断路、及启动设备故障;机械故障包括:振动过大、轴承过热、定子与转子相互摩擦及有不正常噪音等。 如果是烧线圈的故障,主要是由于过电流引起的,有时候电压过高或过低也会引起线圈发热短路,所以先检查运行时的电压是不是和额定电压差太多。 过电流短路,可能有以下几个原因: A . 设备超负荷运行,使电机长时间在额定电流或超额定电流运行。特别要注意的是,电机的启动电流是额定电流的3-5倍,所以应当尽量避免启动设备时带负荷或满负荷运行(主要要看电机的额定电流和正常运行电流的匹配余量) B、电机在较潮湿的工作环境工作。在电机启动前应当检查线圈的对地绝缘和相间绝缘,不同使用电压等级绝缘要求也不同,可以参照有关国家标准检查。在电机的运行过程中应当注意电机的防水防潮。 C、泵机的机械故障引起电机过负荷,电流过大而烧线圈。 D、电机的散热出问题。一般电机线圈都采用风冷外壳,潜水泵是水冷外壳。大型电机

多采用空-空换热器、空-水换热器冷却。如果断了冷却水(空气),使线圈无法散热,都可能烧毁线圈。 2、实际使用扬程低于或者高于泵铭牌扬程太多; 离心泵的扬程是用来克服高度和阻力的,高扬程的泵在高扬程点工作时他的流量是设计点的流量,如果在低扬程工作时,相当于泵的出口阻力减小,这时离心泵的流量就会增加,电机就会超负荷,超到一定程度就会烧毁电机。 例如一台给水泵的扬程为50米,流量为50立方米/小时,当它往50米高处给水的时,它的流量是50立方米/小时,当它往40米高处给水时,它的高度和阻力降低了它的流量可能达到80-90立方米/小时以上,这时电机就会发热或烧毁。如果当他往60米高处给水时。他的高度和阻力增加了,它的流量就能只有30多立方/小时以上,电机满负荷运转长久时间,得不到休息也会发热导致烧机。 3、水泵无水工作时间太长。若是水冷式潜水电机,在无水的情况下,电机无法通过水,冷却电机,导致电机温度上升,线圈若没有过热保护装置,在几秒钟到1分钟之内,电机便可烧机,因此注不满水是电机快速烧坏的主要原因! 4、带负荷启动可以造成电机损坏。三相电动机在起动时,起动电流很大,可达到额定电流的4~7倍,很大的起动电流,在短时间内会在线路上造成较大的电压降落,这不仅影响电动机本身的起动也会影响到同一线路上的其他电动机和电器设备的正常工作。 5、缺相是电机烧坏的另一大原因!无论普通电机还是潜水电机缺相烧电机所占比例要在6到8层,其次是由于轴承损坏烧电机要占2层。 6、消费者一味的压缩价格,无良厂商旧翻新也是一大原因,无良厂商通过回收,售后等方式,翻新有瑕疵的水泵,使得价格便宜,在当前五金机电市场,整体趋于竞争剧烈的大环境下,价格低,就意味着在这块市场上占有先机,然后进而演变成恶性循环,最后受损的还是整个行业和消费者,江南泵阀三十五年生产厂家,我们在谴责这些不良商贩的同时,确保让消费者购买的每一台水泵都是优质品,为消费者提供整机质保一年,易损件质保三个月的售后服务,真正让每一位客户都能购买到物美价廉的水泵。

电机温度标准

GB3215-82 4.4.1 泵工作期间,轴承最高温度不超过80 JB/T5294-91 3.2.9.2 轴承温升不得超过环境温度40,最高温度不得超过80 JB/T6439-92 4.3.3 泵在规定工况下运转时,内装式轴承处外表面温度不应高出输送介质温度20,最高温度不高于80。外装式轴承处外表面温升不应高处环境温度40。最高温度不高于80 JB/T7255-94 5.15.3 轴承的使用温度。轴承温升不得超过环境温度35,最高温度不得超过75 JB/T7743-95 7.16.4 轴承温升不得超过环境温度40,最高温度不得超过80 JB/T8644-1997 4.14 轴承温升不得超过环境温度35,最高温度不得超过80 规定是这样,但是各个制造厂由于制造工艺不同可能会有点细微差别,但是不会太大的 没什么感觉30度 有暖意40以下 明显知道发热45度以下 能长久触摸并无困难50度 能长久触摸极限或只能触摸10秒55度 触摸3秒60度 触摸至感觉热后必须马上缩手70度 不敢再次触摸70以上 个人经验感觉 通常我们衡量电机发热程度是采用“温升”而不是用“温度”,当“温升”突然增大或超过最高工

