北师大版八年级数学下册易错专题:等腰三角形中易漏解或多解的问题(含答案)
北师大版八年级(下册)数学易错点知识归纳1
北师大版八年级下册数学易错点知识归纳题型一:等腰三角形的分类讨论问题1、若等腰三角形的周长为13cm ,其中一边长为3cm ,则该等腰三角形的底边长为_______________.2、若等腰三角形的周长是25cm ,一腰上的中线将周长分为3:2的两部分,则此三角形的底边长为_____________.3、若等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,则此等腰三角形的顶角为______________.4、等腰三角形的周长为28cm ,其中一边长为10cm ,则该等腰三角形的底边长为_______________.5、已知:如图,线段AB 的端点A 在直线l 上,AB 与l 的夹角为60°,请在直线l 上另找一点C ,使△ABC 是等腰三角形.这样的点能找几个?请你找出所有符合条件的点.另外在平面直角坐标系中知道两个点A,B ,再找一个点C 使得△ABC 为等腰三角形,求点C 的坐标,和这个一样的做法6、如图,已知∠AOB =60°,点P 在OA 边上,OP =12,点M ,N 在OB 边上,PM =PN ,若MN =2,则OM =题型二:有关线段的中垂线和角平分线的两个定理1、已知:如图,△ABC 的外角∠CBD 和∠BCE 的平分线相交于点F ,求证:点F在∠DAE 的平分线上.2、如图,已知PA ⊥OM 于A ,PB ⊥ON 于B ,且PA =PB .∠MON =50°,∠OPC =30°,求∠PCA 的大小. MNP CBOAFEDCB AFDEC B APN M BOA 60°3、已知:如图2,∠ABC =60°,∠ACD =100°,BE 平分∠ABC ,CE 平分∠ACD 且交BE 于E ,作射线AE ,则∠CAE 的度数为_________.题型三:有关轴对称的最值问题旋转和折叠问题1、如图,等边三角形ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点.若AE =2,当EF +CF 取得最小值时,∠ECF 的度数为______.FED B AM FED CB A2、如图,等腰三角形ABC 的底边BC 的长为4 cm ,面积是12 cm 2,腰AB 的垂直平分线EF 交AC 于点F ,若D 为BC 边的中点,M 为线段EF 上一动点,则△BDM 的最小周长为_________.3、如图,在四边形ABCD 中,∠BAD =120°,∠B =∠D =90°,在BC ,CD 上分别找一点M ,N .当△AMN 的周长最小时,∠AMN +∠ANM 的度数为________.ABCDNMD C B A4、利用旋转证明全等求已知线段的长度关系和数量关系 类比归纳问题 已知正三角形ABC 正三角形DCE ,试证明BD 和AE 的数量关系和夹角关系 如果变为正方形,结果会变成什么样?如果是正多边形呢?BGF题型四:运用基本性质解不等式或表示不等式的解集1、若不等式组420x ax >⎧⎨->⎩的解集是12x -<<,则a =________.2、若不等式组2>31<1x n x m +⎧⎨+-⎩的解集是12x -<<,则m n -=____.利用特殊值比较大小题3、已知0<m <1,则m ,m 2,1m的大小关系(用“<”号连接). 4、已知1<a <0,则a ,1a,a ,a 2的大小关系是___________(用“<”号连接).若的大小关系是则2,,,01,0ab ab a b a <<-<题型五:通过不等式求字母的围1、若关于x 的不等式组1>240x ax +⎧⎨-⎩≤有解,则a 的取值围是_________.2、若关于x 的不等式组405>0a x x a -⎧⎨+-⎩≥无解,则a 的取值围是_________.3、若关于x 不等式组2()31211233x a x x x -+⎧⎪--⎨-⎪⎩≥≥的整数解只有三个,则a 的取值围是_________________.4、若关于x ,y 的二元一次方程组3133x y ax y +=+⎧⎨+=⎩的解满足xy <2,则a 的取值围是5、新定义题型:我们把a b c d 称作二阶行列式,规定它的运算法则为a b=ad bc c d-,例如131432224==⨯-⨯-,如果2301xx->,则x 的取值围是()A .x >1B .x <-1C .x >3D .x <-3题型六:通过函数图形求解不等式1、如图,直线y kx b 经过A (3,1)和B (6,0)两点,则不等式组0<kx b <13x的解集为________.yA2OBA xy12、如图,直线ykx b 经过A (1,2)和B (3,0)两点,则不等式组0<kx b≤x 1的解集是____________.题型七:分配方案的问题1、某公司有A 型产品40件,B 型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲商店,30件给乙商店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A 型利润B 型利润 甲商店200170乙商店 160 150(1)设分配给甲商店A 型产品x 件,这家公司卖出这100件产品的总利润为W (元),求W 关于x 的函数关系式,并求出x 的取值围;(2)若公司要求这批产品总利润不低于17 560元,请你为该公司设计出最优分配方案.2、康乐公司在A ,B 两地分别有同型号的机器17台和15台,现要运往甲地18台,乙地14台,从A ,B 两地运往甲、乙两地的费用如下表:甲地(元/台)乙地(元/台)A 地600 500B 地400 800 (1)若从A 地运往甲地x 台,求完成以上调运所需总费用y (元)与x (台)的函数关系式,并求出x 的取值围;(2)若该公司要求总费用不超过16 300元,请你为该公司设计出最优调运方案.题型八:因式分解的综合应用1、若2249y kxy x +-是一个完全平方式,则k 的值是 . 如果多项式x 22(m3)x16是一个完全平方式,那么m_____.2、若c b a ,,是三角形的三边,求证:02222<---bc c b a3、已知a,b,c 是三角形的三边满足022=-+-bc ac b a 则该三角形是三角形4、若a ,b ,c 是三角形三边长,且a 216b 2c 26ab 10bc 0,则2b a c ______.5、若a ,b ,c 是△ABC 的三边长,且满足a 2b 2c 2ab bc ac ,试判断△ABC的形状.6、化简201222)1()1()1()1(1x x x x x x x x x ++⋯++++++++7、若22228440a b ab a b -+++=,则201332b a ⎛⎫+ ⎪⎝⎭________.8、多项式x 2mx 4分解因式后,其结果中有一个因式是x 1,求m 的值和另一个因式.题型九:分式的定义与有无意义与分式的化简1、当x 取何值时,以下分式有意义?(1)ax x ;(2)239x x +-(33x -(4)1x - 2、当x =______分式212xx x ---=0,当x =________时,216(3)(4)x x x --+=03、若分式22x yx y +-的中,x y 同时扩大2倍,分式的值若分式222x y xy+的中,x y 同时扩大2倍,分式的值4、若118x y +=,则2322x xy yx xy y -+++=____23a b =,则2222a ab b a b -++=________ 5、若分式2424x x x -+-的值为整数,则整数x 的值为__________.6、若关于x 的分式方程211ax --=-的解是正数,则a 的取值围是__________.题型十:分式方程增根和无解的问题1、若关于x 的分式方程2111x a x x x-=++无解,求a 的值. ①化为整式方程;②无解分为两种情况:增根产生的无解或整式方程无解.2、若分式方程11(1)(2)x m x x x -=--+有增根,则m =题型十一:有关平行四边形性质判别与三角形中位线定理的题型1、如图,在□ABCD 中,AB =4cm ,AD =7cm ,∠ABC 的平分线交AD 于点E ,交CD 的延长线于点F ,则DF 的长为()A .2cmB .3cmC .4cmD .5cmFED CB AOE DCBAACD FE G第1题图第2题图第题图2、如图,□ABCD 的周长为20cm ,AC ,BD 交于点O ,过点O 作OE ⊥AC ,交AD 于点E ,则△DCE 的周长为()A .4cmB .6cmC .8cmD .10cm3、在□ABCD 中,对角线AC ,BD 相交于点O ,若AC =10,BD =6,则AB 长的取值围是()A .35AB << B .216AB <<C .610AB <<D .28AB <<4、如图,在□ABCD 中,AC ,BD 相交于点O ,E 是BC 边的中点,且OE =1,则CD 的长为()A .1B .2C .12D .4OEDCBA5、若一个正多边形的每个外角都是36°,则这个多边形的边数为一个多边形截去一个角后,形成的另一个多边形的角和是720°,那么原多边形的边数为()A .5B .5或6C .6或7D .5,6或76、在面积为15的平行四边形ABCD 中,过点A 作AE 垂直于直线BC 于点E ,作AF 垂直于直线CD 于点F .若AB =5,BC =6,则CE +CF 的值为()A.112+ B.112-C.112+112- D.112+或12+7、如图,在□ABCD 中,AB =2,BC =3,∠ABC ,∠BCD 的平分线分别交AD 于点E ,F ,则EF 的长为()A .3B .2C .1.5D .18、如图,在□ABCD 中,AB :BC =3:2,∠DAB =60°,点E 在AB 边上,且AE :EB =1:2,F 是BC 的中点,过点D 分别作DP ⊥AF 于点P ,DQ ⊥CE 于点Q ,则DP :DQ 的值为____________.QDCFBPEAACFEBDFEDCBA 9、如图,在Rt △ABC 中,∠BAC =90°,D ,E 分别是AB ,BC 的中点,F 在CA 的延长线上,∠FDA =∠B ,AC =6,AB =8,则四边形AEDF 的周长为_______.10、如图,在平面直角坐标系xOy 中,四边形ABCO 是正方形,点B 的坐标为(4,4),若直线2y mx =-恰好把正方形ABCO 分成面积相等的两部分,则m 的值为__________11、如图,在□ABCD 中,AD =2AB ,CE ⊥AB 于点E ,F 为AD 的中点,连接CF ,则题型十二:平移面积和平行四边形的存在性问题1、如图,将面积为12cm 2的△ABC 沿BC 方向平移至△DEF 的位置,若平移的距离是BC 的3倍,则图中四边形ACED 的面积为______________.FE DC BA2、如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 的坐标为(4,0),点C 在y 轴正半轴上,且OB =2OC .若M 是坐标平面一点,且以M ,A ,B ,C 为顶点的四边形是平行四边形,则点M 的坐标为________________.FEDCB A如图,在□ABCD 中,E ,F 是对角线BD 上的两点,BE =DF ,点G ,H 分别在BA ,DC 的延长线上,且AG =CH ,连接GE ,EH ,HF ,FG .求证:(1)△BEG ≌△DFH ;(2)四边形GEHF 是平行四边形.H G F E DCBA类比归纳题总结:已知等腰三角形ABC 中,∠ACB =90°,点E 在AC 边的延长线上,且∠DEC =45°,M ,N 分别是DE ,AE 的中点,连接MN ,交直线BE 于点F .当点D 在CB 边的延长线上时,如图1所示,易证12MF FN BE +=.(1)当点D 在CB 边上时,如图2所示,上述结论是否成立?若成立,请给出证明;若不成立,请写出你的猜想,并说明理由.(2)当点D 在BC 边的延长线上时,如图3所示,请直接写出你的结论(不需要证明).图1AD BCNMEF 图2ADBCN M EF图3ADBC NME F已知直线AM ∥BN ,∠MAB 与∠NBA 的平分线相交于点C ,过点C 作直线l ,分别交直线AM ,BN 于点D ,E .(1)如图1,当直线l 与直线AM 垂直时,猜想线段AB ,AD ,BE 之间的数量关系,写出结论并证明.(2)如图2,当直线l 与直线AM 不垂直,且交点D ,E 都在AB 的同侧时,(1)中的结论是否仍成立?若成立,请证明;若不成立,请说明理由.(3)当直线l 与直线AM 不垂直,且交点D ,E 在AB 的异侧时,请直接写出线段AB ,AD ,BE 之间的数量关系.l E DCBANMlE D CBAN M图1 图2如图,在正方形ABCD 中,∠MAN =45°,∠MAN 绕点A 顺时针旋转,它的两边分别交CB ,CD (或它们的延长线)于点M ,N .(1)当∠MAN 绕点A 旋转到如图1的位置时,线段BM ,DN 和MN 之间有怎样的数量关系?写出猜想,并加以证明.(2)当∠MAN 绕点A 旋转到如图2的位置时,线段BM ,DN 和MN 之间又有怎样的数量关系?写出猜想,并加以证明.八年级下册数学期末考试知识点复习总结(新版北师大版)第一章一、全等三角形的判定与性质※1性质:全等三角形对应相等、对应相等 ※2判定:①分别相等的两个三角形全等(SSS);②分别相等的两个三角形全等(SAS)③分别相等的两个三角形全等(ASA)图2CBA DNM 图1C N B M A D④相等的两个三角形全等(AAS)⑤相等的两个直角三角形全等(HL)二. 等腰三角形※1. 性质:等腰三角形的两个底角相等(等边对等角).※2. 判定:有两个角相等的三角形是等腰三角形(等角对等边).※3. 推论:等腰三角形、、互相重合(即“”).※4.等边三角形的性质与判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于;等边三角形是轴对称图形,有条对称轴.判定定理:(1)有一个角是60°的等腰三角形是等边三角形;(2)三个角都相等的三角形是等边三角形.三.直角三角形※1. 勾股定理与其逆定理定理:直角三角形的两条直角边的等于的平方.逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是.※2.含30°的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30°,那么等于的一半.※3.直角三角形斜边上的中线等于的一半。
第五章第4讲 易错易混淆集训:等腰三角形中易漏解或多解的问题之四大易错(4类热点题型讲练)(原卷版)
第04讲易错易混淆集训:等腰三角形中易漏解或多解的问题之四大易错(4类热点题型讲练)目录【考点一求等腰三角形的周长时忽略构成三角形的三边关系产生易错】 (1)【考点二当等腰三角形中腰和底不明求角度时没有分类讨论产生易错】 (2)【考点三求有关等腰三角形中的多解题没有分类讨论产生易错】 (2)【考点四三角形的形状不明时与高线及其他线结合没有分类讨论产生易错】 (3)【考点一求等腰三角形的周长时忽略构成三角形的三边关系产生易错】例题:(2024·广东东莞·一模)一个等腰三角形的两边长分别是5cm和6cm,这个等腰三角形的周长是cm.【变式训练】1.(23-24七年级下·四川成都·期中)等腰三角形的两边长为4cm和8cm,这个三角形的周长为cm.2.(23-24七年级下·江苏泰州·阶段练习)等腰三角形两边长分别为6,9,则其周长为.3.(23-24八年级上·浙江丽水·期末)一个等腰三角形的周长是20,若其中一条边长为8,这个等腰三角形的腰长是.4.(23-24七年级下·吉林长春·阶段练习)一个等腰三角形的周长是17,已知它的一边长是5,则另外两边的长分别是.5.当三角形中一条边a是另一条边b的2倍时,我们称此三角形为“特征三角形”,其中a称为“特征边”,如果一个“特征三角形”为等腰三角形,它的特征边为4,那么这个特征三角形的周长为.6.(23-24八年级上·浙江宁波·期末)定义:若三角形满足其中两边之和等于第三边的三倍,则称该三角形的周长为.为“三倍三角形”.若等腰三角形ABC是三倍三角形,且其中一边长为3,则ABC7.(23-24八年级下·贵州毕节·阶段练习)已知等腰三角形底边为8,一腰上的中线分此三角形的周长成两部分,其差为2,则腰长为.【考点二当等腰三角形中腰和底不明求角度时没有分类讨论产生易错】【考点三求有关等腰三角形中的多解题没有分类讨论产生易错】例题:(23-24八年级上·重庆渝北·期中)如图,在ABC 中,90B Ð=°,16cm AB =,12cm BC =,20cm AC =点Q 是ABC 边上的一个动点,点Q 从点B 开始沿B C A →→方向运动,且速度为每秒1cm ,设出发的时间为t 秒.当点Q 在边CA 上运动时,出发秒后,BCQ △是以CQ 为腰的等腰三角形.【变式训练】B 作直线AC ,若ABC 是等腰三角形,则α∠=.3.(23-24八年级上·江西赣州·期末)如图,在ABC 中,12AB =,30B ∠=︒,C B ∠<∠,P 是边BC 上的动点,连接AP .当ABP 是等腰三角形时,APC ∠=度.【考点四三角形的形状不明时与高线及其他线结合没有分类讨论产生易错】例题:(2023秋·山东泰安·七年级东平县实验中学校考期末)等腰三角形一腰上的中线把三角形周长分为15和12两部分,则此三角形的底边长为()A .7B .11C .7或11D .无法确定【变式训练】1.(2023春·辽宁沈阳·八年级校考阶段练习)等腰三角形一腰上的高与另一腰的夹角为45︒,那么这个三角形的顶角为()A .45︒B .90︒C .135︒D .135︒或45︒2.(23-24七年级下·上海浦东新·期中)等腰三角形一腰上的高与另一腰的夹角为40°,那么这个等腰三角形的顶角为度.3.(2024·四川达州·模拟预测)一个等腰三角形一腰上的高与另一腰的夹角为36︒,则此三角形顶角度数为.形ABC 底角的度数为.。
第02讲 等腰三角形中易漏解或多解的问题(拓展提升)(解析版)
