GPS模块使用手册
定位器中文说明书
GSM/GPRS/GPS定位追踪器使用手册序言.非常感谢您购买我们的GPS定位跟踪器。
使用手册将详细的说明如何操作本产品。
因此务必请您在使用产品前认真的阅读本份使用手册。
如有更改,恕不另行通知。
每次更改将统一在最新的一次产品销售中发布。
生产商对于使用手册其中的过失和疏漏不承担法律责任。
目录1 简介---------------------------------------------------------------------------------- 32 应用领域---------------------------------------------------------------------------------- 33 硬件3.1 前面---------------------------------------------------------------------------------------- 33.2 后面----------------------------------------------------------------------------------------- 33.3 侧面--------------------------------------------------------------------------------------- 33.4 底面----------------------------------------------------------------------------------------- 43.5 内部---------------------------------------------------------------------------------------- 44 规格描述------------------------------------------------------------------------------------- 41 简介本产品基于GSM/GPS网络和GPS卫星定位系统,通过短信息或互联系对远程目标进行定位或监控.。
BDS GPS 双系统精密授时模块用户手册说明书
MXT902Copyright © 2015-2017Wuhan Mengxin Technology Co., Ltd.BDS/GPS 双系统 精密授时模块 用户手册修订记录对产品的特定用途适用性、适销性或对任何专利权、版权或其它知识产权的侵权责任等,均不作担保。
若不按手册要求连接或操作产生的问题,本公司免责。
武汉梦芯科技有限公司可能随时对产品规格及产品描述作出修改,恕不另行通知。
对于本公司产品可能包含某些设计缺陷或错误,一经发现将收入勘误表,并因此可能导致产品与已出版的规格有所差异。
如客户索取,可提供最新的勘误表。
版权所有© 2015-2017,武汉梦芯科技有限公司。
保留所有权利。
目录产品介绍 (1)1.1概述 (1)1.2 主要特征 (1)1.3 应用 (1)1.4 性能指标 (2)PIN脚功能描述 (3)2.1 PIN脚示意图 (3)2.2 PIN脚定义 (4)电气特性 (5)3.1 绝对最大值 (5)3.2 运行条件 (5)3.3 工作环境 (6)传输及外设接口 (6)4.1 PPS (6)4.2 I2C (6)4.3 UART (6)4.4 GPIO (6)4.5 EXTINT (6)默认配置 (6)5.1 串口设置(CFGPRT) (6)5.2 消息设置(CFGMSG) (7)5.3 导航系统设置(CFGNAV) (7)5.4 授时输出参数配置(CFGTPO) (7)5.5 时间脉冲模式设置(CFGTPM) (8)5.6 卫星系统配置(CFGSYS) (8)授时特性 (8)机械规格 (8)包装及运输 (9)8.1 包装 (9)8.2 ESD防护 (9)订购信息 (10)参考设计 (10)10.1 设计注意事项 (10)10.2 天线 (11)10.3 串口 (12)10.4 参考设计原理图 (13)10.5 参考设计PCB封装 (14)10.6 推荐炉温曲线 (15)产品介绍1.1 概述武汉梦芯科技有限公司设计生产的 MXT902 BDS/GPS双系统精密授时模块,基于公司完全自主知识产权的高精度消费类导航定位SoC芯片,能够同时支持 BDS B1、GPS L1 两个频点。
ORG1 308 GPS模块产品数据手册说明书
Fully Integrated GPS Module ORG1308 Data SheetORG1308 GPS receiver module of ORG13XX Series has been designed to address applications where placement flexibility is very important along with stand alone operation, high level of integration and low power consumption.The ORG13XX series are OriginGPS smallest, autonomous, fully featured GPS receivers, optimized for stand alone operation.Featuring OriginGPS Noise-Free Zone System TM technology the ORG13XX series offer the ultimate in high sensitivity GPS performance in small size.The ORG13XX series modules incorporate miniature multi-channel receiver that continuously tracks all satellites in view and provides accurate positioning data in industr y’s standard NMEA-0183 format.Internal ARM CPU core and sophisticated firmware keep GPS payload off the host and allow integration in low resources embedded solutions.The ORG13XX series modules are complete SiP (System-in-Package) featuring advanced miniature packaging technology and an ultra small footprint designed to commit unique integration features for high volume, low cost and low power applications.OriginGPS case study of the specifications of key components through involvement in R&D effort of major vendors derived in highest performance in industry’s smallest footprint parts available. These components placement using OriginGPS NFZ TM technology created hard-to-achieve laboratory performance in heavy-duty environment.OriginGPS has revised and enhanced the architecture of classic GPS receivers.Carefully selected key components including TCXO and LNA resulted in faster TTFF and operation stability under rapid environmental changes.2.1. Features▪Fully integrated multi channel GPS receiver▪Stand alone operation▪50Ω passive antenna input through miniature coaxial connector▪Noise Free Zone System TM Technology▪SiRFstarIII GSC3LTf chipset▪L1 frequency, C/A code▪20 channels searching, 12 channels parallel tracking▪Acquisition sensitivity: -157dBm▪Tracking sensitivity: -159dBm▪Fast TTFF: <40s (typical) under Cold Start conditions▪Rapid TTFF by aiding information upload capability▪Multipath mitigation▪Indoor tracking▪SBAS (WAAS, MSAS, EGNOS) support▪Multi-Mode Assisted GPS (A-GPS) support1: Autonomous, MS Based, MS Assisted▪Extended Ephemeris for very fast TTFFs support through SiRF InstantFix2▪Automatic and user programmable power saving scenarios▪Low power consumption: 100mW during acquisition▪ARM7 baseband CPU▪Selectable UART or SPI hardware interface▪Programmable UART protocol and message rate▪Selectable NMEA-0183 or SiRF Binary communication standards▪Single operating voltage: 3.3V to 5.5V▪Small footprint: 17mm x 17mm▪Surface Mount Device (SMD)▪Optimized for automatic pick–n-place and reflow equipment▪Industrial operating temperature range: -400 to 850C▪Pb-Free RoHS compliantNotes:1. SiRFLoc® Client (SLC) LT A-GPS Multimode Location Engine™ for GSM/3GPP or for CDMA IS-801A required2. SiRF InstantFix service required2.2. ArchitectureFigure 2-1: ORG1308 architecture▪Antenna inputSignals at 1575.42 MHz from the GPS satellites are being delivered from receiving antenna.▪LNA (Low Noise Amplifier)The LNA amplifies the GPS signal to meet GSC3LT RF front-end signal chain input threshold.Noise figure optimized design was implemented to provide maximum sensitivity.▪Band-pass SAW FilterBand-pass SAW filter eliminates inter-modulated out-of-band signals that may corrupt receiver performance.▪TCXO (Temperature Compensated Crystal Oscillator)This highly stable 16.369 MHz oscillator controls the down conversion process in RF block.Highest characteristics of this component are key factors in fast TTFF.▪UART BuffersUART interface is 1.8V/2.5V/3.3V compatible. Voltage level is defined externally by host.GSC3LTf ICFigure 2-2: GSC3LT functional block diagram SiRF GSC3LT GPS Navigation Engine includes the following features: ∙RF Receiver∙ARM7TDMI-S core∙SiRFstarIII-LT GPS DSP core∙ARM RAM with cache∙DSP RAM∙Interrupt Controller∙RTC Block∙Watchdog Timer∙Battery Backed RAM∙ 4 Mbit Program ROM∙UART Block∙SPI Block∙ 4 Integrated Voltage Regulators∙POR (Power-On-Reset) Circuitry3. Electrical Specifications3.1. Absolute Maximum RatingsAbsolute Maximum Ratings are stress ratings only.Stresses exceeding Absolute Maximum Ratings may damage the device.Table 3-1: Absolute maximum ratings3.2. Recommended Operating ConditionsFunctional operation above the Recommended Operating Conditions is not implied.Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.Table 3-2: Operating conditionsNote:1. Operation below -200C to -400C and above +700C to +850C is accepted, but TTFF may increase4. Performance4.1. Acquisition timesTTFF (Time To First Fix) – is the period of time from GPS power-up till position estimation. Hot StartA hot start results from software reset after a period of continuous navigation or a return from a short idle period that was preceded by a period of continuous navigation.In this state, all of the critical data (position, velocity, time, and satellite ephemeris) is valid to the specified accuracy and available in SRAM.Warm StartA warm start typically results from user-supplied position and time initialization data or continuous RTC operation with an accurate last known position available in memory. In this state, position and time data are present and valid, but ephemeris data validity has expired. Cold StartA cold start acquisition results when either position or time data is unknown. Almanac information is used to identify previously healthy satellites.Aided StartAiding is a method of effectively reducing the TTFF by making every start Hot or Warm.Table 4-1: Acquisition times4.2. SensitivityTable 4-3: Received signal strengthNote:1. Averaging of 5 SV’s with highest C/N0 @ -130dBm, HDOP <1.52. With 12mm x 12 mm x 2.6mm OriginGPS Antenna assembly4.4. Power