作温度时,说明电机已发生故障。下面就一些基本概念进行讨论。 1 绝缘材料的绝缘等级 绝缘材料按耐热能力分为Y、A、E、B、F、H、C 7个等级,其极限工作温度分别为90、105、120、130、155、180℃、及180℃以上。 所谓绝缘材料的极限工作温度,系指电机在设计预期寿命内,运行时绕组绝缘中最热点的温度。根据经验,A级材料在105℃、B级材料在130℃的情况下寿命可达10年,但在实际情况下环境温度和温升均不会长期达设计值,因此一般寿命在15~20年。如果运行温度长期超过材料的极限工作温度,则绝缘的老化加剧,寿命大大缩短。所以电机在运行中,温度是寿命的主要因素之一。 2 温升 温升是电机与环境的温度差,是由电机发热引起的。运行中的电机铁芯处在交变磁场中会产生铁损,绕组通电后会产生铜损,还有其它杂散损耗等。这些都会使电机温度升高。另一方面电机也会散热。当发热与散热相等时即达到平衡状态,温度不再上升而稳定在一个水平上。当发热增加或散热减少时就会破坏平衡,使温度继续上升,扩大温差,则增加散热,在另一个较高的温度下达到新的平衡。但这时的温差即温升已比以前增大了,所以说温升是电机设计及运行中的一项重要指标,标志着电机的发热程度,在运行中,如电机温升突然增大,说明电机有故障,或风道阻塞或负荷太重。 3 温升与气温等因素的关系 对于正常运行的电机,理论上在额定负荷下其温升应与环境温度的高低无关,但实际上还是受环境温度等因素影响的。 (1) 当气温下降时,正常电机的温升会稍许减少。这是因为绕组电阻r下降,铜耗减少。温度每降1℃,r约降0.4%。 (2) 对自冷电机,环境温度每增10℃,则温升增加1.5~3℃。这是因为绕组铜损随气温上升而增加。所以气温变化对大型电机和封闭电机影响较大。 (3) 空气湿度每高10%,因导热改善,温升可降0.07~0.38℃,平均为0.19℃。 (4) 海拔以1 000 m为标准,每升100 m,温升增加温升极限值的1%。 4 极限工作温度与最高允许工作温度 通常说a级的极限工作温度为105℃,a级的最高允许工作温度是90℃。那么,极限工作温度与最高允许工作温度有何不同?其实,这与测量方法有关,不同的测量方法,其反映出的数值不同,含义也不一样。 (1) 温度计法其测量结果反映的是绕组绝缘的局部表面温度。这个数字平均比绕组绝缘的实际最高温度即“最热点”低15℃左右。该法最简单,在中、小电机现场应用最广。 (2) 电阻法其测量结果反映的是整个绕组铜线温度的平均值。该数比实际最高温度按不同的绝缘等级降低5~15℃。该法是测出导体的冷态及热态电阻,按有关公式算出平均温升。 (3) 埋置温度计试验时将铜或铂电阻温度计或热电偶埋置在绕组、铁心或其它需要测量预期温度最高的部件里。其测量结果反映出测温元件接触处的温度。大型电机常采用此法来监视电机的运行温度。 各种测量方法所测量到的温度与实际最高温度都有一定差值,因此需将绝缘材料的“极限工作温度”减去此差值才是“最高允许工作温度”。 5 电机各部位的温度限度 (1) 与绕组接触的铁心温升(温度计法)应不超过所接触的绕组绝缘的温升限度(电阻法),即A级为60℃,E级为75℃,B级为80℃,F级为100℃,H级为125℃。 (2) 滚动轴承温度应不超过95℃,滑动轴承的温度应不超过80℃。因温度太高会使油

