开关电源工作原理与电路设计

合集下载

开关电源工作原理

开关电源工作原理

开关电源工作原理开关电源是一种常见的电源供应装置,其工作原理是将输入电压通过开关器件进行高频开关,经过变压、整流、滤波等电路处理后,得到稳定的输出电压。

开关电源具有高效率、小体积、重量轻等优点,广泛应用于各种电子设备中。

一、开关电源的基本构成开关电源由输入端、输出端和控制电路组成。

1. 输入端:输入端主要包括输入电源和输入电路。

输入电源为交流电源,输入电路包括输入滤波电路和整流电路。

其中,输入滤波电路用于滤除输入电源中的杂波和干扰,保证输入电源的稳定性;整流电路将交流电源转换为直流电源。

2. 输出端:输出端主要包括输出电路和输出滤波电路。

输出电路通过开关器件进行高频开关,将整流后的直流电源转换为高频脉冲信号,经过输出滤波电路后得到稳定的直流输出电压。

3. 控制电路:控制电路主要包括开关控制电路和保护电路。

开关控制电路用于控制开关器件的开关频率和占空比,保证输出电压的稳定性和精度;保护电路用于监测输入输出电流电压,当超过设定值时进行过载保护。

二、开关电源的工作原理开关电源的工作原理可分为两个过程:变频过程和整流滤波过程。

1. 变频过程:变频过程即将输入电压通过开关器件进行高频开关,形成高频脉冲信号。

开关器件通常采用开关管或晶闸管进行控制,高频开关频率通常在几十kHz至几MHz之间。

当开关器件导通时,输入电源的能量通过开关管传导至输出端,形成电流;当开关器件断开时,输出端的电感储能元件将电能通过二极管进行放电,形成负电流。

通过不断的开关导通-断开操作,输入电压的能量被转换为高频脉冲信号。

2. 整流滤波过程:经过变频过程的高频脉冲信号需要通过变压、整流和滤波电路进行进一步处理。

首先,高频脉冲信号经过变压电路进行降压变换,得到适合输出电压的信号。

然后,经过整流电路将高频信号转换为直流信号,通过二极管进行单向导通。

最后,通过滤波电路对直流信号进行滤波,去除残余脉动和高频噪声,得到稳定的输出电压。

三、开关电源的工作模式开关电源的工作模式主要有两种:连续导通模式和断续导通模式。

开关电源的工作原理及技术趋势

开关电源的工作原理及技术趋势

开关电源的工作原理及技术趋势开关电源是一种电能转换装置,它将功率电子器件(如开关管)工作在开关状态下,通过电子开关的控制,将输入电源的电能转换为所需的输出电能。

开关电源的工作原理及技术趋势如下:1. 工作原理:开关电源主要由输入端(输入电源和输入滤波器)、控制电路、功率器件(开关管)、输出变压器、输出滤波电路和反馈电路等部分组成。

工作过程如下:当输入电源通电时,输入滤波器将电源的交流电转换为稳定的直流电。

然后,控制电路控制开关管工作在开关状态下,通过控制开关管的导通和断开,将输入电源的直流电按一定频率进行开关操作。

开关管导通时,输入电源的直流电被输入到输出变压器,通过变压器的变压作用,将输入电压调整到所需的输出电压。

当开关管断开时,输入电源的直流电被关闭,通过变压器的变压作用,将变压器的能量传递给输出滤波电路,得到稳定的输出电压。

输出电压经过反馈电路与控制电路相连接,实现对输出电压的稳定控制。

2. 技术趋势:(1)高效率:随着人们对能源的节约要求越来越高,开关电源不断追求更高的能源转换效率。

高效率能够减少功耗和热量产生,降低能源浪费。

(2)小型化:开关电源的体积越小越便于携带和集成。

随着现代电子产品尺寸的减小,开关电源要求更小巧的尺寸以适应产品设计。

(3)轻量化:开关电源的重量越低越有利于产品的携带和移动性。

减轻开关电源的重量可以带来更高的便携性和用户体验。

(4)可靠性:开关电源的可靠性是保障设备正常工作的重要因素。

随着电子产品的使用要求日益严格,开关电源的可靠性要求也日益增强。

(5)环保性:环境保护意识的增强,使得开关电源要求具备低噪声、低辐射等特性,减少电磁污染对周围环境和人体的影响。

(6)智能化:随着信息技术的不断发展,开关电源要求智能化、数字化。

通过微处理器、集成电路和专用芯片等技术,实现对开关电源的智能控制和状态监测。

随着科技的不断进步和社会对电力需求的日益增长,开关电源的工作原理和技术趋势将不断演进。

开关电源工作原理详解析及三极管开关电路图原理及设计详解

开关电源工作原理详解析及三极管开关电路图原理及设计详解

PC电源知多少个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Switching Mode Power Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。

本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。

●线性电源知多少目前主要包括两种电源类型:线性电源(linear)和开关电源(switching)。

线性电源的工作原理是首先将127 V或者220 V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。

最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”)配图1:标准的线性电源设计图配图2:线性电源的波形尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/Wii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。