ConsumptionTable 4-4: Power consumption 4.5. AccuracyTable 4-5: Accuracy 4.6. Dynamic Constrains11. Standard dynamic constrains according to regulatory limitations5. Power ManagementThe ORG13XX series modules have three main operating modes which are controlled by internal state-machine.These modes provide different levels of power and performance.5.1. Normal ModeIn Normal Mode the ORG13XX series are fully powered and will automatically acquire and trackGPS satellites.5.2. Power Saving ModesAdaptive Trickle Power TMAdaptive Trickle Power (ATP) is best suited for applications that require navigation solutions at afixed rate as well as low power consumption and an ability to track weak signals.In ATP mode the ORG13XX series module is intelligently cycled between three states to optimizelow power operation:Full Power StateThis is the initial state of the ORG13XX series module.The module stays in full power until a position solution is made and estimated to be reliable.During the acquisition mode, processing is more intense, thus consuming more power.CPU Only StateThis is the state when the RF and DSP sections are partially powered off.The state is entered when the satellites measurements have been acquired but thenavigation solution still needs to be computed.Standby StateThis is the state when the RF and DSP sections are completely powered off and baseband clock is stopped.Figure 5-1: ATP timingPush-to-Fix TMPush-to-Fix (PTF) is best suited for applications that require infrequent navigation solutions, optimizing battery life time.In PTF mode the ORG13XX series module is mostly in Hibernate Mode, waked up for Ephemeris and Almanac refresh in fixed periods of time. The PTF period is 30 minutes by default but can be anywhere between 10 seconds and 2 hours. When the PTF mode is enabled the receiver well stay on full power until the good navigation solution is computed.Figure 5-2: PTF timingHibernate StateIn this state the RF, DSP and baseband sections are completely powered off leaving only the RTC and Battery-backed RAM running. When the application needs a position report it can toggle the ON_OFF pin to wake up the module. In this case, a new PTF cycle with default settings begins.6. Interface6.1. Pin AssignmentTable 6-1: ORG13XX series pin-out6.2. ConnectivityPower supplyThe ORG13XX series module requires only one power supply V CC, which can be supplied directly from a battery since the module has internal regulators.It is recommended to keep the power supply on all the time in order to maintain the non-volatile RTC and RAM active for fastest possible TTFF. When the V CC is powered off settings are reset to factory default and the receiver performs Cold Start on next power up.Power supply current varies according to the processor load and satellite acquisition.V CC range is 3.3 to 5.5V DC.Typical I CC current is 30mA during acquisition. Peak I CC current is 50 mA.Typical I CC current in Hibernate state is 30µA.Voltage ripple below 300mV PP allowed for frequency under 10KHz.Voltage ripple below 30mV PP allowed for frequency between 10KHz and 100KHz.Voltage ripple below 10mV PP allowed for frequency between 100KHz and 1MHz.Voltage ripple below 3mV PP allowed for frequency above 1MHz.High voltage ripple may compromise the ORG13XX series module performance.In case of powering the ORG13XX from switching mode (DC-DC) power source carefully follow manufacturer’s application note and apply passive low pass filtering.GroundSingle Ground pin should be connected to main Ground with shortest possible trace or via.ON OFF Control InputThe ON_OFF control input can be used to switch the receiver between Normal or Hibernatemodes and also to generate interrupt in Push-to-Fix operation.The ON_OFF interrupt is generated by a low-high-low toggle, which should be longer than 62µs and less than 1s (100ms pulse length recommended).ON_OFF interrupts with less than 1 sec intervals are not recommended. Multiple switch bounce pulses are recommended to be filtered out.Input level is 3.3V compatible.Figure 6-1: ON_OFF timingnRESET InputThe Power-on-Reset (POR) is generated internally in the ORG13XX series module.Additionally, manual reset option is available through nRESET pin.Resetting the ORG13XX clears the RTC block and configuration settings become default.nRESET pin is active low and has internal pull-up resistor.nRESET signal should be applied for at least 1µs.COMM_SELThe ORG13XX is able to communicate via UART or SPI interface.UART is default communication interface.To select SPI communication 0Ω resistor to system Ground should be applied on this pin.Do not connect if SPI communication is not used.UARTThe device supports full duplex 8-N-1 UART communication without flow control.The default protocol is NMEA.The default configuration for baud rates and respective protocols can be changed by commands via NMEA or SiRF binary protocols.I/O levels in the serial port are CMOS 1.8V/2.5V/3.3V compatible.I/O levels are defined by applying appropriate voltage to V IO-EXT pin.Do not connect if UART communication is not used.SPIThe Host Interface SPI is a slave mode SPI that can be used as an alternative to the UART interface. The four primary pins are SDI, SDO, nSE, SCK.I/O levels are 1.8V compatible.Do not connect if SPI communication is not used.SCK clock frequency must not be higher than 48fo/7 (= 7 MHz approximately).The primary Host Interface SPI features are:∙TX and RX each have independent 1024 byte FIFO buffers.∙RX and TX have independent, software specified two byte idle patterns.∙TX FIFO is disabled when empty and transmits its idle pattern until re-enabled.∙RX FIFO detects a software specified number of idle pattern repeats and then disables FIFO input until the idle pattern is broken.∙FIFO buffers can generate an interrupt at any fill level.∙SPI detects synchronization errors and can be reset by software.The HSPI performs bit-by-bit transmitting and receiving at the same time whenever nSE is asserted and SCK is active.Receive operations do not require an enable.When the system is first turned on, the master in the host system is able to send a message before software has set up the receiver's idle pattern filter. At the system level, protocols are established to specify how the host platform must verify that the GPS system and host SPI are prepared for operation.In general, the GSC3LT loads a ‘power on’ message to the TX_FIFO to inform the host that operations can begin. The protocol specifies the delay and repeats intervals for host query of the slave SPI for this message. This limits the receive byte volume until idle pattern filters are established.On the receive side, the host is expected to transmit idle pattern when it is querying the transmit buffer, unless it has traffic for the GSC3LT. In this way, the volume is discarded, bytes are kept nearly as low as in the UART application because the hardware does not place most idle pattern bytes in the RX FIFO. Most messaging can be serviced with polling.The FIFO threshold can be placed to detect large messages requiring interrupt driven servicing. On the transmit side, the intent is to fill the FIFO only when it is disabled and empty. In this condition, the driver software loads as many queued up messages as can fit in the FIFO. Then the FIFO is enabled. The host is required to poll messages until idle pattern bytes are detected. At this point the FIFO is empty and disabled, allowing the driver to once again respond to an empty FIFO interrupt and load the FIFO with messages, if any are queued up in buffers.Figure 6-2: SPI timingECLK InputThe ECLK is available optionally for external clock input using SiRFLoc client firmware for A-GPS frequency aiding. Input level is CMOS 1.8V compatible. Pull low with 10kΩ when