电机烧坏原因及判断方法 防范措施

电机烧坏原因及判断方法、防范措施 1 缺相运行 造成电机缺相的原因很多,如控制回路的热继电器或磁力启动器的触头由于温度高而氧化,导致接触不良缺相;电机引线或电缆一相断开;电源动力保险一相烧融断开;电机绕组接头焊接不好,过热后融化断开等。 1.2 长期过电流运行 最为常见的是机械装置与电动机的不匹配,就是平时所说的小马拉大车现象;机械部分瞥压、堵转或卡涩后过负荷运行;机械与电机连接处同心度不好;电机本身轴承严重卡涩或损坏;电机绕组选择不合理或接线错误,空载电流就偏大;定子绕组匝间有短路;电源电压过高;电动机在检修过程中取过定子铁芯,造成容量不足等。1.3 电机冷却系统故障 常见的低压电动机一般采用风冷。如果周围环境条件太差、灰尘太大、油污严重,就会导致电动机的表面通风散热槽堵塞;电动机的冷却风叶太小、与转轴存在相对运动或有叶片损坏;电动机冷却风叶安装错误,正向吹风变成反向吸风,冷却效果明显下降等。 1.4 电机绕组接线错误 绕组接线错误常见的原因有三个:①星形接法接成了三角形接法,造成单相绕组承担高电压而过流运行;②电机引出线的首尾搞反,不满足三相交流电互差120电角度的要求,造成启动瞬间定子绕组冒烟;③定子绕组一路接法误接成两路或两路接法误接成四路,造成空载电流偏大或烧损。 1.5 定子绕组制作工艺及绝缘强度不符合要求 低压电动机在烧损后,在定子绕组修复的过程中,存在造成工艺和强度不符合要求的原因。①没有专用的电机绕线、嵌线、划线、接线和焊接的专用工具;②没有按照绕组绕线、嵌线、划线、接线和焊接的标准执行,造成匝间短路;③电机绕组浸漆没有严格按照“三烘两浸”的程序和标准进行; ④绕组层间、相间绝缘没垫好;五是电机绕组端部整形不好,端部太大碰触端盖造成接地。 1.6 运行人员操作不当 连续工作制的电动机频繁启动,由于启动电流过大,加速电机绕组绝缘老化而烧损,尤其是电机热态情况下频繁启动;运行人员在不关闭泵或风机出入口门的情况下带负荷启动电机;对长期停运的电机,未进行绝缘测试和盘车,启动电动机。 2 技术防范措施 针对归纳总结出来的电动机定子绕组烧损原因,结合从事电机检修与维护的工作经验,并参照相关规程,提出如下一些防止低压电动机烧损的技术措施。 2.1 加装缺相保护 依据《电力工程电气设计手册》电气二次部分规定:应装设两相保护,条件

水泵七大常见故障及解决方法

水泵七大常见故障及解决方法 水泵是输送液体或使液体增压的机械。它将原动机的机械能或其他外部能量传送给液体,使液体能量增加,主要用来输送液体包括水、油、酸碱液、乳化液、悬乳液和液态金属等,也可输送液体、气体混合物以及含悬浮固体物的液体。 教您如何解决水泵故障。 1、无法启动 首先应检查电源供电情况:接头连接是否牢靠;开关接触是否紧密;保险丝是否熔断;三相供电的是否缺相等。如有断路、接触不良、保险丝熔断、缺相,应查明原因并及时进行修复。其次检查是否是自身的机械故障,常见的原因有:填料太紧或叶轮与泵体之间被杂物卡住而堵塞;泵轴、轴承、减漏环锈住;泵轴严重弯曲等。排除方法:放松填料,疏通引水槽;拆开泵体清除杂物、除锈;拆下泵轴校正或更换新的泵轴。 2、水泵发热 原因:损坏;滚动轴承或托架盖间隙过小;泵轴弯曲或两轴不同心;胶带太紧;缺油或油质不好;叶轮上的平衡孔堵塞,叶轮失去平衡,增大了向一边的推力。排除方法:更换轴承;拆除后盖,在托架与轴承座之间加装垫片;调查泵轴或调整两轴的同心度;适当调松胶带紧度;加注干净的黄油,黄油占轴承内空隙的60%左右;清除平衡孔内的堵塞物。 3、流量不足 这是因为:动力转速不配套或皮带打滑,使转速偏低;轴流泵叶片安装角太小;扬程不足,管路太长或管路有直角弯;吸程偏高;底阀、管路及叶轮局部堵塞或叶轮缺损;出水管漏水严重。排除方法:恢复额定转速,清除皮带油垢,调整好皮带紧度;调好叶片角,降低水泵安装位置,缩短管路或改变管路的弯曲度;密封水泵漏气处,压紧填料;清除堵塞物,更换叶轮;更换减漏环,堵塞漏水处。 4、吸不上水 原因是泵体内有空气或进水管积气,或是底阀关闭不严灌引水不满、真空泵填料严重漏气,闸阀或拍门关闭不严。排除方法:先把水压上来,再将泵体注满水,然后开机。同时检查逆止阀是否严密,管路、接头有无漏气现象,如发现漏气,拆卸后在接头处涂上润滑油或调合漆,并拧紧。检查水泵轴的油封环,如磨损严重应更换新件。管路漏水或漏气。可能安装时螺帽拧得不紧。若渗漏不严重,可在漏气或漏水的地方涂抹水泥,或涂用沥青油拌和的水泥浆。临时性的修理可涂些湿泥或软肥皂。若在接头处漏水,则可用扳手拧紧螺帽,如漏水严重则必须重新拆装,更换有裂纹的管子;降低扬程,将水泵的管口压入水下。 5、剧烈震动

