温室自动控制系统设计方案

合集下载

基于plc控制的温室大棚系统设计

基于plc控制的温室大棚系统设计
我国温室产业起步比较晚。自70年代末起,我国先后从日本、美国、荷兰和保加利亚等国引进了40套左右的现代化温室成套设备。虽然这些温室技术领先、设备先进,但在我国的使用过程中还存在较严重问题,主要有以下几点:引进价格高,运行经济效益差;技术要求过高,要求经营者既要懂农业技术,熟悉英文,还要掌握电脑操作和机械运营和维护;运营模式没有与中国的实际结合起来,不适合于我国的气候特征。所以,研究开发符合我国国情、产生明显经济效益并适用于大范围推广应用的自动控制温室系统己经迫在眉睫。基于以上的种种原因,我国的农业工程技术人员在吸收发达国家高科技温室生产技术的基础上,进行了温室中温度、湿度、光照等单因子控制技术的研究,并逐步推出既适宜我国经济发展水平又能满足不同生态气候条件要求的温室控制系统.
要依据苗圃的最适生长环境来制定温室环境,将最重要的环境因素如温室内空气温度、湿度、光照、二氧化碳浓度作为基本监测和控制项目, 这样避免了太复杂的控制方案。根据温室本身的特点设置了如图2 - 1所示控制系统的总体设计方案。
PLC在工业控制中应用多年,属于大批量生产的产品,其在生产、调试、应用、服务等方面都有一套完备的标准,所以产品质量稳定、可靠性高。
采用PLC成本虽然比单片机高,但要考虑到稳定性、可维护性等综合因素,采用PLC比单片机具有较高的性价比。而且当上位机发生故障时,PLC控制器可以自行实现数据采集、显示和输出等控制,不影响温室的自动运行。
智能温室控制系统将实现对农业生产的准确管理.通过控制器实时监测温室内空气温度、空气湿度、土壤温度、土壤湿度值,使对作物生长环境监测与普通简单温度、湿度计测量相比,更准确、更可靠。人们能够通过这些监测手段实时准确地了解情况,完成相关设备调节,避免了监测误差和监测滞后带来的损失。
智能温室将自动化技术引入了农业生产,为农业科研活动提供了有利的科学手段.通过参数设置及自动数据记录,为农艺工作者完成相关农艺科学研究,了解不同生产条件对作物的生长、品质影响及生产方法的改进,都提供了简便、准确的手段。

PLC温室温度控制系统设计方案

PLC温室温度控制系统设计方案

PLC温室温度控制系统设计方案嘿,大家好!今天咱们就来聊聊如何打造一套高效、稳定的PLC 温室温度控制系统。

这个方案可是融合了我10年的写作经验和实践心得,下面咱们就直接进入主题吧!一、系统概述咱们先来简单了解一下这个系统。

这个PLC温室温度控制系统是基于可编程逻辑控制器(PLC)技术,通过传感器实时监测温室内的温度,再通过执行机构对温室内的环境进行调节,从而达到恒定温度的目的。

这套系统不仅智能,而且高效,是现代农业发展的好帮手。

二、系统设计1.硬件设计(1)传感器:选用高精度的温度传感器,如PT100或热电偶,实时监测温室内的温度。

(2)执行机构:选用电动调节阀或者电加热器,用于调节温室内的温度。

(3)PLC控制器:选用具有良好扩展性的PLC控制器,如西门子S7-1200系列。

(4)通信模块:选用支持Modbus协议的通信模块,实现数据传输。

2.软件设计(1)温度监测模块:实时采集温室内的温度数据,并进行显示。

(2)温度控制模块:根据设定的温度范围,自动调节执行机构的动作,实现温室内的温度控制。

(3)报警模块:当温室内的温度超出设定的范围时,发出报警提示。

(4)通信模块:实现与上位机的数据交换,便于远程监控和操作。

三、系统实现1.硬件连接将温度传感器、执行机构、PLC控制器和通信模块按照设计要求进行连接。

其中,温度传感器和执行机构与PLC控制器之间的连接采用模拟量输入输出模块。

2.软件编程(1)温度监测程序:编写程序实现温度数据的实时采集和显示。

(2)温度控制程序:编写程序实现根据设定的温度范围自动调节执行机构的动作。

(3)报警程序:编写程序实现当温室内的温度超出设定的范围时,发出报警提示。

(4)通信程序:编写程序实现与上位机的数据交换。

3.系统调试(1)检查硬件连接是否正确,确保各个设备正常工作。

(2)运行软件程序,观察温度监测、控制、报警等功能是否正常。

(3)进行远程监控和操作,检验通信模块是否正常工作。

基于单片机的温室大棚环境参数自动控制系统

基于单片机的温室大棚环境参数自动控制系统

基于单片机的温室大棚环境参数自动控制系统一、本文概述随着科技的发展和现代化农业的需求增长,温室大棚环境参数的自动控制已成为提高农业生产效率、保证农产品质量的重要手段。

本文将介绍一种基于单片机的温室大棚环境参数自动控制系统,该系统能够实时监测并调控温室内的温度、湿度、光照等关键环境参数,以实现最优化的作物生长环境。

本文将首先概述系统的整体架构和工作原理,然后详细介绍各个组成部分的设计和实现,包括传感器选择、单片机编程、执行机构控制等。

还将讨论系统的优点、实际应用情况以及可能存在的问题和改进方向。

通过本文的阐述,旨在为相关领域的研究人员和从业者提供有益的参考,推动温室大棚环境参数自动控制系统的发展和应用。

二、单片机技术概述单片机,全称为单片微型计算机(Single-Chip Microcomputer),是一种集成电路芯片,它采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU、随机存储器RAM、只读存储器ROM、多种I/O 口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的微型计算机系统,在工业控制领域广泛应用。

单片机具有体积小、功耗低、控制功能强、扩展灵活、微型化和使用方便等优点。

单片机技术自20世纪70年代诞生以来,经历了从4位、8位、16位到32位等几大阶段的发展。

随着微处理器、半导体及超大规模集成电路技术的迅猛发展,单片机的技术也在不断进步。

目前,单片机已成为计算机发展和应用的一个重要方面。

在温室大棚环境参数自动控制系统中,单片机作为核心控制单元,负责接收各种传感器采集的数据,并根据预设的控制算法对这些数据进行处理,从而控制温室内的环境参数,如温度、湿度、光照等。