not used.Do not connect when using standard firmware version.TSYNC InputOptional input TSYNC input is intended for external time aiding using SiRFLoc client firmware for A-GPS. Input level is CMOS 1.8V compatible. Pull low with 10kΩ when not used.Do not connect when using standard firmware version.RF InputJ1 miniature coaxial connector is unbalanced RF input matched for 50Ω passive microstrip patch antenna.1PPS OutputThe pulse-per-second (PPS) output provides a pulse signal for timing purposes.Pulse length (high state) is about 1µs synchronized to full UTC second.I/O level is CMOS 1.8V compatible.Figure 6-3: 1PPSGPIO1 OutputGPIO1 is available as a valid fix indicator. Prior navigation the output stays at high state. During valid fix the output sends 100ms high state pulses at 1Hz rate. The I/O level is CMOS 1.8V compatible.GPIO2 OutputGPIO2 is available as a valid fix indicator. Prior navigation the output stays at low state. During valid fix the output sends 100ms high state pulses at 1Hz rate. The I/O level is CMOS 1.8V compatible.Figure 6-4: GPIO2 output period Figure 6-5: GPIO2 output6.3. Typical Application CircuitUART Communication100pFSDO GND110GND211GND312GND413GND51PPS_GPSTX_GPSRX_GPSnRESET ON_OFF GPIO2_GPSFigure 6-6: UART communication circuitSPI CommunicationnRESET ON_OFFGPIO2_GPS1PPS_GPSSPI_DO SPI_DISPI_CLK SPI_CS SDO GND110GND211GND312GND413GND5Figure 6-7: SPI communication circuit6.4. Recommended Land PatternGround pad at the middle should be connected to main Ground plane by multiple vias.Ground pad at the middle should be solder masked.7. Software FunctionsThe ORG13XX series modules support NMEA-0183 and SiRF Binary protocols.7.1. NMEANMEA Output MessagesNMEA Input Messages7.2. SiRF BinarySiRF Binary Output MessagesSiRF Binary Input Messages8. Handling Information8.1. Product Packaging and DeliveryPlastic ReelFigure 8-1: CarrierTable 8-1: Carrier dimensions [mm]Carrier material: Conductive PolystyreneFigure 8-2: Module positionPosition of Pin1Figure 8-3: ReelTable 8-2: Reel dimensions [mm]Reel material: Antistatic PlasticEach reel contains 200 or 500 modules.TubeFigure 8-4: TubeTube length: 515mmTube material: Antistatic PlasticEach tube contains up to 27 modules.18.425.138.2. Moisture SensitivityThe devices are moisture sensitive at MSL 3 according to standard IPC/JEDEC J-STD-033B.The recommended drying process for samples and bulk components is to be done at 125°C for 48 hours.8.3. AssemblyThe ORG13XX series module support automatic assembly and reflow soldering processes on the component side of the motherboard PCB according to standard IPC/JEDEC J-STD-020D for LGA SMD. Suggested solder paste stencil is 5 mil to ensure sufficient solder volume.Figure 8-4: Recommended soldering profileSuggested peak reflow temperature is 250°C for 10 sec. for Pb-Free solder paste.Absolute Maximum reflow temperature is 260°C for 10 sec.8.4. ReworkIf localized heating is required to rework or repair the ORG13XX series module, precautionary methods are required to avoid exposure to solder reflow temperatures that can result inpermanent damage to the device.8.5. ESD SensitivityThe ORG13XX series modules are ESD sensitive devices and should be handled with care.8.6. CompliancesThe ORG13XX series modules comply with the following standards:▪Pb-Free/RoHS (Directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment)▪ISO 9001:2000 accredited manufacturing facility8.7. Safety InformationImproper handling and use can cause permanent damage to the device.There is also the possible risk of personal injury from mechanical trauma or shocking hazard. 8.8. Disposal InformationThe product should not be treated as household waste.For more detailed information about recycling electronic components, please contact your local waste management authority.9. Mechanical Specifications▪ The ORG13XX series modules have advanced miniature packaging and a LGA footprint. ▪ The ORG13XX series modules PCB footprint size is 17mm x 17mm▪ The ORG1308 module is surface mount device packaged on a miniature printed circuit board with a metallic RF enclosure featuring miniature RF connector.▪ There are 22 surface mount connection pads with a base metal of copper and an Electroless Nickel / Immersion Gold (ENIG) finish.▪ The ORG13XX series modules have been designed for automated pick and place assembly and reflow soldering processes.9.1. ORG1308TOP VIEWBOTTOM VIEWSIDE VIEW All dimensions are in millimetersFigure 9-1: ORG1308 mechanical drawingTable 9-1: ORG1308 mechanical information9.2. PlugMating plug for J1 connector is Hirose W.FL or Sunridge MCD series.Figure 9-2: J1 mating plug mechanical drawing9.3. Antenna assemblyFigure 9-3: Antenna assembly mechanical drawing10. Ordering InformationORG1308 - R01 – TRXXX XXPackagingTR = Tape & ReelUAR = Demo BoardProgram configuration (table 10-1)Table 10-1: Program configuration。
MR-100 GPS卫星接收模块用户手册V1 2
MR-100GPS卫星接收模块用户手册深圳市海粤达科技有限公司www.sz 版本历史MR-100卫星接收模块使用手册V1.0 Review 2006-3-10 MR-100卫星接收模块使用手册V1.1 Review 2006-6-18 MR-100卫星接收模块使用手册V1.2 2006-7-20MR-100是深圳市海粤达科技有限公司完全自主设计开发出的一款GPS卫星接收模块,拥有全部知识产权,可为客户进行定制设计。
该模块面积仅为1×1平方英寸大小。
它提供了动态环境下的,无缝导航能力,即使在仅拥有咫尺天空的城市高楼峡谷中,仍可良好工作。
MR-100具有很高的灵敏度,即使微弱信号,也不会较低固有的精确度。
所以,MR-100对于您的各种应用都是最佳选择。
2、产品特性◆ 低价格低成本;◆ 紧凑短小的体积;◆ 符合工业使用标准;◆ 高灵敏度;◆ 电源功耗极低;◆ 快速接受信号;◆ RoHS /WEEE 认证。
3、应用范围◆ 嵌入手持设备◆ 嵌入汽车及航运导航设备◆ 汽车导航跟踪◆ 嵌入紧急定位仪◆ 地理测量◆ 个人定位◆ 体育和娱乐设备MR-100接收模块主要包括 Nemerix公司的NJ1030A 和 NJ1006A芯片,4Mbits Flash 存储器,以及应用软件。
整体结构图如下:指标说明概述L1 频率, C/A 编码16 个独立跟踪通道灵敏度高于-152dB (跟踪)更新率 1 Hz精度定位: 2.8米(带SA)信号接收冷启动: 46秒温启动: 34秒热启动:5秒信号重接受小于3秒动态性能高度:最大18000米速度:最大515米/秒震动:最大2G工作温度-40°C 到 85 °C存放温度-45°C 到 90°C工作湿度<95% 非凝结环境电源供应DC 3.3V ~ 6V耗电3V时 25mA接口30针NEMA 协议NEMA0183 v3.01(波特率: 4800/9600/… /57600默认值: 9600 )数据默认 WGS-84天线外接主动式天线;阻抗: 50 欧输出电压: 3.0V DC体积25.4mm × 25.4mm × 3mm6、GPS天线指标(推荐值)客户可以选择市场中不同的天线设计。
GPS 北斗定位模块 使用说明书 LH-GPS-DM-485-A
GPS/北斗定位模块使用说明书适用产品系列/型号:LH-GPS-DM-485-A历史版本目录1.产品介绍 ------------------------------------------------------------------- - 2 -2.规格参数 ------------------------------------------------------------------- - 2 -3.产品尺寸 ------------------------------------------------------------------- - 3 -4.通信协议与数据格式 -------------------------------------------------------- - 4 -4.1.通信协议说明----------------------------------------------------------- - 4 -4.2.寄存器定义 ------------------------------------------------------------- - 5 -4.3.协议详解 --------------------------------------------------------------- - 7 -4.3.1.读取版本号 --------------------------------------------------------- - 7 -4.3.2.读取与修改设备地址 ------------------------------------------------ - 7 -4.3.3.读取与修改设备波特率---------------------------------------------- - 8 -4.3.4.读取与修改奇偶校验位---------------------------------------------- - 9 -4.3.5.读取定位数据(RMC)--------------------------------------------- - 10 -4.3.6.定位数据(RMC)解析--------------------------------------------- - 10 -5.接口说明 ------------------------------------------------------------------ - 12 -6.产品维护保养-------------------------------------------------------------- - 13 -6.1.设备使用环境---------------------------------------------------------- - 13 -6.2.常见问题与解决办法 --------------------------------------------------- - 13 -7.售后服务 ------------------------------------------------------------------ - 14 -7.1.售后服务承诺---------------------------------------------------------- - 14 -7.2.免责声明 -------------------------------------------------------------- - 14 -7.3.联系方式 -------------------------------------------------------------- - 14 -用户须知❖使用前请详细阅读本说明书,并保存以供参考。
GPS 定位说明书
1.开机进入待机画面!
2.进入功能菜单
3.打开如图所示小蜜蜂搜星软件(在内存卡的“3D导航文件夹的第一个就是”)
点开始搜GPS端口!
点OK确认,开始搜星!(在开阔的地方搜星哦,一般在家里是搜不到的哈)3个以上卫星的时候,把小蜜蜂退到后台,再打开凯立德。
搜到星后,上面的格数会显示变为蓝色,说明已定到位,此时可以打开内置在T卡里的凯里德地图!会自动定位当前所处位置!
以下为打开地图的步骤:
打开资源管理器!
打开如图所示T卡文件夹
打开“NA VIONE”地图文件,大屏幕的是点击loader
点“接受”,地图打开!