三相异步电机发热原因剖析

电动机发热原因及分析 1. 电机定、转子之间气隙很小,容易导致定、转子之间相碰 在中、小型电机中,气隙一般为0.2mm~1.5mm。气隙大时,要求励磁电流大,从而影响电机的功率因数;气隙太小,转子有可能发生摩擦或碰撞。一般由于轴承严重超差及端盖内孔磨损变形,使机座、端盖、转子三者不同轴心引起扫膛,很容易使电机发热甚至烧毁。如发现轴承磨损应及时更换,对端盖进行更换或刷镀处理,比较简单的处理方法是给端盖镶套。 2. 电机的不正常振动或噪音容易引起电机的发热 这种情况属于电机本身引起的振动,多数是由于转子动平衡不好,以及轴承不良、转轴弯曲,端盖、机座、转子不同轴心,紧固件松动或电机安装地基不平、安装不到位造成的,也可能是机械端传递过来的,应针对具体情况排除。 振动会产生噪声,还会产生额外负荷。 3. 轴承工作不正常,必定造成电机发热轴承工作是否正常可凭听觉及温度经验来判断。可用手或温度计检测轴承端判断其温度是否在正常范围内;也可用听棒(铜棒)接触轴承盒,若听到冲击声,就表示可能有一只或几只滚珠轧碎,如果听到有咝咝声,那就是表示轴承的润滑油不足,电机应在运行3,000小时~5,000小时左右换一次润滑脂。 4. 电源电压偏高,励磁电流增大,电机会过度发热

过高的电压会危及电机的绝缘,使其有被击穿的危险。电源电压过低时,电磁转矩就会大大降低,如果负载转距没有减小,转子转数过低,这时转差率增大会造成电机过载而发热,长时间过载会影响电机的寿命。当三相电压不对称时,即一相电压偏高或偏低时,会导致某相电流过大,电机发热,同时转距减小会发出“嗡嗡”声,时间长了会损坏绕组。 总之,无论电压过高、过低或三相电压不对称都会使电流增加,电机发热而损坏电机。因此按照国家标准,电机电源电压的变化应不超出额定值的±5%,电机输出功率可保持额定值。电机电源电压不允许超过额定值的±10%,三相电源电压之间的差值不应超出额定值的±5%。我公司曾发生过因为网络电压偏底,所有经变频的电机都无法启动或不能连续开机的情况。 5. 绕组短路,匝间短路,相间短路和绕组断路 绕组中相邻两条导线之间的绝缘损坏后,使两导体相碰,称为绕组短路。发生在同一绕组中的绕组短路称为匝间短路。发生在两相绕组之间的绕组短路称为相间短路。不论是那一种,都会使某一相或两相电流增加,引起局部发热,使绝缘老化损坏电机。绕组断路是指电机的定子或转子绕组碰断或烧断造成的故障。不论是绕组短路或断路都可能引起电机发热甚至烧毁。因此,发生这种情况后必须立即停机处理。 6. 物料泄露进入电机内部,使电机的绝缘降低,从而使电机的允许温升降低

三相异步水泵电机的故障原因和处理

三相异步水泵电机的故障原因和处理 三相异步水泵电机的故障原因和处理:绕组是电动机的组成部分,老化,受潮、受热、受侵蚀、异物侵入、外力的冲击都会造成对绕组的伤害,电机过载、欠电压、过电压,缺相运行也能引起绕组故障 三相异步水泵电机的故障原因和处理 绕组是水泵电动机的组成部分,老化,受潮、受热、受侵蚀、异物侵入、外力的冲击都会造成对绕组的伤害,电机过载、欠电压、过电压,缺相运行也能引起绕组故障。绕组故障一般分为绕组接地、短路、开路、接线错误。现在分别说明故障现象、产生的原因及检查方法。 一、三相异步水泵电机绕组接地 指绕组与贴心或与机壳绝缘破坏而造成的接地。 1、水泵电机故障现象 机壳带电、控制线路失控、绕组短路发热,致使电动机无法正常运行。 2、水泵电机产生原因 绕组受潮使绝缘电阻下降;电动机长期过载运行;有害气体腐蚀;金属异物侵入绕组内部损坏绝缘;重绕定子绕组时绝缘损坏碰铁心;绕组端部碰端盖机座;定、转子磨擦引起绝缘灼伤;引出线绝缘损坏与壳体相碰;过电压(如雷击)使绝缘击穿。 3.水泵电机检查方法 (1)观察法。通过目测绕组端部及线槽内绝缘物观察有无损伤和焦黑的痕迹,如有就是接地点。 (2)万用表检查法。用万用表低阻档检查,读数很小,则为接地。 (3)兆欧表法。根据不同的等级选用不同的兆欧表测量每组电阻的绝缘电阻,若读数为零,则表示该项绕组接地,但对电机绝缘受潮或因事故而击穿,需依据经验判定,一般说来指针在“0”处摇摆不定时,可认为其具有一定的电阻值。