单片机通过其强大的数据处理能力和灵活的I/O控制能力,实现了对温室环境的精确控制,提高了温室大棚的生产效率和产品品质。

单片机还具有高度的集成性和扩展性,可以通过添加不同的外设模块,实现对温室大棚内其他环境参数的监控和控制,如土壤湿度、二氧化碳浓度等。

温室大棚自动控制系统设计说明书

温室大棚自动控制系统设计说明书

温室大棚自动控制系统设计说明书一、引言温室大棚是一种用于农业生产的重要设施,它能够为作物提供稳定的生长环境,改善生产效率。

为了进一步提升温室大棚的管理水平和自动化程度,我们设计了一套温室大棚自动控制系统。

本文将对该系统的设计进行详细说明。

二、系统概述本系统旨在实现温室大棚内环境的自动监测和控制。

主要包括以下功能模块:1. 温度控制:通过温度传感器实时监测温室大棚内外温度,并根据设定的温度阈值自动调节温室大棚的通风和加热设备,以保持适宜的温度。

2. 湿度控制:利用湿度传感器监测温室大棚内外湿度,并通过控制喷水系统和通风设备,自动调节湿度水平,以满足作物的需求。

3. 光照控制:通过光照传感器实时检测温室大棚内外光照强度,并根据设定的光照阈值,自动控制灯光的开关以及遮阳网的卷取。

4. CO2浓度控制:利用CO2传感器监测温室大棚内CO2浓度,并通过控制通风设备和CO2供应系统,维持适宜的CO2浓度,促进光合作用。

三、硬件设计1. 传感器选择:根据温室大棚内环境监测需求,选择适当的温度传感器、湿度传感器、光照传感器和CO2传感器,并与控制器进行连接。

2. 控制器选择:选择一款功能强大、可靠稳定的控制器,用于接收传感器数据、进行数据处理和控制信号输出。

3. 执行器选择:根据温室大棚的需求,选择适当的通风设备、加热设备、喷水系统、灯光和CO2供应系统,并与控制器进行连接。

四、软件设计1. 数据采集:控制器通过与传感器的连接,实时采集温室大棚内环境的数据,包括温度、湿度、光照强度和CO2浓度。

2. 数据处理:通过对采集的数据进行处理,分析温室大棚内环境的变化趋势,判断当前是否需要进行调控。

3. 控制策略:制定合理的控制策略,根据设定的阈值和作物需求,自动调节通风、加热、喷水、灯光和CO2供应等设备的工作状态。

4. 用户界面:设计一个友好的用户界面,使操作人员能够方便地监控温室大棚内环境的数据,并进行手动控制。

毕业设计之基于单片机的温室大棚自动控制系统

毕业设计之基于单片机的温室大棚自动控制系统

毕业设计之基于单片机的温室大棚自动控制系统温室大棚自动控制系统是一种基于单片机的智能控制设备,旨在通过自动监测和调节环境参数,实现温室大棚内植物生长的最佳条件和增加农作物产量。

本文将探讨温室大棚自动控制系统的设计原理、功能以及其在农业生产中的应用价值。

温室大棚是一种有利于农作物种植的环境,通过温室大棚能够调节大气温度、湿度、二氧化碳浓度等因素,提供良好的种植环境。

然而,由于温室大棚环境参数无法自动调节,需要人工干预,导致工作量大、效率低下。

温室大棚自动控制系统的出现,能够解决这一问题。

温室大棚自动控制系统主要由传感器、执行器和控制器组成。

传感器负责监测环境参数,如温度、湿度、二氧化碳浓度等;执行器通过控制器的信号进行动作,如控制加热、通风、灌溉系统等;控制器则负责采集传感器数据,根据预设的控制策略进行决策,发送控制信号给执行器。

温室大棚自动控制系统具有以下功能:首先,能够实时监测温室大棚的环境参数,获取相关数据,并显示在控制面板上,方便人员了解温室大棚的状态。

其次,能够根据预设的设定值,自动调节温室大棚的温度、湿度、二氧化碳浓度等参数,实现温室大棚环境的精确控制。

最后,能够实现温室大棚内的报警功能,在异常情况下发出警报,并通过手机短信等方式通知操作人员。

温室大棚自动控制系统在农业生产中具有广泛的应用价值。

首先,它能够提高农作物的产量和质量,通过智能控制温室大棚的温度、湿度等参数,为农作物提供最适宜的生长环境。

其次,它能够节约人力资源,自动监测和调节温室大棚的环境参数,减少了人工干预的工作量。

最后,它能够降低能源消耗,通过智能控制加热、通风等设备的使用,实现能源的最优利用。

总之,基于单片机的温室大棚自动控制系统是一种高效、智能的农业生产设备。

通过自动监测和调节环境参数,实现温室大棚内植物生长的最佳条件和增加农作物产量。

它在农业生产中具有广泛的应用价值,可以提高农作物产量和质量,节约人力资源,降低能源消耗。

温室大棚自动化控制系统设计与实现

温室大棚自动化控制系统设计与实现

温室大棚自动化控制系统设计与实现一、引言随着科技的不断进步和农业发展的需求,现代农业越来越多地依赖于自动化技术。

温室大棚自动化控制系统作为农业自动化的重要组成部分,可以提高种植效率,降低劳动成本,改善环境条件,保障农作物的生长。

本文将介绍温室大棚自动化控制系统的设计与实现。

二、温室大棚自动化控制系统的概念与原理温室大棚自动化控制系统是指利用传感器、执行器、控制器等设备,根据农作物的生长环境需求,自动调控温度、湿度、光照、通风等参数,实现对农作物生长环境的精确控制。

其原理是通过传感器对环境参数进行监测,然后通过控制器对执行器进行指令控制,从而实现对温室大棚环境的自动调节。

三、温室大棚自动化控制系统的硬件设计1. 传感器选择与布置:温度、湿度、光照等环境参数是温室大棚生长的关键因素,因此需要选择相应的传感器对这些参数进行准确检测。

同时,要合理布置传感器位置,尽量避免测量误差和干扰。

2. 执行器选择与布置:根据温室大棚的要求,选择合适的执行器进行控制操作。

比如温度控制可以通过风机、加热器等设备来实现,湿度控制可以通过雾化器,通风控制可以通过开关门等方式实现。

3. 控制器选择:温室大棚自动化控制系统中,控制器起到控制传感器和执行器的作用。

可以选择单片机、PLC等控制器,根据实际需求进行配置和编程。

四、温室大棚自动化控制系统的软件设计1. 数据采集与处理:根据传感器采集到的环境参数数据,进行处理和分析,得出决策结果。

可以使用数据采集协议,如MODBUS等。

2. 控制策略设计:根据农作物的需求和环境参数,设计合理的控制策略。

比如温度过高,可以通过控制风机加大通风量以降低温度;湿度过低,可以通过控制雾化器增加湿度等。

3. 用户界面设计:为了方便用户对温室大棚自动化控制系统进行操作和监控,需要设计一个友好的用户界面。

可以通过触摸屏、远程监控等方式实现。

五、温室大棚自动化控制系统的实现与应用1. 系统搭建与调试:按照设计需求和硬件配置,搭建温室大棚自动化控制系统,并进行连通性测试和功能调试。

温室环境自动调节系统设计

温室环境自动调节系统设计

温室环境自动调节系统设计
温室环境自动调节系统是基于传感器、控制器和执行器等组成
的自动化控制系统,可以实时感知和调节温室内温度、湿度、二氧
化碳浓度等要素,以达到优化植物生长的目的。