此处也可显示GPS星数!。
L76X GPS模块用户手册说明书
L76X GPS ModuleUser ManualOVERVIREThis is a general GNSS module which supports Multi-GNSS systems: GPS, BDS, and QZSS, with advantages such as fast positioning, high accuracy, low power consumption, and so on.SPECIFICATIONGPS⚫Band: GPS L1(1575.42Mhz), BD2 B1 (1561.098MHz)◼Channels: 33 tracking ch, 99 acquisition ch, 210 PRN ch◼C/A code◼SBA: WAAS, EGNOS, MSAS, GAGAN⚫Horizontal position accuracy:◼Autonomous: <2.5mCEP⚫Time-To-First-Fix @-130dBm (EASY™ enabled):◼Cold starts: <15s◼Warm starts: <5s◼Hot starts: <1s⚫Sensitivity:◼Acquisition: -148dBm◼Tracking: -163dBm◼Re-acquisition: -160dBm⚫Dynamic performance:◼Altitude (max): 18000m◼Velocity (max): 515m/s◼Acceleration (max): 4GGENERAL⚫Communication interface: UART⚫Baudrate: 4800~115200bps (9600bps by default) ⚫Update rate: 1Hz (default), 10Hz (max)⚫Protocols: NMEA 0183, PMTK⚫Power supply voltage: 5V / 3.3V⚫Operating current: 11mA⚫Operating temperature: -40℃~ 85℃⚫Dimensions: 32.5mm x 25.5mm INTERFACEOvervire (1)Specification (1)GPS (1)General (1)Interface (2)Hardware (4)Testing in PC (5)Demo codes (6)Download Demo code (6)Raspberry Pi examples (7)Copy examples (7)Libraries install (8)Enable serial port (9)Install MINICOM (9)Hardware connection (10)Running codes (11)Expected result (11)STM32 examples (12)Hardware connection (12)Expected result (12)Arduino examples (13)Hardware connection (13)Expected result (13)FAQ (14)1.L76X GPS Module on board resource2.L76B module3.RT9193-33: power manager4.Rechargeable MS621FE Li battery: for preserving ephemeris information and hot starts5.Ceramics active antenna6.GPS status indicator7.Power indicator8.PH2.0 5PIN connector9.GNSS antenna connector10.Backup mode wakeup jumper: not soldered by default, short the jumper to exit backup modeConnect GPS antenna to L76X GPS module, and wire it to USB to UART module. Connect USB to UART module to PC. PWR lights on after connecting.Open serial assistant software in PC. Select the correct COM port (according to the Device Manager), set baud rate: 9600, data bit: 1, stop bit: 1【Note】a) Please set the module or receiver of antenna outdoor for stable GPS signalb) Generally, first time module should use about 35s to locate (cold starting), the locating time (first) maybe longer even failed because of environment, please be patient.Download U-center software from wiki. Unzip it and install. Open U-center software, click Receiver menu, choose Port, and select the correct com port (refer to Devices Manager). Set baud rate: 9600 then click button to connect L76X GPS Module. U-center display information after connecting.If you want to check the area better, you can install GoogleEarthPluginSetup.exe tool, which allow you to choose Google Earth under View menu【Note】The result you get from Google Earth maybe different with actual area because of dynamic drift of GPSDEMO CODESThe demo code is set for 9600 and 115200 baudrate, make sure the baudrate of L76X GPS module is one of them if you use demo codes.DOWNLOAD DEMO CODEFind the product in Waveshare website, open the wiki and download demo code from wiki.Unzip:Arduino: Arduino examples based on Arduino UNORaspberry Pi: Raspberry Pi examples include wiringpi and python codesSTM32: STM32 examples based on STM32F103RASPBERRY PI EXAMPLESCOPY EXAMPLESInsert SD card (which has installed Raspbian image) to PC by card readerCopy Raspberry Pi examples ( the folder we download and unzip above) to BOOT directory of SD cardExit and insert the card to Raspberry Pi, then start.Check it: ls /bootCopy it to /home/pisudo cp -r /boot/RaspberryPi/ ./sudo chmod 777 -R RaspberryPi/LIBRARIES INSTALLExamples should be used with libraries installedInstall BCM2835:Download libraries from BCM2835 website:/mikem/bcm2835/【Note】xx is the version of libraries, for example, if the libraries you download is bcm2835-1.52. The command you should execute is sudo tar zxvf bcm2835-1.52.tar.gzInstall wiringPi:Install python:ENABLE SERIAL PORTUART interface should be used for communicating, so we need to enable hardware serial of Raspberry Pi.sudo raspi-configDisable login shell function and then enable hardware serialINSTALL MINICOMminicom is a serial assistant tool for Linux.Install minicom:sudo apt-get install minicomUsing minicom:minicom -D /dev/ttyS0 -b 9600【Note】If you use Raspberry Pi zero, the serial port should be ttyAMA0, you can confirm the port by command: ls -l /dev/serial0 The default baud rate of minicom is 115200, here we use parameters -b 9600 to set it as 9600If you want to exit, you can press Ctrl + A, press X and choose Yes, then Enter.HARDWARE CONNECTIONThe color of wire you get may be different with here, you should connect the module according to the silk screen printing.RUNNING CODESEnter RaspberryPi folder (The directory of example) and run it with commands: wiringPi code:python code:EXPECTED RESULTIt requires about 35s to locate (first time).Data printed first is original data.Time: L76X GPS Module output time.