(4)试灯法。如果试灯亮,说明绕组接地,若发现某处伴有火花或冒烟,则该处为绕组接地故障点。若灯微亮则绝缘有接地击穿。若灯不亮,但测试棒接地时也出现火花,说明绕组尚未击穿,只是严重受潮。也可用硬木在外壳的止口边缘轻敲,敲到某一处等一灭一亮时,说明电流时通时断,则该处就是接地点。 (5)电流穿烧法。用一台调压变压器,接上电源后,接地点很快发热,绝缘物冒烟处即为接地点。应特别注意小型电机不得超过额定电流的两倍,时间不超过半分钟;大电机为额定电流的20%-50%或逐步增大电流,到接地点刚冒烟时立即断电。 (6)分组淘汰法。对于接地点在铁芯心里面且烧灼比较厉害,烧损的铜线与铁芯熔在一起。采用的方法是把接地的一相绕组分成两半,依此类推,最后找出接地点。此外,还有高压试验法、磁针探索法、工频振动法等,此处不一一介绍。 4.水泵电机处理方法 (1)绕组受潮引起接地的应先进行烘干,当冷却到60——70℃左右时,浇上绝缘漆后再烘干。 (2)绕组端部绝缘损坏时,在接地处重新进行绝缘处理,涂漆,再烘干。 (3)绕组接地点在槽内时,应重绕绕组或更换部分绕组元件。最后应用不同的兆欧表进行测量,满足技术要求即可。 二、三相异步水泵电机绕组短路 由于电动机电流过大、电源电压变动过大、单相运行、机械碰伤、制造不良等造成绝缘损坏所至,分绕组匝间短路、绕组间短路、绕组极间短路和绕组相间短路。 1.水泵电机故障现象 离子的磁场分布不均,三相电流不平衡而使电动机运行时振动和噪声加剧,严重时电动机不能启动,而在短路线圈中产生很大的短路电流,导致线圈迅速发热而烧毁。 2.水泵电机产生原因

电机发热原因和解决方法

电机发热原因和解决方法 1、室温过高 2、散热不良 3、过载 4、过压欠压或电压不平衡 5、频繁起停或频繁正反转 6、缺相 7、风扇坏或进出风口堵 8、轴承缺油 9、机械卡住堵转 10、负载转动惯量过大启动时间过长 11、匝间短路 12、新电机内部接线有误 13、星三角接线有误 14、星三角或自偶降压启动负载重启动时间长或因故障未正常转换 15、电机受潮 16、鼠笼式异步电机转子断条 17、绕线式异步电机转子绕组断线或电阻不平衡 18、转子扫膛 19、电源谐波过大,例如附近有大型整流设备,高频设备等 20、多次维修的电机铁心磁通减小 21、有些电机绕线工艺差 三相异步电动机应用广泛,通常用得最多的是鼠笼式异步电动机(以下简称“电机”)。该电机具有结构简单、容易制造、价格低廉、起步方便、工作可靠、坚固耐用、运行效率较高、便于维护检修的特点。在泵、风机及传动机构的驱动都离不开电机,电机出现任何故障都会对生产造成影响。因此,电气工作人员必须掌握有关异步电动机安全运行的基本知识和常见故障的处理方法,做到及时发现和消除电机事故隐患,保障安全运行。 选择电机的功率时,应考虑电机的发热、允许过载和启动能力三方面因素。一般情况下以发热问题最为重要。电机发热的原因是运转中的能量损耗在电机内部转变成了热量。电机中耐热最差的是绕组的绝缘材料,当电机温度不超过所用绝缘材料的最高允许温度时,绝缘材料的寿命较长,可达20年以上;反之,如果温度超过上述最高温度,则绝缘材料老化、变脆,