思维导图核心考点聚焦1.求等腰三角形的周长时忽略构成三角形的三边关系产生易错2.当等腰三角形中腰和底不明求角度时没有分类讨论产生易错3.求有关等腰三角形中的多解题没有分类讨论产生易错4.三角形的形状不明时与高线及其他线结合没有分类讨论产生易错1.等腰三角形的性质(1(2角的三线合一图形:1.求等腰三角形的周长,要先考虑三角形的三边是否能构成三角形考点剖析【答案】2516或52或4,则216BP BC cm ==,,,图2③如图3,当图3故答案为:9或【解析】如图,∵AB AC BD =,是AC 边上的中线,即AD CD =,∴()()15123||||cm AB AD BC CD AB BC +-+=-=-=,2121527cm AB BC AC AB BC ++=+=+=,若AB BC >,则3cm AB BC -=,又∵227cm AB BC +=,联立方程组:3227AB BC AB BC -=⎧⎨+=⎩,解得:10cm 7cm AB BC ==,,10cm 10cm 7cm 、、三边能够组成三角形;若AB BC <,则3cm BC AB -=,又∵227cm AB BC +=,联立方程组3227BC AB AB BC -=⎧⎨+=⎩,解得:8cm 11cm AB BC ==,,8cm 8cm 11cm 、、三边能够组成三角形;∴三角形的各边长为10cm 10cm 7cm 、、或8cm 8cm 11cm 、、.【变式训练】1.等腰三角形一腰上的高与另一腰的夹角为45︒,那么这个三角形的顶角为()A .45︒B .90︒C .135︒D .135︒或45︒【答案】D【解析】如图1,三角形是锐角三角形时,∵45ACD ∠=︒,∵45ACD ∠=︒,∴顶角4590135BAC ∠=︒+︒=综上所述,顶角等于45︒或135如图,当CD 在ABC CD AB⊥ 90BAC ACD ∴∠=︒+∠AB AC= 30B C ∴∠=∠=︒故答案为60︒或30︒过关检测【答案】80︒,65︒或【解析】当C ∠是顶角时,∴180C A ∠=︒-∠-∠当C ∠是底角,A ∠是顶角时,∴180652A C ︒-∠∠==当C ∠、A ∠都是底角时,∴50C A ∠=∠=︒;综上,C ∠的度数可能是故答案为:80︒,65︒或7.在平面直角坐标系中,坐标是【答案】()3,0-或(2,0-【解析】根据题意,作图如下,∵()3,0A ,()0,4B ,∴3,4OA OB ==,在Rt AOB △中,22AB OA OB =+以AB 为腰作等腰三角形ABC ,①1BC BA =,则1ABC 是以AB 为腰作等腰三角形,∴()13,0C -;②2AB AC =,则2ABC △是以AB 为腰作等腰三角形,∴AC 2=5,且3OA =,∴2532OC =-=,则()22,0C -;③3AB AC =,则2ABC △是以AB 为腰作等腰三角形,∴35AC =,∴33358OC OA AC =+=+=,则C 综上所述,点C 坐标是()3,0-或(-故答案为:()3,0-或()2,0-或(8,0)8.在ABC △中,110ABC ∠=︒,点腰三角形,则CDB ∠的度数是【答案】40︒或90︒或140︒【解析】如图1中,当CDB ∠如图3中,当90DBC ∠=︒,DA 40CDB A DBA ∴∠=∠+∠=︒,故答案为:40︒或90︒或140︒.三、解答题9.如图,ABC △中,90C ∠=运动,且速度为每秒2cm ,设运动的时间为(1)当1t =时,求PBC △的面积.(2)当t 为何值时,CP 把ABC △(3)当t 为何值时,BCP △为等腰三角形?【解析】(1)解:当1t =时,PBC ∴△的面积为1BC CP ⨯=故答案为:26cm .(2)解:ABC 中,∴2AB AC BC =+∵1122AC BC ⨯=∴ 4.8CE =∴226 4.8PE =-∴27.2BP PE ==∴AP AB PB =-=∴82AC AP t +==②如果BC BP =③如果PB PC =∵PB PC =,∴12∠=∠,又∵12A ∠+∠=∠∴3A ∠=∠∴PC PA =,∴PA PB =,即P 在AB 的中点,此时()8513cm CA AP +=+=,132 6.5(t =÷=秒);综上可知,当3t =秒或5.4秒或6秒或6.5秒时,BCP 为等腰三角形.10.定义:如果1条线段将一个三角形分割成2个等腰三角形,我们把这条线段叫做这个三角形的“双等腰线”.如果2条线段将一个三角形分成3个等腰三角形,我们把这2条线段叫做这个三角形的“三等腰线”.如图(1),BE 是ABD △的“双等腰线”,AD 、BE 是ABC △的“三等腰线”.(1)请在图(2)中,作出ABC △的“双等腰线”,并标注相等角的度数①70B ∠=︒,35A ∠=︒②81B ∠=︒,27A ∠=︒.(2)直角三角形的______就是它的“双等腰线”(3)已知ABC △中,33C ∠=︒,AD 和DE 分别是ABC △的“三等腰线”,点D 在BC 边上,点E 在AB 边上,且AD DC =,BE DE =,请根据题意写出B ∠度数的所有可能的值______.【详解】(1)解:如图,取CD BC =,则70CDB B ∠=∠=︒,35A ∠=︒ ,703535ACD ∴∠=︒-︒=︒,ACD A ∴∠=∠,AD CD BC ∴==,ADC ∴ 和BCD △是等腰三角形;如图,作AB 的垂直平分线DE ,交AC 于D ,交AB 于E ,连接BD ,AD BD ∴=,27A ABD ∴∠=∠=︒,54CDB ∴∠=︒,81ABC ∠=︒ ,812754CBD BDC ∴∠=︒-︒=︒=∠,CD BC ∴=,ADB ∴ 和BCD △是等腰三角形;(2)直角三角形斜边中线把直角三角形分成两个等腰三角形,故答案为:斜边中线;(3)如图,设B x ∠=,∵33C ∠=︒,AD DC =,∴33C DAC ∠=∠=︒,180114EAD B C DAC x ∠=︒-∠-∠-∠=︒-,∴66ADB ∠=︒∵BE DE =,∴B BDE x ∠=∠=,∴2AED x ∠=,66ADE ADB BDE x ∠=∠-∠=︒-,∵AD 和DE 分别是ABC 的“三等腰线”,∴ADE V 是等腰三角形,当AD DE =时,EAD AED ∠=∠,则1142x x ︒-=,解得38B x ︒==∠;当AD AE =时,ADE AED ∠=∠,则662x x ︒-=,解得22B x ︒==∠;当AE DE =时,EAD ADE ∠=∠,则11466x x ︒-=︒-,无解;综上所述,B ∠度数的所有可能的值为38︒、22︒、66︒、57︒、48︒.故答案为:38︒、22︒.。
专题09 易错易混淆集训:等腰三角形中易漏解或多解的问题压轴题四种模型全攻略(解析版)
专题09易错易混淆集训:等腰三角形中易漏解或多解的问题压轴题四种模型全攻略【考点导航】目录【典型例题】 (1)【易错点一求等腰三角形的周长时忽略构成三角形的三边关系产生易错】 (1)【易错点二当等腰三角形中腰和底不明求角度时没有分类讨论产生易错】 (4)【易错点三求有关等腰三角形中的多解题没有分类讨论产生易错】 (9)【易错点四三角形的形状不明时与高线及其他线结合没有分类讨论产生易错】 (14)【典型例题】【易错点一求等腰三角形的周长时忽略构成三角形的三边关系产生易错】【点睛】本题考查了三角形的三边关系,等腰三角形的定义,解题关键是掌握三角形任意两边之和大于第三边,任意两边之差小于第三边.【变式训练】3.(2022春·吉林长春·八年级统考期末)若ABC 的三边长分别为10a -,7,6,当ABC 为等腰三角形时,则a 的值为__________.【答案】3或4##4或3【分析】根据等腰三角形的性质分两种情况:当106a -=时,当107a -=时,再结合三角形三边关系检验即可.【详解】解:∵ABC 为等腰三角形,∴当106a -=时,解得4a =,∴三边长为6,6,7∵66>7+,∴符合三角形三边的条件,当107a -=时,解得3a =,∴三边长为7,7,6∵67>7+,∴符合三角形三边的条件,∴a 的值为4和3.故答案为:4和3.【点睛】本题考查了三角形的三边关系和等腰三角形的定义(两边相等的三角形),灵活运用所学知识求解是解决本题的关键.4.(2022春·湖北武汉·八年级统考期中)用一条长为28cm 的细绳围成一个等腰三角形,已知这个等腰三角形一边长是另一边长的1.5倍,则它的底边长为______cm .【答案】12或7【分析】可设一边为cm x ,则另一边为1.5cm x ,然后分x 为腰和底两种情况,表示出周长,解出x ,再利用三角形三边关系进行验证即可.【详解】解:设一边为cm x ,则另一边为1.5cm x ,①当长为cm x 的边为腰时,此时三角形的三边长分别为cm x 、cm x 、1.5cm x ,由题意可列方程: 1.528x x x ++=,解得8x =,此时三角形的三边长分别为:8cm 、8cm 和12cm ,满足三角形三边之间的关系,符合题意;②当长为cm x 的边为底时,此时三角形的三边长分别为:cm x 、1.5cm x 、1.5cm x ,由题意可列方程: 1.5 1.528x x x ++=,解得:7x =,此时三角形的三边长分别为:7cm 、10.5cm 、10.5cm ,满足三角形的三边之间的关系,符合题意;∴这个三角形的底边长为12cm 或7cm .故答案为:12或7.【点睛】本题主要考查等腰三角形的性质及三角形三边关系,分情况讨论且进行三边验证是解题的关键.【易错点二当等腰三角形中腰和底不明求角度时没有分类讨论产生易错】【变式训练】【答案】20︒或80︒或140【分析】求出AOC ∠,根据等腰得出三种情况,三角形内角和定理求出即可.∵OC OE =,∴OEC OCE ∠=∠,∴(11802OEC AOC ∠=︒-∠∵OC CE =,∴20OEC AOC ∠=∠=︒;③当OE CE =时,如图,∵OE CE =,∴20OCE AOC ∠=∠=︒,∴180140OEC OCE AOC ∠=︒-∠-∠=︒,综上,OEC ∠的度数为:20︒或80︒或140︒,故答案为:20︒或80︒或140︒【点睛】本题考查了角平分线定义,等腰三角形性质,三角形的内角和定理的应用,用了分类讨论思想.5.(2022春·黑龙江哈尔滨·八年级哈尔滨德强学校校考期中)在ABC ∆中,AB AC =,100BAC ∠=︒,点D 在边BC 上(不与B 、C 重合),连接AD ,若ABD 是等腰三角形,则ADC ∠的度数为___________.【答案】80︒或110︒【分析】在ABC ∆中,根据AB AC =,100BAC ∠=︒,得到(180100)240B C ∠=∠=︒-︒÷=︒,再根据ABD 是等腰三角形及三角形外角公式分类讨论即可得到答案.【详解】解:如图所示,在ABC 中,∵AB AC =,100BAC ∠=︒,∴(180100)240B C ∠=∠=︒-︒÷=︒,若ABD 是等腰三角形,①当BD AD =时,40B BAD ∠=∠=︒,80ADC B BAD ∠=∠+∠=︒,②当BA BD =时,BAD BDA ∠=∠,(18040)270BAD ∠=︒-︒÷=︒,110ADC B BAD ∠=∠+∠=︒,综上所述80︒或110︒.【点睛】本题考查利用等腰三角形性质求角度及三角形内外角关系,解题关键是分析出ABD 的腰.6.(2022春·江西赣州·八年级统考期中)如图,在ABC 中,20B ∠=︒,105A ∠=︒,点P 在ABC 的三边上运动,当PAC △为等腰三角形时,顶角的度数是________.【答案】105︒或55︒或70︒【分析】作出图形,然后分点P 在AB 上与BC 上两种情况讨论求解.【详解】解:①如图1,点P 在AB 上时,AP AC =,顶角为105A ∠=︒,②∵20B ∠=︒,105A ∠=︒,∴1802010555C ︒︒︒︒∠=--=,如图2,点P 在BC 上时,若AC PC =,顶角为55C ∠=︒,如图3,若AC AP =,则顶角为180218025570CAP C ︒︒︒︒∠=-∠=-⨯=,【答案】30︒或120︒或150︒.【分析】分情况讨论:如图,如图,当AB AC =时,C 在如图,当BA BC =时,则BAC ∠∴顶角180230ABC ∠=︒-⨯︒=如图,当AC BC =时,则BAC ∠此时顶角180230ACB ∠=︒-⨯故答案为:30︒或120︒或150【易错点三求有关等腰三角形中的多解题没有分类讨论产生易错】【变式训练】②当AE AD m ==时:如图,则:4CE BC BE m =-=-,在Rt ACE 中,22AE AC =+解得:258m =;此时AE AB =,∵90ACB ∠=︒,30∠=︒,A∴∠=︒,'30AEB∴∠=∠,A AEB'∴∠=︒,AB E'75∠=∠由折叠可得,DB E'∴∠=︒,DB C'4530EB A A '∴∠=︒=∠,AE B E '∴=,即AEB '△是等腰三角形,此时0CB '=,【易错点四三角形的形状不明时与高线及其他线结合没有分类讨论产生易错】例题:(2023秋·山东泰安·七年级东平县实验中学校考期末)等腰三角形一腰上的中线把三角形周长分为15和12两部分,则此三角形的底边长为()A .7B .11C .7或11D .无法确定【答案】C【分析】根据题意作出图形,设AD DC x BC y ===,,然后分两种情况列出方程组求解,再根据三角形的三边关系判断即可求解.【详解】解:如图所示,根据等腰三角形的定义和三角形中线的性质得:【变式训练】1.(2023春·辽宁沈阳·八年级校考阶段练习)等腰三角形一腰上的高与另一腰的夹角为45︒,那么这个三角形的顶角为()A.45︒B.90︒C.135︒D.135︒或45︒【答案】D【分析】分三角形是锐角三角形时,利用直角三角形两锐角互余求解;三角形是钝角三角形时,利用三角∵45ACD ∠=︒,∴顶角90A ∠=︒-如图2,三角形是钝角时,∵45ACD ∠=︒,∴顶角4590135BAC ∠=︒+︒=综上所述,顶角等于45︒或135故答案为60︒或120︒.【点睛】本题主要考查了等腰三角形的性质、直角三角形的性质、三角形外角的性质等知识点,注灵活运用相关性质是解答本题的关键.3.(2023秋·山西临汾·八年级统考期末)在∠=.B如图当CD在ABC⊥CD AB∴∠=︒+∠BAC ACD90AB AC=∴∠=∠=︒30B C故答案为60︒或30︒【点睛】本题考查的是等腰三角形的性质,三角形的角平分线、中线和高;三角形内角和定理及推论此题难度不大,属于中等题;4.(2022春·广东广州·八年级校考阶段练习)在ABC 中,AB AC =,AC 上的中线BD 把三角形的周长分成24和30两部分,则底边BC 的长为______.【答案】22或14【分析】分两种情况:24AB AD +=;30AB AD +=,可得AB 的长,再由另一部周长即可求得底边BC 的长.【详解】解:由题意得:AD CD=2AB AC AD ∴==;当24AB AD +=时,即224AD AD +=,8AD ∴=,30BC CD += ,3030822BC CD ∴=-=-=;当30AB AD +=时,即230AD AD +=,10AD ∴=,24BC CD += ,24241014BC CD ∴=-=-=;综上,底边的长为22或14;故答案为:22或14.【点睛】本题考查了等腰三角形的性质,中线的含义,涉及分类讨论.5.(2022·陕西·交大附中分校七年级期末)已知ABC 中,20B ∠=︒,在AB 边上有一点D ,若CD 将ABC 分为两个等腰三角形,则A ∠=________.【答案】100°,70°,40°或者10°【分析】分BD =CD 、BC =CD 、BD =BC 三种情况讨论即可求解.【详解】第一种请况:BD =CD 时,如图,∵BD=CD,∠B=20°,∴∠B=∠DCB=20°,∴∠ADC=∠B+∠DCB=40°,(1)当DA=DC时,∠A=∠ACD,∵∠A+∠ACD+∠ADC=180°,∠ADC=40°,∴∠A=∠ACD=70°;(2)当DA=AC时,即有∠ADC=∠ACD=40°,∴∠A=180°-∠ADC-∠ACD=100°;(3)当CD=CA时,∠A=∠ADC=40°;第二种请况:BC=CD时,如图,∵∠B=20°,BC=CD,∴∠B=∠BDC=20°,∴∠ADC=180°-∠BDC=160°,∵△ADC是等腰三角形,∴有∠A=∠ACD,∵∠A+∠ACD+∠ADC=180°,∴∠A=10°;第三种情况:BC=BD时,如图,∵BC=BD,∴∠BDC =∠BCD ,∵∠B =20°,∠B +∠BCD +∠BDC =180°,∴∠BCD =∠BDC =80°,∴∠ADC =180°-∠BDC =100°,∵△ADC 是等腰三角形,∴有∠A =∠ACD ,∵∠A +∠ACD +∠ADC =180°,∴∠A =40°;综上所述:∠A 的度数为:70°,100°,40°,10°,故答案为:70°,100°,40°,10°.【点睛】本题考查了等腰三角形的性质、三角形的内角和定理等知识,掌握三角形的性质是解答本题的关键.6.(2023春·广东河源·八年级校考开学考试)在ABC 中,AB AC =,AC 边上的中线BD 把三角形的周长分成12cm 和15cm 的两部分,求三角形各边的长.【答案】三角形的各边长为10cm 10cm 7cm 、、或8cm 8cm 11cm 、、【分析】由在ABC 中,AB AC =,AC 边上的中线BD 把三角形的周长分成12cm 和15cm 两部分,可得()15123cm ||AB BC -=-=,()2121527cm AB BC AC AB BC ++=+=+=,然后分别从AB BC >与AB BC <去分析求解即可求得答案.【详解】解:如图,∵AB AC BD =,是AC 边上的中线,即AD CD =,∴()()()||||15123cm AB AD BC CD AB BC +-+=-=-=,2121527cm AB BC AC AB BC ++=+=+=,若AB BC >,则3cm AB BC -=,又∵227cm AB BC +=,联立方程组:3227AB BC AB BC -=⎧⎨+=⎩,解得:10cm 7cm AB BC ==,,10cm 10cm 7cm 、、三边能够组成三角形;若AB BC <,则3cm BC AB -=,又∵227cm AB BC +=,联立方程组3227BC AB AB BC -=⎧⎨+=⎩,解得:8cm 11cm AB BC ==,,8cm 8cm 11cm 、、三边能够组成三角形;∴三角形的各边长为10cm 10cm 7cm 、、或8cm 8cm 11cm 、、.【点睛】此题考查了等腰三角形的定义.注意掌握方程思想、分类讨论思想与数形结合思想的应用.。
北师大版八年级数学下册 等腰三角形(基础)知识讲解 含答案解析
等腰三角形(基础)知识讲解责编:杜少波【学习目标】1. 了解等腰三角形、等边三角形的有关概念, 掌握等腰三角形的轴对称性;2. 掌握等腰三角形、等边三角形的性质,会利用这些性质进行简单的推理、证明、计算和作图.3. 理解并掌握等腰三角形、等边三角形的判定方法及其证明过程. 通过定理的证明和应用,初步了解转化思想,并培养学生逻辑思维能力、分析问题和解决问题的能力.4. 理解反证法并能用反证法推理证明简单几何题.【要点梳理】要点一、等腰三角形的定义1.等腰三角形有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.如图所示,在△ABC中,AB=AC,△ABC是等腰三角形,其中AB、AC 为腰,BC 为底边, ∠A是顶角,∠B、∠C是底角.2.等腰三角形的作法已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使AB=AC=b,BC=a.作法:1.作线段BC=a;2.分别以B,C 为圆心,以b 为半径画弧,两弧相交于点A;(3)BD=CD,AD 为底边上的中线.(4)∠ADB=∠ADC=90°,AD 为底边上的高线.结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴.4.等边三角形三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴.要点诠释:(1)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝180A角(或直角).∠A=180°-2∠B,∠B=∠C=.2(2)等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形.【高清课堂:389301 等腰三角形的性质及判定,知识要点】要点二、等腰三角形的性质1.等腰三角形的性质性质1:等腰三角形的两个底角相等,简称“在同一个三角形中,等边对等角”.推论:等边三角形的三个内角都相等,并且每个内角都等于60°.性质 2:等腰三角形的顶角平分线、底边上中线和高线互相重合.简称“等腰三角形三线合一”.2.等腰三角形中重要线段的性质等腰三角形的两底角的平分线(两腰上的高、两腰上的中线)相等.要点诠释:这条性质,还可以推广到一下结论:(1)等腰三角形底边上的高上任一点到两腰的距离相等。