【Note】Even the default baud rate of L76X GPS Module is 9600, it is changed to 115200 in code. If you find that 9600 cannot work next time, please check if it is changed.STM32 EXAMPLESThe development board used here is Waveshare XNUCLEO-F103RB, whose chip is STM32F103RBT6. The code is based on HALHARDWARE CONNECTIONWire L76X GPS Module to STM32 board, and connect USB to UART (USART1) interface of STM32 board to PC【Note】Even the default baud rate of L76X GPS Module is 9600, it is changed to 115200 in code. If you find that 9600 cannot work next time, please check if it is changed.EXPECTED RESULTIt requires about 35s to locate (first time).Data printed first is original data.Time: L76X GPS Module output time.ARDUINO EXAMPLESThe development board used here is UNO PLUSHARDWARE CONNECTIONEXPECTED RESULTIt requires about 35s to locate (first time). Open serial monitor and set baud rate to 9600. Data printed first is original data.1.W hy the baud rate doesn’t change after send changing command?- Please check if the current baud rate is correct. If the satellites searched are too much, the module cannot allows the baud rate to be smaller. In this case, you can use SET_NMEA_OUTPUT command to reduce the output data per time and try again.2.Why the locating is not accurate?- The accuracy is influenced by environment. Weather reason: The humidity is every high when raining, which weaken the intensity of the GPS signal. It often raining in summer, therefore, the intensity of phone signals is weak. High building reason: high buildings shelter from satellite, make GPS intensity became weak. Area problem: Suburbs have less satellite coverage, so GPS intensity is weak in these areas. Interference problem: Sometime, signals from satellites will be interrupted by atmosphere ionosphere, buildings, forest, water and son on.3.Why the locating result is different with smart phone?- L76X GPS HAT use satellite locating. Smart phone use AGPS, LBS, WIFI and Bluetooth locating as well except satellite. Smart phone locate much faster. And the multi-satellite system used by smart phone are different with L76X’s4.How to exit from Backup mode?- Module output nothing if it enter Backup mode. You cannot exit from Backup mode even re-power. The only way to exit from Backup mode is that short R6 more than 0.5s。
GPS模块使用手册
GPS模块使用手册一、GPS模块旳几种重要指标1.卫星轨迹全球有24颗GPS卫星沿6条轨道绕地球运营(每4个一组),GPS接受模块就是靠接受这些卫星来进行定位旳。
但一般在地球旳同一边不会超过12颗卫星,因此一般选择可以跟踪12颗卫星如下旳器件就可以了。
固然,所能跟踪旳卫星数越多,性能越好。
大多数GPS 接受器可以追踪8~12颗卫星。
计算2维坐标至少需要3颗卫星,4颗卫星可以计算3维坐标。
2.并行通道由于最多也许有12颗卫星是可见旳,GPS接受器必须按顺序访问每一颗卫星来获取每颗卫星旳信息,因此市面上旳GPS接受器大多数是12并行通道型旳,这容许它们持续追踪每一颗卫星旳信息。
12通道接受器旳长处涉及迅速冷启动和初始化卫星旳信息,并且在森林地区可以有更好旳接受效果。
一般12通道接受器不需要外置天线,除非是在封闭旳空间,如船舱或车厢中。
3.定位时间定位时间是指重启GPS接受器时,拟定目前位置所需旳时间。
对于12通道接受器,冷启动时旳定位时间一般为3~5 min,热启动时为15~30 s。
4.定位精度一般GPS接受器旳水平位置定位精度在5~10 m内。
5.DGPS功能DGPS是一种固定旳GPS接受器,用于接受卫星旳信号。
DGPS可以精确地计算出理论上卫星信号传送到旳精确时间,然后将它与实际传送时间相比较,并计算出差值。
DGPS将这个差值发送出去,其他GPS接受器就可以运用这个差值得到一种更精确旳位置读数(5~10 m或者更少旳误差)。
许多GPS设备提供商在某些地区设立了DGPS发送机,供客户免费使用,只要客户所购买旳GPS接受器有DGPS功能即可。
6.信号干扰要获得一种较好旳定位信号,GPS接受器必须至少能接受到3~5颗卫星。
如果是在峡谷中或两边高楼林立旳街道上,或者是在茂密旳丛林里,有也许接受不到足够旳卫星,无法定位或者只能得到二维坐标。
同样,如果在一种建筑里面,有也许无法更新位置。
某些GPS 接受器有单独旳天线可以贴在挡风玻璃上,或者将一种外置天线放在车顶上,这有助于接受器收到更多旳卫星信号。
GPS定位器 说明书
GPS定位器使用说明书1安装说明1.1连接线说明DC+ 电源正极ACC 点火线GND 地线pOff 断油/断电控制线1.2安装前检测:1、检查配件主机、4Pin连接线、油路控制器、说明书2、SIM卡购买SIM手机卡(支持GSM/3G网络),如果开通GPRS功能,可以实现网上查车,如果开通来电显示功能,能进行电话远程监听。
设备没有SIM卡,不能正常工作。
1.3安装调试步骤1) 检测电源按接线图安装完成后,通电,LED指示灯会闪,如果不亮,表示设备供电不正常或损坏。
2) LED光灯状态指示检查◆亮1秒灭1秒表示GSM注册成功,约三十秒左右。
◆亮0.1秒灭2.9秒表示GPS定位,约四十五秒左右。
◆如果绿灯快闪(亮0.1秒,灭0.1秒) 超过三分钟后,可能SIM卡未插好,或设备损坏。
◆常亮表示GSM注册网络成功,并且GPS定位。
3) 拨打电话在LED灯常亮后,拨打设备的SIM号码,如果能通,即工作正常,可以进行短信操作或网络设置。
1.4安装注意事项●GPS天线与GSM天线内置,注意安装位置,否则会定不到位.●主机不防水,工作温度-40~60℃,注意固定位置。
●油路控制器分为12V和24V,安装时,注意与汽车供电电压是否一致。
2短信操作说明短信命令格式为:A******,功能序号,参数其中A表示命令开始,******为设备操作密码,初始化密码为000000,参数视具体的功能序号而定。
将短信发送到设备中的手机卡上,设备会自动回复应相的短信。
短信全部采用半角,如果密码错误、格式错误,设备将不会回复短信。
2.1位置请求(000)短信格式:A******, 000例如:A000000, 000设备收到短信后,回复位置信息,格式如下:Longitude E114.04577 Latitude N22.32405 08-10-20 17:38:30,如果没有定位,则经纬度时间都是0,为无效值,时间为格林威治时间,如北京为东8区,小时加8才能与本地时间一致。
GPS北斗定位模块用户手册.doc说明书
GPS/北斗定位模块使用说明书文档版本:V1.2目录1.产品介绍 (3)1.1产品概述 (3)1.2功能特点 (3)1.3设备技术参数 (3)1.4产品选型 (3)2.设备使用说明 (4)2.1设备安装前检查 (4)2.2接口定义 (4)3.配置软件安装及使用 (5)3.1软件选择 (5)4.通信协议 (6)4.1通讯基本参数 (6)4.2数据帧格式定义 (6)4.3寄存器地址 (7)4.4通讯协议示例以及解释 (8)4.4.1读取设备地址0x01的定位状态 (8)4.4.2读取设备地址0x01的经度 (8)4.4.3修改地址 (9)5.联系方式 (10)6.文档历史 (10)附录:壳体尺寸 (11)1.产品介绍1.1产品概述我公司研发生产的GPS/北斗定位模块,是一款具有GPS定位和北斗定位的双模定位终端,可以快速、有效、精确定位位置。
GPS/北斗定位模块内含双模定位芯片,可快速定位位置,并且将定位信息以RS232/485接口和ModBus协议的方式提供给用户使用,并可以通过PC 机设置软件或串口命令轻松控制,使用方便快捷。
1.2功能特点同时支持GPS定位和北斗定位(北斗二号和北斗三号1-63号全部卫星)采用WGS84世界大地坐标系,精准定位经纬度信息可实时读取对地速度、对地航向、海拔高度等信息串口波特率自定义,支持1200~115200bps模块串口波特率等参数可通过PC机或串口命令配置RS232/485带TVS、过流等保护提供天线状态诊断,提供天线开路、短路等状态信息1.3设备技术参数供电DC7~30V功耗0.348W使用环境工作温度-20℃~+60℃,0%RH~95%RH非结露通信接口RS232/485接口可选;通信波特率:1200~115200可设天线接口接我公司提供的GPS+北斗双频天线定位精度 2.5m(CEP50)海拔高度典型精度:±10m对地速度<0.36km/h(1σ)1.4产品选型RS-公司代号GPSBDS-GPS北斗定位模块N01-RS485(ModBus-RTU协议)N02-RS232(标准RS232-DB9接口)1GPS北斗定位模块外壳2.设备使用说明2.1设备安装前检查设备清单■GPS北斗定位模块1台■产品合格证、保修卡等■GPS+北斗双频天线安装尺寸:Φ2.5mm88mm2.2接口定义序号标识说明1DC10-30V电源输入设备供电10-30VDC宽压供电2Ant北斗+GPS双频天线3通信设备485通信灯4运行设备运行灯5电源正电源输出正6电源负电源输出负7485A通信:485-A8485B通信:485-B注:通信灯在设备485通信时亮0.1s,设备运行灯正常工作(定位成功)时亮0.5s,熄灭0.5s,异常(未定位成功)时亮0.1s,熄灭0.9s,且模块只需要一端供电就可以正常工作,另一端电源是为后级供电而准备,如不对后级进行供电,可悬空。