对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。

由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。

此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。

由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。

开关电源工作原理

开关电源工作原理

开关电源工作原理
开关电源,又称开关式电源,是一种将电能有源转换为高效直流电能供应的电源系统。

其工作原理可以分为以下几个主要部分:
1. 输入滤波:交流电从电源输入端进入开关电源时,首先经过一个电源输入滤波器。

该滤波器的作用是去除电源输入端的电源干扰,包括高频噪声和电源波动等。

滤波后的电源信号会进一步被送入下一个模块。

2. 整流和滤波:经过输入滤波的电源信号进入整流桥。

整流桥通过将交流电转换为脉冲直流电,使得电源信号的方向一致。

然后,通过滤波电容对这些脉冲进行平滑,去除脉冲部分,得到较为平稳的直流电源信号。

3. 交流直流变换:经过整流和滤波的直流电源信号进入交流直流变换器。

这个变换器使用高频开关器件(如MOSFET)来控制电源信号的开关转换,将直流电源信号转换为高频脉冲电流。

通过变压器的电感和电容滤波,将高频脉冲电流转换为平稳的低频直流电源。

4. 输出调整:经过交流直流变换后,得到所需电压和电流水平的直流电源信号。

然后,经过输出调整电路,如电压稳压器或电流限制器等,保证电源输出的稳定性和可靠性。

5. 反馈控制:为了保持输出电压稳定,开关电源通常会采用反馈控制机制。

在输出端引入一个反馈回路,监测输出电压,并
将监测结果与设定值进行比较。

然后,通过控制开关器件的开关状态来调整电源输出,使输出电压维持在设定值范围内。

需要注意的是,开关电源工作原理中的各个部分相互关联,通过精细的控制和调节,实现高效、稳定的电能转换。

这种工作原理使得开关电源在电子设备、计算机等领域得到广泛应用,并取代了传统的线性电源。

张占松,蔡宣三.开关电源的原理与设计

张占松,蔡宣三.开关电源的原理与设计

张占松,蔡宣三.开关电源的原理与设计开关电源是一种非线性电源,它的主要特点是具有高效率、小体积、轻重量、稳定性好等优点,因此被广泛地应用于各个领域。

开关电源的原理是实现对输入电源电流的高速开/关,通过电感储存能量,使输出电压保持稳定。

本文将介绍开关电源的基本原理和设计方法。

一、基本原理开关电源的基本组成部分包括输入端、输出端、开关器、能量存储元件和控制电路。

输入端一般接入AC或DC电源,输出端连接负载电阻或电源。

开关器的作用是将电源电流高速开/关,这里采用的常见开关器有MOSFET和IGBT等。

这些器件可以实现快速开关以及高效能的转换,从而实现高效的能源转换。

能量存储元件一般使用电感器或电容器,其作用是将输入电能储存为磁场或电场,并在开关器关闭时将其释放,从而保持输出电压稳定。

控制电路主要包括PWM调制器、反馈电路和保护电路。

PWM调制器的作用是产生一定频率和占空比的脉冲信号,控制开关器的开/关时间,从而实现电压的稳定输出。

反馈电路的作用是检测负载端的电压变化并调整PWM调制器输出的脉冲信号,使输出电压保持稳定。

保护电路主要是用于保护开关器、负载端和控制电路,例如过压,过流和短路等情况。

二、设计方法开关电源设计的关键是确定开关器、电感器或电容器的参数,以及PWM调制器的频率和占空比等参数。

下面介绍一些重要的设计步骤。

1. 确定输出参数首先需要确定输出电压和电流的参数,即电源需要提供给负载端的电压和电流。

这取决于负载端的需求以及与之匹配的开关器和能量存储元件的能力。

2. 选择开关器和能量存储元件根据输出参数确定适合的开关器和能量存储元件。

选择开关器时需要考虑它的导通电阻、频率响应、容错限制和工作温度等特性。

电感器和电容器的选择与开关器特性有关,例如电感器的选取应该考虑其电感值和最大电流能力,电容器的选取应该考虑其耐压能力和损耗电流等因素。

3. 设计PWM调制器根据输出参数确定PWM调制器的频率和占空比等参数。

开关电源工作原理解析

开关电源工作原理解析

开关电源工作原理解析开关电源是一种利用开关器件(如MOS管、IGBT等)周期性开关和关闭的方式,将输入电源的直流电压转换为需要的输出电压的电源。

开关电源具有转换效率高、尺寸小、重量轻、可靠性高等优点,在电子设备中得到了广泛应用。

开关电源的基本工作原理如下:首先,输入电源的交流电压经过整流得到直流电压,然后经过滤波电路得到稳定的直流电压。

这个直流电压被输入到开关电源的DC/DC变换器中,由开关器件进行开关操作,将直流电压转换成需要的输出电压。

最后,输出电压经过滤波电路得到稳定的输出直流电压。

开关电源的核心是开关器件,其中常用的开关器件有MOS管、IGBT等。

开关器件分为开关周期内导通和截止两个状态,通过高频开关操作改变开关器件的导通时间和截止时间,即可以控制输出电压的大小和稳定性。

开关电源分为两个主要工作状态:开关器件导通状态和开关器件截止状态。

在导通状态下,开关器件内部的电源电压与输入电源电压相等,此时开关器件开启,通过输出电感的电流逐渐上升,同时输出电容释放能量,为输出电路提供电源电压。

在截止状态下,开关器件内部的电源电压为零,此时开关器件关闭,输出电感上的电流逐渐下降,同时输出电容储存能量,为输出电路提供电源电压。

在实际开关电源中,还有一些辅助电路来提高整个系统的性能。

常见的辅助电路包括输入滤波电路、输出滤波电路、稳压电路、保护电路等。

输入滤波电路用于消除输入电源的干扰信号,保证输入电压的稳定性和纹波小;输出滤波电路用于平滑输出电压,提供稳定的输出电源;稳压电路用于保持输出电压的稳定性,提高系统的稳定性和可靠性;保护电路用于保护开关电源和被供电设备,如过载保护、短路保护等。

开关电源的优点主要体现在高效率、稳定性好、尺寸小等方面。

开关电源通过高频开关操作,可以实现高转换效率,这是由于开关器件导通时的电压损耗小,截止时的电流损耗小,同时还减少了电路中的热源。

在输出电压稳定性方面,开关电源具有较高的稳定性,能够较好地适应负载的变化,并通过反馈控制保持稳定输出。

(完整word版)开关电源工作原理超详细解析

(完整word版)开关电源工作原理超详细解析

开关电源工作原理超详细解析第1页:前言:PC电源知多少个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Switching Mode Power Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。

本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。

●线性电源知多少目前主要包括两种电源类型:线性电源(linear)和开关电源(switching)。

线性电源的工作原理是首先将127 V或者220 V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC 直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。