解题技巧专题:构造等腰三角形的解题技巧(3类热点题型讲练)(解析版)--初中数学北师大版8年级下册
第06讲解题技巧专题:构造等腰三角形的解题技巧(3类热点题型讲练)目录【考点一利用平行线+角平分线构造等腰三角形】 (1)【考点二过腰或底作平行线构造等腰(边)三角形】 (6)【考点三利用倍角关系构造新等腰三角形】 (18)【考点一利用平行线+角平分线构造等腰三角形】例题:(2024上·北京西城·八年级校考期中)如图,在ABC 中,BD 平分ABC ∠,DE CB ∥,F 是BD 的中点.(1)求证:BDE 是等腰三角形(2)若50ABC ∠=︒,求DEF ∠的度数.【答案】(1)见解析(2)65︒【分析】本题考查了等腰三角形的判定与性质,熟记相关定理内容是解题关键.(1)由角平分线的定义得EBD CBD ∠=∠,由DE CB ∥得EDB CBD ∠=∠即可求证;(2)先求出EDB ∠,根据“三线合一”得EF BD ⊥,即可求解.【详解】(1)证明:∵BD 平分ABC ∠,∴EBD CBD ∠=∠,∵DE CB ∥,∴EDB CBD ∠=∠,∴EBD EDB ∠=∠,∴EB ED=是等腰三角形;(1)如图1,求证:CDE∠交AC于E,(2)如图2,若DE平分ADC的长.【答案】(1)见解析(2)4【分析】本题考查角平分线、平行线的性质以及直角三角形的边角关系,掌握角平分线的定义,平行线的性质是解决问题的关键.∠=∠(1)根据角平分线的定义得出BCD(1)当53BE CF ==,,则EF =___________;(2)当BE CF >时,若CO 是ACB ∠的外角平分线,如图2,它仍然和∠作EF BC ∥,交AB 于E ,交AC 于F ,试判断EF BE ,,CF 之间的关系,并说明理由.【答案】(1)8(2)EF BE CF =-,见解析∴∠EBO =∠EOB ,∠FCO =∠FOC ,∴53BE OE OF CF ====,,∴8EF EO FO =+=,故答案为:8;(2)EF BE CF =-,理由如下:∵BO 平分ABC ∠,∴ABO OBC ∠=∠,∵EO BC ∥,∴EOB OBC ∠=∠,∴ABO EOB ∠=∠,∴BE EO =,同理可得FO CF =,∴EF EO FO BE CF =-=-.3.(2023上·吉林松原·八年级校考期末)【问题背景】在学习了等腰三角形等有关知识后,数学活动小组发现:当角平分线遇上平行线时一般可得等腰三角形.如图1,P 为AOB ∠的角平分线OC 上一点,常过点P 作PD OB ∥交OA 于点D ,易得POD 为等腰三角形.(1)【基本运用】如图2,把长方形纸片ABCD 沿对角线AC 折叠,使点B 落在点B '处,则重合部分ACE △的形状是_______.(2)【类比探究】如图3,ABC 中,内角ABC ∠与外角ACG ∠的角平分线交于点O ,过点O 作DE BC ∥分别交AB AC 、于点D E 、,试探究线段BD DE CE 、、之间的数量关系并说明理由;(3)【拓展提升】如图4,四边形ABCD 中,,AD BC E ∥为CD 边的中点,AE 平分BAD ∠,连接BE ,求证:AE BE ⊥.【答案】(1)ACE 是等腰三角形(2)BD DE CE =+,理由见解析(3)见解析【分析】本题考查等腰三角形的性质,平行线的性质,直角三角形的性质,掌握等腰三角形的性质,平行线的性质是解题的关键.(1)根据材料提示,平行线的性质,等腰三角形的性质即可求证;(2)根据(1)的结论可知,BDO △为等腰三角形,则BD OD =,且OCG ECO EOC ∠=∠=∠,可证CE OE =,由此即可求解;(3)如图所示,过点E 作EF AD ∥,E 为CD 边的中点,可知点F 是AB 的中点,得出BEF △为等腰三角关系,证明BE 平分ABC ∠,再根据两直线平行同旁内角互补,即可证明2590∠+∠=︒,即直角三角形AEB ,由此即可求证.【详解】(1)ACE △是等腰三角形;理由:在长方形ABCD 中, DC AB ∥,∴∠=∠ACD BAC ,由折叠性质可得BAC B AC '∠=∠,∴ACD B AC '∠=∠,AE CE ∴=,ACE ∴ 是等腰三角形;故答案为:等腰三角形;(2)解:BD DE CE =+,理由如下,∵BO 平分ABC ∠,OD BC ,∴ABC CBO DOB ∠=∠=∠,∴BDO △为等腰三角形,则BD OD =,CO 平分ACG ∠,DO ∥BC ,OCG ECO EOC ∴∠=∠=∠,COE ∴ 为等腰三角形,即CE OE =,BD DO DE EC ==+ ,BD DE CE ∴=+.(3)证明:如图所示,过点E 作EF AD ,AD 交AB 于点F ,E 为CD 边的中点,∴点F 是AB 的中点,即AF BF =,AD ∥BC ,AE 平分BAD ∠,123∴∠=∠=∠,AEF ∴ 是等腰三角形,即AF EF =,EF BF ∴=,45∴∠=∠,EF AD∥,46∴∠=∠,∴∠=∠,56∥BC,AD∴∠+∠+∠+∠=︒,即22251801256180∠+∠=︒,∴∠+∠=︒,2590()∴∠=︒-∠+∠=︒-︒=︒,180251809090AEB∴⊥.AE BE【考点二过腰或底作平行线构造等腰(边)三角形】是等边三角形,点D在AC上,点E在BC的延长例题:(2023上·吉林通化·八年级统考期末)如图,ABC线上,且BD DE=.(1)若点D是AC的中点,如图1,则线段AD与CE的数量关系是__________;∥,(2)若点D不是AC的中点,如图2,试判断AD与CE的数量关系,并证明你的结论;(提示:过点D作DF BC 交AB于点F)(3)若点D在线段AC的延长线上,(2)中的结论是否仍成立?如果成立,请给予证明;如果不成立,请说明理由.=,理由见解析【答案】(1)AD CE=,理由见解析(2)AD CE(3)成立,理由见解析【分析】本题考查全等三角形判定与性质,平行线性质,等腰三角形性质,等边三角形性质与判定.(1)求出E CDE ∠=∠,推出CD CE =,根据等腰三角形性质求出AD DC =,即可得出答案;(2)过D 作DF BC ∥,交AB 于F ,证明BFD DCE ≌,推出DF CE =,证ADF △是等边三角形,推出AD DF =,即可得出答案;(3)过点D 作DP BC ∥,交AB 的延长线于点P ,证明BPD DCE ≌,得到PD CE =,即可得到AD CE =.【详解】(1)解:AD CE =,理由如下:ABC 是等边三角形,60,ABC ACB AB AC BC ∴∠=∠=== .∵点D 为AC 中点,30,DBC AD DC ∴∠== ,BD DE = ,30E DBC ∴∠=∠= ,ACB E CDE ∠=∠+∠ ,30CDE E ∴∠=∠= ,CD CE ∴=,又AD DC = ,AD CE ∴=.故答案为:AD CE =;(2)解:AD CE =,理由如下:如图,过点D 作DF BC ∥,交AB 于点F ,则60ADF ACB ∠=∠= ,60A ∠= ,AFD ∴ 是等边三角形,,60AD DF AF AFD ∴==∠= ,18060120BFD DCE ∴∠=∠=-= ,D F B C ∥ ,FDB DBE E ∴∠=∠=∠,在BFD △和DCE △中,FDB E BFD DCE BD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,BFD DCE ∴ ≌()AAS ,DF CE ∴=,又AD DF = ,AD CE ∴=;(3)解:结论仍成立,理由如下:如图,过点D 作DP BC ∥,交AB 的延长线于点P ,则60,60ABC APD ACB ADP ∠=∠=∠=∠= ,60A ∠= ,APD ∴ 是等边三角形,AP PD AD ∴==,ACB DCE ∠=∠ ,DCE ACB P ∴∠=∠=∠,DP BC ∥ ,PDB CBD ∴∠=∠,DB DE = ,DBC DEC ∴∠=∠,PDB DEC ∴∠=∠,在BPD △和DCE △中,PDB CED P DCE BD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,BPD DCE ∴ ≌()AAS ,PD CE ∴=,又AD PD = ,AD CE ∴=.【变式训练】(1)如图1,当点E运动到线段AB的中点,点D在线段(2)如图2,当点E在线段AB上运动,点D在线段说明理由.【答案】(1)1 2∵EF BC ∥,∴60AFE ACB ∠=∠=︒,120,EFC AFE A ∴∠=︒∠=∠,EF EA∴=∵60ABC ∠=︒,120EBD ∴∠=︒,EFC EBD ∴∠=∠,CE DE = ,∴EDB ECB ∠=∠,60EDB DEB ECB ECF ∠+∠=∠+∠=︒ ,DEB ECF ∴∠=∠,在EDB △和CEF △中,∵,,DEB ECF EBD EFC DE CE ∠=∠∠=∠=,∴()AAS EDB CEF ≌,BD EF ∴=,∵EF EA =,BD AE ∴=.2.(2023上·吉林长春·八年级校考期末)已知在等边三角形ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED EC =.(1)【感知】如图1,当点E 为AB 的中点时,则线段AE 与DB 的数量关系是______;(2)【类比】如图2,当点E 为AB 边上任意一点时,则线段AE 与DB 的数量关系是______,请说明理由;(提示如下:过点E 作EF BC ∥,交AC 于点F .)(3)【拓展】在等边三角形ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED EC =,若ABC 的边长为2,3AE =,则CD 的长是______.【答案】(1)AE DB =∵ABC 是等边三角形,∴AB AC A =∠=∠,∴AEF AFE ∠=∠=∠∴AEF △为等边三角形,120EFC ∠=︒,∴AE EF =,∵ED EC =,∴D ECD ∠=∠,∴D FEC ∠=∠,在DBE 和EFC 中,DBE EFC D FEC ED EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS DBE EFC ≌,∴DB EF =,∴AE DB =;(3)过点E 作EF BC ∥,交AC 于点F ,如图3所示:同(2)得:AEF △是等边三角形,()AAS DBE EFC ≌,∴33AE EF DB EF ====,,∵2BC =,∴235CD BC DB =+=+=.故答案为:5.【点睛】本题是三角形综合题目,考查了等边三角形的判定与性质、全等三角形的判定与性质、等腰三角形的性质、平行线的性质等知识,熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.3.(2024上·广东中山·八年级统考期末)如图,ABC 中,AB AC =,10BC =,点P 从点B 出发沿线段BA 移动到点A 停止,同时点Q 从点C 出发沿AC 的延长线移动,并与点P 同时停止.已知点P ,Q 移动的速度相同,连接PQ 与线段BC 相交于点D (不考虑点P 与点A ,B 重合时的情况).【答案】(1)见解析(2)见解析(3)ED为定值5,理由见解析【分析】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,平行线的性质,线段的和差,准确作出辅助线找出全等三角形是解题关键.(1)利用P、Q的移动速度相同,得到由(2)得:PB PF =,PBF ∴△为等腰三角形,PE BC ⊥ ,BE EF ∴=,由(2)得PFD QCD ≌△△,FD CD ∴=,111【观察猜想】如图①:D 为线段AB 上一点,DE BC ∥,交AC 于点E .可知ADE V 为______三角形.【实践发现】如图②:D 为线段AB 外一点,连接AD ,以AD 为一边作等边三角形ADE .连接BD CE 、.猜想BD 与CE 数量关系为______,直线BD 与CE 相交所产生的交角中的锐角为______.【深入探究】:D 为线段AB 上一点,F 为线段CB 延长线上一点,且DF DC =.(1)特殊感知:当点D 为AB 的中点时,如图③,猜想线段AD 与BF 的数量关系为______;(2)特例启发:当D 为AB 上任意一点,其余条件不变,如图④,猜想线段AD 与BF 的数量关系?并说明理由.(3)拓展延伸:在等边三角形ABC 中,点D 在直线AB 上,点F 在直线BC 上,且DF DC =.若ABC 的边长为2,3AD =,则CF 的长为______.【答案】观察猜想:等边;实践发现:BD CE =,60︒;(1)AD BF =;(2)AD BF =,证明见解析;(3)5或1【观察猜想】利用等边三角形的性质和判定即可证明;【实践发现】利用等边三角形的性质证明()SAS BAD CAE ≌即可得出数量关系,再用三角形内角和定理即可得出角度;【深入探究】(1)根据等边三角形的性质和等腰三角形的判定与性质求解即可;(2)正确作出辅助线证明三角形全等即可;(3)分点D 在AB BA 、的延长线上两种情况讨论。
八年级数学下册- :等腰(直角)三角形中易漏解或多解的问题之五大易错(5类热点题型讲练)(解析版)
第05讲易错易混淆集训:等腰(直角)三角形中易漏解或多解的问题之五大易错(5类热点题型讲练)目录【考点一求等腰三角形的周长时忽略构成三角形的三边关系产生易错】 (1)【考点二当等腰三角形中腰和底不明求角度时没有分类讨论产生易错】 (5)【考点三求有关等腰三角形中的多解题没有分类讨论产生易错】 (8)【考点四求有关直角三角形中的多解题没有分类讨论产生易错】 (14)【考点五三角形的形状不明时与高线及其他线结合没有分类讨论产生易错】 (19)【考点一求等腰三角形的周长时忽略构成三角形的三边关系产生易错】例题:(2023春·陕西汉中·七年级校考阶段练习)已知一个等腰三角形的三边长分别为21x -,1x +,32x -,且21x -为腰长.求这个等腰三角形的周长.【答案】这个等腰三角形的周长为10.【分析】因为没有明确指出哪条边是底边哪个是腰,所以要分情况讨论.【详解】解:①当211x x -=+时,解得2x =,则这个等腰三角形三条边长分别为3、3、4,能构成三角形,此时这个等腰三角形的周长为33410++=;②当2132x x -=-时,解1x =,则这个等腰三角形三条边长分别为1、2、1,不能构成三角形(舍去).综上所述,这个等腰三角形的周长为10.【点睛】本题考查了等腰三角形的性质;在没有明确给出腰和底边时,要注意和已知条件联系起来分情况讨论进而求解.【变式训练】+<,∵7721∴不能围成腰长为7cm的等腰三角形;综上:能围成有一边长为7cm的等腰三角形.【点睛】本题主要考查了三角形三边之间的关系,等腰三角形的性质,解题的关键是掌握等腰三角形两腰相等,三角形两边之和大于第三边,两边之差小于第三边.【考点二当等腰三角形中腰和底不明求角度时没有分类讨论产生易错】综上所述,这个等腰三角形的顶角度数是44︒或80︒或140︒.故答案为:44︒或80︒或140︒.【点睛】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,难点在于分情况讨论,特别是这两个角都是底角的情况容易漏掉而导致出错.5.(2022春·江西赣州·八年级统考期中)如图,在ABC 中,20B ∠=︒,105A ∠=︒,点P 在ABC 的三边上运动,当PAC △为等腰三角形时,顶角的度数是________.【答案】105︒或55︒或70︒【分析】作出图形,然后分点P 在AB 上与BC 上两种情况讨论求解.【详解】解:①如图1,点P 在AB 上时,AP AC =,顶角为105A ∠=︒,②∵20B ∠=︒,105A ∠=︒,∴1802010555C ︒︒︒︒∠=--=,如图2,点P 在BC 上时,若AC PC =,顶角为55C ∠=︒,如图3,若AC AP =,则顶角为180218025570CAP C ︒︒︒︒∠=-∠=-⨯=,综上所述,顶角为105︒或55︒或70︒.故答案为:105︒或55︒或70︒.【点睛】本题考查了等腰三角形的判定,注意要分情况讨论求解.【考点三求有关等腰三角形中的多解题没有分类讨论产生易错】题的关键,用了分类讨论思想.【变式训练】∵30PCB ∠=︒,∴∠BPC =90°,即PC ∴cos AP AC BAC =⋅∠当点P 在AB 的延长线上时,∵30PCB ∠=︒,∠PBC ∴∠CPB =30°,∴12AC AB ==∵30PCB ∠=︒∴∠APC =60°,∴∠ACP =60°,∴∠APC =∠PAC 【答案】2516或52或4,,,②当AE AD m ==时:如图,则:4CE BC BE m =-=-,在Rt ACE 中,22AE AC =+解得:258m =;此时AE AB =,∵90ACB ∠=︒,∴4BC CE ==,【考点四求有关直角三角形中的多解题没有分类讨论产生易错】【答案】125或247或325【分析】先利用直角三角形的性质可得的取值范围为06t <≤,然后分BQP ∠得出答案.【详解】解: 在Rt ABC △中,C ∠212AB BC ∴==,=60B ∠︒,∴点P 从点A 运动到点B 所需时间为点Q 从点B 运动到点C 所需时间为BC 当一个动点到达终点时,另一个动点也随之停止运动,06t ∴<≤,由题意,分以下两种情况:(1)如图,当90BQP ∠=︒时,BPQ V①当04t <≤时,3AP t =,BP AB =在Rt BPQ 中,2BQ BP =,即2t =解得2447t =<,符合题设;②当46t <≤时,312BP t =-,在Rt BPQ 中,2BQ BP =,即2t =解得245t =,符合题设;综上,t 的值是165或327或245,故答案为:125或247或325.【点睛】本题考查了含30︒角的直角三角形的性质、直角三角形的两个锐角互余等知识点,正确判断出取值范围,并分情况讨论是解题关键.【变式训练】点D 在直线BC 边上,ABD △为直角三角形,且当90BAD ∠=︒时,4090130ADC B BAD ∴∠=∠+∠=︒+︒=︒;如图2,在ABC 中,AB AC =,若=40B C ∠∠=︒,点D 在直线BC 边上,ABD △为直角三角形,且当90ADB ∠=︒时,90ADC ∴∠=︒;如图3,在ABC 中,AB AC =,若40BAC ∠︒=,点D 在直线BC 边上,ABD △为直角三角形,且当90ADB ∠=︒时,90ADC ∴∠=︒;如图4,在ABC 中,AB AC =,若40BAC ∠︒=,点D 在直线BC 边上,ABD △为直角三角形,且当90BAD ∠=︒时,70B ACB ∴∠=∠=︒,9020ADC B ∴∠=︒-∠=︒;故答案为:130︒、90︒或20︒【答案】60︒或18︒【分析】分情况讨论:①当求解即可.【详解】解:如图所示,当∵AD 是ABC 的角平分线,∴30BAD ∠=︒,∴Rt ADF 中,60ADF ∠=如图,当90BDF ∠=︒时,同理可得30BAD DAC ∠=∠=∵78ACB ∠=︒,∴ADB DAC ACB ∠=∠+∠=∴ADF ADB BDF ∠=∠-∠=综上所述:ADF ∠的度数为故答案为:60︒或18︒.【答案】50或25/25或50【分析】根据三角形内角和定理得ABC ∠形时,存在两种情况:分别根据三角形外角的性质即可得出结论.【详解】解:∵9040BAC C ∠=︒∠=︒,∴904050ABC ∠=︒-︒=︒∵BD 平分ABC∠∴1252DBC ABC ∠=∠=︒当BDE △为直角三角形时,有以下两种情况:①当90BED ∠=︒时,如图1,∵40C ∠=︒,∴904050CDE ∠=︒-︒=︒;②当90BDE ∠=︒时,如图2,【考点五三角形的形状不明时与高线及其他线结合没有分类讨论产生易错】例题:(2023秋·山东泰安·七年级东平县实验中学校考期末)等腰三角形一腰上的中线把三角形周长分为15根据等腰三角形的定义和三角形中线的性质得:可设AD DC x ==∴2AB x =.1.(2023春·辽宁沈阳·八年级校考阶段练习)等腰三角形一腰上的高与另一腰的夹角为45︒,那么这个三角形的顶角为()A .45︒B .90︒C .135︒D .135︒或45︒∵45ACD ∠=︒,∴顶角90A ∠=︒-如图2,三角形是钝角时,∵45ACD ∠=︒,∴顶角4590135BAC ∠=︒+︒=综上所述,顶角等于45︒或135当30AB AD +=时,即230AD AD +=,10AD ∴=,24BC CD += ,24241014BC CD ∴=-=-=;综上,底边的长为22或14;故答案为:22或14.【点睛】本题考查了等腰三角形的性质,中线的含义,涉及分类讨论.5.(2022·陕西·交大附中分校七年级期末)已知ABC 中,20B ∠=︒,在AB 边上有一点D ,若CD 将ABC 分为两个等腰三角形,则A ∠=________.【答案】100°,70°,40°或者10°【分析】分BD =CD 、BC =CD 、BD =BC 三种情况讨论即可求解.【详解】第一种请况:BD =CD 时,如图,∵BD =CD ,∠B =20°,∴∠B =∠DCB =20°,∴∠ADC =∠B +∠DCB =40°,(1)当DA =DC 时,∠A =∠ACD ,∵∠A +∠ACD +∠ADC =180°,∠ADC =40°,∴∠A =∠ACD =70°;(2)当DA =AC 时,即有∠ADC =∠ACD =40°,∴∠A =180°-∠ADC -∠ACD =100°;(3)当CD =CA 时,∠A =∠ADC =40°;第二种请况:BC =CD 时,如图,∵∠B =20°,BC =CD ,∴∠B =∠BDC =20°,∴∠ADC=180°-∠BDC=160°,∵△ADC是等腰三角形,∴有∠A=∠ACD,∵∠A+∠ACD+∠ADC=180°,∴∠A=10°;第三种情况:BC=BD时,如图,∵BC=BD,∴∠BDC=∠BCD,∵∠B=20°,∠B+∠BCD+∠BDC=180°,∴∠BCD=∠BDC=80°,∴∠ADC=180°-∠BDC=100°,∵△ADC是等腰三角形,∴有∠A=∠ACD,∵∠A+∠ACD+∠ADC=180°,∴∠A=40°;综上所述:∠A的度数为:70°,100°,40°,10°,故答案为:70°,100°,40°,10°.【点睛】本题考查了等腰三角形的性质、三角形的内角和定理等知识,掌握三角形的性质是解答本题的关键.。