系统设计步骤:
1. 传感器选择:选择适合温室环境的温度传感器、湿度传感器、光照传感器和二氧化碳传感器等,这些传感器需能准确地检测温室
内环境参数。

2. 控制器选择:选择适合温室环境的控制器,控制器应配有合
适的输入输出模块,可对传感器采集的数据进行控制和处理。

3. 执行器选择:选择适合温室环境的执行器,如电动风口、电
磁阀门、温度、湿度等自动控制设备等。

4. 自动控制算法设计:根据采集的传感器数据,使用PID控制
算法、模糊控制算法等将环境参数调节至应有的数值,以满足植物
的生长需求。

5. 系统集成和优化:将传感器、控制器和执行器通过电路连接,生成完整的自动化系统。

在实际应用中,需要不断调试和优化系统
参数,以使系统能够更好地满足环境参数要求。

总之,温室环境自动调节系统设计需要综合考虑物理环境、传
感器、控制器、执行器和自动控制算法等多个元素,通过系统集成
和优化来实现动态调节和控制。

温室大棚控制系统

温室大棚控制系统

目录摘要 (I)ABSTRACT (II)第1章绪论 (1)1.1弓I言 (1)1.2设计目的 (1)1.3设计任务 (2)1.4设计要求 (2)第2章系统总体方案设计 (3)2.1集散控制系统结构 (3)2.2集散控制系统设计 (3)第3章硬件选型与连接 (5)3.1主控的选型与连接 (5)3.2热风机的选型与连接 (7)3.3遮阳帘的选型与连接 (7)3.4温度传感器的选型与连接 (8)3.5光照传感器的选型与连接 (8)3.6光照传感器的选型与连接 (9)3.7模拟量的选型与连接 (9)第4章软件设计与运行 (11)4.1光照控制软件设计 (11)4.2 CO2浓度控制软件设计 (11)4.3 PIC软件设计 (13)第5章调试与总结 (20)5.1软件的调试 (20)5.2软件的总结 (21)结论 (23)致谢 (24)参考文献 (25)随着社会经济的快速增长,人民生活水平不断提高,资源短缺、环境恶化与人口剧增的矛盾越来越突出。

传统农业大棚生产中,主要依靠人力、畜力和各种手工工具以及一些简单的机械动作,农业科技含量、装备水平相对滞后,浇水、灯光、施肥等控制全凭经验、靠感觉,导致农业大棚生产率低下、产量增长缓慢,从而阻碍了农业技术的进步以及生产工具的创新。

据此,特设计了智能化农业大棚控制系统。

设计目标指在实现对农业大棚内的温度、适度、光照、二氧化碳浓度、土壤酸碱度等环境进行智能化的采集,并通过PC主机对大棚进行无人管理,达到节省资源、提高效率的目的。

该智能农业大棚主要包括:智能通风控制、智能补光、智能灌溉、大棚空气质量(C02)自动调整等组成部分。

关键词:智能;采集;管理ABSTRACTWith the rapid growth of social economy and the continuous improvement of people's living standards, the contradiction between shortage of resources, en vir onmen tal deteriorati on and populati on in crease is beco ming more and more prominent. In traditi onal agricultural gree nhouse product ion, mainly rely on man power, ani mal power and various hand tools as well as some simple mecha nical actions, agricultural scie nce and tech no logy content, equipme nt level is relatively lagging behind, watering, lighting, fertilization and other control all rely on experience, rely on feeling, resulting in low productivity and slow yield growth in agricultural gree nhouse,thus hin deri ng the progress of agricultural tech no logy and inno vati on of product ion tools. Accord ing to this, the in tellige nt agricultural gree nhouse con trol system is specially desig ned.The desig n objective refers to the realizati on of the temperature, Appropriate, light, carb on dioxide concen trati on, soil pH and other en vir onments for in tellige nt collecti on, and through the PC host to the gree nhouse unmanned man ageme nt, to achieve the purpose of sav ing resources and impro ving efficie ncy.And the intelligent agricultural greenhouse mainly includes: intelligent ventilation control, intelligent light supplement, intelligent irrigation, greenhouse air quality (C02) automatic adjustme nt and other comp onen ts.Keywords: Single chip computer; Intelligence; Collection; Manageme第1章绪论1.1引言温室又称暖房,是用来栽培植物的设施。

基于PLC的大棚温度自动控制系统设计

基于PLC的大棚温度自动控制系统设计

清华大学毕业设计(论文)题目基于PLC的大棚温度自动控制系统设计系(院)自动化系专业电气工程与自动化班级2009级3班学生姓名雷大锋学号**********指导教师王晓峰职称副教授二〇一三年六月二十日独创声明本人郑重声明:所呈交的毕业设计(论文),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议。

据我所知,除文中已经注明引用的内容外,本设计(论文)不含任何其他个人或集体已经发表或撰写过的作品成果。

对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。

本声明的法律后果由本人承担。

作者签名:年月日毕业设计(论文)使用授权声明本人完全了解滨州学院关于收集、保存、使用毕业设计(论文)的规定。

本人愿意按照学校要求提交学位论文的印刷本和电子版,同意学校保存学位论文的印刷本和电子版,或采用影印、数字化或其它复制手段保存设计(论文);同意学校在不以营利为目的的前提下,建立目录检索与阅览服务系统,公布设计(论文)的部分或全部内容,允许他人依法合理使用。

(保密论文在解密后遵守此规定)作者签名:年月日基于PLC的大棚温度自动控制系统设计摘要大棚温度自动控制系统是一种为作物提供最好环境、避免各种棚内外环境变化对其影响的控制系统。

该系统采用FX2N系列PLC作为下位机,PC机作为上位机,采用三菱D-720通用变频器,采用温度、湿度、光照传感器采集现场信号,这些模拟量经PLC转化为数字信号,把转化来的数据与设定值比较,PLC经处理后给出相应的控制信号使环流风机、遮阴帘、微雾加湿机等设备动作,大棚温度就能实现自动控制。

这种技术不但实现了生产自动化,而且非常适合规模化生产,劳动生产率也得到了相应的提高,通过种植者对设定值的改变,可以实现对大棚内温度的自动调节。

关键词:大棚,温度控制,PLCThe Automatic Greenhouse Temperature ControlSystem Based on PLCAbstractThe system is a way to providing the best conditions to plants and promoting them growth very well ,avoiding the bad weather and effect of seasons outside the shed .This system uses FX2N series PLC as the next machine and PC as upper machine, using the Mitsubishi D-720 general frequency Manager. The sensor of temperature, humidity and light collecting scene signal, these simulation volumes are turned into digital signal by PLC, then compared with the setting value. At last, the PLC disposes of them, then contorts with wind machine, covering Yin curtain. According to the actual measured value of each sensor and the value determined in advance about greenhouse environmental factors. This system can suitable for the automation and mass production, the laboring productivity has been increasing by a wide margin through changing the target value of greenhouse environment, and we can control the greenhouse temperature automatically.Key words: greenhouse, temperature control, PLC目录第一章绪论 (1)1.1 大棚温度控制系统发展背景及现状 (1)1.2 大棚温度控制系统研究目的及意义 (2)第二章系统概述 (3)2.1 系统设计任务 (3)2.2 系统技术介绍 (3)2.2.1 传感技术 (3)2.2.2 PLC (4)2.2.3 上位机 (5)2.3 系统工作原理 (5)2.4小结 (7)第三章硬件部分设计 (8)3.1 环境调控系统 (8)3.2 传感器的选择 (10)3.3 系统硬件接线图 (12)3.3.1 系统主电路设计 (12)3.3.2 系统其他部分电路设计 (14)3.3.3 PLC部分电路设计 (15)3.4小结 (16)第四章软件设计 (17)4.1 PLC的I/O分布图 (17)4.2 系统程序 (18)4.2.1 系统温度PID调节程序 (18)4.2.2 系统主程序 (18)4.3 小结 (19)第五章结论 (20)参考文献 (21)谢辞 (22)第一章绪论1.1 大棚温度控制系统发展背景及现状如今塑料大棚、日光温室逐渐成为我国设施结构的主要结构类型。