最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”)配图1:标准的线性电源设计图配图2:线性电源的波形尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/Wii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。

对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。

由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。

此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。

由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。

开关电源制作设计(电路原理图+PCB)

开关电源制作设计(电路原理图+PCB)

一、工作原理我们先熟悉一款开关电源的工作原理,该电源可输出5V电压,如图1所示。

1. 抗干扰电路在电网输入端首先设置一个NTC5D-9负温度系数热敏电阻,作用是保护后面的整流桥,刚开机时热敏电阻处于冷态,阻值比较大,可以限制输入电流,正常工作时,电阻比较小。

这样对开机时的浪涌电流起到有效的缓冲作用。

电容CY1、CY2、CY3、CY4用以滤除从工频电网上进入开关稳压电源和从开关稳压电源进入工频电网的不对称杂散信号,电容CX1、CX2用以滤除从工频电网上进入开关稳压电源和从开关稳压电源进入工频电网的对称杂散信号,用电感L1抑制从工频电网上进入开关稳压电源和从开关稳压电源进入工频电网的频率相同、相位相反的杂散干扰电流信号。

采用高频特性好的瓷片电容和铁芯电感,实现开关稳压电源电路中的高频辐射不污染工频电网和工频电网上的杂散电磁波不会窜入开关稳压电源电路中而干扰和影响其工作,对高频分量或工频的谐波分量具有急剧阻止通过功能,而对于几百赫兹以下的低频分量近似一条短路线。

图1 开关电源的工作原理图2. 整流滤波电路在电路中D1、D2、D3、D4组成全桥整流电路,把输入的交流电压进行全波整流,然后用C1进行滤波,最后变成直流输出供电电压,为后级的功率变换器供电,整流滤波后的电压约为300V。

3. UC3842供电与振荡300V的脉动直流电压,此电压经R12降压后给C4充电,供电UC3842的7脚,当C4的电压达到UC3842的启动电压门槛值时,UC3842开始工作并提供驱动脉冲,由6脚输出推动开关管工作。

一旦开关管工作,反馈绕组的能量经过D6整流,C4滤波,又供电到UC3842的7脚,这时可以不需要R12的启动了。

C9、R11接UC3842的定时端,和内部电路构成振荡电路,振荡的工作频率计算为:f=1.8/(Rt*Ct)代入数据可计算工作频率:f=68.18K4. 稳压电路该电路主要由精密稳压源T L 4 3 1 和线性光耦P C 8 1 7 组成,假设输出电压↑→经过R 1 6 、R 1 9 、R20、RES3的取样电压↑→TL431的1脚电压↑,当该脚电压大于TL431的基准电压2.5V时,TL431的2、3脚导通,→通过光电耦合到UC3842的2脚,于是UC3842的6脚驱动脉冲的占空比↓→开关变压器T1绕组上的能量↓→输出电压↓,达到稳压作用;反之,假设输出电压下降,则稳压过程与上相反。

开关电源作用是什么原理

开关电源作用是什么原理

开关电源作用是什么原理引言在现代电子设备中,开关电源扮演着至关重要的角色,它可以将交流电转换为稳定的直流电供给各种电子设备。

那么,开关电源是如何实现这一功能的呢?本文将介绍开关电源的工作原理及其在电子领域中的作用。

开关电源的工作原理开关电源的核心部分是开关电源主电路,由开关管、变压器、整流电路、电容和电感等组成。

其工作原理可以简述如下: 1. 变压器作用:开关电源先将输入的交流电通过整流电路转换为直流电,然后经过变压器变压降压。

2. 开关管控制:开关管充当开关的作用,通过控制开关管的导通和断开来调节输出电压。

3. 变压器传递能量:开关管导通时,变压器储存能量;开关管断开时,变压器释放储存的能量。

4. 电容滤波:电容用于对输出电压进行滤波处理,使输出电压更稳定。

5. 电感反馈:电感用于减小电压波动,提供稳定的输出电压。

开关电源在电子设备中的作用开关电源在电子设备中起到了至关重要的作用,主要体现在以下几个方面: 1. 稳定电压输出:开关电源能够稳定输出所需的直流电压,确保电子设备正常运行。

2. 体积小巧:相比传统的线性电源,开关电源具有体积小、重量轻的优势,更适合被集成到各种小型电子设备中。

3. 高效能耗:开关电源具有高能效转换率,能够减少能量损耗,节约能源。

4. 适应性强:开关电源的输出电压范围较广,可以适应不同电子设备的需求。

5. 可靠性高:开关电源采用先进的控制技术和保护电路,能够提高电子设备的可靠性。

结语总的来说,开关电源通过精密的电路设计和控制技术,将输入的交流电转换成稳定的直流电输出,为各种电子设备的正常运行提供了可靠的电源支持。

在今后的发展中,开关电源将继续发挥重要作用,为电子设备的高效、小型化和节能发展提供强大支持。

希望本文能为读者对开关电源的工作原理及作用有更深入的了解。

开关电源原理与设计-经典(免费)

开关电源原理与设计-经典(免费)