第五章第4讲 易错易混淆集训:等腰三角形中易漏解或多解的问题之四大易错(4类热点题型讲练)(解析版)
第04讲易错易混淆集训:等腰三角形中易漏解或多解的问题之四大易错(4类热点题型讲练)目录【考点一求等腰三角形的周长时忽略构成三角形的三边关系产生易错】 (1)【考点二当等腰三角形中腰和底不明求角度时没有分类讨论产生易错】 (5)【考点三求有关等腰三角形中的多解题没有分类讨论产生易错】 (8)【考点四三角形的形状不明时与高线及其他线结合没有分类讨论产生易错】 (11)【考点一求等腰三角形的周长时忽略构成三角形的三边关系产生易错】例题:(2024·广东东莞·一模)一个等腰三角形的两边长分别是5cm和6cm,这个等腰三角形的周长是cm.【答案】16或17/17或16【分析】考查了等腰三角形的性质与三角形三边关系.由等腰三角形两边长为5cm和6cm,分别从等腰三角形的腰长为5cm和6cm去分析即可求得答案,注意分析能否组成三角形.【详解】解:若等腰三角形的腰长为5cm,底边长为6cm,+=>,∵55106∴能组成三角形,++=;∴它的周长是:55616cm若等腰三角形的腰长为6cm,底边长为5cm,+=>,∵56116∴能组成三角形,++=.∴它的周长是:66517cm∴它的周长是:16cm或17cm.故答案是:16或17【变式训练】1.(23-24七年级下·四川成都·期中)等腰三角形的两边长为4cm和8cm,这个三角形的周长为cm.【答案】20【分析】本题主要考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.等腰三角形两边的长为4cm和8cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.+=,不能构成三角形,【详解】解:①当腰是4cm,底边是8cm时,448②当底边是4cm,腰长是8cm时,能构成三角形,=++=,则其周长48820cm所以,这个三角形的周长是20cm.故答案为:20.2.(23-24七年级下·江苏泰州·阶段练习)等腰三角形两边长分别为6,9,则其周长为.【答案】21或24/24或21【分析】本题考查三角形三边关系,熟练掌握“三角形两边之和大于第三边;两条之差小于第三边”是解题的关键,根据题意分情况讨论:①当腰长为6时;②当腰长为9时;分别求得周长即可.【详解】解:由题可知:①当腰长为6时;则底边为9,++=,此时等腰三角形的周长为:66921②当腰长为9时;则底边为6,此时等腰三角形的周长为:99624++=,经检验以上两种情况都可以构成三角形,故答案为:21,24.3.(23-24八年级上·浙江丽水·期末)一个等腰三角形的周长是20,若其中一条边长为8,这个等腰三角形的腰长是.的长分别是.【答案】6,6或5,7【分析】本题考查了等腰三角形的性质及三角形的三边关系;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.由于已知长度的边没有指明是等腰三角形的底边还是腰,因此要分类讨论,最后要根据三角形三边关系定理判断求出的结果是否符合题意.【详解】解:①当等腰三角形的底长为5时,腰长()17526=-÷=;则等腰三角形的三边长为5、6、6,能构成三角形.②当等腰三角形的腰长为5时,底长17257=-⨯=;则等腰三角形的三边长为5、5、7,能构成三角形.故等腰三角形另外两边的长为6,6或5,7.故答案为:6,6或5,7.5.当三角形中一条边a 是另一条边b 的2倍时,我们称此三角形为“特征三角形”,其中a 称为“特征边”,如果一个“特征三角形”为等腰三角形,它的特征边为4,那么这个特征三角形的周长为.【答案】10【分析】根据题中定义,可知其另一边为2,利用等腰三角形的定义,可知第三边为2或4,同时需要利用三角形三边关系进行验证,排除第三边为2的情况,即可求得周长.【详解】解:∵该三角形的特征边为4,∴其另一边为2,∵该三角形为等腰三角形,∴第三边长为2或4,根据三角形的三边关系可知第三边为2时,不能组成三角形,第三边为4时,符合题意,∴这个特征三角形的周长为:4+4+2=10.故答案为:10.【点睛】本题主要考查的是三角形中边长的计算,易错点在于利用三角形三边关系排除不能组成三角形的情况.6.(23-24八年级上·浙江宁波·期末)定义:若三角形满足其中两边之和等于第三边的三倍,则称该三角形为“三倍三角形”.若等腰三角形ABC 是三倍三角形,且其中一边长为3,则ABC 的周长为.【答案】8或12【分析】本题主要考查等腰三角形的性质和三角形的三边关系,设等腰三角形的腰长为x ,底长为y ,分两种情况讨论:当3x =时;当3y =时.【详解】设等腰三角形的腰长为x ,底长为y .(1)当3x =时,分两种情况:①若3x y x +=,解得6y =.则三角形的三边长为3,3,6,不符合题意.②若23x y =,解得2y =,则ABC 的三边长为3,3,2,符合题意.3328++=ABC 的周长为8.(2)当3y =时,分两种情况:①若3x y x +=,解得 1.5x =,则三角形的三边长为1.5,1.5,3,不符合题意.②若23x y =,解得 4.5x =,则ABC 的三边长为4.5,4.5,3,符合题意.4.5 4.5312++=ABC 的周长为12.综上所述,ABC 的周长为8或12.7.(23-24八年级下·贵州毕节·阶段练习)已知等腰三角形底边为8,一腰上的中线分此三角形的周长成两部分,其差为2,则腰长为.8.(2023秋·江西南昌·八年级统考期末)若等腰三角形的三边长分别为长可以是.【答案】11或13或17【分析】先根据题中已知等腰三角形的三边的长,而没有指明哪个是腰,哪个是底边,故应该分三种情况进行分析求解即可.【详解】解:①当23x -是底边时,则腰长为x ,5,∴5x =,∴237x -=,即三角形三边长分别为5,5,7,根据三角形三边关系,可以构成三角形,∴等腰三角形的周长55717=++=;②当5是底边时,则腰长为x ,23x -,∴23x x =-,解得3x =,即三角形三边长分别为3,3,5,根据三角形三边关系,可以构成三角形,∴等腰三角形的周长33511=++=;③当x 是底边时,则腰长为5,23x -,∴523x =-,解得4x =,即三角形三边长分别为5,5,4,根据三角形三边关系,可以构成三角形,∴等腰三角形的周长55414=++=.综上所述,三角形的周长可以是11,14或17.【点睛】本题主要考查了等腰三角形的性质、解一元一次方程以及三角形三边关系等知识,解题的关键是分类讨论,并用三边关系定理检验.【考点二当等腰三角形中腰和底不明求角度时没有分类讨论产生易错】所以,顶角是2502080⨯︒-︒=︒;③x 与220x -︒都是底角时,220x x =-︒,解得20x =︒,所以,顶角是180202140︒-︒⨯=︒;综上所述,这个等腰三角形的顶角度数是44︒或80︒或140︒.故答案为:44︒或80︒或140︒.【点睛】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,难点在于分情况讨论,特别是这两个角都是底角的情况容易漏掉而导致出错.4.如图,在ABC 中,20B ∠=︒,105A ∠=︒,点P 在ABC 的三边上运动,当PAC △为等腰三角形时,顶角的度数是________.【答案】105︒或55︒或70︒【分析】作出图形,然后分点P 在AB 上与BC 上两种情况讨论求解.【详解】解:①如图1,点P 在AB 上时,AP AC =,顶角为105A ∠=︒,②∵20B ∠=︒,105A ∠=︒,∴1802010555C ︒︒︒︒∠=--=,如图2,点P 在BC 上时,若AC PC =,顶角为55C ∠=︒,如图3,若AC AP =,则顶角为180218025570CAP C ︒︒︒︒∠=-∠=-⨯=,综上所述,顶角为105︒或55︒或70︒.故答案为:105︒或55︒或70︒.【点睛】本题考查了等腰三角形的判定,注意要分情况讨论求解.【考点三求有关等腰三角形中的多解题没有分类讨论产生易错】例题:(23-24八年级上·重庆渝北·期中)如图,在ABC 中,90B Ð=°,16cm AB =,12cm BC =,20cm AC =点Q 是ABC 边上的一个动点,点Q 从点B 开始沿B C A →→方向运动,且速度为每秒1cm ,设出发的时间为t 秒.当点Q 在边CA 上运动时,出发秒后,BCQ △是以CQ 为腰的等腰三角形.12cm CB CQ == ,∴241CB CQ t +==(秒);当QC QB =时,如图:QC QB = ,C CBQ ∠∠∴=,90ABC ∠=︒ ,B 作直线AC ,若ABC 是等腰三角形,则α∠=.3.(23-24八年级上·江西赣州·期末)如图,在ABC 中,12AB =,30B ∠=︒,C B ∠<∠,P 是边BC 上的动点,连接AP .当ABP 是等腰三角形时,APC ∠=度.【考点四三角形的形状不明时与高线及其他线结合没有分类讨论产生易错】根据等腰三角形的定义和三角形中线的性质得:可设AD DC x ==∴2AB x =.由题意得:21512x x y x +=⎧⎨+=⎩或21215x x y x +=⎧⎨+=⎩,解得:57x y =⎧⎨=⎩或411x y =⎧⎨=⎩.当57x y =⎧⎨=⎩时,即此时等腰三角形的三边为10,10,7,10710+> ,符合三角形的三边关系,∴此情况成立;当411x y =⎧⎨=⎩时,即此时等腰三角形的三边为8,8,11,8811+> ,符合三角形的三边关系,∴此情况成立.综上可知这个等腰三角形的底边长是7或11.故选:C .【点睛】本题考查三角形三边关系,等腰三角形的定义,三角形中线的性质.利用分类讨论的思想是解题关键.【变式训练】1.(2023春·辽宁沈阳·八年级校考阶段练习)等腰三角形一腰上的高与另一腰的夹角为45︒,那么这个三角形的顶角为()A .45︒B .90︒C .135︒D .135︒或45︒【答案】D【分析】分三角形是锐角三角形时,利用直角三角形两锐角互余求解;三角形是钝角三角形时,利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图1,三角形是锐角三角时,∵45ACD ∠=︒,∴顶角904545A ∠=︒-︒=︒;如图2,三角形是钝角时,∵45ACD ∠=︒,∴顶角4590135BAC ∠=︒+︒=︒,综上所述,顶角等于45︒或135︒.故选:D .【点睛】本题考查了等腰三角形的性质,难点在于分情况讨论,作出图形更形象直观.2.(23-24七年级下·上海浦东新·期中)等腰三角形一腰上的高与另一腰的夹角为40°,那么这个等腰三角形的顶角为度.【答案】50或130【分析】此题考查了等腰三角形的定义.此题难度适中,注意掌握分类讨论思想与数形结合思想的应用.首先根据题意画出图形,然后分别从锐角三角形与钝角三角形分析求解即可求得答案.【详解】解:根据题意得:AB AC =,BD AC ⊥,如图(1),40ABD ∠=︒,则50A ∠=︒,如图(2),40ABD ∠=︒,∴50BAD ∠=︒,∴18050130BAC ∠=︒-︒=︒.故这个等腰三角形的顶角是:50︒或130︒.故答案为:50或1303.(2024·四川达州·模拟预测)一个等腰三角形一腰上的高与另一腰的夹角为36︒,则此三角形顶角度数为.【答案】54︒或126︒【分析】本题考查了等腰三角形的内容,要注意分类讨论,等腰三角形可能是锐角三角形也可能是钝角三角形,然后根据三角形的内角和以及三角形的外角的性质即可求解.解决等腰三角形的问题时分类讨论是解决问题的关键.【详解】解:若三角形为锐角三角形时,如图,AB AC =,36ACD ∠=︒,CD 为高,即90ADC ∠=︒,∠+∠此时A ACDA∴∠=︒-180若三角形为钝角三角形时,如图,∠=∠+∠此时BAC D ACD综上,等腰三角形的顶角的度数为故答案为:54︒或126︒.【分析】分BD=CD、BC=CD、BD=BC三种情况讨论即可求解.【详解】第一种请况:BD=CD时,如图,∵BD=CD,∠B=20°,∴∠B=∠DCB=20°,∴∠ADC=∠B+∠DCB=40°,(1)当DA=DC时,∠A=∠ACD,∵∠A+∠ACD+∠ADC=180°,∠ADC=40°,∴∠A=∠ACD=70°;(2)当DA=AC时,即有∠ADC=∠ACD=40°,∴∠A=180°-∠ADC-∠ACD=100°;(3)当CD=CA时,∠A=∠ADC=40°;第二种请况:BC=CD时,如图,∵∠B=20°,BC=CD,∴∠B=∠BDC=20°,∴∠ADC=180°-∠BDC=160°,∵△ADC是等腰三角形,∴有∠A=∠ACD,∵∠A+∠ACD+∠ADC=180°,∴∠A=10°;第三种情况:BC=BD时,如图,∵BC=BD,∴∠BDC=∠BCD,∵∠B =20°,∠B +∠BCD +∠BDC =180°,∴∠BCD =∠BDC =80°,∴∠ADC =180°-∠BDC =100°,∵△ADC 是等腰三角形,∴有∠A =∠ACD ,∵∠A +∠ACD +∠ADC =180°,∴∠A =40°;综上所述:∠A 的度数为:70°,100°,40°,10°,故答案为:70°,100°,40°,10°.【点睛】本题考查了等腰三角形的性质、三角形的内角和定理等知识,掌握三角形的性质是解答本题的关键.6.(23-24八年级上·黑龙江牡丹江·期末)等腰三角形ABC 中,高BD 与一腰所夹的锐角是40︒,则等腰三角形ABC 底角的度数为.【答案】50︒或65︒或25︒【分析】本题考查了三角形的内角和、等腰三角形的定义,分类讨论:ABC 为锐角三角形时,①当BD 是等腰ABC 底边上的高时,②当BD 是等腰ABC 腰上的高时,当等腰ABC 为钝角三角形时,则顶角为钝角,此时高BD 只能是腰上的高,利用三角形的内角和及等腰三角形的性质即可求解,熟练掌握基础知识,利用分类讨论思想解决问题是解题的关键.【详解】解:依题意有以下两种情况:(1)ABC 为锐角三角形时,此时又有两种情况:①当BD 是等腰ABC 底边上的高时,如图1所示:BD Q 为等腰三角形底边AC 上的高,90ADB ∴∠=︒,90ABD A ∴∠+∠=︒,∵高BD 与一腰所夹的锐角是40︒,40BAD ∴∠=︒,9050A BAD ∴∠=︒-∠=︒;②当BD 是等腰ABC 腰上的高时,如图2所示:Q 90ADB ∴∠=︒,90A ABD ∴∠+∠=︒,∵高BD 与一腰所夹的锐角是40ABD ∴∠=︒,9050A ABD ∴∠=︒-∠=︒,AB AC = ,(11802ABC C A ∴∠=∠=︒-∠Q 90ADB ∴∠=︒,90DAB ABD ∴∠+∠=︒,∵高BD 与一腰所夹的锐角是40︒,40ABD ∴∠=︒,9050DAB ABD ∴∠=︒-∠=︒,。
北师大八级下《等腰三角形》课时练习含答案解析