温室大棚自动控制系统设计毕业论文

温室大棚自动控制系统设计毕业论文

温室⼤棚⾃动控制系统设计毕业论⽂温室⼤棚⾃动控制系统设计毕业论⽂⽬录第⼀章绪论 (1)1.1温室⼤棚⾃动控制技术发展的背景 (1)1.2温室⼤棚在国内外的发展概况 (1)1.3温室控制系统研究与开发的意义 (3)第⼆章设计⽅案 (4)2.1⽅案论述 (4)2.1.1系统设计任务 (4)2.2温室⼤棚⾃动控制系统设计⽅案 (5)2.2.1基于PLC为基础的温室⼤棚⾃动控制系统设计 (5)2.2.2基于单⽚机为基础的温室⼤棚⾃动控制系统设计 (6)第三章硬件设计 (8)3.1 PLC的简介 (9)3.1.1 PLC的概述 (9)3.1.2基本结构 (9)3.1.3⼯作原理 (10)3.1.4功能特点 (11)3.1.5选型规则 (12)3.1.6西门⼦S7-200 (15)3.2温度传感器 (16)3.2.1温度控制 (16)3.2.2 DS18B20的主要特性 (17)3.3湿度传感器 (17)3.3.1 湿度定义 (17)3.3.2湿度传感器的分类 (18)3.3.3 TRS-1 ⼟壤⽔分传感器 (19)3.4光照强度传感器 (20)3.4.1光照强度传感器的简介 (20)3.3.2 HA2003 光照传感器 (21)3.5⼆氧化碳浓度传感器 (22)3.5.1 ⼆氧化碳浓度传感器的⼯作原理 (23)3.5.2 GRG5H 型红外⼆氧化碳传感器 (24)3.6 EM 235模拟量输⼊模块 (25)3.7 温室⾃动控制系统的控制量与控制措施 (26)3.7.1 灌溉系统 (26)3.7.2 温度控制 (27)3.7.3 湿度控制 (27)3.7.4 光照强度控制 (27)3.7.5 ⼆氧化碳控制 (27)3.8硬件总体设计 (28)3.8.1 I/O分配表 (28)3.8.2硬件接线图 (28)第四章系统软件设计 (30)4.1 软件结构 (30)4.2温度控制软件设计 (30)4.2.1温度控制原理 (30)4.2.2温度控制流程图 (30)4.2.3温室温度控制梯形图 (32)4.3湿度控制软件设计 (34)4.3.1湿度控制原理 (34)4.3.2湿度控制流程图 (34)4.3.3温室湿度控制梯形图 (36)4.4光照强度控制软件设计 (38)4.4.1光照强度控制原理 (38)4.4.2光照强度控制流程图 (39)4.4.3温室光照强度软件控制流程图 (40)4.5⼆氧化碳浓度控制软件设计 (42)4.5.1⼆氧化碳浓度控制原理 (42)4.5.2⼆氧化碳浓度软件控制流程图 (43)4.5.3温室⼆氧化碳浓度控制流程图 (44)总结 (46)参考⽂献 (47)附录A 外⽂⽂献 (49)附录B中⽂翻译 (61)致谢 (71)第⼀章绪论1.1温室⼤棚⾃动控制技术发展的背景随着农业现代化的发展,设施园艺⼯程因其涉及学科⼴、科技含量⾼、与⼈民⽣活关系密切,已经越来越受到世界各国的重视。

基于PLC的智能温室控制系统的设计

基于PLC的智能温室控制系统的设计

基于PLC的智能温室控制系统的设计一、本文概述随着科技的不断进步和智能化的发展,温室控制技术已成为现代农业科技的重要组成部分。

传统的温室控制方法往往依赖于人工操作和经验判断,无法实现精准、高效的环境调控,而基于PLC(可编程逻辑控制器)的智能温室控制系统则能够实现对温室内部环境参数的实时监控和精确控制,从而提高温室作物的生长质量和产量。

本文旨在探讨基于PLC的智能温室控制系统的设计方法,包括系统的硬件和软件设计,以及实际应用中的性能测试和效果评估。

通过对该系统的研究,旨在为现代农业温室控制提供一种新的、更加智能化和高效的控制方案,为农业生产的可持续发展做出贡献。

二、智能温室控制系统的总体设计在设计基于PLC的智能温室控制系统时,我们首先需要对整个系统的总体架构进行明确规划。

本系统的设计目标是实现温室环境的自动化、智能化调控,以提高农作物的生长质量和产量。

智能温室控制系统由传感器网络、PLC控制器、执行机构和用户交互界面等部分组成。

传感器网络负责采集温室内的温度、湿度、光照、土壤养分等环境参数;PLC控制器作为核心,负责接收传感器数据,进行逻辑运算和决策,向执行机构发送控制指令;执行机构根据指令调节温室内的环境设备,如通风设备、灌溉设备、遮阳设备等;用户交互界面则提供人机交互功能,便于用户查看当前环境参数、历史数据以及手动控制温室设备。

考虑到温室控制系统的复杂性和实时性要求,我们选用性能稳定、编程灵活的PLC控制器。

具体选型时,我们综合考虑了控制器的处理速度、输入输出点数、通信接口以及扩展能力等因素,确保所选PLC 能够满足智能温室控制系统的需求。

传感器是获取温室环境参数的关键设备,我们选择了高精度、快速响应的传感器,以确保数据的准确性和实时性。

执行机构则是实现温室环境调控的重要手段,我们根据温室内的设备类型和调控需求,选择了相应的执行机构,如电动阀、电动窗帘等。

在智能温室控制系统中,各个组成部分之间需要进行高效的数据传输和通信。

智能温室环境控制系统开发方案

智能温室环境控制系统开发方案

智能温室环境控制系统开发方案第1章项目背景与需求分析 (3)1.1 背景介绍 (3)1.2 需求分析 (3)1.2.1 温室环境控制需求 (3)1.2.2 系统功能需求 (3)1.3 技术可行性分析 (4)1.3.1 技术现状 (4)1.3.2 技术可行性 (4)第2章系统总体设计 (4)2.1 设计原则 (4)2.2 系统架构 (5)2.3 技术选型 (5)第3章环境参数监测模块设计 (5)3.1 环境参数选取 (5)3.2 传感器选型与布置 (6)3.2.1 传感器选型 (6)3.2.2 传感器布置 (6)3.3 数据采集与处理 (6)3.3.1 数据采集 (7)3.3.2 数据处理 (7)第4章控制策略与算法设计 (7)4.1 控制策略概述 (7)4.1.1 温度控制策略 (7)4.1.2 湿度控制策略 (7)4.1.3 光照控制策略 (7)4.1.4 二氧化碳浓度控制策略 (7)4.2 算法设计 (8)4.2.1 温度控制算法 (8)4.2.2 湿度控制算法 (8)4.2.3 光照控制算法 (8)4.2.4 二氧化碳浓度控制算法 (8)4.3 系统优化 (8)第五章硬件系统设计 (9)5.1 主控制器选型 (9)5.2 执行器选型与设计 (9)5.3 通信模块设计 (10)第6章软件系统设计 (10)6.1 软件架构 (10)6.1.1 系统架构概述 (10)6.1.2 表现层设计 (10)6.1.3 业务逻辑层设计 (10)6.2 数据处理与分析 (11)6.2.1 数据处理 (11)6.2.2 数据分析 (11)6.3 界面设计与交互 (11)6.3.1 界面设计 (11)6.3.2 交互设计 (11)第7章系统集成与调试 (12)7.1 系统集成 (12)7.1.1 系统架构设计 (12)7.1.2 硬件集成 (12)7.1.3 软件集成 (12)7.2 功能测试 (12)7.2.1 传感器测试 (12)7.2.2 控制器测试 (12)7.2.3 执行器测试 (12)7.3 稳定性测试 (12)7.3.1 长时间运行测试 (13)7.3.2 环境干扰测试 (13)7.3.3 故障恢复测试 (13)第8章系统功能扩展 (13)8.1 云平台接入 (13)8.1.1 数据存储与备份 (13)8.1.2 数据分析与挖掘 (13)8.1.3 远程监控与控制 (13)8.2 智能决策支持 (13)8.2.1 数据预测 (13)8.2.2 优化调控策略 (14)8.2.3 异常报警与处理 (14)8.3 互联网农业应用 (14)8.3.1 农业物联网 (14)8.3.2 智能施肥与灌溉 (14)8.3.3 虚拟现实(VR)与增强现实(AR) (14)8.3.4 移动端应用 (14)第9章系统安全与维护 (14)9.1 系统安全 (14)9.1.1 安全策略 (14)9.1.2 防火墙与入侵检测 (15)9.1.3 数据安全 (15)9.2 数据备份与恢复 (15)9.2.1 备份策略 (15)9.2.2 恢复策略 (15)9.3 系统维护与升级 (15)9.3.1 系统维护 (15)第10章项目总结与展望 (15)10.1 项目总结 (16)10.2 技术展望 (16)10.3 市场前景分析 (16)第1章项目背景与需求分析1.1 背景介绍现代农业技术的快速发展,智能温室技术在提高农作物产量、改善品质以及减少资源消耗方面发挥着重要作用。