开关电源原理与设计世纪电源网-论坛第一章开关电源的基本工作原理1-1.几种基本类型的开关电源1-2.串联式开关电源1-2-1.串联式开关电源的工作原理1-2-2.串联式开关电源输出电压滤波电路1-2-3.串联式开关电源储能滤波电感的计算1-2-4.串联式开关电源储能滤波电容的计算1-3.反转式串联开关电源1-3-1.反转式串联开关电源的工作原理1-3-2.反转式串联开关电源储能电感的计算1-3-3.反转式串联开关电源储能滤波电容的计算1-4.并联式开关电源1-4-1.并联式开关电源的工作原理1-4-2.并联式开关电源输出电压滤波电路1-4-3.并联开关电源储能电感的计算1-4-4.并联式开关电源储能滤波电容的计算1-5.单激式变压器开关电源1-5-1.单激式变压器开关电源的工作原理1-6.正激式变压器开关电源1-6-1.正激式变压器开关电源工作原理1-6-2.正激式变压器开关电源的优缺点1-6-3.正激式变压器开关电源电路参数计算1-6-3-1.正激式变压器开关电源储能滤波电感和储能滤波电容参数的计算1-6-3-2.正激式开关变压器参数的计算1-6-3-2-1.变压器初级线圈匝数的计算1-6-3-2-2.变压器初、次级线圈匝数比的计算1-7.反激式变压器开关电源工作原理1-7-1.反激式变压器开关电源工作原理1-7-2.开关电源电路的过渡过程1-7-3.反激式变压器开关电源电路参数计算1-7-3-1.反激式变压器开关电源储能滤波电容参数的计算1-7-3-2.反激式开关变压器参数的计算1-7-3-2-1.反激式开关变压器初级线圈匝数的计算1-7-3-2-2.反激式开关变压器初级线圈电感量的计算1-7-3-2-3.变压器初、次级线圈匝数比的计算1-7-4.反激式变压器开关电源的优缺点1-8.双激式变压器开关电源1-8-1.推挽式变压器开关电源的工作原理1-8-1-1.交流输出推挽式变压器开关电源1-8-1-2.整流输出推挽式变压器开关电源1-8-1-3.推挽式变压器开关电源储能滤波电感、电容参数的计算1-8-1-3-1.推挽式变压器开关电源储能滤波电感参数的计算1-8-1-3-2.推挽式变压器开关电源储能滤波电容参数的计算1-8-1-4.推挽式开关变压器参数的计算1-8-1-4-1.推挽式开关变压器初级线圈匝数的计算1-8-1-4-2.推挽式开关变压器初、次级线圈匝数比的计算A)交流输出推挽式开关变压器初、次级线圈匝数比的计算B)直流输出电压非调整式推挽开关变压器初、次级线圈匝数比的计算C)直流输出电压可调整式推挽开关变压器初、次级线圈匝数比的计算1-8-1-5.推挽式开关电源的优缺点1-8-2.半桥式变压器开关电源1-8-2-1.交流输出半桥式变压器开关电源1-8-2-2.交流输出单电容半桥式变压器开关电源1-8-2-3.整流输出半桥式变压器开关电源1-8-2-4.半桥式开关电源储能滤波电感、电容参数的计算A)半桥式开关电源储能滤波电感参数的计算B)半桥式开关电源储能滤波电容参数的计算1-8-2-5.半桥式开关变压器参数的计算A)半桥式开关变压器初级线圈匝数的计算B)交流输出半桥式开关变压器初、次级线圈匝数比的计算C)直流输出电压非调整式半桥开关变压器初、次级线圈匝数比的计算D)直流输出电压可调整式半桥开关变压器初、次级线圈匝数比的计算1-8-2-6.半桥式变压器开关电源的优缺点1-8-3.全桥式变压器开关电源1-8-3-1.全桥式变压器开关电源的工作原理1-8-3-2.整流输出全桥式变压器开关电源1-8-3-3.全桥式开关电源储能滤波电感、电容参数的计算A)全桥式开关电源储能滤波电感参数的计算B)全桥式开关电源储能滤波电容参数的计算1-8-3-4.全桥式开关变压器参数的计算A)全式开关变压器初级线圈匝数的计算B)交流输出全桥式开关变压器初、次级线圈匝数比的计算C)直流输出电压非调整式全桥开关变压器初、次级线圈匝数比的计算D)直流输出电压可调整式全桥开关变压器初、次级线圈匝数比的计算1-8-3-5.全桥式变压器开关电源的优缺点1-9.第一章总结第一章开关电源的基本工作原理1-1.几种基本类型的开关电源顾名思义,开关电源就是利用电子开关器件(如晶体管、场效应管、可控硅闸流管等),通过控制电路,使电子开关器件不停地“接通”和“关断”,让电子开关器件对输入电压进行脉冲调制,从而实现DC/AC、DC/DC电压变换,以及输出电压可调和自动稳压。

开关电源原理及各功能电路详解

开关电源原理及各功能电路详解

开关电源原理及各功能电路详解一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器〔EMI〕、整流滤波电路、功率变换电路、PWM掌握器电路、输出整流滤波电路组成。

关心电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

开关电源的电路组成方框图如下:开关电源电路方框图二、输入电路的原理及常见电路1、AC输入整流滤波电路原理:输入滤波、整流回路原理图①防雷电路:当有雷击,产生高压经电网导入电源时,由 MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进展保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,假设电流过大, F1、F2、F3 会烧毁保护后级电路。

② 输入滤波电路:C1、L1、C2、C3 组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进展抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对 C5 充电,由于瞬间电流大,加 RT1〔热敏电阻〕就能有效的防止浪涌电流。

因瞬时能量全消耗在 RT1 电阻上,肯定时间后温度上升后 RT1 阻值减小〔RT1 是负温系数元件〕,这时它消耗的能量格外小,后级电路可正常工作。

③ 整流滤波电路:沟通电压经 BRG1 整流后,经 C5 滤波后得到较为纯洁的直流电压。

假设 C5 容量变小,输出的沟通纹波将增大。

2、 DC 输入滤波电路原理:① 输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进展抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