北师大数学八年级下册第一章三角形的证明第1节等腰三角形练习一、选择题1.等腰三角形的一个角是80°,则它顶角的度数是( )A .80°B .80°或20°C .80°或50°D .20° 答案:B解析:解答:当80°的角是底角时,等腰三角形两底角相等,根据三角形内角和定理得到顶角为20°;另一种情况是80°是顶角.分析:等腰三角形等边对等角,结合三角形内角和为180°,从而得出两种结果.2.已知等腰三角形的两边长分别是3和5,则该三角形的周长是( )A .8B .9C .10或12D .11或13答案:D解析:解答:当3是腰时,两腰和为6加上底边5,周长为11;当5是腰时,两腰和为10加上底边3,周长为13.分析:等腰三角形两腰相等,结合三角形中两小边和大于第三边.3.在等腰△ABC 中,AB =AC ,中线BD 将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为( )A .7B .11C .7或11D .7或10答案:C解析:解答:设AB =AC =x BC =y则有12,2152x x x y +=+=⎧⎨⎩或者12,2152x x x y +=+=⎧⎨⎩ 所以x =8, y =11或者x =10,y =7.即三角形AB =AC =8,BC =11.或AB =AC =10,BC =7.故选C.分析:等腰三角形两腰相等,会解二元一次方程.4.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为( )A .60°B .120°C .60°或150°D .60°或120°答案:D解析:解答:分两种情况:一种是这个高在三角形内,即此三角形是锐角三角形顶角=180°-90°-30°=60°,另一种是这个高落在一腰延长线上,即此三角形为钝角三角形顶角的补角=180°-90°-30°=60°,顶角=180°-60°=120°.分析:此题要注意分两种情况,要考虑锐角三角形和钝角三角形.5.在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD=()A.36°B.54°C.18 °D.64°答案:B解析:解答:∵AB=AC,∠ABC=72°,∴∠ABC=∠ACB=72°,∴∠A=36°.∵BD⊥AC,∴∠ABD=90°-36°=54°.分析:根据等腰三角形的性质由已知可求得∠A的度数,再根据垂直的定义和三角形内角和定理不难求得∠ABD的度数.6. 在△ABC中,D是BC上的点,AB=AD=DC,∠B=70°,则∠C的度数为()A.35°B.40°C.45°D.50°答案:A解析:解答:∵AB=AD, ∴∠ADB=∠B=70°.∵AD=DC,∴12C DAC ADB∠=∠=∠=35°.分析:等腰三角形两底角相等,再根据三角形的外角等于和它不相邻的两个内角和.7. 在△ABC中,∠B=∠C,AB=5,则AC的长为()A.2 B.3 C.4 D.5答案:D解析:解答:∵∠B=∠C,∴AB=AC=5.分析:等腰三角形的性质可得AB=AC,继而得出AC的长.8. 在矩形ABCD中,AB<BC,AC,BD相交于点O,则等腰三角形的个数是()A.8 B.6 C.4 D.2答案:C解析:解答:∵四边形ABCD是矩形,∴AO=BO=CO=DO,∴△ABO,△BCO,△DCO,△ADO都是等腰三角形.分析:根据矩形的对角线相等且互相平分可得AO=BO=CO=DO,进而得到等腰三角形.9. 在等腰△ABC中,AB=AC,其周长为20 cm,则AB边的取值范围是()A.1 cm<AB<4 cm B.5 cm<AB<10 cm C.4 cm<AB<8 cm D.4 cm<AB<10cm 答案:B解析:解答:∵在等腰△ABC中,AB=AC,其周长为20cm,∴设AB=AC=x cm,则BC=(20-2x)cm,∴2x>20−2x,即20−2x>0.解得5 cm<x<10 cm.分析:设AB=AC=x,则BC=20-2x,根据三角形的三边关系即可得出结论.10. 在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于()A. 4 cm B.2 cm C. 3 cm D.1 cm答案:C解析:解答:∵ED⊥AB,∠A=30°,∴AE=2ED,∵AE=6cm,∴ED=3cm.∵∠ACB=90°,BE平分∠ABC,∴ED=CE,∴CE=3cm.分析:根据在直角三角形中,30度所对的直角边等于斜边的一半得出AE=2ED,求出ED,再根据角平分线到两边的距离相等得出ED=CE,即可得出CE的值11.在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是( )A.2 B.3 C.4 D.5答案B解析:解答:AB的垂直平分线与直线y=x相交于点C1,∵A(0,2),B(0,6),∴AB=6-2=4,点A为圆心,以AB的长为半径画弧,与直线y=x的交点为C2,C3∴点B到直线y=x的距离为=∵4,∴以点B为圆心,以AB的长为半径画弧,与直线y=x没有交点,所以,点C的个数是1+2=3.分析:根据线段垂直平分线上的点到线段两端点的距离相等可得AB的垂直平分线与直线y=x 的交点为点C再求出AB的长,以点A为圆心,以AB的长为半径画弧,与直线y=x的交点为点C,求出点B到直线y=x的距离可知以点B为圆心,以AB的长为半径画弧,与直线没有交点12. 在△ABC中,AB=20 cm,AC=12 cm,点P从点B出发以每秒3 cm的速度向点A运动,点Q从点A同时出发以每秒2 cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ是以PQ为底的等腰三角形时,运动的时间是()A.秒B.3秒C.秒D.4秒答案:D解析:解答:设运动的时间为x cm/s,在△ABC中,AB=20cm,AC=12cm点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动当△APQ是等腰三角形时,AP=AQ,AP=20-3x,AQ=2x即20-3x=2x,解得x=4.分析:设运动的时间为x,则AP=20-3x,当APQ是等腰三角形时,AP=AQ,则20-3x=2x,解得x即可.13. 等腰但不等边的三角形的角平分线、高线、中线的总条数是()A.3 B.5 C.7 D.9答案:C解析:解答:等腰但不等边的三角形底边上的角平分线、中线、高线三线重合成一条;腰上的三条线不重合,因而共有7条线.分析:画出图形,根据等腰三角形的性质进行分析即可得到答案14. 已知△ABC中,三边a,b,c满足|b-c|+(a-b)2=0,则∠A等于()A. 60°B.45°C.90°D.不能确定答案:A解析:解答:△ABC中,三边a,b,c满足|b-c|+(a-b)2=0∴b-c=0,a-b=0,∴a=b=c,∴三角形是等边三角形,∴∠A=60°.分析:根据非负数的性质列式求解得到a=b=c,然后选择答案即可.15.等腰三角形周长为36cm,两边长之比为4:1,则底边长为()A.16cm B.4cm C.20cm D.16cm或4cm答案:B解析:解答:因为两边长之比为4:1,所以设较短一边为x,则另一边为4x;(1)假设x为底边,4x为腰;则8x+x=36,x=4,即底边为4;(2)假设x为腰,4x为底边,则2x+4x=36,x=6,4x=24;∵6+6<24,∴该假设不成立.所以等腰三角形的底边为4cm.分析:题中只给出了两边之比,没有明确说明哪个是底哪个是腰,所以应该分两种情况进行分析,再结合三角形三边的关系将不合题意的解舍去.二、填空题16. 等腰三角形的一个外角为110°,则底角的度数可能是_______.答案:70°或55°解析:解答:当110°是等腰三角形底角的外角时,底角为70°;当110°是等腰三角形顶角的外角时,因为等腰三角形两底角相等,所以一个底角的度数等于外角110°的一半,即55°分析:外角与它相邻的内角互补,外角等于和它不相邻的两个内角和.17. 等腰三角形的对称轴是____________.答案:底边上的高(顶角平分线或底边的中线)所在的直线解析:解答:根据等腰三角形的性质,等腰三角形的对称轴是底边上的高(顶角平分线或底边的中线)所在的直线.分析:本题根据等腰三角形是轴对称图形,其对称轴是底边上的高所在的直线,因为等腰三角形底边上的高,顶角平分线,底边上的中线三线合一,所以等腰三角形的对称轴是底边上的高(顶角平分线或底边的中线)所在的直线.18.△ABC中,AB=AC,∠A=36°,BD平分∠ABC,则∠1 =_______度,此三角形有_______个等腰三角形.答案:72°/3解析:解答:∵AB=AC,∠A=36°,∴△ABC是等腰三角形,∠C=∠ABC=(180°−36°)12⨯=72°.∵BD为∠ABC的平分线,∴∠ABD=∠A=∠DBC=36°,∴AD=BD,△ADB是等腰三角形,∴∠1=180°-36°-72°=72°=∠C,∴BC=BD,△CDB是等腰三角形.图中共有3个等腰三角形.分析:由已知条件,根据三角形内角和等于180、角的平分线的性质求得各个角的度数,然后利用等腰三角形的判定进行找寻,注意做到由易到难,不重不漏.19. 在△ABC中,与∠A相邻的外角是100°,要使△ABC是等腰三角形,则∠B的度是_________.答案:80°或50°或20°解析:解答:∵∠A的相邻外角是100°,∴∠A=80°.分两种情况:(1)当∠A为底角时,另一底角∠B=∠A=80°;(2)当∠A为顶角时,则底角∠B=∠C=(180°−80°)12⨯=50°(3)当∠B是顶角时,∠B=180°-2∠A=20°.综上所述,∠B的度数是80°或50°或20°.分析:已知给出了∠A的相邻外角是100°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还有用内角和定理去验证每种情况是不是都成立.20. 在△ABC中,若∠A=80°,∠B=50°,AC=5,则AB=_______.答案:5解析:解答:∵∠A=80°,∠B=50°,∴∠C=180°-80°-50°=50°.∴AB=AC=5.分析:由已知条件先求出∠C的度数是50°,根据等角对等边的性质求解即可.三、解答题.21.在△ABC中,AB=AC,AD是BC边上的高,∠C=63°,BC=4,求∠BAD的度数及DC的长.答案:27°/2 解答:∵AB =AC ,∠C =63°,∴∠B =∠C =63°,∴∠BAC =180°-63°-63°=54°. 又∵AD 是BC 边上的高,∴AD 是∠BAC 的平分线,AD 是BC 边上的中线,∴∠BAD =12∠BAC =27°,DC =12BC =2. 解析:分析:根据等腰三角形的两个底角相等求出顶角∠BAC 的度数,再由等腰三角形的三线合一性质即可求出∠BAD =12∠BAC =27°,DC =12BC =2. 22.在△ABC 中,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 、CE 相交于F .求证:AF 平分∠BAC答案:证明:∵AB =AC ,∴∠ABC =∠ACB .又∵BD ⊥AC ,CE ⊥AB ,∴∠BEC =∠CDB =90°. 在△BCE 和△CBD 中,∠ABC =∠ACB ,∠BEC =∠CDB ,BC =BC.∴△BCE ≌△CBD (AAS ).∴BE =CD.∵AB =AC ,BE =CD ,∴AB -BE =AC -CD ,∴AE =AD.∴在△AEF 和△ADF 中,AE =AD , AF =AF.△AEF ≌△ADF (HL ).∴∠EAF =∠DAF ,AF 平分∠BAC.解析:分析:要通过两次三角形全等,再结合等腰三角形的性质得出结论.23.如图,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE 都是等边三角形.BE 交AC 于F ,AD 交CE 于H ,求证:(1)△BCE ≌△ACD ; 答案:证明:∵△ABC 和△CDE 都是等边三角形,∴∠BCA =∠DCE =60°,BC =AC =AB ,EC =CD =ED ,∴∠BCE =∠ACD .在△BCE 和△ACD 中,,,,BC AC BCE ACD CE CD =⎧∠=∠=⎪⎨⎪⎩∴△BCE ≌△ACD (S A S );(2)CF =CH ; 答案:∵△BCE ≌△ACD ,∴∠CBF =∠CAH .∵∠ACB =∠DCE =60°,在△BCF 和△ACH 中,∴∠ACH =60°,∴∠BCF =∠ACH ,,,,CBF CAH BC AC BCF ACH ∠=∠=∠=∠⎧⎪⎨⎪⎩∴△BCF ≌△ACH (A S A ),∴CF =CH ;(3)△FCH 是等边三角形;答案:∵CF =CH ,∠ACH =60°,∴△CFH 是等边三角形.(4)FH ∥BD.答案:证明:∵△CHF 为等边三角形∴∠FHC =60°,∵∠HCD =60°,∴FH ∥BD解析:分析:由等边三角形的三边相等,三角都是60°,再根据平角的关系,就能证明△BCE ≌△ACD ;由△BCE ≌△ACD 得出对应角相等,结合等边三角形的边角特点证明△BCF ≌△ACH ,能得出CF =CH ;两边等,加上一个角60°推出△CFH 是等边三角形;根据内错角相等,两直线平行推出FH ∥BD .24. 如图,已知AB =AC =AD ,且AD ∥BC ,求证:∠C =2∠D答案:证明:∵AB=AC=AD,∴∠C=∠ABC,∠D=∠ABD.∴∠ABC=∠CBD+∠D.∵AD∥BC,∴∠CBD=∠D,∴∠ABC=∠D+∠D=2∠D,又∵∠C=∠ABC,∴∠C=2∠D.解析:分析:首先根据AB=AC=AD,∵AD∥BC,∴∠D=∠DBC可得∠C=∠ABC,∠D=∠ABD,∠ABC=∠CBD+∠D;然后根据AD∥BC,可得∠CBD=∠D,据此判断出∠ABC=2∠D,再根据∠C=∠ABC,即可判断出∠C=2∠D25.如图,在△ABC中,∠B与∠C的平分线交于点O,过O点作DE∥BC,分别交AB、AC于D、E,若AB=5,AC=4,求△ADE的周长.答案:解答:∵在△ABC中,∠B与∠C的平分线交于点O,∴∠DBO=∠CBO,∠ECO=∠BCO,∵DE∥BC,∴∠DOB=∠CBO,∠EOC=∠BCO,∴∠DBO=∠DOB,∠ECO=∠EOC,∴OD=BD,OE=CE,∵AB=5,AC=4,∴△ADE的周长为:AD+DE+AE=AD+DO+EO+AE=AD+DB+EC+AE=AB+AC=5+4=9.解析:分析:由在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,易证得△DOB与△EOC是等腰三角形,即DO=DB,EO=EC,继而可得△ADE的周长等于AB+AC,即可求得答案.北师大版数学八年级课时练习一、选择题1.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC 的周长是()A. 8B. 9C. 10D.11答案:C解析:解:∵ED是AB的垂直平分线,∴AD=BD,∵△BDC的周长=DB+BC+CD,∴△BDC的周长=AD+BC+CD=AC+BC=6+4=10.故选C.分析:由ED是AB的垂直平分线,可得AD=BD,又由△BDC的周长=DB+BC+CD,即可得△BDC的周长=AD+BC+CD=AC+BC.2.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A. 48°B. 36°C. 30°D. 24°答案:A解析:解:∵BD平分∠ABC,∴∠DBC=∠ABD=24°,∵∠A=60°,∴∠ACB=180°-60°-24°×2=72°,∵BC的中垂线交BC于点E,∴BF=CF,∴∠FCB=24°,∴∠ACF=72°-24°=48°,故选:A.分析:根据角平分线的性质可得∠DBC=∠ABD=24°,然后再计算出∠ACB的度数,再根据线段垂直平分线的性质可得BF=CF,进而可得∠FCB=24°,然后可算出∠ACF的度数. 3.如图,在等腰△ABC中,一腰AB的垂直平分线交另一腰AC于点G,若已知AB=10,△GBC的周长为17,则底BC的长为()A. 10B. 9C. 7D. 5答案:C解析:解:如图,∵在等腰△ABC中,一腰AB的垂直平分线交另一腰AC于点G,∴AG=BG,∵AB=10,△GBC的周长为17,∴CG+BG+BC=CG+AG+BC=AC+BC=17,AC=AB=10,∴BC=7.故选C.分析:首先根据题意在等腰△ABC中,一腰AB的垂直平分线交另一腰AC于点G,根据线段垂直平分线的性质,可得AG=BG,继而可得△GBC的周长=AC+BC=17,则可求得答案. 4.如图,AB=AC,∠A=40°,AB的垂直平分线DE交AC于点E,垂足为D,则∠EBC的度数是()A. 30°B. 40°C. 70°D. 80°答案:A解析:解:∵AB的垂直平分线DE交AC于点E,∴AE=BE,∴∠ABE=∠A=40°,∵AB=AC,∴∠ABC=∠C=70°,∴∠EBC=∠ABC-∠ABE=30°.故选A.分析:由AB的垂直平分线DE交AC于点E,可得AE=BE,继而求得∠ABE=∠A=40°,然后由AB=AC,求得∠ABC的度数,继而求得答案.5.如图,在△ABC中,AB的垂直平分线分别交AB,AC于D,E两点,且AC=10,BC=4,则△BCE的周长为()A. 6B. 14C. 18D. 24答案:B解析:解:∵AC=10,BC=4,∴AC+BC=10+4=14,∵DE是线段AB的垂直平分线,∴AE=BE,∴△BCE的周长=(BE+CE)+BC=AC+BC=14.故选B.分析:先根据AC=10,BC=4,可得出AC+BC的长,再根据DE是线段AB的垂直平分线可得到AE=BE,进而可得出答案.6.如图,在Rt△ABC中,∠C=90°,AC=12,AB=13,AB边的垂直平分线分别交AB、AC 于N、M两点,则△BCM的周长为()A. 18B. 16C. 17D. 无法确定答案:C解析:解:在Rt△ABC中,∠C=90°,AC=12,AB=13,由勾股定理得,BC=5,∵MN是AB的垂直平分线,∴MB=MA,∴△BCM的周长=BC+CM+MB=BC+CM+MA=BC+CA=17,故选:C分析:根据勾股定理求出BC的长,根据线段垂直平分线的性质得到MB=MA,根据三角形的周长的计算方法代入计算即可.7.如果三角形三条边的中垂线的交点在三角形的外部,那么,这个三角形是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等边三角形答案:C解析:解:如图,O是边AB和边AC的垂直平分线的交点,则AO=OB,AO=OC,所以∠OAB=∠OBA,∠OAC=∠OCA,∵∠BAC=∠OAB+∠OAC=∠OBA+∠OCA,∴∠BAC>∠ABC+∠ACB,∵∠BAC+∠ABC+∠ACB=180°,∴∠BAC>90°,即△ABC是钝角三角形,故选C分析:先根据题意画出图形,再根据线段垂直平分线性质、等腰三角形的性质、三角形的内角和定理求出∠BAC>90°即可.8. 已知MN是线段AB的垂直平分线,C,D是MN上任意两点,则∠CAD和∠CBD之间的大小关系是()A.∠CAD<∠CBD B.∠CAD=∠CBD C.∠CAD>∠CBD D.无法确定答案:B解析:解:∵MN是线段AB的垂直平分线,C,D是MN上任意两点,∴AC=BC,AD=BD,∴∠DAB=∠CBA,∠DAB=∠DBA,如图1,∠CAD=∠CAB+∠DAB,∠CBD=∠CBA+∠DBA,∴∠CAD=∠CBD;如图2,∠CAD=∠CAB-∠DAB,∠CBD=∠CBA-∠DBA,∴∠CAD=∠CBD.故选B.分析:首先根据题意画出图形,然后由MN是线段AB的垂直平分线,C,D是MN上任意两点,根据线段垂直平分线的性质可得:AC=BC,AD=BD,则可证得∠DAB=∠CBA,∠DAB=∠DBA,继而求得答案.9. 已知△ABC中,AB=AC,AB的垂直平分线交AC于D,△ABC和△DBC的周长分别是60 cm和38 cm,则△ABC的腰和底边长分别为()A.24 cm和12 cm B.16 cm和22 cm C.20 cm和16 cm D.22 cm和16 cm答案:D解析:解:如图,连接BD,∵D在线段AB的垂直平分线上,∴BD=AD,∴BD+DC+BC=AC+BC=38 cm,且AB+AC+BC=60 cm,∴AB=60 cm-38 cm =22 cm,∴AC=22 cm,∴BC=38 cm-AC=38 cm-22 cm =16 cm,即等腰三角形的腰为22 cm,底为16 cm,故选D.分析:连接BD,根据线段垂直平分线的性质可得到BD=AD,可知两三角形周长差为AB,结合条件可求得腰长,再由周长可求得BC,可得出答案.10.如图,地面上有三个洞口A、B、C,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A、B、C三个点的距离相等),尽快抓到老鼠,应该蹲守在()A.△ABC三边垂直平分线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三条中线的交点答案:A解析:解:∵三角形三边垂直平分线的交点到三个顶点的距离相等,∴猫应该蹲守在△ABC三边垂直平分线的交点处.故选A分析:根据题意,知猫应该到三个洞口的距离相等,则此点就是三角形三边垂直平分线的交点.11. 三角形内有一点到三角形三顶点的距离相等,则这点一定是三角形的()A.三条中线的交点B.三边垂直平分线的交点C.三条高的交点D.