GPS 模块gr87使用手册
GR-87 GPS Receiver Module1. Main Featurez Build on high performance SiRF StarIII chipset.z Average Cold Start time and under 45 seconds.z Low power consumptionz20 channels “All-in-View” tracking.z200,000+ effective correlators for fast TTFF and high sensitivity acquisitionsz Integrated ARM7TDMI CPU with software engineering services and available for embedded customer defined applications.z On chip 1Mb SRAM.z Dual TTL level serial ports with one for GPS receiver command message interface, another one for RTCM-104 DGPS input.z Compact Board Size 1”x1”x0.27”(25.4x25.4x7mm) for easy integration into hand-held device.z Reacquisition Time 0.1 secondsz Support Standard NMEA-0183 and SiRF Binary protocolz Support Accurate 1PPS Output Signal Aligned with GPS Timingz Multi-path Mitigation Hardwarez On-board RTCM SC-104 DGPS and WAAS /EGNOS Demodulatorz Built-in a lithium battery make GPS fast positioning2. Technical Specifications2.1. Electrical Characteristics2.1.1 General1). Frequency:L1, 1575.42 MHz.2). C/A code:1.023 MHz chip rate.3). Channels:20.2.1.2 Accuracy (Open Sky)1). Position:10 meters, 2D RMS.2). 7 meters 2D RMS, WAAS corrected.3). 1-5 meters, DGPS corrected.5). Velocity:0.1 meters/second.6). Time 1 microsecond synchronized to GPS time.2.1.3 Datum1). Default:WGS-84.2). Other Support different datum by request.2.1.4 Acquisition Rate (Open sky, stationary requirements)1). Reacquisition:0.1 sec., average.2). Hot start:1 sec., average.3). Warm start:38 sec., average.4). Cold start:42 sec., average.2.1.5 Dynamic Conditions1). Altitude : 18,000 meters (60,000 feet) max.2). Velocity:515 meters/second (1000 knots) max.3). Acceleration:4g, max.4). Jerk:20 meters/second, max.2.1.6 Power1). Input power input:3.3 ~ 5.5 VDC input.2). Input current: Less than 80 mA (without antenna) .3). Backup power: 3V Rechargeable Lithium cell battery, up to 500 hoursdischarge.2.1.7 RF interface1). Antenna connector type: MMCX, output 2.8 VDC. (optional outputVCC_IN)2). Minimum signal tracking: -159 dBm.2.1.8 Serial Port1). Two full duplex serial communication, CMOS interface, with userselectable baud rate (4800-Default, 9600, 19200, 38400).2). NMEA 0183 Version 2.2 ASCII output (GGA, GSA, GSV, RMC (VTG ,GLL and ZDA for optional)).3). DGPS protocol RTCM SC-104 message types 1, 2 and 9.4). SiRF binary-position, velocity, altitude, status output.2.1.9 TIMEMARK-1PPS Pulse1). Level CMOS 3V.2). Pulse duration 1 microsecond.3). Time reference At the pulse positive edge.4).Measurements Aligned to GPS second, ±1 microsecond.2.2. Environmental Characteristics1). Operating temperature range -10 ℃ to +60 ℃. 2). Storage temperature range -20 ℃ to +85 ℃. .2.3. Physical Characteristics1) Active Size: 25.4(W) x 25.4(D) x 7(H) (mm) . 2) Weight: 2 g.3) Interface connector 6-pin straight male header, 1.25 mm pitch .3. Mechanical Dimensions3.1 . GR-87-T0A, GR-87-T0C outline:z Picturez Design Layout Diagram: (unit mm)Pin 1J1 ConnectorMMCX Active Ant connector3.2 . GR-87-T0B, GR-87-T0D outline:z Picturez Design Layout Diagram: (unit mm)J1 ConnectorMMCX Active Ant connectorPin 13.3. Pin assignment of connector :Table 4-1 is pin list of the 6-Pin Interface Connector. Connector is Male header 1.25mm pitch DIP R/A type. Actual pin size see appendix B.Table 4-1 J1 connector pin definition:PinPin NameFunction description1 VCC_5V +3.5~5.5VDC power input2 TXASerial Data output port A(CMOS Level: Voh 2.4V≧Vol 0.4V Ioh=Iol=2mA)≦ 3 RXASerial Data input port A(CMOS Level Vih ≧0.7*VCCVil ≦0.3*VCC) 4 RXBSerial Data input port B(CMOS Level Vih ≧0.7*VCCVil ≦0.3*VCC) 5 GND Power ground 6 TIMEMARK/RESET (option)TIMEMARK: 1PPS Time mark output(Vil ≦0.2V PulseWidth 1 usec ).RESET: Reset Input (Active Low)(option function)This is the main DC power supply for a +3.3~ 5.5 V engine board.3.3.2 TXAThis is the main transmitting channel and is used to output navigation and measurement data for user written software.3.3.3 RXAThis is the main receiving channel and is used to receive software commands to the board from user written software.3.3.4 RXBThis is the auxiliary receiving channel and is used to input differential corrections to the board to enable DGPS navigation.3.3.5 GNDGND provides the ground for the board. Connect all grounds.3.3.6 TIMEMARK (default)/ RESET (option)This pin default is provides 1 pulse per second output from the GR-87 engine board, which is synchronized to within 1 microsecond of GPS time. The output is a CMOS 3V positive level signal. Only upon a situation of tracking or navigating will output once per second. This is not available in Trickle-Power mod e.The secondary option function is provides an active-low reset input to the engine board. It causes the engine board to reset and start searching for satellites. (This second function setting need contact factory).4. Ordering InformationModel No. Output Level(CMOS 3V orRS-232)RF interfaceoutput voltage (V)Back-up battery(RechargeableLithium)PowerSavingRFConnectorTypeGR-87-T0A CMOS3V 2.8 Y Y MMCX(180∘) GR-87-T0B CMOS3V 2.8 Y Y MMCX(90∘) GR-87-T0C CMOS3V VCC_IN Y Y MMCX(180∘) GR-87-T0D CMOS3V VCC_IN Y Y MMCX(90∘)。