C3、C4为安规电容,L2、L3为差模电感。

② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。

在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。

当C6上的电压充至Z1的稳压值时Q2导通。

开关电源保护电路原理

开关电源保护电路原理

开关电源保护电路原理开关电源保护电路是一种用于保护开关电源的电路设计,能够保证开关电源在异常情况下正常工作,提高其稳定性和可靠性。

本文将从开关电源的工作原理、保护电路的分类和常见保护电路的原理等方面进行介绍。

开关电源是一种将电能转换为稳定输出电压或电流的电源装置。

其工作原理是通过控制开关管的导通和截止,使得输入电压以一定的频率和占空比转换为脉冲信号,再经过滤波电路和稳压电路,最终输出稳定的直流电压或电流。

开关电源具有高效率、体积小、重量轻和可调性好等优点,因此被广泛应用于电子设备中。

然而,开关电源在工作过程中可能会遇到多种异常情况,如输入电压过高或过低、输出短路、过载和过温等。

这些异常情况可能会导致开关管损坏、输出电压波动或无输出等问题,严重影响开关电源的稳定性和可靠性。

因此,保护电路的设计就显得尤为重要。

根据保护电路的功能和作用方式,可以将保护电路分为输入保护电路、输出保护电路和过温保护电路等。

输入保护电路主要用于对开关电源的输入电压进行监测和保护,防止过高或过低的输入电压对开关电源产生不利影响。

常见的输入保护电路包括过压保护电路和欠压保护电路。

过压保护电路通过检测输入电压是否超过设定值来进行保护。

当输入电压超过设定值时,保护电路会迅速切断开关管的导通,以防止过高的电压损坏开关管和其他电路元件。

欠压保护电路则是在输入电压低于设定值时进行保护,避免开关电源在低电压下无法正常工作。

输出保护电路主要用于对开关电源的输出电流和电压进行监测和保护。

过载保护电路是其中一种常见的输出保护电路。

它通过检测输出电流是否超过设定值来进行保护。

当输出电流超过设定值时,保护电路会迅速切断开关管的导通,以防止过大的电流对开关管和其他电路元件造成损坏。

另外,还有短路保护电路用于对输出短路情况进行保护。

过温保护电路是为了防止开关电源在长时间高负载工作或环境温度过高时产生过热而设计的。

该保护电路通过检测开关电源的温度来进行保护。

开关电源 原理

开关电源 原理

开关电源原理一、概述开关电源是一种高效率的电源,它通过将交流电转换成高频脉冲信号,再经过变压、整流、滤波等环节,最终得到所需的直流电。

相较于传统的线性稳压电源,开关电源更为节能、稳定和可靠。

二、基本原理1. 开关管控制器开关管控制器是开关电源的核心部件,它通过控制开关管的通断来实现输出电压和电流的调节。

常见的开关管有MOSFET和IGBT两种。

2. 变压器变压器是将输入交流电转换成所需输出直流电时必不可少的部件。

它主要由铁芯和绕组两部分构成,其中铁芯承担着磁通传递作用,而绕组则负责变换输入输出电压。

3. 整流器整流器主要负责将变压器输出的交流信号转化成直流信号。

常见的整流方式有单相桥式整流和三相桥式整流两种。

4. 滤波器滤波器主要用于去除整流后直流信号中残留的交流成分。

常见的滤波方式有LC滤波、RC滤波和LCL滤波。

三、工作原理1. 开关管控制器的工作原理开关管控制器通过控制开关管的通断来实现输出电压和电流的调节。

具体来说,当开关管通电时,输入电源会通过变压器传递到输出端,此时输出端会有一个正向电压;而当开关管断电时,则会有一个反向电压。

因此,通过不断地改变开关管的通断状态,就可以得到所需的输出电压和电流。

2. 变压器的工作原理变压器主要由铁芯和绕组两部分构成。

当输入交流信号经过铁芯时,由于铁芯中存在磁场,因此会在绕组中产生感应电动势。

同时,在绕组中也存在着一定的阻抗,因此输入信号也会受到一定程度的衰减。

最终,在输出端得到了所需的直流信号。

3. 整流器的工作原理整流器主要负责将变压器输出的交流信号转化成直流信号。

常见的整流方式有单相桥式整流和三相桥式整流两种。

其中单相桥式整流主要由四个二极管构成,它们将输入交流信号分别转化成正半周和负半周的直流信号;而三相桥式整流则由六个二极管构成,它们可以将三相交流信号转化成直流信号。

4. 滤波器的工作原理滤波器主要用于去除整流后直流信号中残留的交流成分。

常见的滤波方式有LC滤波、RC滤波和LCL滤波。

开关电源的设计毕业论文

开关电源的设计毕业论文

开关电源的设计毕业论文开关电源的设计一、引言开关电源是现代电子设备中常用的电源供应方式之一,其具有高效率、小体积和稳定性好等优点,在各个领域得到广泛应用。

本文将探讨开关电源的设计方法和关键技术,以及其在毕业论文中的应用。

二、开关电源的基本原理开关电源的基本原理是利用开关管(MOSFET)的开关特性,通过周期性开关和关闭来调整输入电压,从而实现对输出电压的稳定控制。

其主要由输入滤波电路、整流电路、功率变换电路、输出滤波电路和控制电路等组成。

三、开关电源设计的关键技术1. 开关管的选型开关管是开关电源中最关键的元件之一,其性能直接影响到整个电源的效率和稳定性。

在选型时需要考虑开关管的导通电阻、开关速度和耐压能力等因素,以满足设计要求。

2. 控制电路的设计控制电路是开关电源中的核心部分,其主要功能是对开关管的开关频率和占空比进行控制。

常用的控制方法有脉宽调制(PWM)和频率调制(FM)等。

在设计过程中需要考虑控制电路的稳定性和抗干扰能力。

3. 输出滤波电路的设计输出滤波电路主要用于滤除开关电源输出端的高频噪声和纹波,以保证输出电压的稳定性和纹波系数的要求。

常用的滤波电路包括LC滤波电路和Pi型滤波电路等,设计时需要根据具体应用场景选择合适的滤波电路结构。

四、开关电源在毕业论文中的应用开关电源在毕业论文中的应用非常广泛,可以用于各种电子设备的电源供应,如无线通信设备、嵌入式系统和工业自动化设备等。

在毕业论文中,可以通过对开关电源的设计和优化,提高电源的效率和稳定性,从而为论文的研究成果提供可靠的电源支持。

五、开关电源设计的挑战和发展趋势开关电源设计面临着一些挑战,如电磁干扰、温升和成本等问题。

为了应对这些挑战,研究人员正在不断提出新的设计方法和技术,如谐振开关电源、多电平开关电源和混合开关电源等。

未来,开关电源设计将更加注重节能、高效和可靠性,以满足不断发展的电子设备需求。

六、结论开关电源是一种高效、小体积和稳定性好的电源供应方式,在毕业论文中具有重要的应用价值。

开关电源工作原理

开关电源工作原理

开关电源工作原理开关电源是一种将交流电转换为直流电的设备,广泛应用于各种电子设备。

它的工作原理主要包括以下几个方面:一、输入变压器开关电源的输入端通常接入电网的交流电源,为了使电源适应不同的输入电压,通常会使用输入变压器来进行电压的降低或提升。