基于单片机的智能温室大棚系统设计与实现

基于单片机的智能温室大棚系统设计与实现

基于单片机的智能温室大棚系统设计与实现智能温室大棚系统是利用现代科技手段,结合单片机技术、传感器技术及自动控制技术,实现对温室环境的智能监测和自动控制,提高农作物生长的质量和产量。

本文将针对基于单片机的智能温室大棚系统进行设计与实现进行详细介绍。

一、系统结构设计智能温室大棚系统硬件结构设计主要包括传感器模块、执行器模块、单片机模块、通信模块和电源模块。

传感器模块用于监测温度、湿度、光照等环境参数,执行器模块用于控制灌溉、通风、遮阳等设备,单片机模块作为系统的核心控制单元,对传感器数据进行采集和处理,并根据预设的控制策略控制执行器模块实现自动控制,通信模块用于与上位机进行通信,实现远程监控与控制。

系统软件结构设计主要包括嵌入式控制程序和上位机监控程序。

嵌入式控制程序负责单片机的控制逻辑实现,包括传感器数据采集、控制策略实现和执行器控制等功能。

上位机监控程序通过通信模块与单片机进行数据交互,实现对温室环境参数的实时监测和控制,同时具备数据存储和分析功能,可以对历史数据进行回放和分析。

1. 温室环境参数监测功能系统通过温度传感器、湿度传感器、光照传感器等传感器模块实时监测温室内的环境参数,将数据传输至单片机进行处理,并通过通信模块传输至上位机,实现对温室环境参数的实时监测。

2. 自动控制功能系统根据预设的控制策略,通过单片机实时控制执行器模块,实现对温室灌溉、通风、遮阳等设备的自动控制。

在温度过高时自动开启通风设备;在土壤湿度过低时自动开启灌溉设备等。

3. 远程监控与控制功能系统可以通过通信模块实现与上位机的远程通信,用户可以通过上位机监控程序实时监测温室环境参数的变化,并可以远程控制温室的灌溉、通风、遮阳等设备,实现远程智能化管理。

三、系统实现方案1. 硬件实现方案系统硬件方案采用Arduino单片机作为核心控制单元,通过与传感器模块和执行器模块的连接,实现对温室环境的监测和控制。

通信模块采用Wi-Fi、蓝牙等无线通信技术,与上位机实现远程通信。

温室大棚自动控制系统的设计

温室大棚自动控制系统的设计

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊目录第1章绪论 (1)1.1选题背景 (1)1.2 国内外发展现状 (2)1.3 课题内容、目的及思路 (3)1.4 设计过程及工艺要求 (5)第2章方案的比较和选择 (6)2.1 湿度传感器的选择 (6)2.2温度传感器的选择 (8)2.3 光照度传感器的选择 (9)第3章系统的总体设计 (10)3.1 确定系统任务 (11)3.2 系统的组成和工作原理 (12)3.3 元件的特性 (15)3.3.1 STC89C52特点 (15)3.3.2 AD0804特点 (16)第4章电路设计 (18)4.1 湿度测量电路 (18)4.2 温度测量电路 (19)4.3 光照度测量电路 (19)4.4 数据显示电路 (20)4.5 复位电路 (21)4.6 键盘电路 (22)4.7继电器控制电路 (22)4.8 电源设计 (23)第5章软件设计 (25)5.1系统概述 (25)5.2 Keil C51单片机软件开发系统的整体结构 (25)5.3 使用独立的Keil仿真器时,注意事项 (26)5.4 Keil C51单片机软件基本操作步骤 (26)5.5 主程序流程图 (26)5.6 参数测量子程序流程图 (28)5.7 键盘扫描子程序流程 (28)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊第6章结论 (31)致谢 (32)参考文献 (33)附录 (35)附录1.系统总体电路图 (36)附录2.系统源代码 (36)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊第1章绪论1.1选题背景随着改革开放,特别是90年代以来,我国的温室大棚产业得到迅猛的发展,以蔬菜大棚、花卉为主植物栽培设施栽培在大江南北遍地开花,随着政府对城市蔬菜产业的不断投入,在乡镇内蔬菜大棚产业被看作是21世纪最具活力的新产业之一。

基于PLC的温室大棚控制系统设计

基于PLC的温室大棚控制系统设计

四、PLC程序设计
PLC(可编程逻辑控制器)是本系统的关键部件,负责实现模糊控制算法和 驱动执行器。在本系统中,我们将采用一种流行的PLC编程语言——Ladder Diagram(梯形图)来进行程序设计。梯形图是一种图形化编程语言,易于理解 和实现。在程序设计过程中,我们将根据模糊控制算法构建相应的逻辑控制流程, 包括数据采集、模糊化、模糊推理和去模糊化等步骤。
1、时钟和计数器:设置PLC的时钟和计数器,用于记录大棚内的温度、湿度、 光照等参数的平均值和变化量。
2、传感器数据读取:通过PLC的输入输出点读取温度、湿度、光照等传感器 的数据,并转换为实际数值。
3、控制逻辑:根据大棚的实际需求和控制目标,编写控制逻辑程序,实现 自动控制。例如,当大棚内温度过高时,启动通风设备进行降温;当大棚内湿度 过低时,启动灌溉设备进行浇水。
三、模糊控制算法
模糊控制算法是本系统的核心,它基于模糊集合论和模糊逻辑,能够处理不 确定性和非线性问题。在本系统中,我们将温度和湿度作为输入变量,将控制信 号作为输出变量。通过设定温度和湿度的上下限值,我们可以构建模糊条件语句, 并根据这些语句生成控制规则。在PLC控制器中,我们将采用模糊逻辑控制器来 实现这些控制规则,通过计算得出控制信号,以实现对温室大棚温湿度的精确控 制。
4、通讯接口:通过PLC的通讯接口将控制数据上传至计算机或云平台,实现 远程监控和管理。
参考内容
一、引言
温室大棚在现代农业生产中起到了关键作用,特别是在反季节种植和气候敏 感作物的种植上。温室内的温湿度环境是影响作物生长的重要因素,因此,如何 实现温湿度的精确控制是温室大棚管理的核心问题。本次演示将介绍一种基于模 糊控制理论的温室大棚温湿度控制系统,并详细阐述其PLC程序设计方法。