三条角平分线的交点答案:B解析:解:三角形内有一点到三角形三顶点的距离相等,则这点一定是三角形的三边垂直平分线的交点,故选:B.分析:根据线段垂直平分线的性质:线段垂直平分线上任意一点,到线段两端点的距离相等可得答案.12. △ABC中,AB=AC,AB的垂直平分线与直线AC相交所成锐角为40°,则此等腰三角形的顶角为()A.50°B.60°C.150°D.50°或130°答案:D解析:解:(1)当AB的中垂线MN与AC相交时易得∠A=90°-40°=50°,(2)当AB的中垂线MN与CA的延长线相交时,易得∠DAB=90°-40°=50°,∴∠A=130°,故选D.分析:此题根据△ABC中∠A为锐角与钝角分为两种情况解答.13. 如图,在Rt△ABC中,∠C=90°,直线DE是斜边AB的垂直平分线交AC于D.若AC=8,BC=6,则△DBC的周长为()A.12 B.14 C.16 D.无法计算答案:B解析:解:∵DE是AB的垂直平分线,∴DA=DB,∴△DBC的周长为CB+CD+DB=CB+CD+DA=BC+CA=6+8=14,故选:B分析:根据线段的垂直平分线上的点到线段的两个端点的距离相等得到DA=DB,根据三角形周长公式求出周长.14. 如图,在△ABC中,AB=A,AC=B,BC边上的垂直平分线DE交BC、BA分别于点D、E,则△AEC的周长等于()A.A+B B.A-B C.2A+B D.A+2B答案:A解析:解:∵ED垂直且平分BC,∴BE=CE.∵AB=A,AC=B,∴AB=AE+BE=AE+CE=A.∴△AEC的周长为:AE+EC+AC=A+B.故选A分析:要求三角形的周长,知道AC=B,只要求得AE+EC即可,由DE是BC的垂直平分线,结合线段的垂直平分线的性质,知EC=BE,这样三角形周长的一部分AE+EC=AE+BE=AB,代入数值,答案可得.15. 如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.在AC,BC两边高线的交点处B.在AC,BC两边中线的交点处C.在AC,BC两边垂直平分线的交点处D.在∠A,∠B两内角平分线的交点处答案:C解析:解:根据线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.则超市应建在AC,BC两边垂直平分线的交点处.故选C.分析:要求到三小区的距离相等,首先思考到A小区、B小区距离相等,根据线段垂直平分线定理的逆定理知满足条件的点在线段AB的垂直平分线上,同理到B小区、C小区的距离相等的点在线段BC的垂直平分线上,于是到三个小区的距离相等的点应是其交点,答案可得.二、填空题16.△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于E,交BC于F.若FC=3 cm,则BF=_________.答案:6 cm解析:解:连接AF.∵AB=AC,∠BAC=120°,∴∠B=∠C=30°;∵AC的垂直平分线EF交AC于点E,交BC于点F,∴CF=AF,∠FAC=30°,∴∠BAF=90°,∴BF=2AF(30°直角边等于斜边的一半),∴BF=2CF=6 cm.故答案是:6 cm分析:利用辅助线,连接AF,求出CF=AF,∠BAF=90°,再根据AB=AC,∠BAC= 120°可求出∠B的度数,由直角三角形的性质即可求出BF=2AF=2CF=6 cm.17. 如图,ED为△ABC的AC边的垂直平分线,且AB=5,△BCE的周长为8,则BC=________.答案:3解析:解:∵ED为AC上的垂直平分线,∴AE=EC,∵AB=AE+EB=5,△BCE的周长=AE+BE+BC=AB+BC=8,∴BC=8-5=3.故答案为:3分析:根据ED为AC上的垂直平分线,得出AE=CE,再根据AB=5,△BCE的周长为AB+BC=8,即可求得BC.18.如图,已知在△ABC中,AB=AC=10,DE垂直平分AB,垂足为E,DE交AC于D,若△BDC的周长为16,则BC=__________ .答案:6解析:解:∵DE垂直平分AB,∴AD=BD,∴AD+CD=BD+CD,即AC=BD+CD,∵AC=10,△BDC的周长为16,∴BC=16-AC=16-10=6.故答案为:6分析:先根据DE垂直平分AB可知,AD=BD,即AC=BD+CD,再由AC=10,△BDC的周长为16即可求出答案.19. 如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=答案:15解析:解:∵DE垂直平分AB,∴AD=BD,∠AED=90°,∴∠A=∠ABD,∵∠ADE=40°,∴∠A=90°-40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C=65°,∴∠DBC=∠ABC-∠ABD=65°-50°=15°,故答案为:15分析:根据线段垂直平分线求出AD=BD,推出∠A=∠ABD=50°,根据三角形内角和定理和等腰三角形性质求出∠ABC,即可得出答案.20.点P在线段AB的垂直平分线上,PA=7,则PB= _________.答案:7解析:解:∵点P在线段AB的垂直平分线上,PA=7,∴PB=PA=7,故答案为:7分析:根据线段垂直平分线的性质得出PA=PB,代入即可求出答案.三、解答题21. 某公园有海盗船、摩天轮、碰碰车三个娱乐项目,现要在公园内建一个售票中心,使三个娱乐项目所处位置到售票中心的距离相等,请在图中确定售票中心的位置.答案:解:如图,①连接AB,AC,②分别作线段AB,AC的垂直平分线,两垂直平分线相较于点P,则P即为售票中心解析:由三个娱乐项目所处位置到售票中心的距离相等,可得售票中心是海盗船、摩天轮、碰碰车三个娱乐场组成三角形的三边的垂直平分线的交点.22.如图,在△ABC中,∠C=90°,DE垂直平分AB,分别交AB,BC于D,E.若∠CAE=∠B+30°,求∠AEB的度数答案:140°解析:解:∵DE垂直平分AB,∴AE=BE,∴∠B=∠EAB.∵∠C=90°,∠CAE=∠B+30°,∴∠B+30°+∠B+∠B=90°,∴∠B=20°,∴∠AEB=180°-20°-20°=140°.分析:根据线段垂直平分线求出AE=BE,推出∠B=∠EAB,根据已知和三角形内角和定理得出∠B+30°+∠B+∠B=90°,求出∠B,即可得出答案.23.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)求证:△ABD是等腰三角形;(2)若∠A=40°,求∠DBC的度数;(3)若AE=6,△CBD的周长为20,求△ABC的周长答案:(1)证明:∵AB的垂直平分线MN交AC于点D,∴DB=DA,∴△ABD是等腰三角形.(2)30°(3)32解析:解:(1)证明:∵AB的垂直平分线MN交AC于点D,∴DB=DA,∴△ABD是等腰三角形;(2)∵△ABD是等腰三角形,∠A=40°,∴∠ABD=∠A=40°,∠ABC=∠C=(180°-40°)÷2=70°.∴∠BDC=∠ABC-∠ABD=70°-40°=30°.(3)∵AB的垂直平分线MN交AC于点D,AE=6,∴AB=2AD=12.∵△CBD的周长为20,∴AC+BC=20,∴△ABC的周长=AB+AC+BC=12+20=32.分析:(1)根据线段的垂直平分线到线段两端点的距离相等即可得证;(2)首先利用三角形内角和求得∠ABC的度数,然后减去∠ABD的度数即可得到答案;(3)将△ABC的周长转化为AB+AC+BC的长即可求得.24.如图所示,在△ABC中,DE是边AB的垂直平分线,交AB于E,交AC于D,连接BD.(1)若∠ABC=∠C,∠A=50°,求∠DBC的度数.(2)若AB=AC,且△BCD的周长为18 cm,△ABC的周长为30 cm,求BE的长.答案:(1)15°;(2)6 cm解析:解:(1)∵∠A=50°,∴∠ABC=∠C=65°.又∵DE垂直平分AB,∴∠A=∠ABD=50°,∴∠DBC=∠ABC-∠ABD=15°.(2)∵DE是AB的垂直平分线,∴AD=BD,AE=BE,∴△BCD的周长=BC+CD+BD=BC+CD+AD=BC+AC=18 cm.∵△ABC的周长=30 cm,∴AB=30-18=12 cm,∴BE=AE=6 cm.分析:(1)已知∠A=50°,易求∠ABC的度数.又因为DE垂直平分AB根据线段垂直平分线的性质易求出∠DBC的度数.(2)同样利用线段垂直平分线的性质:垂直平分线上任意一点,和线段两端点的距离相等可解.25.已知:如图,在△ABC中,MN是边AB的中垂线,∠MAC=50°,∠C=3∠B,求∠B 的度数=26°答案:B解析:解:∵MN是边AB的中垂线,∴AM=BM,∴∠BAM=∠B.设∠B=x,则∠BAM=x,∵∠C=3∠B,∴∠C=3x,在△ABC中,由三角形内角和定理,得x+x+3x+50°=180°,∴x=26°,即∠B=26°分析:根据线段垂直平分线性质得出AM=BM,推出∠BAM=∠B,设∠B=x,则∠BAM=x,∠C=3x,在△ABC中,由三角形内角和定理得出方程x+x+3x+50°=180°,求出即可。
【最新北师大版】数学八下易错题(含答案)
八年级下册易错题第一章 三角形的证明1.已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是(D ) A .7㎝ B .9㎝ C .12㎝或者9㎝ D .12㎝考查知识点:三角形的基本知识及等腰三角形边的关系:任意两边之和大于第三边,等腰三角形两腰相等, 因此只能是:5cm ,5cm,2cm.2.一个等腰三角形的一个角是40°,则它的底角是(D ) A .40° B .50° C .60° D .40°或70°考查知识点:三角形的内角和及等腰三角形两底角相等:①当40°是顶角时,底角就是70°;②40°就是一个底角.3.已知△ABC 的三边长分别是6cm 、8cm 、10cm ,则最长边上的高是(D )A.2.4cmB.3cmC.4cmD. 4.8cm提示:设最长边上的高为h,由题意可得△ABC 是直角三角形,利用面积相等求,即h .10.218.6.21 解得h=4.84.等腰三角形一腰上的高与另一腰的夹角为300,腰长为6,则其底边上的高是3或33. 解:①三角形是钝角三角形时,如图1,∵∠ABD=30°∴AD=21AB=21×6=3, ∵AB=AC , ∴∠ABC=∠ACB=21∠BAD=21(90°-30°)=30°, ∴∠ABD=∠ABC ,∴底边上的高AE=AD=3;②三角形是锐角三角形时,如图2,∵∠ABD=30° ∴∠A=90°-30°=60°, ∴△ABC 是等边三角形,∴底边上的高为23×6=33 综上所述,底边上的高是3或335.到三角形三个顶点的距离相等的点是三角形(B )的交点.A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高考查的知识点:三角形三边垂直平分线的交点到到三角形三个顶点的距离相等【归纳为:点到点距离相等,为垂直平分线上的点】还有一个:三角形三个内角平分线的交点到三角形三边的距离相等【归纳为:点到线的距离相等,为角平分线的交点,此时的距离有“垂直”】6.如图,在△ABC 中,AB=5,AC=3,BC 的垂直平分线交AB 于D ,交BC 于E ,则△ADC 的周长等于8考查的知识点:垂直平分线上的点到线段两端点的距离相等7. 用反证法证明:一个三角形中至少有一个内角小于或等于60°.答案:已知:△ABC , 求证:△ABC 中至少有一个内角小于或等于60° 证明:假设△ABC 中没有一个内角小于或等于60°,即每一内角都大于60° 则∠A>60°,∠B>60°,∠C>60°∴∠A+∠B+∠C>60°+60°+60°=180° 即∠A+∠B+∠C>180°,这与三角形的内角和为180度矛盾.假设不成立. ∴△ABC 中至少有一个内角小于或等于60°考查知识:反证法,用反证法进行证明时先写出已知、求证,再假设求证的反面成立,推出与题设、定理等相矛盾的结论,从而肯定原结论成立【注意:反证法一般很少用到,除非是题目要求用反证法证明,否则一般不考虑该方法】8. 如图所示,∠AOB=30°,OC 平分∠AOB ,P 为OC 上任意一点,PD ∥OA 交OB 于点D ,PE ⊥OA 于点E ,若PE=2cm ,则PD=_________cm .解:过点P 作PF ⊥OB 于F , ∵∠AOB=30°,OC 平分∠AOB , ∴∠AOC=∠BOC=15°, ∵PD ∥OA ,∴∠DPO=∠AOP=15°, ∴∠DPO=∠AOP=15°, ∴∠BOC=∠DPO , ∴PD=OD=4cm ,∵∠AOB=30°,PD ∥OA , ∴∠BDP=30°, ∴在Rt △PDF 中,PF=21PD=2cm , ∵OC 为角平分线,PE ⊥OA ,PF ⊥OB, ∴PE=PF ,∴PE=PF=2cm9.如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于N ,若BM+CN=9,则线段MN 的长为( ) A.6 B.7 C.8 D.9解:∵∠ABC 、∠ACB 的平分线相交于点E ,∴∠MBE=∠EBC ,∠ECN=∠ECB , ∵MN ∥BC ,∴∠EBC=∠EBC ,∠ECN=∠ECB , ∴BM=ME ,EN=CN , ∴MN=BM+CN , ∵BM+CN=9, ∴MN=9考查知识点:平行+平分,必有等腰三角形10.如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE=DG ,△ADG 和△AED 的面积分别为50和39,则△EDF 的面积为(B ) A.11 B.5.5 C.7 D.3.5解:作DM=DE 交AC 于M ,作DN ⊥AC , ∵在△AED 和△AMD 中∴△AED ≌△AMD ∴ADM ADE S S V V = ∵DE=DG ,DM=DE , ∴DM=DG ,∵AD 是△ABC 的外角平分线,DF ⊥AB , ∴DF=DN ,在Rt △DEF 和Rt △DMN 中,Rt △DEF ≌Rt △DMN (HL ),∵△ADG 和△AED 的面积分别为50和39, ∴ADM ADG MDG S S S V V V -==50-39=11MDG DEF DNM S S S V V V 21===21×11=5.5考查知识点:角平分线上的点到角两边的距离相等及三角形的全等11.在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是(A ) A.B.C.D.解:在Rt △ABC 中,AC=9,BC=12,根据勾股定理得:AB=151292222=+=+BC AC 过C 作CD ⊥AB ,交AB 于点D ,则由ABC S V =21AC .BC=21AB .CD ,得CD=AB BC AC .=1512x 91=536考查知识:利用面积相等法12.如图,在△ABC 中AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,AD 、CE 交于点H ,已知EH=EB=3,AE=4,则CH 的长是(A )A.1 B.2 C.3 D.4解:∵AD ⊥BC , ∴∠EAH+∠B=90°, ∵CE ⊥AB ,∴∠EAH+∠AHE=90°,∵EH=EB ,在△AEH 和△CEB 中,∴△AEH ≌△CEB (ASA ) ∴CE=AE ,∵EH=EB=3,AE=4, ∴CH=CE-EH=4-3=1考查知识:利用三角形全等求线段长度.13.如图,在△ABC 中,AD 是中线,AE 是角平分线,CF ⊥AE 于点F ,AB=5,AC=2,则DF 的长为23.解:延长CF 交AB 于点G , ∵AE 平分∠BAC , ∴∠GAF=∠CAF , ∵AF 垂直CG , ∴∠AFG=∠AFC , 在△AFG 和△AFC 中,∴△AFG ≌△AFC (ASA ) ∴AC=AG ,GF=CF , 又∵点D 是BC 的中点, ∴DF 是△CBG 的中位线, ∴DF=21BG=21(AB-AG )=21(AB-AC )=23点评:本题考查了三角形的中位线定理,解答本题的关键是作出辅助线,一般出现既是角平分线又是高的情况,我们就需要寻找等腰三角形.14.如图,在△ABC 中,AD 为∠BAC 的平分线,FE 垂直平分AD ,交AD 于E ,交BC 的延长线于F. 求证:∠CAF=∠B.解:∠B=∠CAF. ∵FE 垂直平分AD , ∴FA=FD ,∵AD为∠BAC的平分线,∴∠CAD=∠BAD又∵∠CAF=∠FAD=∠CAD,∠B=∠ADF-∠BAD,∴∠B=∠CAF点评:此题考查了线段垂直平分线的性质、角平分线的定义及三角形的外角等知识点.15.如图,OA、OB表示两条相交的公路,点M、N是两个工厂,现在要在∠AOB内建立一个货物中转站P,使中转站到公路OA、OB的距离相等,并且到工厂M、N的距离也相等,用尺规作出货物中转站P的位置.解:①作∠AOB的角平分线;②连接MN,作MN的垂直平分线,交OM于一点,交点就是所求货物中转站的位置.16. 如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.(1)证明:∵AD平分∠CAB∴∠CAD=∠EAD∵DE⊥AB,∠C=90°,∴∠ACD=∠AED=90°又∵AD=AD,∴△ACD≌△AED(2)解:∵△ACD≌△AED∴DE=CD=1∵∠B=30°,∠DEB=90°,∴BD=2DE=217.如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.(1)证明:∵AD⊥BC,∠BAD=45°∴∠ABD=∠45°=∠BAD∴AD=BD∵BE⊥AC∴∠CAD+∠AFE=90°∵AD⊥BC∴∠FBD=∠BFD=90°∴∠CAD=∠FBD又∠ADC=∠BDF=90° ∴△ADC ≌△BDF ∴AC=BF∵AB=BC ,BE ⊥AC ∴AC=2AE ∴BF=2AE(2)解:设AD=x ,则BD=x ∴AB=BC=2+x∵△ABD 是等腰直角三角形 ∴AB=2AD ∴2+x=2x 解得x=2+2即AD=2+218.如图,已知△ABC 是等边三角形,D 、E 分别在BA 、BC 的延长线上,且AD=BE.求证:DC=DE 证明:延长BE 至F ,使EF=BC ∵△ABC 是等边三角形 ∴∠B=60°,AB=BC ∴AB=BC=EF∵AD=BE ,BD=AB+AD, BF=BE+EF ∴BD=BF∴△BDF 是等边三角形 ∴∠F=60°,BD=FD 在△BCD 和△FED 中, BC=EF∠B=∠F=60° BD=FD∴△BCD ≌△FED (SAS ) ∴DC=DE19.如图,在△ABC 中,AC=BC ,∠ACB=90°,D 是AC 上一点,AE ⊥BD 交BD 的延长线于E ,且AE=21BD ,求证:BD 是∠ABC 的角平分线.证明:延长AE 、BC 交于点F ∵AE ⊥BE∴∠BEF=90°,又∠ACF=∠ACB=90° ∴∠DBC+∠AFC=∠FAC+∠AFC=90° ∴∠DBC=∠FAC 在△ACF 和△BCD 中∴△ACF ≌△BCD (ASA ) ∴AF=BD 又AE=21BD ∴AE=EF,即点E 是AF 的中点 ∴AB=BF∴BD 是∠ABC 的角平分线20.如图,在△ABC 中,分别以AC 、AB 为边,向外作正△ACD ,正△ABE ,BD 与AE 相交于F ,连接AF ,求证:AF 平分∠DME证明:过点A 分别作AM ⊥BD,AN ⊥CE,分别交BD ,CE 于M ,N 两点 ∵△ABE 和△ACD 均为等边三角形, ∴∠EAB=∠CAD=60°,AD=AC,AB=AE∵∠EAC=∠BAD=60°+∠BAC , ∴△EAC ≌△BAD ,∴ AM BD S AN CE S BAD EAC .21.21===V V CE=BD ∴AN=AM∴AF 平分∠DME (在角的内部到角两边距离相等的点在该角的平分线上)21.