输入变压器也能起到隔离电源与负载的作用,保证使用者的安全。

二、整流器整流器是开关电源中的一个重要组成部分,它将输入的交流电转换为直流电。

常用的整流器有两种类型:单相桥式整流器和三相桥式整流器。

桥式整流器通过将交流电通过二极管桥进行整流,使得电流在一个方向上流动,从而实现将交流电转换为直流电。

三、滤波器经过整流器转换后的直流电中可能仍然会存在一定的纹波电压,为了去除这些纹波,需要使用滤波器进行滤波。

滤波器通常由电容和电感组成,电容起到平滑电流的作用,电感起到滤除高频噪声的作用,从而得到稳定的直流电。

四、功率转换器功率转换器是开关电源中的核心部分,它通过开关管(MOSFET或IGBT)的开关动作,将滤波后的直流电转化为高频脉冲信号。

这种高频脉冲信号通过变压器的变换作用,进一步降低或提升电压。

功率转换器的工作频率通常在几十千赫兹到几百千赫兹之间,这高频脉冲信号通过高频变压器的变压作用,经过整流、滤波后得到所需的直流电输出。

五、反馈控制为了保持输出电压的稳定性,开关电源通常采用反馈控制的方式对输出进行调节。

常见的反馈控制方式有两种:电压反馈和电流反馈。

在电压反馈中,将输出电压与参考电压进行比较,并根据比较结果调整开关管的开关频率和占空比,以保持输出电压稳定在设定的值。

在电流反馈中,通过对输出电流进行采样,与设定的电流进行比较,并控制开关管的开关频率和占空比,以保持输出电流稳定。

六、保护电路为了确保开关电源的安全可靠工作,通常会在电源的输入端和输出端添加一些保护电路。

常见的保护电路包括过压保护、过流保护、短路保护和过载保护。

这些保护电路能够在异常情况下及时切断电源,避免对电子设备和使用者造成损坏或危险。

开关电源各组成部分电路设计方案详细分析

开关电源各组成部分电路设计方案详细分析

一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器<EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。

辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC 输入整流滤波电路原理:①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。

②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1<热敏电阻)就能有效的防止浪涌电流。

因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小<RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。

③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。

若C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

C3、C4为安规电容,L2、L3为差模电感。

② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。

在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。

当C6上的电压充至Z1的稳压值时Q2导通。

如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

开关电源工作原理如何理解及其电路图详细解析

开关电源工作原理如何理解及其电路图详细解析

开关电源工作原理如何理解及其电路图详细解析开关模式电源(Switch Mode Power Supply,简称SMPS),又称交换式电源、开关变换器,是一种高频化电能转换装置,是电源供应器的一种。

其功能是将一个位准的电压,透过不同形式的架构转换为用户端所需求的电压或电流。

开关电源的输入多半是交流电源(例如市电)或是直流电源,而输出多半是需要直流电源的设备,例如个人电脑,而开关电源就进行两者之间电压及电流的转换。

开关模式电源(Switch Mode Power Supply,简称SMPS),又称交换式电源、开关变换器,是一种高频化电能转换装置,是电源供应器的一种。

其功能是将一个位准的电压,透过不同形式的架构转换为用户端所需求的电压或电流。

开关电源的输入多半是交流电源(例如市电)或是直流电源,而输出多半是需要直流电源的设备,例如个人电脑,而开关电源就进行两者之间电压及电流的转换。

开关电源不同于线性电源,开关电源利用的切换晶体管多半是在全开模式(饱和区)及全闭模式(截止区)之间切换,这两个模式都有低耗散的特点,切换之间的转换会有较高的耗散,但时间很短,因此比较节省能源,产生废热较少。

理想上,开关电源本身是不会消耗电能的。

电压稳压是透过调整晶体管导通及断路的时间来达到。

相反的,线性电源在产生输出电压的过程中,晶体管工作在放大区,本身也会消耗电能。

开关电源的高转换效率是其一大优点,而且因为开关电源工作频率高,可以使用小尺寸、轻重量的变压器,因此开关电源也会比线性电源的尺寸要小,重量也会比较轻。

若电源的高效率、体积及重量是考虑重点时,开关电源比线性电源要好。

不过开关电源比较复杂,内部晶体管会频繁切换,若切换电流尚加以处理,可能会产生噪声及电磁干扰影响其他设备,而且若开关电源没有特别设计,其电源功率因数可能不高。

主要用途开关电源产品广泛应用于工业自动化控制、军工设备、科研设备、LED照明、工控设备、通讯设备、电力设备、仪器仪表、医疗设备、半导体制冷制热、空气净化器,电子冰箱,液晶显示器,LED灯具,通讯设备,视听产品,安防监控,LED灯带,电脑机箱,数码产品和仪器类等领域。