基于PLC的温室温度控制系统设计

基于PLC的温室温度控制系统设计

基于PLC的温室温度控制系统设计
简介
本文档介绍了基于PLC的温室温度控制系统的设计方案。


室作为植物生长的机械化生产基地,必须具备一定的环境条件,特
别是温度要满足植物生长的需要。

因此,为了保证温室内环境稳定,需要设计一套可以自动控制温室温度的系统。

系统组成
该系统由温度传感器、PLC控制器、电磁阀和风机等部分组成。

传感器负责感知温度,将采集的温度数据送至控制器进行处理。


制器根据设定的温度范围,遥控电磁阀和风机实现对温室温度的控
制和调节。

系统设计
1. 硬件设计
温度传感器采用DS18B20数字温度传感器,配合水晶震荡器,实现温度采集。

整个系统采用基于S7-200Smart PLC 的结构设计,
该PLC控制器内置模拟口和数字口,为系统搭建提供了保障。


磁阀选用2位通风电磁阀,以保障温室内环境的空气流动。

风机选
用5W风扇,配合两用龙头,实现温室内外空气的交替。

2. 软件设计
该系统采用WPL Soft进行编程设计。

根据采集到的温度数据,通过PLC对电磁阀和风机进行控制,实现温度的稳定控制。

具体
实现方式为:如果温度小于目标温度范围的下限值,PLC将打开电
磁阀和风机,吹入热空气;如果温度大于目标温度范围的上限值,PLC则将关闭电磁阀,同时打开风机,实现温室内外空气的交替。

总结
本文档介绍了基于PLC的温室温度控制系统的设计方案。


需要采集温度,然后将数据通过PLC进行控制,实现对温室温度
的自动调控,节省了人力和物力成本,提高了温室生产效率。

温室智能控制系统解决方案

温室智能控制系统解决方案

温室智能控制系统解决方案一、引言温室智能控制系统是一种基于先进技术的自动化系统,旨在提高温室环境的控制和管理效率,实现温室农作物的优质、高产、节能和可持续发展。

本文将介绍温室智能控制系统的基本原理、主要功能和优势,以及系统的组成部份和工作流程。

二、基本原理温室智能控制系统基于传感器、执行器和控制器的协同工作,通过对温室内外环境参数的实时监测和分析,以及对温室内设备的精确控制,实现对温室环境的智能调节。

系统的基本原理包括以下几个方面:1. 温室环境监测:通过安装温度、湿度、光照等传感器,实时监测温室内外环境参数,并将数据传输给控制器。

2. 数据分析与处理:控制器对传感器采集的数据进行分析和处理,根据预设的温室环境要求和作物生长需求,生成相应的控制策略。

3. 温室设备控制:根据控制策略,控制器通过执行器对温室内的设备进行精确控制,如通风系统、加热系统、灌溉系统等。

4. 监控与反馈:系统实时监控温室环境参数和设备状态,通过显示屏、手机应用等方式向用户提供实时数据和报警信息,同时接受用户的远程控制和调整。

三、主要功能和优势温室智能控制系统具有以下主要功能和优势:1. 温室环境调节:系统可以根据作物的生长需求和温室内外环境的变化,自动调节温度、湿度、光照等参数,提供最适宜的生长环境,促进作物的健康生长。

2. 节能与节水:系统可以根据实时数据和预设的控制策略,合理利用温室内外的自然资源,如太阳能、雨水等,减少能源和水资源的浪费,降低生产成本。

3. 自动化管理:系统可以实现对温室内设备的自动控制和管理,减少人工干预,提高生产效率和管理水平,降低人力成本。

4. 实时监控与报警:系统可以实时监测温室内外环境参数和设备状态,及时发现异常情况并发送报警信息,匡助用户及时采取措施避免损失。

5. 远程控制与调整:系统支持用户通过手机应用、互联网等远程方式对温室环境和设备进行监控和调整,方便用户随时随地进行管理。

四、系统组成部份温室智能控制系统由以下几个主要组成部份组成:1. 传感器:包括温度传感器、湿度传感器、光照传感器等,用于实时监测温室内外环境参数。

基于PLC的现代农业大棚自动控制设计

基于PLC的现代农业大棚自动控制设计

基于PLC的现代农业大棚自动控制设计1. 引言现代农业大棚自动控制是农业科技进步的重要方向之一。

基于PLC的现代农业大棚自动控制设计是一种先进的技术手段,能够提高农业生产效率、节约资源、保护环境。

本文将深入探讨基于PLC的现代农业大棚自动控制设计,以期为农业科技发展提供有益的参考。

2. 农业大棚自动化发展概述2.1 农业大棚自动化的背景随着人口增长和城市化进程加快,对食品供应和安全要求也越来越高。

传统的种植方式已经难以满足人们对食品品质和数量的需求,因此引入先进技术来提高生产效率成为必然选择。

2.2 农业大棚自动化发展现状目前,全球范围内已经出现了许多应用于农业大棚的自动化系统。

这些系统主要包括传感器、执行器、控制器等设备,通过互联网实现远程监测和控制。

3. 基于PLC的现代农业大棚自动控制设计原理3.1 PLC的基本概念和工作原理PLC(可编程逻辑控制器)是一种专门用于工业自动化控制的计算机设备,它具有高可靠性、高性能和易于编程的特点。

PLC通过接收传感器信号、处理逻辑运算,并通过执行器实现对设备的控制。

3.2 PLC在农业大棚自动化中的应用基于PLC的农业大棚自动化系统主要包括传感器、执行器和控制器。

传感器用于收集环境参数信息,如温度、湿度、光照等;执行器用于实现对设备的控制,如灌溉系统、通风系统等;控制器则负责处理传感器信号,并根据预设逻辑进行决策。

4. 基于PLC的现代农业大棚自动控制设计实例4.1 设计需求分析在设计基于PLC的现代农业大棚自动化系统时,首先需要进行需求分析。

根据种植作物类型和环境要求,确定需要监测和控制的参数,并确定所需传感器和执行机构。

4.2 系统硬件设计根据需求分析结果,选择合适型号和规格的传感器和执行机构,并进行布置和连接。

同时,设计适当的电路和电源供应系统,确保系统的可靠性和稳定性。

4.3 系统软件设计编写PLC程序,实现对传感器信号的采集、处理和控制信号的输出。

智能温室控制系统总体方案设计

智能温室控制系统总体方案设计

智能温室控制系统总体方案设计第1章智能温室控制系统总体方案设计要进行温室控制系统的总体方案设计,首先要了解温室控制的特点和要求以及相关的执行机构的工作状况,然后在此基础上提出温室控制的方案及其控制策略。