如图,已知:AB=AC ,∠A=90°,AF=BE,BD=DC.求证:FD ⊥ED.证明:连接AD. ∵∠A=90° AB=AC D 是BC 的中点 ∴AD ⊥BC ∠ADB=90° ∠B=45°=∠CAD AD=BD (直角三角形中,中线等于斜边的一半)且BE=AF ∴易证△BED ≌△AFD (SAS ) ∴∠BDE=∠ADF ∵∠ADE+∠EDB=∠ADB=90° ∴∠ADF+∠ADE=90° ∴ED ⊥FD第二章 不等式(组)不等式基本性质例:如果x >y ,那么下列各式中正确的是(C ) A .x-2<y-2 B .2x <2yC .-2x <-2yD .-x >-y 1.系数含有字母的不等式(组)解题思路:先把字母系数当做已知数,解除未知数的取值范围,再根据题意及不等式的性质或解不等式组的方法进行计算【特别注意:“=”一定要考虑,如果满足题意则要取,不满足题意就不取】(2) 已知关于x 的不等式(1-a )x >2的解集为x <a-12,则a 的取值范围是a >1. 提示:利用不等式的基本性质三:a-1<0 (3)如果不等式组⎩⎨⎧<+>-00b x a x 的解集是3<x <5,那么a=3,b=-5.提示:解得不等式组的解集为:a<x <-b而不等式组的解集为:3<x <5 ∴a=3,b=-5(4) 如果不等式 ⎩⎨⎧><m x x 8无解,那么m 的取值范围是 (B )A .m >8 B.m ≥8 C.m <8 D.m ≤8提示:不等式组无解的条件是:比大的还大,比小的还小;∴m ≥8【“=”一定要考虑,这个题取“=”就满足题意】(5)如果不等式组⎩⎨⎧>-<+m x x x 148的解集是3>x ,则m 的取值范围是(A ). A .m ≤3 B . m ≥3 C .m=3 D .m <3提示:不等式组解集:同大取大;解不等式组得而该不等式组的解集是3>x ,∴m ≤3【“=”一定要考虑,这个题取“=”就满足题意】(6)关于x 的不等式组()⎪⎩⎪⎨⎧->-+--<-325251263x x a x x 有三个整数解,则a 的取值范围是65-<a ≤32-. 解:解该不等式组得∵有三个整数解 ∴2<x <6a+10∴三个整数解应该是3,4,5 ∴5<6a+10≤6 解得65-<a ≤32- 【自己解答】(7) 若方程组⎩⎨⎧+=++=+3654,2m y x m y x 的解x ,y 均为正数,求m 的取值范围.提示:先将m 当作已知数,将x 、y 用含m 的式子表示出来,然后利用x ,y 均为正数,列出含m 的不等式组,解出m 的取值范围【自己解】2.解不等式(组)【不等式组的结果不能写成大括号的形式】 (1)解不等式1213312+-≥+)(x x ,并将解集在数轴上表示出来; (2)解不等式组⎪⎩⎪⎨⎧≤+--+<-1215312)1(315x x x x ,并把它的解集表示在数轴上.3.一元一次不等式(组)与一次函数利用一次函数解一元一次不等式(组):实质就是比较两个函数y 值得大小,函数值(y )越大,图像越高,函数值(y )越小,图像越高低,这里一般是让求自变量x 的取值范围,找出与x 轴交点的横坐标(指一元一次不等式),看让求图像在x 轴以上的自变量的取值范围(还是图像在x 轴以下的自变量的取值范围);或找出函数交点的横坐标,然后看在该交点以左满足题意还是交点以右满足题意. (1)函数y =kx +b (k 、b 为常数,k ≠0)的图象如图所示,则关于x 的不等 式kx+b>0的解集为(C ).A .x>0B .x<0C .x<2D .x>2(2)直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式x k b x k 21>+的解为x<-14.一元一次不等式(组)应用题◆一件商品的进价是500元,标价为600元,打折销售后要保证获利不低于8%,则此商品最多打9折.商品销售中需注意的地方:①“进价”也叫“成本”;“售价”也叫“标价”;②获利是在进价的基础上获利;打折是在售价基础上打折;③打几折就是给售价×10x 解:设可以打x 折. 那么(600×10x-500)÷500≥8% 解得x ≥9.故答案为:9.◆某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午,他又买了20斤.价格为每斤y 元.后来他以每斤2yx +元的价格卖完后,结果发现自己赔了钱,其原因是(B ) <B .>C .≤D .≥惠方式:第一种:买一支毛笔附赠一本书法练习本; 第二种:按购买金额打九折付款。
八年级数学下册易错专题:等腰三角形中易漏解或多解的问题 (2)(附答案)
易错专题:等腰三角形中易漏解或多解的问题◆类型一求长度时忽略三边关系【易错1】1.一个等腰三角形的两边长分别是4,8,则它的周长为( )A.12 B.16C.20 D.16或202.学习了三角形的有关内容后,张老师请同学们交流这样一个问题:“已知一个等腰三角形的周长是12,其中一条边长为3,求另两条边的长”.同学们经过片刻思考和交流后,小明同学举手说:“另两条边长为3,6或4.5,4.5.”你认为小明回答是否正确:________,理由是________________________.3.(·薛城区期末)若等腰三角形的三边长分别为x+1,2x+3,9,则x=________.4.已知等腰三角形ABC中,腰AC上的中线BD将三角形的周长分成9cm和15cm两部分,求这个三角形的腰长和底边长.◆类型二当腰或底不明求角度时没有分类讨论5.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为( )A.100° B.40°C.40°或100° D.60°6.已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为______________.7.(·普陀区模拟)我们把三角形中最大内角与最小内角的度数差称为该三角形的“内角正度值”.如果等腰三角形的“内角正度值”为45°,那么该等腰三角形的顶角度数为________.8.有一三角形纸片ABC,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两纸片均为等腰三角形,则∠C的度数可以是____________________.9.★一个大等腰三角形能被分割成两个小等腰三角形,试求这个大等腰三角形顶角的度数.◆类型三三角形的形状不明与高结合时没有分类讨论10.(·绥化中考)在等腰△ABC中,AD⊥BC交BC于点D.若AD=12BC,则△ABC的顶角度数为______________.11.已知等腰三角形一腰上的高与另一腰的夹角的度数为20°,求顶角的度数.【易错3】◆类型四一边确定,另两边不定,确定三角形的个数时漏解【易错4】12.如图,点A的坐标为(2,2),若点P在坐标轴上,且△APO为等腰三角形,则满足条件的点P有( )A.4个 B.6个 C.7个 D.8个第12题图第13题图13.如图,在4×5的点阵图中,每两个横向和纵向相邻阵点的距离均为1,该点阵图中已有两个阵点分别标为A,B,请在此点阵图中找一个阵点C,使得以点A,B,C为顶点的三角形是等腰三角形,则符合条件的C点有________个.14.如图是6×6的正方形网格,点A,B均在正方形格点上,在网格中的格点上找一点C,使△ABC为等腰三角形,简要写出步骤并标出点C的位置.参考答案与解析1.C 2.不正确没考虑三角形的三边关系 3.34.解:设腰长为xcm,分两种情况考虑:①腰长与腰长的一半是9cm时,即x+1 2 x=9,解得x=6,∴底边长为15-12×6=12(cm).∵6+6=12,∴6cm,6cm,12cm不能组成三角形;②腰长与腰长的一半是15cm时,即x+12x=15,解得x=10,∴底边长为9-12×10=4(cm),∴三角形的三边长为10cm,10cm,4cm,能组成三角形.综上所述,三角形的腰长为10cm,底边长为4cm.5.C 6.120°或20°7.30°或90°解析:设最小角的度数为x,则最大角的度数为x+45°.当最小角是顶角时,则x+x+45°+x+45°=180°,解得x=30°,此时三角形顶角的度数为30°.当最大角为顶角时,则x+x+45°+x=180°,解得x=45°,此时三角形顶角的度数为90°.综上所述,等腰三角形的顶角为30°或90°.8.40°或25°或10°解析:由题意知△ABD与△DBC均为等腰三角形,对于△ABD 有三种情况:①AB=BD,则∠ADB=∠A=80°,∴∠BDC=180°-∠ADB=100°,∠C=(180°-∠BDC)÷2=40°;②AB=AD,则∠ADB=(180°-∠A)÷2=50°,∴∠BDC=180°-∠ADB=130°,∠C=(180°-∠BDC)÷2=25°;③AD=BD,则∠ABD=∠A=80°,∴∠BDC=∠ABD+∠A=160°,∠C=(180°-∠BDC)÷2=10°.综上所述,∠C 的度数可以是40°或25°或10°.9.解:分四种情况讨论:(1)如图①,△ABC中,AB=AC,BD=AD,AC=CD,则∠B =∠C=∠BAD,∠CDA=∠CAD,∴∠CDA=∠B+∠BAD=2∠B,∴∠BAC=∠CAD+∠BAD =∠CDA+∠BAD=3∠B.∵∠BAC+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°,∴∠BAC=108°;(2)如图②,△ABC中,AB=AC,AD=BD=CD,则∠B=∠C=∠DAC=∠DAB,∴∠BAC =2∠B.∵∠BAC+∠B+∠C=180°,∴4∠B=180°,∴∠B=45°,∴∠BAC=90°;(3)如图③,△ABC中,AB=AC,BD=AD=BC,则∠ABC=∠C,∠A=∠ABD,∠BDC =∠C,∴∠BDC=∠A+∠DBA=2∠A,∴∠ABC=∠C=∠BDC=2∠A.∵∠A+∠ABC+∠C =180°,∴5∠A=180°,∴∠A=36°.(4)如图④,△ABC中,AB=AC,BD=AD,CD=BC.设∠A=x,∵AD=BD,∴∠DBA=∠A=x.∵AB=AC ,∴∠ABC=180°-x 2,∴∠DBC=∠ABC-∠ABD=180°-x 2-x.∵CD=BC ,∴∠BDC=∠A+∠A BD =2x =∠DBC=180°-x 2-x ,∴x=180°7,即∠A=180°7.综上所述,这个大等腰三角形顶角的度数为108°或90°或36°或180°7. 10.30°或150°或90° 解析:(1)当BC 为腰时,∵AD⊥BC,AD =12BC ,∴∠ACD =30°.如图①,当AD 在△ABC 内部时,顶角∠C=30°.如图②,当AD 在△ABC 外部时,顶角∠ACB=180°-30°=150°;(2)当BC 为底时,如图③.∵AD⊥BC,AD =12BC ,∴AD=BD =CD ,∴∠B=∠BAD,∠C =∠CAD,∴∠BAD+∠CAD=12×180°=90°,即顶角∠BAC=90°.综上所述,等腰三角形ABC 的顶角度数为30°或150°或90°.11.解:此题要分情况讨论:当等腰三角形的顶角是钝角时,如图①所示,腰上的高在三角形外部.由题意得顶角∠ACB=∠D+∠DAC=90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,如图②所示,故顶角∠A=90°-∠ABD=90°-20°=70°.综上所述,顶角的度数为110°或70°.12.D 解析:∵点A 的坐标为(2,2),∴△OAP 的边OA =22,这条边可能是底边也可能是腰.①当OA 是底边时,点P 是OA 的垂直平分线与坐标轴的交点,交点的坐标是(2,0)和(0,2);②当OA是腰时,当O是顶角顶点时,以O为圆心,以OA为半径作圆,与坐标轴的交点坐标是(22,0),(-22,0),(0,22),(0,-22);③当A 是顶角顶点时,以A为圆心,以AO为半径作圆,与坐标轴的交点坐标是(4,0),(0,4).综上可知满足条件的点P共有8个,故选D.13.5 解析:如图,分别以AB为腰、底找等腰三角形,故符合条件的C点有5个.第13题图第14题图14.解:如图,(1)当BA=BC时,符合条件的有C1,C2;(2)当AB=AC时,符合条件的有C3,C4;(3)当CA=CB时,符合条件的有C5,C6,C7,C8,C9,C10.综上所述,符合条件的C点有10个.。
新北师大版数学八下易错题含答案
请联系网站删除资料收集于网络,如有侵权八年级下册易错题明证一章三角形的第)1.已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是(D㎝㎝或者9㎝ D.12 A.7㎝ B.9㎝ C.12等腰三考查知识点:三角形的基本知识及等腰三角形边的关系:任意两边之和大于第三边,角形两腰相等,5cm,2cm.因此只能是:5cm, 2.一个等腰三角形的一个角是40°,则它的底角是(D) D70°.40°或A.40° B.50° C.60°°;底角就是70①当40°是顶角时,考查知识点:三角形的内角和及等腰三角形两底角相等:.°就是一个底角②40)10cm,则最长边上的高是(D3.已知△ABC的三边长分别是6cm、8cm、 D. 4.8cmA.2.4cmB.3cmC.4cm是直角三角形,利用面积相等求,即h,由题意可得△ABC提示:设最长边上的高为11h10.6..8 .22解得h=4.8330.3或30等腰三角形一腰上的高与另一腰的夹角为,腰长为6,则其底边上的高是4.°ABD=30解:①三角形是钝角三角形时,如图1,∵∠11,AB=∴AD=×6=322∵AB=AC,11ACB=∠°∠BAD=(90°-30)=30°,∴∠ABC=22,∠ABCABD=∴∠;∴底边上的高AE=AD=3 ABD=30°②三角形是锐角三角形时,如图2,∵∠°,A=90∴∠°-30°=60 ABC∴△是等边三角形,333∴底边上的高为6=×233或综上所述,底边上的高是3.到三角形三个顶点的距离相等的点是三角形(5.B)的交点三条高 C.三个内角平分线 B.三边垂直平分线三条中线 D.A.考查的知识点:三角形三边垂直平分线的交点到到三角形三个顶点的距离相等【归纳为:点到点距离相等,为垂直平分线上的点】还有一个:三角形三个内角平分线的交点到三角形三只供学习与交流.请联系网站删除资料收集于网络,如有侵权】边的距离相等【归纳为:点到线的距离相等,为角平分线的交点,此时的距离有“垂直”的周,则△ADCAB于D,交BC于E,6.如图,在△ABC中,AB=5AC=3,BC的垂直平分线交长等于8考查的知识点:垂直平分线上的点到线段两端点的距离相等.60°7. 用反证法证明:一个三角形中至少有一个内角小于或等于60°已知:△ABC ,求证:△ABC中至少有一个内角小于或等于答案:°60°,即每一内角都大于证明:假设△ABC中没有一个内角小于或等于60 °°=180C>60°+60°+60∠,∠B>60°,∠C>60°∴∠A+B+∠则∠A>60°度矛盾.假设不成立.°,这与三角形的内角和为180∠B+∠C>180即∠A+60中至少有一个内角小于或等于°∴△ABC反证法,用反证法进行证明时先写出已知、求证,再假设求证的反面成立,推出考查知识:【注意:反证法一般很少用到,除非是与题设、定理等相矛盾的结论,从而肯定原结论成立题目要求用反证法证明,否则一般不考虑该方法】PE⊥OAD,交OB于点OC∠AOB=30°,OC平分∠AOB,P为上任意一点,PD∥OA8. 如图所示, PD=_________cm.,若PE=2cm,则于点E,OB于F解:过点P作PF⊥,平分∠AOB°,∵∠AOB=30OC °,∠BOC=15∴∠AOC= ,∥OA∵PD AOP=15°,∴∠DPO=∠ AOP=15°,∴∠DPO=∠,∠∴∠BOC=DPO ,∴PD=OD=4cm ,∥OA∵∠AOB=30°,PD BDP=30°,∴∠1 PF=,PD=2cm中,∴在Rt△PDF2OB, ⊥OA⊥,PFPEOC∵为角平分线,PE=PF=2cm ,∴PE=PF∴只供学习与交流.资料收集于网络,如有侵权请联系网站删除AC,交于ME作MN∥BC交AB过点9.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E, A.6 B.7 C.8 D.9),若BM+CN=9,则线段MN的长为(于N,的平分线相交于点E∵∠ABC、∠ACB解: ECB,EBC,∠ECN=∠∴∠MBE=∠ BC,∵MN∥ ECB,,∠ECN=∠∴∠EBC=∠EBC EN=CN,∴BM=ME,,∴MN=BM+CN ,∵BM+CN=9MN=9∴平分,必有等腰三角形考查知识点:平行的面积分和△AEDE=D,△ADA是△AB的角平分线,DF⊥AB,垂足10如图 A.11 B.5.5 C.7 D.3.553,则△ED的面积为为,DN,作⊥AC解:作DM=DE交AC于M 中AED和△AMD∵在△AMDAED≌△∴△SS?∴ADMADE VV,DE=DG,DM=DE∵ DM=DG,∴,⊥的外角平分线,是△∵ADABCDFAB只供学习与交流.资料收集于网络,如有侵权请联系网站删除DF=DN,∴中,Rt△DMNRt在△DEF和HL),DEF≌Rt△DMN(Rt△和39,∵△ADG和△AED的面积分别为5=50-39=11ADMDAD1SS?S?11=5.5 =×MDG VVV DNMDEF22角平分线上的点到角两边的距离相等及三角形的全等考查知识点: AB的距离是(A)Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到11.在 C.D. B.A. BC=12,中,解:在Rt△ABCAC=9,222215AC12?BC?9?? AB=根据勾股定理得:,,交过C作CD⊥ABAB于点D1129x3611AC.BCS =,得CD==.AC=则由.BC=ABCD ABC V1552AB2考查知识:利用面积相等法,EH=EB=3HCEADED中12.如图,在△ABCAD⊥BC,CE⊥AB,垂足分别为、,、交于点,已知A.1 B.2 C.3 D.4A CH,则AE=4的长是()只供学习与交流.资料收集于网络,如有侵权请联系网站删除B解A°B=9∴EAHCA°∴EAHAHE=9BAH∴EH=E中AE和CE在△ASA)∴△AEH≌△CEB( CE=AE,∴,EH=EB=3∵,AE=4CH=CE-EH=4-3=1∴.考查知识:利用三角形全等求线段长度的长AB=5,AC=2,则DF于点是中线,AE是角平分线,CF⊥AEF,中,13.如图,在△ABCAD3. 为2,AB延长CF交于点G解:BAC∵AE平分∠,∠CAF,GAF=∴∠,CG∵AF垂直AFG=∴∠∠AFC,AFCAFG在△和△中,只供学习与交流.资料收集于网络,如有侵权请联系网站删除(ASA)∴△AFG≌△AFC ,GF=CF,∴AC=AG 是BC的中点,又∵点D CBG的中位线,DF∴是△3111)=)∴DF==(AB-ACAB-AGBG=(2222一般出现既是角平本题考查了三角形的中位线定理,解答本题的关键是作出辅助线,点评:分线又是高的情况,我们就需要寻找等腰三角形.14.如图,在△ABC中,AD为∠BAC的平分线,FE垂直平分AD,交AD于E,交BC的延长线于F.求证:∠CAF=∠B.解:∠B=∠CAF.∵FE垂直平分AD,∴FA=FD,∴∠FAD=∠ADF∵AD为∠BAC的平分线,∴∠CAD=∠BAD又∵∠CAF=∠FAD=∠CAD,∠B=∠ADF-∠BAD,∴∠B=∠CAF点评:此题考查了线段垂直平分线的性质、角平分线的定义及三角形的外角等知识点.15.