开关电源的原理与设计

开关电源的原理与设计

开关电源的原理与设计开关电源是一种高效、稳定并且广泛应用于各种电子设备中的电源供应方式。

本文将探讨开关电源的原理与设计方法,帮助读者理解和应用开关电源技术。

一、开关电源的原理开关电源的工作原理主要基于开关器件(如晶体管或MOSFET)、变压器和滤波电路。

其基本原理如下:1. 输入电压通过整流桥变成直流电压,然后经过输入滤波电路去除大部分的纹波。

2. 直流电压通过PWM(脉宽调制)技术控制开关器件,使其周期性地开关。

3. 开关器件的快速开关与关断导致电压和电流的变化,并通过变压器传导到输出端。

4. 输出电压经过输出滤波电路去除纹波,然后供应给负载。

二、开关电源的设计要素1. 选定开关器件:合适的开关器件应具备低导通电阻、快速开关速度和高耐受电压等特点。

2. 设计变压器:变压器的设计应根据输入输出电压比例、功率需求和开关频率来选择合适的磁芯和线圈参数。

3. 输出滤波:合理设计输出滤波电路以减小输出纹波,采用合适的电容和电感来实现滤波效果。

4. 转换控制电路:PWM技术常用于控制开关器件的开关频率和占空比,需要设计合适的控制电路来实现转换。

三、开关电源的设计步骤1. 确定功率需求:根据需求确定开关电源的输出功率和电压范围。

2. 选择开关器件:根据功率需求选择适合的开关器件,考虑其导通电阻、开关速度和电压容忍度等。

3. 设计变压器:根据输入输出电压比例和功率需求设计变压器的磁芯和线圈参数。

4. 设计滤波电路:根据输出电压的纹波要求确定输出滤波电路的参数,包括电容和电感等。

5. 设计转换控制电路:选择合适的PWM控制芯片或设计自己的控制电路,实现开关器件的控制。

四、开关电源的优点1. 高效性:相比线性电源,开关电源的转换效率更高,能够节省能源并减少功耗。

2. 稳定性:开关电源具有更好的稳定性和调节性能,能够在不同负载条件下保持输出电压的稳定。

3. 体积小巧:开关电源采用高频开关器件和储能元件,使得电源尺寸更小、重量更轻。

开关电源电路入门篇

开关电源电路入门篇
4. 对电源进行老化测试,确保其稳定 可靠。
调试步骤与注意事项
01
注意事项
02 1. 在调试过程中,应遵循安全规范,避免 触电等事故。
03
2. 注意观察电源的异常现象,如过热、噪 声等,及时处理。
04
3. 在调整参数时,应逐步进行,避免大幅 度变化。
优化方法与技巧
01
优化方法
02
1. 优化电路设计,减少损耗,提高效。电容器的计算根据电路需求,计算电容器的容量、耐压和温度系数等参数,以确保其正常工作 。
04
开关电源的调试与优化
调试步骤与注意事项
调试步骤 1. 检查电源输入是否正常,确保输入电压在规定范围内。
2. 调整电源的输出电压和电流,以满足设计要求。
调试步骤与注意事项
3. 测试电源的各项性能指标,如效 率、纹波等。
二极管的选择与计算
二极管的选择
根据电路需求选择合适的二极管类型,如肖特基二极管、硅整流二极管等,考 虑其正向导通电压、反向恢复时间和额定电流等参数。
二极管的计算
根据电路需求,计算二极管的反向恢复时间、额定电流和电压等参数,以确保 其正常工作。
电容器的选择与计算
电容器的选择
根据电路需求选择合适的电容器类型,如电解电容器、陶瓷电容器等,考虑其容 量、耐压和温度系数等参数。
电磁兼容性设计
电磁干扰抑制
开关电源在工作过程中会产生电磁干 扰,影响周围电子设备的正常工作。 因此,需要采取有效的电磁干扰抑制 措施,如加装滤波器、电容器等。
电磁屏蔽
对于一些高强度电磁辐射的开关电源, 需要进行电磁屏蔽设计,以减小对周 围环境的电磁干扰。
可靠性评估与寿命预测
可靠性评估
对开关电源的可靠性进行评估是确保其安 全和稳定运行的重要环节。评估方法包括 MTBF(平均故障间隔时间)、失效概率 等。

开关电源电路图及工作原理

开关电源电路图及工作原理

开关电源电路图及工作原理
以下是一种常见的开关电源电路图及其工作原理:
该电路图包括输入端(Vin)、输出端(Vout)、开关管(Q)、变压器(T)、二极管(D)和滤波电容(C)。

工作原理如下:
1. 当输入电压Vin为正常工作范围时,通过开关管Q的导通
和截止,实现开关管Q的开关,从而实现电流的导通和截止。

当开关管Q截止时,开关电源工作于不工作(断开)状态。

2. 当开关管Q导通时,输入电压Vin通过变压器T的反馈,
经过变换,输出到输出端Vout。

输出端Vout的电压将根据变
压器T的变压比进行转换。

变压器T的变压比可以通过设计
和调整变压器T的结构和参数来实现。

3. 在开关管Q导通时,二极管D导通,使电流流过滤波电容C,从而实现电流的稳定和平滑输出。

当开关管Q截止时,二
极管D截止,断开电流通路。

通过以上工作原理,开关电源能够以高效率实现输入电压到变换输出电压的转换。

由于开关管Q的开关动作,可以快速控
制电流的导通和截止,从而实现高效的电能转换和节能效果。

电路中的各个元器件相互配合,实现了开关电源的正常工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京中企远大文化传播中
8

2.2 串联式开关电源输出电压滤波电路
K uo
L
Uo
eL、iL
Ui
D
C uc R Io
图2-2
➢ 图2-2是串联式开关电源输出电压滤波电路。图中,K为开关(开关器件)、
L为储能滤波电感、C为储能滤波电容、D为续流二极管、R为负载电阻,Ui为
输入电压、uo为滤波器输入电压(开关输出电压)、eL为滤波电感产生的感应
eL LddtiUo
—— K关断期间
(2-6)
对(2-6)进行积分得:
iLT ton U L od tU L oti(To n) —— K关断期间 (2-7)
北京中企远大文化传播中
10