GPS模块使用说明
GPS模块使用说明一、模块简介该 GPS模块采纳瑞士 u-blox 公司的 NEO-5Q 主芯片 ,此芯片为多功能独立型GPS模组 ,以 ROM 为基础架构 ,成本低 ,体积小 ,并拥有众多特征。
采纳u-blox 最新的KickStart 轻微信号攫取技术 ,能保证采纳此模组的设备在任何可接收到信号的地点及任何天线尺寸都可以有最正确的初始定位性能并进行快速定位。
1.主要特征 :50个通道卫星接收功能100万个以上的相关系引擎可同步追踪 GPS及伽俐略导航卫星信号供给多种接口 :UART,USB,IIC,SPI2.性能参数 :接收器种类 : 50 个接收通道GPS L1 频率 ,C/A 码SBAS:WAAS,EGNOS,MSAS,GAGAN启动时间 : 冷启动 29 sec热启动 <1 sec辅助启动 <1 sec初次定位时间 :<1 sec最大更新速率 :<4Hz敏捷度 : 冷启动 -144dBm追踪敏捷度 -160dBm捕捉敏捷度 -160dBm定位精度 : Auto < 2.5mSBAS < 2m准时精度 : RMS 30ns99% <60ns极限速度 : 500m/s运转温度 : -40~85℃封装尺寸 : 16×12.2×2.4 mm3.电气性能 :工作电压 : 2.7V~3.6V功耗: 全速模式 135mW @ 3.0VECO 模式 129mW @ 3.0V备用电池 : 1.4V~3.6V,25uA4.接口协议 :串行接口 : 1 UART 1 USB V2.0 全速 12Mbit/s 1 IIC 1 SPI其余接口 : 1 时间脉冲输出1外面中断输入协议: NMEA,UBX 二进制二、硬件连接GPS模块接口图UART(TTL 电平 : 1.VCC-VCC 2.GND-GND 3.TXD-P3.0 4.RXD-P3.1 IIC: 5.SDA 6.SCLUART(232 电平 :9.VCC 10.GND 11.TXD 12.RXDSPI: 13.MOSI 14.MISO 15.SCK 16.CS接口说明 :1.模块和单片机连接只用到UART(TTL 电平接口。
GPS模块用户手册V2.0
GPS模块使用手册1.1 特性参数1,模块采用U-BLOX NEO-6M模组,体积小巧,性能优异。
2,模块增加放大电路,有利于无源陶瓷天线快速搜星。
(MINI版本没有板载天线)3,模块可通过串口进行各种参数设置,并可保存在EEPROM,使用方便。
4,模块自带SMA接口,可以连接各种有源天线,适应能力强。
另外Mini版本带有IPEX接口,可以接本店小尺寸的有源陶瓷天线。
5,模块兼容3.3V/5V电平,方便连接各种单片机系统。
6,模块自带可充电后备电池,可以掉电保持星历数据1。
注1:在主电源断开后,后备电池可以维持半小时左右的GPS星历数据的保存,以支持温启动或热启动,从而实现快速定位。
1.2主要参数1.本模块默认波特率为9600;2.供电电压3.3v-5v(可直接接5v或者3.3v供电,内核工作电压3.3v);3.可直接接3.3v或者5v单片机IO进行通信;模组的TIMEPULSE端口,该端口的输出特性可以通过程序设置。
PPS指示灯(即PPS引脚),在默认条件下(没经过程序设置),有2个状态:1,常亮,表示模块已开始工作,但还未实现定位。
2,闪烁(100ms灭,900ms亮),表示模块已经定位成功。
这样,通过PPS指示灯,我们就可以很方便的判断模块的当前状态,方便大家使用。
1.4模块外观GPS标准版模块:https:///item.htm?id=189********GPS MIN版本https:///item.htm?id=528045510604配件:GPS 有源陶瓷天线:(MINI版本可用)https:///item.htm?id=528079992853GPS 有源天线3m长:(标准版和MINI版本都可用)https:///item.htm?id=26241892024调试工具:USB-TTL模块:https:///item.htm?id=39481188174备注:1.搜星速度从快到慢:3m有源天线> 有源陶瓷天线> 无源天线2.两种版本模块内核一样,和单片机控制端使用都没有区别。
GPS模块使用说明
GPS模块使用说明
GPS模块样品图
1 GPS模块配件清单:
配件名称数量
GPS模块主板1块
GPS天线1条
串口通信线1条
2 硬件接口说明:
3 硬件连接方法
首先要连接好GPS天线,将天线接收端放在开阔的户外,因为室内信号弱甚至没有信号不利于进行测试。
确保天线周围没有高大的建筑物阻挡,以便能容易就收到卫星信号。
连接GPS天线
和计算机连接
1. 将串口通信线的4pin插头和GPS模块的4pin插口连接好,连接时将通信线4pin插头有两条突起的一面朝GPS内插入,如图所示:
2. 用串口通信线的另一头与计算机连接。
即将串口通信线的端插入到
计算机的(红线所圈处)。
3. 打开U-center软件。
4. 将5V直流电源与串口通信线九针插口端的两根电源线(如下图红线所圈处,红线代表正极,黑色代表负极。
)接好(红线与红线相接,黑线与黑线相接)。
然后将5V电源通上电,GPS模块主板上电源指示灯会亮起,数据指示灯不停的闪烁,表示GPS模块正在通过串口发送数据(GPS模块正常工作状态下,是有两个等常亮一个灯闪烁或一个灯常亮一个灯闪烁)。
GPS定位器使用手册
GPS定位器使用手册
1、第一步:打来手簿,开启管理软件点击配置选项→手簿端口配置
→配置搜索→搜索到蓝牙某某某某(移动站PIN号)→绑定→退出→确定。
2、基准站、移动站信号灯及按键的名称和作用
红色按键(开关机键)红色指示灯(电源指示灯)蓝色指示灯(卫星
接收指示灯)绿色指示灯(接收基准站信号指示灯,1S/1次)黄色指示
灯(数据指示灯)3.、启动→点击测量(点击图标)→启动移动站接收器
4.、文件→新建任务→输入任务名称
5.、配置→坐标系管理→点管理器→查看中央子午线(每个地方不一样)和投影高(一般是甲方提供或默认为0)。
6.、成果桩导入手簿方法:用某l表格制作好原始坐标数据更改为(某、Y、Z)格式,保存时选择CSV格式,保存好后重命名后缀调为dat
格式。
拷贝dat文件到手簿。
将手簿和计算机连接,找到移动设备,将
dat文件拷贝到Built—in→RTKCE文件包内。
拷贝完后再手簿上操作将
文件导入。
点击文件→导入→当地点(类型选择为callfile)确定。
完
成后导入成功。
7.当基准站关机后再开启时,要进行点的校对。
在控制点处点击手簿(测量→测量点→确定),(点击文件→元素管理器→点管理→选择测量
点→点击详细→替换测量点位控制点)完成后对当前控制点进行点放样)。
OBT2217 GPS BD双模模块使用说明书
OBT2217GPS/BD 双模模块使用说明书版本:V2.0珠海欧比特控制工程股份有限公司广东省珠海市唐家东岸白沙路1号欧比特科技园(邮编: 519080)电话: ************传真*************声明珠海欧比特拥有此非公开出版的使用说明书的版权,并有权将其作为保密资料处理。
本使用说明书只作为操作、保养和维修产品的参考资料,其他人无权向他人公开此使用说明书。
本使用说明书包含由版权法保护的专有资料,版权所有,未经珠海欧比特的书面同意不得将本使用说明书的任何部分进行照相复制,复印或翻译成其它语言。
本使用说明书包含的内容可以不予通知而有所变更。
制造商的责任只有在下列情况下,珠海欧比特才认为应对模块的安全、可靠性和性能的有关问题负责:装配、扩充、重新调整、改进或维修均由公司认可的人员进行操作;设备的使用按操作要求进行。
目 录1.功能描述 (1)1.1.概述 (1)1.2.产品特性 (1)1.3.性能指标 (2)1.4.应用 (2)1.5.功能框图和典型应用 (3)1.5.1功能框图 (3)1.5.2 典型应用 (3)2.模块接口说明 (4)2.1.硬件接口 (4)2.1.1 电源 (4)2.1.2 天线接口 (4)2.1.3 1PPS 信号接口 (4)2.1.4 UART 接口 (5)2.1.5 GPIO 接口 (5)2.2.软件接口协议 (5)2.2.1 语句格式和内容 (5)2.2.2 输出语句 (6)2.2.3 输入语句 (7)3.机械特性 (9)3.1.模块尺寸 (9)3.2.管脚定义 (10)4.电气和温度特性 (12)4.1.模块直流特性 (12)4.1.1 极限工作条件 (12)4.1.2 推荐工作条件 (13)4.2.焊接温度曲线 (13)5.注意事项 (14)5.1.静电防护 (14)5.2.PCB设计建议 (14)5.3.模块软件升级 (15)5.4.其他 (15)附录A:订货信息 (16)附录B:装箱单 (16)1.功能描述1.1. 概述OBT 2217 BD/GPS模块是支持BD2 (B1)和GPS L1的高性能集成模块,此模块内部集成了BD2 B1/GPS L1双模SOC基带芯片和双模射频芯片,为车载、船载和便携式手持等导航定位终端产品的制造提供了高灵敏度、低功耗、低成本的BD2B1/GPS L1双模解决方案。
gps用户手册
SURVEY PRO For Windows R CEGPS用户手册美国TDS 公司(版权所有,侵权必究)目录第一章序言-------------------------------------------------------------3 第二章GPS坐标---------------------------------------------------------42.1.基准2.1.1水平基准2.2.2垂直基准2.2.坐标系统2.2.1水平坐标系统2.2.2垂直坐标系统2.2.3 Survey Pro 坐标系统数据库第三章GPS测量---------------------------------------------------------93.1.伪距法定位3.1.1差分GPS3.2.用survey pro做差分GPS第四章RTK数据采集--------------------------------------------------114.1.设置投影模式4.1.1投影模式概述4.1.2地图投影设置4.1.3选择大地水准面模型4.2.接收机设置4.2.1一般的硬件设置4.2.2基准站接收机设置4.2.3动态接收机设置4.3.解算水平投影4.3.1定位4.3.2地图投影4.4.解算垂直投影4.4.1定位4.4.2模拟大地水准面4.4.3椭球高4.5.RTK数据采集4.5.1测量模式4.5.2数据采集方法4.6.RTK放样第五章投影的利用------------------------------------------------255.1.投影计算器5.1.1计算器比例系数5.1.2收敛计算器5.2.重新平差点5.2.1大地到平面5.2.2平面到大地第六章用TDS 管理GPS坐标---------------------------------286.1.Survey Pro6.1.1人工模式6.1.2编辑点6.1.3输入一个.GPS文件6.2.Survey Link6.2.1文件输入6.2.2文件输出第七章数据采集后处理-----------------------------------------317.1.野外过程7.1.1开始后处理7.1.2接收机开始记录7.1.3数据采集7.2.内业工作第八章例程--------------------------------------------------------348.1.用控制点定位8.2.重复定位测量8.3.定位计算器和大地水准面模拟8.4.用GPS和常规的投影面测量疑难解答参考资料第一章序言本书分为两个部分:第一部分是用户手册,第二部分是参考手册。