如图,OA、OB表示两条相交的公路,点M、N是两个工厂,现在要在∠AOB内建立一个货物中转站P,使中转站到公路OA、OB的距离相等,并且到工厂M、N的距离也相等,用尺规作出货物中转站P的位置.解:①作∠AOB的角平分线;②连接MN,作MN的垂直平分线,交OM于一点,交点就是所求货物中转站的位置.只供学习与交流.资料收集于网络,如有侵权请联系网站删除.于点EAB,过点D作DE⊥16. 如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D ;≌△AED(1)求证:△ACD 的长.,求BD(2)若∠B=30°,CD=1CAB 平分∠∵AD (1)证明:EAD∠∴∠CAD= AB,∠C=90°,∵DE⊥ AED=90°∴∠ACD=∠ AD=AD,又∵≌△AED∴△ACDAED ACD ≌△)解:∵△(2DE=CD=1∴°,B=30°,∠DEB=90∵∠BD=2DE=2∴交于点BEAD与⊥BC于点D,∠BAD=45°,BE如图,△ABC中,AB=BC,⊥AC于点E,AD17. CF.F,连接BF=2AE;(1)求证:的长.CD=,求AD(2)若)证明:(1,∠BAD=45°⊥BC∵ADBAD =∠ABD=∠45°∴∠AD=BD ∴AC⊥∵BE AFE=90°∠∴∠CAD+BC⊥∵AD °∠∴∠FBD=BFD=90只供学习与交流.请联系网站删除资料收集于网络,如有侵权BFD AFE=∠又∠FBDCAD=∠∴∠ BDF=90°又∠ADC=∠BDF ≌△∴△ADCAC=BF∴AC ⊥∵AB=BC,BEAC=2AE ∴∴BF=2AEBD=x (2)解:设AD=x,则2+x∴AB=BC= 是等腰直角三角形∵△ABD2AD ∴AB=22x ∴+x=2解得x=2+2即AD=2+18.如图,已知△ABC是等边三角形,D、E分别在BA、BC的延长线上,且AD=BE.求证:DC=DE证明:延长BE至F,使EF=BC∵△ABC是等边三角形∴∠B=60°,AB=BC∴AB=BC=EF∵AD=BE,BD=AB+AD, BF=BE+EF∴BD=BF∴△BDF是等边三角形∴∠F=60°,BD=FD在△BCD和△FED中,BC=EF∠B=∠F=60°BD=FD∴△BCD≌△FED(SAS)只供学习与交流.资料收集于网络,如有侵权请联系网站删除∴DC=DE19.如图,在△ABC中,AC=BC,∠ACB=90°,D是AC上一点,AE⊥BD交BD的延长线于E,1BD,求证:BD是∠ABC的角平分线. 且AE=2证明:延长AE、BC交于点F∵AE⊥BE∴∠BEF=90°,又∠ACF=∠ACB=90°∴∠DBC+∠AFC=∠FAC+∠AFC=90°∴∠DBC=∠FAC在△ACF和△BCD中∴△ACF≌△BCD(ASA)∴AF=BD1BD 又AE=2∴AE=EF,即点E是AF的中点∴AB=BF∴BD是∠ABC的角平分线20.如图,在△ABC中,分别以AC、AB为边,向外作正△ACD,正△ABE,BD与AE相交于F,连接AF,求证:AF平分∠DME只供学习与交流.资料收集于网络,如有侵权请联系网站删除证明:两点,NBD,CE于M过点A分别作AM⊥BD,AN⊥CE,分别交均为等边三角形,和△ACD ∵△ABEAB=AE ,,AD=AC∴∠EAB=∠CAD=60°BAC,∠BAD=60°+∠∵∠EAC= BAD,∴△EAC≌△11AM.??S?SBDCE.AN CE=BD ∴BAD VV EAC22AN=AM∴(在角的内部到角两边距离相等的点在该角的平分线上)AF平分∠DME∴ED.⊥求证:FDAB=AC,∠A=90°,AF=BE,BD=DC.21.如图,已知:连接AD.证明:BC的中点D是AB=AC ∵∠A=90°(直角三角形中,中线等于斜边的一半)CAD AD=BD B=45°=∠⊥BC ∠ADB=90°∠AD∴BE=AF且SAS)≌△∴易证△BEDAFD (∠ADB=90°∠∠∴∠BDE=ADF ∵∠ADE+EDB=ADE=90°∠∴∠ADF+⊥FDED∴只供学习与交流.资料收集于网络,如有侵权请联系网站删除如图,在Rt△ABC中,D,E为斜边AB上的两点,且BD=BC,AE=AC,则∠DCE的大小为_____°.如图,在等腰△ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠OEC的度数是_____.第二章不等式(组)不等式基本性质例:如果x>y,那么下列各式中正确的是(C)xy-y -x>D.-2y C.-2x<<A.x-2y-2 B.<221.系数含有字母的不等式(组)解题思路:先把字母系数当做已知数,解出未知数的取值范围,再根据题意及不等式的性质或解不等式组的方法进行计算【特别注意:“=”一定要考虑,如果满足题意则要取,不满足题意就不取】【自己做】(1)已知关于x的方程3k-5x=-9的解是非负数,求k的取值范围.2,则a的取值范围是a x<>1. (2) 已知关于x的不等式(1-a)x>2的解集为1?a0 利用不等式的基本性质三:a-1<提示:x?a?0?的解集是3<(3)如果不等式组x<5,那么a=3,b=-5. ?x?b?0?提示:解得不等式组的解集为:a<x<-b而不等式组的解集为:3<x<5∴a=3,b=-5x?8?无解,那么m的取值范围是(4) 如果不等式(B)?x?m?A.m>8 B.m≥8 C.m<8 D.m≤8提示:不等式组无解的条件是:比大的还大,比小的还小;∴m≥8【“=”一定要考虑,这个题取“=”就满足题意】x?8?4x?1?x?3,则m的取值范围是(A )如果不等式组(5)的解集是.?x?m?只供学习与交流.资料收集于网络,如有侵权请联系网站删除3m<D.C.m=3 m≥3 A.m≤3 B.解不等式组得提示:不等式组解集:同大取大;3x?=”就满足题意】【而该不等式组的解集是“=”一定要考虑,这个题取“,∴m≤3??1x?2?x?3?6?25?ax??≤的不等式组.有三个整数解,则的取值范围是<a(6)关于x25??36?x2a?5??3?解该不等式组得解:∵有三个整数解6a+10<x<∴23,4,5 ∴三个整数解应该是6 <6a+10≤∴525?? a解得≤<36,m?2x?y??my. 的取值范围的解】【自己解答(7) 若方程组,均为正数,求?x3m??5y?64x?y均为正数,列,y 用含m的式子表示出来,然后利用提示:先将m当作已知数,将x、x的取值范围的不等式组,解出出含mm不等式组的结果不能写成大括号的形式2.解不等式(组)【】【自己解】)?1(3x2x?11??)解不等式,并将解集在数轴上表示出来;(123)1(x?x?1?35??,并把它的解集表示在数轴上)解不等式组.(2115x?2x????1?23?3.一元一次不等式(组)与一次函数利用一次函数解一元一次不等式(组):实质就是比较两个函数y值得大小,函数值(y)越大,图像越高,函数值(y)越小,图像越高低,这里一般是让求自变量x的取值范围,找出与x轴交点的横坐标(指一元一次不等式),看让求图像在x轴以上的自变量的取值范围(还是图像在x轴以下的自变量的取值范围);或找出函数交点的横坐标,然后看在该交点以左满足题意还是交点以右满足题意.?0)的图象如图所示,则关于x为常数,bk的不等、(+=函数(1)ykxbk式kx+b>0的解集为(C).只供学习与交流.请联系网站删除资料收集于网络,如有侵权x>2D.x<2 C B.x<0 .A.x>0xy?kx?bl::ly?k在同一平面直角坐标系中的图象如图所示,则(2)直线与直线2112x x?kkx?b的不等式关于的解x<-121一元一次不等式(组)应用题4.,则此商品8%600元,打折销售后要保证获利不低于◆一件商品的进价是500元,标价为.9折最多打;②获利是在进;“售价”也叫“标价”商品销售中需注意的地方:①“进价”也叫“成本”x价的基础上获利;打折是在售价基础上打折;③打几折就是给售价×10折.设可以打x解:x8% ≥那么(600×-500)÷50010.9解得x≥.故答案为:9斤.价格为30◆某商贩去菜摊买黄瓜,他上午买了斤,价格为每斤x元;下午,他又买了20y?x元.后来他以每斤y 每斤元的价格卖完后,结果发现自己赔了钱,其原因是(B)2x xxxyyyy D .C B.> .≥≤<y2030x?根据题意得,他买黄瓜每斤平均价是解:50yx?元的价格卖完后,结果发现自己赔了钱,则以每斤2y?20yx?30x>250y>解得:x只供学习与交流.请联系网站删除资料收集于网络,如有侵权>y∴赔钱的原因是x该商场为促销制5元。
易错易混淆集训:等腰(直角)三角形中易漏解或多解的问题之五大易错(5类热点题型讲练)(原卷版)
第05讲易错易混淆集训:等腰(直角)三角形中易漏解或多解的问题之五大易错(5类热点题型讲练)目录【考点一求等腰三角形的周长时忽略构成三角形的三边关系产生易错】 (1)【考点二当等腰三角形中腰和底不明求角度时没有分类讨论产生易错】 (2)【考点三求有关等腰三角形中的多解题没有分类讨论产生易错】 (2)【考点四求有关直角三角形中的多解题没有分类讨论产生易错】 (3)【考点五三角形的形状不明时与高线及其他线结合没有分类讨论产生易错】 (4)【考点一求等腰三角形的周长时忽略构成三角形的三边关系产生易错】例题:(2023春·陕西汉中·七年级校考阶段练习)已知一个等腰三角形的三边长分别为21x -,1x +,32x -,且21x -为腰长.求这个等腰三角形的周长.【变式训练】6.(2022春·七年级单元测试)用一条长为35cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的3倍,那么各边的长分别是多少?(2)能围成有一边长为7cm的等腰三角形吗?【考点二当等腰三角形中腰和底不明求角度时没有分类讨论产生易错】【考点三求有关等腰三角形中的多解题没有分类讨论产生易错】1.在△ABC中,∠B=70°,过点A作一条直线,将△ABC分成两个新的三角形.若这两个三角形都是等腰4.(2023春·江西九江·八年级统考期末)【考点四求有关直角三角形中的多解题没有分类讨论产生易错】【变式训练】1.(2023上·湖北武汉·八年级校联考期中)在BC 边上,连接AD ,若ABD △为直角三角形,则2.(2023下·河南郑州·七年级河南省实验中学校考期中)60BAC ∠=︒,78ACB ∠=︒,点F 为边4.(2023下·全国·八年级专题练习)已知在平面直角坐标系中运动,当点P与点A,B,C三点中任意两点构成直角三角形时,点【考点五三角形的形状不明时与高线及其他线结合没有分类讨论产生易错】例题:(2023秋·山东泰安·七年级东平县实验中学校考期末)等腰三角形一腰上的中线把三角形周长分为15和12两部分,则此三角形的底边长为()A.7B.11C.7或11D.无法确定【变式训练】1.(2023春·辽宁沈阳·八年级校考阶段练习)等腰三角形一腰上的高与另一腰的夹角为形的顶角为()A.45︒B.90︒2.(2022秋·广东惠州·八年级校考阶段练习)等腰三角形一腰上的高与另一腰的夹角为为.3.已知一个等腰三角形的周长为45cm,一腰上的中线将这个三角形的周长分为三角形的底长为.4.(2022春·广东广州·八年级校考阶段练习)在成24和30两部分,则底边BC的长为______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
易错专题:等腰三角形中易漏解或多解的问题
◆类型一求长度时忽略三边关系【易错1】
1.一个等腰三角形的两边长分别是4,8,则它的周长为()
A.12 B.16
C.20 D.16或20
2.学习了三角形的有关内容后,张老师请同学们交流这样一个问题:“已知一个等腰三角形的周长是12,其中一条边长为3,求另两条边的长”.同学们经过片刻思考和交流后,小明同学举手说:“另两条边长为3,6或4.5,4.5.”你认为小明回答是否正确:________,理由是________________________.
3.(2017·薛城区期末)若等腰三角形的三边长分别为x+1,2x+3,9,则x=________.
4.已知等腰三角形ABC中,腰AC上的中线BD将三角形的周长分成9cm和15cm两部分,求这个三角形的腰长和底边长.
◆类型二当腰或底不明求角度时没有分类讨论
5.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为()
A.100°B.40°
C.40°或100°D.60°
6.已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为______________.
7.(2017·普陀区模拟)我们把三角形中最大内角与最小内角的度数差称为该三角形的“内角正度值”.如果等腰三角形的“内角正度值”为45°,那么该等腰三角形的顶角度数为________.
8.有一三角形纸片ABC,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两纸片均为等腰三角形,则∠C的度数可以是____________________.
9.★一个大等腰三角形能被分割成两个小等腰三角形,试求这个大等腰三角形顶角的度数.
◆类型三三角形的形状不明与高结合时没有分类讨论
10.(2017·绥化中考)在等腰△ABC中,AD⊥BC交BC于点D.若AD=1
2BC,则△ABC的顶角度数为
______________.
11.已知等腰三角形一腰上的高与另一腰的夹角的度数为20°,求顶角的度数.【易错3】
◆类型四一边确定,另两边不定,确定三角形的个数时漏解【易错4】
12.如图,点A的坐标为(2,2),若点P在坐标轴上,且△APO为等腰三角形,则满足条件的点P有() A.4个B.6个C.7个D.8个
第12题图第13题图
13.如图,在4×5的点阵图中,每两个横向和纵向相邻阵点的距离均为1,该点阵图中已有两个阵点分别标为A,B,请在此点阵图中找一个阵点C,使得以点A,B,C为顶点的三角形是等腰三角形,则符合条件的C点有________个.
14.如图是6×6的正方形网格,点A,B均在正方形格点上,在网格中的格点上找一点C,使△ABC为等腰三角形,简要写出步骤并标出点C的位置.
参考答案与解析
1.C 2.不正确 没考虑三角形的三边关系 3.3
4.解:设腰长为x cm ,分两种情况考虑:①腰长与腰长的一半是9cm 时,即x +12x =9,解得x =6,∴底边长为15-12
×6=12(cm).∵6+6=12,∴6cm ,6cm ,12cm 不能组成三角形;②腰长与腰长的一半是15cm 时,即x +12x =15,解得x =10,∴底边长为9-12
×10=4(cm),∴三角形的三边长为10cm ,10cm ,4cm ,能组成三角形.综上所述,三角形的腰长为10cm ,底边长为4cm.
5.C 6.120°或20°
7.30°或90° 解析:设最小角的度数为x ,则最大角的度数为x +45°.当最小角是顶角时,则x +x +45°+x +45°=180°,解得x =30°,此时三角形顶角的度数为30°.当最大角为顶角时,则x +x +45°+x =180°,解得x =45°,此时三角形顶角的度数为90°.综上所述,等腰三角形的顶角为30°或90°.
8.40°或25°或10° 解析:由题意知△ABD 与△DBC 均为等腰三角形,对于△ABD 有三种情况:①AB =BD ,则∠ADB =∠A =80°,∴∠BDC =180°-∠ADB =100°,∠C =(180°-∠BDC )÷2=40°;②AB =AD ,则∠ADB =(180°-∠A )÷2=50°,∴∠BDC =180°-∠ADB =130°,∠C =(180°-∠BDC )÷2=25°;③AD =BD ,则∠ABD =∠A =80°,∴∠BDC =∠ABD +∠A =160°,∠C =(180°-∠BDC )÷2=10°.综上所述,∠C 的度数可以是40°或25°或10°.
9.解:分四种情况讨论:(1)如图①,△ABC 中,AB =AC ,BD =AD ,AC =CD ,则∠B =∠C =∠BAD ,∠CDA =∠CAD ,∴∠CDA =∠B +∠BAD =2∠B ,∴∠BAC =∠CAD +∠BAD =∠CDA +∠BAD =3∠B .∵∠BAC +∠B +∠C =180°,∴5∠B =180°,∴∠B =36°,∴∠BAC =108°;
(2)如图②,△ABC 中,AB =AC ,AD =BD =CD ,则∠B =∠C =∠DAC =∠DAB ,∴∠BAC =2∠B .∵∠BAC +∠B +∠C =180°,∴4∠B =180°,∴∠B =45°,∴∠BAC =90°;
(3)如图③,△ABC 中,AB =AC ,BD =AD =BC ,则∠ABC =∠C ,∠A =∠ABD ,∠BDC =∠C ,∴∠BDC =∠A +∠DBA =2∠A ,∴∠ABC =∠C =∠BDC =2∠A .∵∠A +∠ABC +∠C =180°,∴5∠A =180°,∴∠A =36°.
(4)如图④,△ABC 中,AB =AC ,BD =AD ,CD =BC .设∠A =x ,∵AD =BD ,∴∠DBA =∠A =x .∵AB =AC ,
∴∠ABC =180°-x 2,∴∠DBC =∠ABC -∠ABD =180°-x 2-x .∵CD =BC ,∴∠BDC =∠A +∠ABD =2x =∠DBC =180°-x 2-x ,∴x =180°7,即∠A =180°7.综上所述,这个大等腰三角形顶角的度数为108°或90°或36°或180°7
. 10.30°或150°或90° 解析:(1)当BC 为腰时,∵AD ⊥BC ,AD =12
BC ,∴∠ACD =30°.如图①,当AD 在△ABC 内部时,顶角∠C =30°.如图②,当AD 在△ABC 外部时,顶角∠ACB =180°-30°=150°;
(2)当BC 为底时,如图③.∵AD ⊥BC ,AD =12
BC ,∴AD =BD =CD ,∴∠B =∠BAD ,∠C =∠CAD ,∴∠BAD +∠CAD =12
×180°=90°,即顶角∠BAC =90°.综上所述,等腰三角形ABC 的顶角度数为30°或150°或90°. 11.解:此题要分情况讨论:当等腰三角形的顶角是钝角时,如图①所示,腰上的高在三角形外部.由题意得顶角∠ACB =∠D +∠DAC =90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,如图②所示,故顶角∠A =90°-∠ABD =90°-20°=70°.综上所述,顶角的度数为110°或70°.
12.D 解析:∵点A 的坐标为(2,2),∴△OAP 的边OA =22,这条边可能是底边也可能是腰.①当OA 是底边时,点P 是OA 的垂直平分线与坐标轴的交点,交点的坐标是(2,0)和(0,2);②当OA 是腰时,当O 是顶角顶点时,以O 为圆心,以OA 为半径作圆,与坐标轴的交点坐标是(22,0),(-22,0),(0,22),(0,-22);③当A 是顶角顶点时,以A 为圆心,以AO 为半径作圆,与坐标轴的交点坐标是(4,0),(0,4).综上可知满足条件的点P 共有8个,故选D.
13.5 解析:如图,分别以AB 为腰、底找等腰三角形,故符合条件的C 点有5个.
第13题图 第14题图
14.解:如图,(1)当BA =BC 时,符合条件的有C 1,C 2;
(2)当AB =AC 时,符合条件的有C 3,C 4;
(3)当CA =CB 时,符合条件的有C 5,C 6,C 7,C 8,C 9,C 10.综上所述,符合条件的C 点有10个.。