并缩短电机寿命,严重情况下,绝缘材料将碳化、变质、失去绝缘性能,从而使电机烧毁。可见,电机的故障大都因为温升不正常所致。而不同的电机绝缘等级则对应不同的电机允许温升,如下表。 绝缘等级A E B F H C 允许温度105℃ 120℃ 130℃ 155℃ 180℃ 180℃以上 允许温升60℃ 75℃ 80℃ 100℃ 125℃ 125℃以上 必须指出,在研究电机发热时,常把电机温度与周围环境温度之差称为“温升”。我国规定的环境温度为:40℃。 由温升曲线可知,发热开始时,由于温升较小、散发热量较少,大部分热量被电机吸收,因而温升τ增长较快。随温度升高,散发热量不断增长,电机散发热量由于负载不变而维持不变,电机吸收热量不断减少,温升曲线趋于平缓。最后电机温度不再升高,温升达到稳定值tw。总结电机发热过程与输出功率如下式: PN= tw AhN/(1-hN) 对同样规格的电机欲提高额定功率PN,有3种方法: 1.可以提高额定效率hN,即采取措降低电机损耗; 2.提高散热系数,即加大流通和散热面积; 3.提高绝缘材料温升。电机一旦选定,以上3项均成定数,所以生产中必须时刻监视电机各部分的温升。在实际生产中,由于电气或机械方面的原因,常会使电机出现过热或烧毁等故障。所以通过检查电机在运行中的温度来和判断其故障尤为重要。电机发热大致有以下原因及解决办法,供同行参考。 1. 电机定、转子之间气隙很小,容易导致定、转子之间相碰 在中、小型电机中,气隙一般为0.2mm~1.5mm。气隙大时,要求励磁电流大,从而影响电机的功率因数;气隙太小,转子有可能发生摩擦或碰撞。一般由于轴承严重超差及端盖内孔磨损变形,使机座、端盖、转子三者不同轴心引起扫膛,很容易使电机发热甚至烧毁。如发现轴承磨损应及时更换,对端盖进行更换或刷镀处理,比较简单的处理方法是给端盖镶套。 2. 电机的不正常振动或噪音容易引起电机的发热 这种情况属于电机本身引起的振动,多数是由于转子动平衡不好,以及轴承不良、转轴弯曲,端盖、机座、转子不同轴心,紧固件松动或电机安装地基不平、安装不到位造成的,也可能是机械端传递过来的,应针对具体情况排除。振动不仅会产生噪声,还会产生额外负荷。 3. 轴承工作不正常,必定造成电机发热轴承工作是否正常可凭听觉及温度经验来判断。可用手或温度计检测轴承端判断其温度是否在正常范围内;也可用听棒(铜棒)接触轴承盒,若听到冲击声,就表示可能有一只或几只滚珠轧碎,如果听到有咝咝声,那就是表示轴承的润滑油不足,电机应在运行3,000小时~5,000小时左右换一次润滑脂。 4. 电源电压偏高,励磁电流增大,电机会过度发热 过高的电压会危及电机的绝缘,使其有被击穿的危险。电源电压过低时,电磁转矩就会大大降低,如果负载转距没有减小,转子转数过低,这时转差率增大会造成电机过载而发热,长

三相异步电机发热的原因和解决措施

三相异步电机作为人们生产和生活中不可缺少的重要的动力提供者,在使用的过程中有些三相异步电机会出现发热很严重的现象,但是很多时候不知道怎么去解决,更加严重的是不知道是什么原因导致的电机发热,这应该是在电机的使用过程中最先掌握的,下面我们一起来了解一下电动机发热很严重常见的八大原因。 1、三相异步电机定、转子之间气隙很小,容易导致定、转子之间相碰。在中、小型三相异步电机中,气隙一般为0.2mm~1.5mm。气隙大时,要求励磁电流大,从而影响电机的功率因数;气隙太小,转子有可能发生摩擦或碰撞。一般由于轴承严重超差及端盖内孔磨损变形,使机座、端盖、转子三者不同轴心引起扫膛,很容易使电机发热甚至烧毁。如发现轴承磨损应及时更换,对端盖进行更换或刷镀处理,比较简单的处理方法是给端盖镶套。 2、电机的不正常振动或噪音容易引起电机的发热。这种情况属于电机本身引起的振动,多数是由于转子动平衡不好,以及轴承不良、转轴弯曲,端盖、机座、转子不同轴心,紧固件松动或电机安装地基不平、安装不到位造成的,也可能是机械端传递过来,应针对具体情况排除。 3. 轴承工作不正常,必定造成电机发热轴承工作是否正常可凭听觉及温度经验来判断。可用手或温度计检测轴承端判断其温度是否在正常范围内;也可用听棒(铜棒)接触轴承盒,若听到冲击声,就表示可能有一只或几只滚珠轧碎,如果听到有咝咝声,那就是表示轴承的润滑油不足,电机应在运行3,000小时~5,000小时左右换一次润滑脂。

4. 电源电压偏高,励磁电流增大,电机会过度发热。过高电压会危及电机绝缘,使其有被击穿的危险。电源电压过低时,电磁转矩就会降低,如果负载转距没有减小,转子转数过低,这时转差率增大会造成电机过载而发热,长时间过载会影响电机的寿命。当三相电压不对称时,即一相电压偏高或偏低时,会导致某相电流过大,电机发热,同时转距减小会发出“嗡嗡”声,时间长了会损坏绕组。总之,无论电压过高、过低或电压不对称都会使电流增加,电机发热而损坏电机。因此按照国家标准,电机电源电压的变化应不超出额定值的±5%,电机输出功率可保持额定值。电机电源电压不允许超过额定值的±10%,三相电源电压之间的差值不应超出额定值的±5%。 5. 绕组短路,匝间短路,相间短路和绕组断路。绕组中相邻两条导线之间的绝缘损坏后,使两导体相碰,称为绕组短路。发生在同一绕组中的绕组短路称为匝间短路。发生在两相绕组之间的绕组短路称为相间短路。不论是那一种,都会使某一相或两相电流增加,引起局部发热,使绝缘老化损坏电机。绕组断路是指电机的定子或转子绕组碰断或烧断造成的故障。不论是绕组短路或断路都可能引起电机发热甚至烧毁。因此,发生这种情况后必须立即停机处理。 6. 物料泄露进入电机内部,使电机绝缘降低,从而使电机允许温升降低。固体物料或粉尘从接线盒处进入电机内部,则会到达电机定子、转子的气隙之间,造成电机扫膛,直到磨坏电机绕组绝缘,使电机损坏或报废。如果液体和气体介质泄漏进入电机内部,将会直接造成电机绝缘下降而跳闸。一般液体和气体泄漏有以下几种表现形式:

电动给水泵电机引线烧毁原因探究及处理方法 (上传)

电动给水泵电机引线烧毁原因探究及处理方法 刘文伟山西京玉发电有限责任公司山西省朔州市邮编037200 【摘要】该文阐述了京玉电厂电动给水泵电机引线烧毁的原因分析、处理方法及日常运行时的注意事项,使问题彻底解决,保证了设备的安全运行。 【关键词】电机引线连接工艺电机启动电机寿命 一、设备基本情况: 京玉电厂电动给水泵电机为南车株洲电机厂生产的6kV卧式高压电机,电机的型号为YKS710—2,功率为4000KW,额定电流为436A,转速 2989r/min。 二、电机引线烧毁故障情况 2014年1月12日1号机组电动给水泵启动,5秒后报MCC不可用故障,运行值班员在6KV配电室就地检查发现开关面板电动机C相电流为零,监盘操作停运电机失败,随即运行人员就地手动拍停电机事故按钮,电动机停运。 电气二次检查保护装置报文,有启动及CT断线告警记录,无保护动作,检查保护、测量及零序CT阻值正常,检查保护装置及二次回路正确无异常,按照《#1机组6kV 电气保护定值整定通知单》定值单核对保护定值,定值设置无误。 电气一次对电动机进行直流电阻测试U1-U2 42.46mΩ、V1-V2 41.73mΩ、W1-W2 测试不出结果,绝缘测试UV-E 2.3GΩ、UW-E 1.7GΩ、VW-E 1.2GΩ通过试验判断为C相断线,将电机冷却器吊离,检查发现电机CT 侧引出线C相烧毁断线,检查冷却器无渗漏,电机机壳无积水痕迹,结合电机绝缘测试结果,排除电机因受潮而导致故障发生的因素。 三、检查情况: 就地吊出冷却器,打开电机引线侧盖板发现,电机非驱动端定子端部绕组在1点钟位置绝缘表面有大约3mm熏黑痕迹,CT侧引出线C相断开,电机下层线棒靠近故障点处绝缘有熏黑现象。 图1:电动机端部绕组情况 图2:电动机C相引线断开 随即决定对电动端部绕组、引线进行绝缘烧损清理,清理完毕后进行了交、直流耐压试验,试验结果合格,判断为电动机绕组 绝缘完好,决定更换引出线及局部绝缘修

水泵七大常见故障及解决方法

水泵七大常见故障及解决方法 /Detail_289475_102102_%E4%BA%94%E9%87%91%E5%B8%B8%E8%AF%86.shtml 水泵是输送液体或使液体增压的机械。它将原动机的机械能或其他外部能量传送给液体,使液体能量增加,主要用来输送液体包括水、油、酸碱液、乳化液、悬乳液和液态金属等,也可输送液体、气体混合物以及含悬浮固体物的液体。 教您如何解决水泵故障。 1、无法启动 首先应检查电源供电情况:接头连接是否牢靠;开关接触是否紧密;保险丝是否熔断;三相供电的是否缺相等。如有断路、接触不良、保险丝熔断、缺相,应查明原因并及时进行修复。其次检查是否是水泵自身的机械故障,常见的原因有:填料太紧或叶轮与泵体之间被杂物卡住而堵塞;泵轴、轴承、减漏环锈住;泵轴严重弯曲等。排除方法:放松填料,疏通引水槽;拆开泵体清除杂物、除锈;拆下泵轴校正或更换新的泵轴。 2、水泵发热 原因:轴承损坏;滚动轴承或托架盖间隙过小;泵轴弯曲或两轴不同心;胶带太紧;缺油或油质不好;叶轮上的平衡孔堵塞,叶轮失去平衡,增大了向一边的推力。排除方法:更换轴承;拆除后盖,在托架与轴承座之间加装垫片;调查泵轴或调整两轴的同心度;适当调松胶带紧度;加注干净的黄油,黄油占轴承内空隙的60%左右;清除平衡孔内的堵塞物。 3、流量不足 这是因为:动力转速不配套或皮带打滑,使转速偏低;轴流泵叶片安装角太小;扬程不足,管路太长或管路有直角弯;吸程偏高;底阀、管路及叶轮局部堵塞或叶轮缺损;出水管漏水严重。排除方法:恢复额定转速,清除皮带油垢,调整好皮带紧度;调好叶片角,降低水泵安装位置,缩短管路或改变管路的弯曲度;密封水泵漏气处,压紧填料;清除堵塞物,更换叶轮;更换减漏环,堵塞漏水处。 4、吸不上水 原因是泵体内有空气或进水管积气,或是底阀关闭不严灌引水不满、真空泵填料严重漏气,闸阀或拍门关闭不严。排除方法:先把水压上来,再将泵体注满水,然后开机。同时检查逆止阀是否严密,管路、接头有无漏气现象,如发现漏气,拆卸后在接头处涂上润滑油或调合漆,并拧紧螺丝。检查水泵轴的油封环,如磨损严重应更换新件。管路漏水或漏气。可能安装时螺帽拧得不紧。若渗漏不严重,可在漏气或漏水的地方涂抹水泥,或涂用沥青油拌和的水泥浆。临时性的修理可涂些湿泥或软肥皂。若在接头处漏水,则可用扳手拧紧螺帽,如漏水严重则必须重新拆装,更换有裂纹的管子;降低扬程,将水泵的管口压入水下0.5m。 5、剧烈震动 主要有以下几个原因:电动转子不平衡;联轴器结合不良;轴承磨损弯曲;转动部分的