1.1影响植物生长的环境因子园艺作物的生长发育与产品器官的形成,决定于作物本身的遗传特性及外界环境条件的影响。

人们要获得优质高产的园艺产品,就必须使作物更好地适应自然环境或使环境更好地适合园艺作物的生长发育规律,实现作物与环境的统一。

温室内环境因子包括温度、湿度、光照、CO2、土壤及营养元素等。

控制温室的生态环境,就是控制温度、湿度等环境因子,使它们的数值能保持在作物的最佳生长范围内,使在露地生产中不能实现的环境因子调控成为可能。

下面简单介绍影响作物生长的环境因子:1.1.1温度温度是环境因子中最为敏感的因子,作物的光合作用、呼吸作用等各种生理活动都需要适宜的温度条件才能顺利地进行。

不同植物的生长发育对温室条件均有一定的要求,都有温度的“三基点”:即最低温度、最适宜温度和最高温度。

温室栽培中所种的植物既有像西瓜、南瓜一类的耐热植物。

也有像石刁柏这样的耐寒植物,种类多样。

另外,在自然条件下,一般表现除日温较高和夜温较低的周期性变化,同无温差条件相比,植物生长更为迅速,即生长温周期现象,人们在此基础上,开发出多段变温管理法和DIF温度管理法(明期和暗期温度逆转管理,即夜温高于昼温进行管理,能促进植株矮化)等来调节植物的生长。

1.1.2湿度水是进行光合作用的主要原料,也是植物细胞的主要组成部分,只有作物体内含有充足的水分,才能保证各种光合作用正常进行。

不同的作物对空气的湿度有不同的要求,针对温室中所种植的作物的特性,控制系统应当控制相应的湿度,以满足作物的要求。

土壤湿度的管理就是把包括渗灌、滴灌、微灌等灌溉技术应用到温室中来。

传统的大水漫灌既浪费水资源,又容易使土壤发生板结,提高了室内湿度。

在温室中应用渗灌技术具有灌水均匀,提高地温,保持土壤疏松,降低室内湿度,减轻病害发生,生育期提前等优点。

嵌入式温室大棚温度自动控制系统设计

嵌入式温室大棚温度自动控制系统设计
[5] 余兆成袁杨光友袁谢松.基于 OneNET 的大棚温湿度远程监 测系统[J].中国农机化学报袁2019袁40渊2冤院180-185.
[6] 翟浩霖袁单洁.基于窄带物联网的智能温室环境监测系统 设计[J].无线互联科技袁2019袁16渊20冤院157-158.
160
本系统控制核心选用的是意法半导体公司推出
159
农业工程学
的 STM32 系列 32 位的单片机袁 与 51 单片机等 MCU 系统类似袁STM32 在使用时的最小系统应该包括晶振 电路和复位电路遥 复位电路设置了按键复位袁当出现 系统野死机冶或程序野跑飞冶等特殊情况时袁可以利用按 键进行硬件复位遥另外袁STM32 正常工作还需要实时时 钟袁即给中央处理器渊CPU冤提供精确的时钟参数遥在中 央处理器的电路设计中有一个专门为时钟提供电源 的电池袁在停电时保证时钟正常工作袁一般采用 8 MHz 的理人员
服务器
NB-IoT 通讯模块
温度 传感器
电源系统
STM32 主控芯片
加热设备 卷帘机
通风风机
电脑 PC 端
按键系统
报警装置
图 1 系统整体硬件方案
温室大棚自动控制系统分为两级院上层是监控部 分袁 能够同时在 PC 端的网页上和手机端的 App 上实 时监测温室内的温度曰 下层是主控板下位机袁以 STM32 为主控芯片袁负责温度数据的采集尧Smith 预估 模糊 PID 控制算法的执行和对执行机构的控制遥 两者 基于 NB-IoT 物联网模块进行通信袁 实现数据的实时 互联遥 主控板部分接收来自温度传感器的温度数据袁 经过运算和逻辑处理控制加热设备和通风风机实现 室内温度自动调节[4]遥另外袁本系统还具备对棉被卷帘机 的控制功能和温度超限后就地声光报警的功能遥 2 系统主要电路设计 2.1 主控芯片模块
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(此文档为word格式,下载后您可任意编辑修改!)参赛题目:温室自动控制系统队长:朱继田队员:杨建成陶文波温室自动控制系统摘要:(300字以内)温度是一种环境参数,温度自动控制在工农业生产中具有非常重要的作用。

半导体制冷器(TEC)是一种比较先进的制冷装置,因为其小型化、无噪声、无污染的特点,在各种温度控制领域得到了广泛的应用,因此研究半导体制冷器温度的测量方法和设计灵活精确的温度自动控制系统具有重要的意义。

文章介绍了一种温度自动控制系统,该系统采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,AT89C52低电压、高性能半导体制冷器等元件。

单片机通过温度传感器获取当前温度,进而控制半导体制冷器工作。

一、方案设计和论证本系统由四大部分组成:1、温度检测装置;2、控制系统;3、执行机构;4、显示同步。

在其中2部分控制系统中,由于ATMEL公司的AT89C52单片机具有高密度、非易失性、低电压、高性能等优点,且满足本系统和电子设计大赛的两方面要求,因此采用AT89C52作为微控制器,该部分方案设计将在文章第三、四部分详细介绍。

以下主要针对温度检测系统及执行机构两方面的内容进行方案设计和论证。

模块1 温度检测装置方案设计对于温度的自动控制系统而言,温度检测是整个系统设计的第一步。

如何选择温度传感器是这块电路的关键,它是直接影响整个系统的性能与效果的关键因素之一。

方案:选用数字式温度传感器DS18B20论证:数字温度传感器DS18B20最大特点之一是采用了单总线的数据传输,直接输出数字信号。

与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。

因此便于单片机处理及控制,节省硬件电路。

该系统可以由数字温度计DS18B20和AT89C52单片机直接构成的温度测量装置。

不仅如此,DS18B20最小分辨率为0.0625℃,满足该题温度分辨率为0.1℃的要求,因此温度传感器选用DS18B20。

模块2 执行机构对于温度的自动控制系统而言,温度执行机构是整个系统设计最核心的一步。

温度执行机构的构建直接影响整个控制模块的工作方式和效率。

方案一:可控硅调功器电路论证可控硅调控器电路是利用双向可控硅管和加热丝串接在交流220V、50Hz回路。

在给定周期T内,AT89C52只要改变可控硅管的接通时间便可改变加热丝功率,以达到调节温度的目的。

显然可控硅在给定周期T的100%时间内接通时间的功率最大。

显然,对功率的调节从而调节温度达不到制冷效果,即使是通过外加风扇来带走外部热量也达不到,故不用此方案。

体按照特殊的结构组成的一种制冷装置,其基本原理是珀耳贴效应。

为了满足系统设计要求,缩短温度调节时间,需要对制冷器的安装进行论证。

一般情况下,该制冷片的制热效果较好,这里不做讨论,主要论证制冷片的制冷效果。

方案1:两片级联方式制冷为了获得更大的制冷功率,该方案采取两片级联的方式进行制冷,即将一片制冷片的冷端与另一片制冷片的热端粘贴在一起,组成一个功率更大的制冷片。

安装时,将级联方式的冷端放置在密封盒内,将热端安装在密封盒外。

方案2:单片水冷方式制冷为了使制冷器工作在最高效率的状态下,需要对其热端进行高效率散热。

该方案采用水冷方式对单片制冷片的热端进行冷却,从而达到降低制冷片冷热端温差的目的。

查阅大量资料表明,降低制冷片冷热端的温差能够明显提高制冷片的工作效率,从而获得较高的制冷功率,缩短温度调节时间。

方案3:单片风冷方式制冷为了加快制冷片的散热,外加风扇,通过风的流动带走制冷片中的热量,提高效率。

安装时,风扇贴近安装在密封盒外的热端。

论证:选用方案一将两片级联方式的制冷效果不明显,其原因可能有以下几方面:1、系统热端散热较慢导致热量累计,影响制冷片正常工作,散热装置需要进一步优化。

2、级联方式功率不匹配,即两片制冷片的功率不能设计成完全一致,其中一片的制冷量不能完全吸收另一片的导出热量,导致热量累计,影响制冷片工作,改进方式:做大量试验,给制冷片提供不同工作电压,使其工作在正常工作状态。