上式中: i(Ton )i(Tof f)iLm—— K关断期间 (2-8)
(2-8)式中,i(Ton) 和 i(Toff ) 分别为K从Toff转换到Ton的瞬间,或K从Ton
电动势、iL为流过电感L的电流、Uo为滤波输出电压(开关电源输出电压)、
Io为流过负载的电流。
北京中企远大文化传播中
9

串联式开关电源输出电压滤波电路
➢ 在Ton期间,输入电压Ui通过控制开关K输出电压uo,然后加到储能滤波电感L和
储能滤波电容C组成的滤波电路上,在此期间储能滤波电感L两端的电压eL为:
1. 正激式变压器开关电源 2. 反激式变压器开关电源
(2)双激式变压器开关电源
1. 推挽式变压器开关电源 2. 半桥式变压器开关电源
a. 单电容半桥式变压器开关电源 b. 双电容半桥式变压器开关电源
3. 全桥式变压器开关电源 6
北京中企远大文化传播中 心
开关电源的工作原理 2.0
串联式开关电源
北京中企远大文化传播中
开关电源种使用的开关器件主要是:晶体管、场效应
管、IGBT管、闸流管、电源IC(包括厚膜电路),及磁
饱和开关等。
北京中企远大文化传播中
5

1.3 开关电源的几种工作模式
一、非隔离式开关电源
1. 串联式开关电源 2. 并联式开关电源 3. 反转式开关电源
二、隔离式变压器开关电源
(1)单激式变压器开关电源
6. 开关变压器伏秒容量的计算与测量 7. 开关变压器初次级线圈匝数计算 8. 开关电源占空比与变压比的计算
三.开关电源电路设计
(此部分为增补内容)
1. 开关电源电路设计的几个要素 2. 常用开关电源 3. 开关电源典型电路简介 4. 单IC开关电源 5. 自激式开关电源 6. 场效应管开关电源 7. 开关电源的安全设计 8. 开关电源调试方法要点
DC/AC、AC/AC、等多种开关电源。
根据开关工作模式来分,开关电源可分为:频率、脉
冲宽度固定式;频率固定、脉冲宽度可变式;频率、脉
冲宽度可变式,等3种开关电源。
根据开关器件在电路中连接的方式,开关电源可分为:
串联式开关电源、并联式开关电源、变压器式开关电源
(其中分:单激式和双激式变压器开关电源)。
开关电源的工作原理与电路设计
陶显芳
2013.12.15
1
下面是本次技术交流的主要内容
一. 开关电源基本电路的工作原理
1. 串联式开关电源 2. 并联式开关电源 3. 反转式开关电源 4. 单激式变压器开关电源 5. 双激式变压器开关电源 6. 各种开关电源的优缺点
二. 各种开关电源电路参数的计算
1. 输出电压的计算 2. 储能电感的计算 3. 储能滤波电容的计算 4. 变压器参数的计算 5. 单激式开关变压器气隙的选取
希望从事开关电源设计的工程师对此感兴趣
北京中企远大文化传播中
2

开关电源的工作原理与电路设计
1.0
概论
北京中企远大文化传播中
3

1.1 开关电源的应用
➢ 开关电源的应用遍及各个行业和领域,图中列举的有:电子手表、MP3、MP4、手机、节能灯、
LED灯、充电器、电源适配器、电脑、电视机、变频空调、 UPS电源、电磁炉、电动摩托、电动
上面计算过程都是假说输出电压Uo不变的情况下得到的结果,实际应用中也
是这样,因为输出电压的纹波非常小。综合上面计算结果进行分析:
eL
Ui Uo
Ldi dt
—— K接通期间
(2-3)
流过电感的电流: iL0 tU i L U od tU i L U oti(0) ——
(2-4)
流过电感的最大电流: iLmUi LUoToni(0) —— K关断前瞬间 (2-5)
上式中,i(0)为电流初始值。在开关K关断期间,储能电感L把磁能转化成电流iL, 通过续流二极管D继续向负载R提供能量,在此期间L两端的电压eL为:
汽车、动车组、逆变器、太阳能(风能)逆变站、高压直流电网、等等。
北京中企远大文化传播中
4

1.2 什么是开关电源
➢ 形象地说,开关电源就是一个对不同输入电压进行变
换和调整,以适应不同负载要求的装置,其特点是电源
工作在开/关状态,工作效率高,是一种比线性控制电源
应用更广范的电源转换装置。
根据用途来分,开关电源可分为:DC/DC、AC/DC、
转换到Toff的瞬间,流过电感的电流,因此(2-7)式又可以改写为:
iLUo LtFra bibliotekiLm
—— K关断期间
当t=Toff时刻,iL达到最小值。此值为:
(2-9)
iLxULo ToffiLm —— K接通前瞬间
(2-10)
上面计算过程中,(2-4)式表示输入电压Ui通过电感L对滤波电容充电,同时也 对负载供电,流过电感L的电流按线性规律上升,斜率为(Ui-Uo)/L;(2-9)式 表示储能电感L在释放能量,继续对滤波电容充电和对负载供电,流过电感L的电流 按线性规律下降,斜率为-Uo/L。
7

2.1 串联式开关电源的工作原理
K
uo
Ui、Up
Ua
Ui
R uo
0
Ton Toff
T
a
b
图2-1
Ua Ui TTonDUi DTon Ton
T TonToff
——(2-1) ——(2-2)
➢ 图2-1-a是串联式开关电源的 最简单工作原理图;图1-1-b是 串联式开关电源输出电压的波 形。Ui—输入电压;uo—输出 电 压 ; Up— 输 出 电 压 峰 值 ; t Ton—导通时间;Toff—关断时 间 ; Ua— 输 出 电 压 平 均 值 ; D—占空比。 ➢ 串联式开关电源也有人称为 斩 波 器 , 或 CuK 开 关 电 源 , 其 工作原理简单,工作效率高, 缺点是输入、输出共用一个地, 容易一起触电和EMI干扰。
相关文档
最新文档