电机发热温度标准值

电机发热温度标准值 通常我们衡量电机发热程度是采用“温升”而不是用“温度”,当“温升”突然增大或超过最高工作温度时,说明电机已发生故障。下面就一些基本概念进行讨论。 1 绝缘材料的绝缘等级 绝缘材料按耐热能力分为Y、A、E、B、F、H、C 7个等级,其极限工作温度分别为90、105、120、130、155、180℃、及180℃以上。 所谓绝缘材料的极限工作温度,系指电机在设计预期寿命内,运行时绕组绝缘中最热点的温度。根据经验,A级材料在105℃、B级材料在130℃的情况下寿命可达10年,但在实际情况下环境温度和温升均不会长期达设计值,因此一般寿命在15~20年。如果运行温度长期超过材料的极限工作温度,则绝缘的老化加剧,寿命大大缩短。所以电机在运行中,温度是寿命的主要因素之一。 2 温升 温升是电机与环境的温度差,是由电机发热引起的。运行中的电机铁芯处在交变磁场中会产生铁损,绕组通电后会产生铜损,还有其它杂散损耗等。这些都会使电机温度升高。另一方面电机也会散热。当发热与散热相等时即达到平衡状态,温度不再上升而稳定在一个水平上。当发热增加或散热减少时就会破坏平衡,使温度继续上升,扩大温差,则增加散热,在另一个较高的温度下达到新的平衡。但这时的温差即温升已比以前增大了,所以说温升是电机设计及运行中的一项重要指标,标志着电机的发热程度,在运行中,如电机温升突然增大,说明电机有故障,或风道阻塞或负荷太重。 3 温升与气温等因素的关系 对于正常运行的电机,理论上在额定负荷下其温升应与环境温度的高低无关,但实际上还是受环境温度等因素影响的。 (1) 当气温下降时,正常电机的温升会稍许减少。这是因为绕组电阻r下降,铜耗减少。温度每降1℃,r约降0.4%。 (2)对自冷电机,环境温度每增10℃,则温升增加1.5~3℃。这是因为绕组铜损随气温上升而增加。所以气温变化对大型电机和封闭电机影响较大。 (3) 空气湿度每高10%,因导热改善,温升可降0.07~0.38℃,平均为0.19℃。 (4) 海拔以1 000 m为标准,每升100 m,温升增加温升极限值的1%。 4 极限工作温度与最高允许工作温度 通常说a级的极限工作温度为105℃,a级的最高允许工作温度是90℃。那么,极限工作温度与最高允许工作温度有何不同?其实,这与测量方法有关,不同的测量方法,其反映出的数值不同,含义也不一样。 (1) 温度计法其测量结果反映的是绕组绝缘的局部表面温度。这个数字平均比绕组绝缘的实际最高温度即“最热点”低15℃左右。该法最简单,在中、小电机现场应用最广。 (2) 电阻法其测量结果反映的是整个绕组铜线温度的平均值。该数比实际最高温度按不同的绝缘等级降低5~15℃。该法是测出导体的冷态及热态电阻,按有关公式算出平均温升。 (3) 埋置温度计试验时将铜或铂电阻温度计或热电偶埋置在绕组、铁心或其它需要测量预期温度最高的部件里。其测量结果反映出测温元件接触处的温度。大型电机常采用此法来监视电机的运行温度。 各种测量方法所测量到的温度与实际最高温度都有一定差值,因此需将绝缘材料的“极限工作温度”减去此差值才是“最高允许工作温度”。

相关文档
最新文档