3、系统冷端散热慢导致热量累计,影响制冷片正常工作,散热装置需要进一步优化。

方案二提到的水冷的确可以提高制冷的效率,但是水冷的外围循环系统将大大限制了使用环境,加大了系统的成本,而且结构复杂,不易操作。

由于实验的条件限制,比较而言,方案三,外围设备简单,操作容易,可用范围广。

因此,选择方案三。

二、系统总体设计该温度自动控制系统由三大部分组成: 1、温度检测装置;2、控制系统;3、执行机构。

其系统框图如下:其中,温度检测装置采用单总线DS18B20数字温度传感器;控制系统是系统工作时,单片机首先读取默认设置温度,该温度可以通过键盘进行修改;单片机读取DS18B20的数据检测木盒内温度,并将检测的温度与设置温度进行对比,通过模糊控制PID算法,从而控制制冷器的工作状态;在执行部分的驱动电路中需要采用 MOSFET管IRFP460A进行PWM驱动控制模块。

为了能使半导体制冷器工作在制热和制冷两种状态,还需要在驱动电路采用继电器进行电流换向,并通过它进行电气隔离,继电器再接通制冷片进行温度调节。

继电器用NPN 三极管SKT9013驱动。

如果温度超出上下限值,系统将会报警,同时系统自动停机。

系统的所有工作状态都通过1602液晶屏(LCD)显示。

三、主要单元电路原理及理论分析与计算该系统硬件电路主要由四部分组成:1、传感器电路;2、单片机最小系统电路;3、驱动电路:4、报警电路。

其中第一部分传感器电路只包含单总线DS18B20数字温度传感器,因此连接非常简单。

第二部分单片机最小系统电路由单片机和电源、键盘、LCD显示等组成,这里不做详细介绍,下面的软件设计里面会有介绍。

下面对驱动电路和报警电路进行分析,其原理图如下所示:驱动电路由两个单片机管脚控制,分别是P3.5脚和P3.6脚。

其中,P3.5经过NPN型三极管9013反向驱动后,控制MOSFET管IRFP460A的截止和导通;P3.5上的PWM脉冲控制MOSFET管,从而达到控制制冷片电流的目的。

P3.6经过NPN型三极管9013反向驱动后,驱动两个单刀双掷的继电器。

两个继电器组成一个可控的双刀双掷开关,从而达到交换电流方向的目的。

在该部分用一个双刀双掷的继电器比较好,由于实验室材料缺乏的原因,所以这里用两个单刀双掷的继电器代替。

四、算法与软件设计1.系统的控制算法PID 控制是指比例、积分、微分控制,实现PID 控制的装置称为PID 调节器。

传递函数为:)()()(S S11KK S K S 1K K K S G v i p d p C ττ++=++= 式中:K 为其它环节总增益;为比例系数;为积分系数;为微分系数;;。

比例控制可快速、及时、按比例调节偏差,提高控制灵敏度。

但是有静差,控制精度低。

积分控制能消除偏差,提高精度、改善稳态性能,但是容易引起震荡,造成超调。

微分控制是一种朝前控制,能调节系统速度、减小超调量、提高稳定性,但是其时间常数过大会引入干扰、系统冲击大,过小则调节周期长、效果不显著。

比例、积分、微分控制相互配合,合理选择PID 调节器的参数,即比例系数、积分时间常数和微分时间常数,可迅速、准确、平稳的消除偏差,达到良好的控制效果。

采用增量式算法位置式输出PID 算法:)(i 2d i i i 1-i i 1-i i e e e Kp U U U U ∆⋅+⋅+∆+=∆+=ττ式中:,,为设定值与i 次实测值的偏差;;T 为采样周期,为积分时间,为微分时间。

上式为PID 控制软件的编程依据。

参数的选取是在参考经验数据的基础上用实验法确定,本系统中取,,,,这些参数在运行时刻适当调整,以获得满意的效果。

2、软件设计主程序包括初始化、按键设置及控制模块和显示模块的调用。

温度信号的采集、控制算法以及温度显示和时间等功能的实现由各子程序完成。

软件的主要流程是:利用DS18B20测量到的温度值与设定的温度进行比较,根据得到的偏差和偏差的变化率计算控制量,输出PWM 信号控制MOSFI 管驱动制冷片。

启动、停止以及给定值通过键盘利用外部中断产生,有按键输入时则调用中断服务程序。

否是否是不一致一致否控制算法流程图是主程序流程图五、系统测试及分析1、测试环境模拟测试:用Proteus软件进行部分模块的模拟测试地点:主教6012、测试仪器1、带温度测试的数字万用表一块2、输出12V,10A开关电源3、测试方法在电路设计安装完成,软件调试完成后对设计结果进行总体调试,测试工作包括三部分:a、在室温情况下,分别在5℃,10℃,15℃,20℃,25℃,30℃,35℃时,记录系统显示温度与带温度测量装置的万用表显示温度。

b、在室温情况下,设定系统温度为5℃,对系统进行降温,并每分钟记录系统当前温度。

c、测试温度控制精度,将设定温度分别调整到10℃,15℃,20℃,25℃,30℃,35℃,记录系统温度偏移值,并记录温度每提高5℃所经过的时间。

4、测试数据a、对比万用电表系统温度测量误差表。

b、降温测试数据记录表c、温度控制测试记录表5、进行结果及误差分析六、总结经过团队几天的努力,设计了自动温度控制装置,测量精度和测量范围在理论上基本达到了设计要求,在电路设计制作过程中较深入的了解了温度自动控制原理和控制方法。

了解了ATMEL公司器件AT89C52单片机的使用方法。

学习了单的使用方法。

了解了制冷技术的新方法。

在学习设计的过程中,发现主要有以下几个难点:1、18B20的时序非常严格,一旦时序紊乱将不会有任何结果。

2、半导体制冷片的效果固然是好,但是功率大,如何在实际中平衡还要进一步探索。

3、PID控制算法的理解与运用,如何使用好驱动电路。

在报警系统的意义探讨时,各有看法,最终敲定于提示“设置无效”和“超出工作范围”。

在进行设计的过程中,我们综合成本,环境等因素选择简单,易操作的方案,系统的性能还有提升空间,理论只是思想的建立,如何让它成为现实,还有更大一步需要去努力。

参考文献:1、盐城工学院学报(自然科学版)2006年第19卷第4期2、肖衡,陈春俊- PID温度控制装置的电路设计- 西安交通大学机械工程学院3、徐爱钧—《单片机原理实用教程》-电子工业出版社4、杨三青-《过程控制》-华中科技大学出版社5、《基于51单片机的温度测量系统》-中文核心期刊《微计算机信息》(嵌入式与SOC)2007年第23卷第1-2期6、高加林、郭微波《一种高效率TEC温度控制器的设计》-《集成电路通信》2007年3月第25卷第一期由于篇幅有限,详细资料见电子文档模拟加热显示模拟制冷显示。

相关文档
最新文档