NEO-6M-GPS模块说明手册
UBLOX-6M-GPS模块说明手册UBLOX-6M-GPS模块说明手册 (1)一.模块介绍 (2)二、模块参数 (2)1.电压 (2)2.温度 (2)3.引脚说明以及电气连接 (2)4.波特率 (3)5.特性参数 (3)三、模块尺寸 (4)四、模块调试和GPS数据解析 (5)一.模块介绍BLOX6M GPS模块,具有高灵敏度、低功耗、小型化、其极高追踪灵敏度大大扩大了其定位的覆盖面,在普通GPS接收模块不能定位的地方,如狭窄都市天空下、密集的丛林环境,UBLOX6M都能高精度定位。
模块的高灵敏度、小静态漂移、低功耗及轻巧的体积,非常适用于车载、手持设备如PDA,车辆监控、手机、摄像机及其他移动定位系统的应用,是GPS产品应用的最佳选择。
二、模块参数1.电压输入电压: 3.3-5.5V功耗正常模式:50mA省电模式:30mA2.温度工作温度-40°Cto+85°C存储温度-55°Cto+100°C3.引脚说明以及电气连接模块引脚1VCC电源脚输入3.3-5.5V2GND电源地3RXD模块串口接收脚--接单片机串口TXD发送4TXD模块串口发送脚--接单片机串口RXD接收5PPS时钟脉冲输出脚模块PPS脚接了红色LED灯常亮:正常工作,但未定位闪烁:定位成功4.波特率模块默认的波特率是96005.特性参数模块自带陶瓷天线,另外有IPEX接口可以连接其他有源天线模块增加了射频放大电路,有利于加快搜星模块自带可充电后备电池,可以掉电保持星历数据模块兼容3.3V/5V电平,方便连接各种单片机系统三、模块尺寸长宽:37.4x26.2四、模块调试和GPS数据解析1.首先用一条microusb线将模块和电脑连接,然后找到资料里面的usb驱动文件,安装完毕后在设备管理器会看到如下图所示,出现一个虚拟串口2.打开资料里面的多功能调试助手,选择gps定位3.定位必须在室外空旷地进行,否则无法定位成功,陶瓷天线面向天空。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
GPS模块使用手册一、GPS模块的几个重要指标1.卫星轨迹全球有24颗GPS卫星沿6条轨道绕地球运行(每4个一组),GPS接收模块就是靠接收这些卫星来进行定位的。
但一般在地球的同一边不会超过12颗卫星,所以一般选择可以跟踪12颗卫星以下的器件就可以了。
当然,所能跟踪的卫星数越多,性能越好。
大多数GPS接收器可以追踪8~12颗卫星。
计算2维坐标至少需要3颗卫星,4颗卫星可以计算3维坐标。
2.并行通道由于最多可能有12颗卫星是可见的,GPS接收器必须按顺序访问每一颗卫星来获取每颗卫星的信息,所以市面上的GPS接收器大多数是12并行通道型的,这允许它们连续追踪每一颗卫星的信息。
12通道接收器的优点包括快速冷启动和初始化卫星的信息,而且在森林地区可以有更好的接收效果。
一般12通道接收器不需要外置天线,除非是在封闭的空间,如船舱或车厢中。
3.定位时间定位时间是指重启GPS接收器时,确定现在位置所需的时间。
对于12通道接收器,冷启动时的定位时间一般为3~5 min,热启动时为15~30 s。
4.定位精度普通GPS接收器的水平位置定位精度在5~10 m内。
5.DGPS功能DGPS是一个固定的GPS接收器,用于接收卫星的信号。
DGPS可以准确地计算出理论上卫星信号传送到的精确时间,然后将它与实际传送时间相比较,并计算出差值。
DGPS将这个差值发送出去,其它GPS接收器就可以利用这个差值得到一个更精确的位置读数(5~10 m或者更少的误差)。
许多GPS设备提供商在一些地区设置了DGPS发送机,供客户免费使用,只要客户所购买的GPS接收器有DGPS功能即可。
6.信号干扰要获得一个很好的定位信号,GPS接收器必须至少能接收到3~5颗卫星。
如果是在峡谷中或两边高楼林立的街道上,或者是在茂密的丛林里,有可能接收不到足够的卫星,无法定位或者只能得到二维坐标。
同样,如果在一个建筑里面,有可能无法更新位置。
一些GPS 接收器有单独的天线可以贴在挡风玻璃上,或者将一个外置天线放在车顶上,这有助于接收器收到更多的卫星信号。
二、HOLUX M-89 GPS模块特性我们选用的是台湾生产的HOLUX M-89 GPS模块,并为其配备了PCB板,以方便与单片机进行连接,下面与反面如下图所示,HOLUX M-89 GPS接收卫星信号时一般还需要配备天线,如下图所示:HOLUX M-89 GPS模块主要特性如下:产品特征通道:并行32通道频率:L1 1575.42MHzC/A码(1.023MHZ码片速率)跟踪灵敏度:-159dB动态性能速度:515米/秒加速度:4g颠簸:20米/秒捕获时间重获取时间:0.1秒热启动时间:1秒温启动时间:33秒冷启动时间:36秒精度定位:10米(2D RMS)1-5米(DGPS)速度:0.1米/秒时间:1ms数据特性I/O信息:1个全双工串行TTL接口数据传输速率:4800~38400 (标准:9600)格式:SiRF二进制和NMEA-0183(v3.01)——GGA,GLL,GSA,GSV,RMC,VTG DGPS协议:RTCM SC-104,类型1,2和9脉冲延时:100ms电气特性输入电压:3.3~5VDC后备电源:直流3V输入电流:80mA物理特性尺寸:25.4mm(D)×25.4mm(W)×3mm(H)重量:7g环境特性操作温度:-30~+85℃存贮范围:-40~+85℃三、12864显示GPS数据实验1.HOLUX M-89 GPS模块与DD-900实验开发板的连接HOLUX M-89 GPS模块安装在一块PCB板上,板上引出有6针间距为2.54mm的插针,可方便地与顶顶电子开发的DD-900实验开发板进行连接,各插针管脚功能及其与DD-900实验开发板的连接方法如下:1脚:指示灯,通电常亮,接收到卫星开始闪烁,模块板上带有LED灯,实验时可不接。
2脚:外部复位输入,模块内部有复位电路,实验时可不接。
3脚:模块串口数据输出。
接DD-900实验开发板MCU的RXD脚(P30脚)。
4脚:模块串口数据输入。
接DD-900实验开发板MCU的TXD脚(P31脚)。
5脚:GND。
接DD-900实验开发板的地端。
6脚:电源输入,电压范围:3.3-5V,接DD-900实验开发板的3.3V或5V端。
2.GPS源程序实验步骤(1)打开STC下载软件,将“12864液晶屏显示GPS数据C51源程序”中的“GPS_12864.hex”目标文件下载到DD-900实验开发板上。
(2)取一只12864液晶显示屏,将其插到DD-900实验开发板上。
(3)将GPS模块与天线连接好。
(4)找四根杜邦线,将GPS模块与DD-900实验开发板的连接好。
断开232与单片机的短接插针。
使单片机只能与GPS模块进行通信。
(5)打开DD-900实验开发板电源,约几十秒后,在12864液晶屏上即可显示出经度、纬度、时间、海拔高度等信息,如下图所示:以上信息的意思为:东经120度23.7285分,北纬36度17.3538分,时间为15点10分52秒,海拔高度为145.6米。
需要注意的是,实验时,要将GPS模块和天线放置在室外,以便接收到卫星信号,另外,GPS启动时需要一定的启动时间,GPS启动后才能接收到并计算出正确的数据。
另外,如果你没有采用DD-900实验开发板,而是采用其它实验板,需要将单片机晶振频率设置为11.0592MHz,以保证GPS模块与单片机按照9600的波特率进行通信。
四、用串口调试助手查看GPS数据1.GPS模块与DD-900的连接(1)GPS模块通过DD-900实验开发板串口,可以方便地与PC机进行连接,连接方法如下:(2)GPS模块的3脚(模块串口数据输出)接DD-900实验开发板MCU的TXD脚(P31脚),注意,与上个实验不同。
(3)GPS模块的4脚(模块串口数据输入)接DD-900实验开发板MCU的RXD脚(P30脚),注意,与上个实验不同。
(4)GPS模块5脚(GND)接DD-900实验开发板的地端。
(5)GPS模块6脚(电源输入)接DD-900实验开发板的3.3V或5V端。
(6)取下DD-900的MCU。
2.实验方法连接完成后,打开顶顶串口调试助手,选择好串口(一般为串口1,如果采用USB转串口,要选择虚拟串口号,本例采用的是USB转串口,虚拟串口号为COM5)。
波特率选择为9600,校验位为NINE,数据位为8,停止位为1。
以上设置完成后,打开串口,即可在接收窗口中接收到有关的GPS数据,如图所示:五、其它1.GPS模块与PC机的通信模组可以直接采用电平转换电路MAX232,将GPS模块的串口和PC机的串口连接,用串口调试工具和GPS模块调试软件监控模块输出的数据,注意:模块的默认波特率为9600,PC机串口波特率必须设置成9600。
如果没有接GPS天线或收不到卫星信号。
模组上的LED灯一直常亮,如果收到有效的卫星信号LED开始闪烁。
2.GPS的数据协议GPS数据格式支持NMEA0183 V 3.01 数据协议。
格式NMEA0183 V3.01:GPGGA(1 次/1 秒)、GPGSA(1 次/5 秒)、GPGSV (1 次/5 秒)、GPRMC(1 次/1 秒)、GPVTG(1 次/1 秒)。
下面是调试模组用串口监控到的数据:无卫星状态:$GPGGA,000355.026,8960.0000,N,00000.0000,E,0,0,,137.0,M,13.0,M,,*44$GPGSA,A,1,,,,,,,,,,,,,,,*1E$GPGSV,1,1,00*79$GPRMC,000355.026,V,8960.0000,N,00000.0000,E,0.00,0.00,060180,,,N*79 $GPVTG,0.00,T,,M,0.00,N,0.00,K,N*32$GPGGA,000356.026,8960.0000,N,00000.0000,E,0,0,,137.0,M,13.0,M,,*47 $GPRMC,000356.026,V,8960.0000,N,00000.0000,E,0.00,0.00,060180,,,N*7A $GPVTG,0.00,T,,M,0.00,N,0.00,K,N*32$GPGGA,000357.026,8960.0000,N,00000.0000,E,0,0,,137.0,M,13.0,M,,*46 $GPRMC,000357.026,V,8960.0000,N,00000.0000,E,0.00,0.00,060180,,,N*7B $GPVTG,0.00,T,,M,0.00,N,0.00,K,N*32$GPGGA,000358.026,8960.0000,N,00000.0000,E,0,0,,137.0,M,13.0,M,,*49 $GPRMC,000358.026,V,8960.0000,N,00000.0000,E,0.00,0.00,060180,,,N*74 $GPVTG,0.00,T,,M,0.00,N,0.00,K,N*32$GPGGA,000359.026,8960.0000,N,00000.0000,E,0,0,,137.0,M,13.0,M,,*48 $GPRMC,000359.026,V,8960.0000,N,00000.0000,E,0.00,0.00,060180,,,N*75 $GPVTG,0.00,T,,M,0.00,N,0.00,K,N*32$GPGGA,000400.026,8960.0000,N,00000.0000,E,0,0,,137.0,M,13.0,M,,*43 $GPGSA,A,1,,,,,,,,,,,,,,,*1E$GPGSV,1,1,00*79$GPRMC,000400.026,V,8960.0000,N,00000.0000,E,0.00,0.00,060180,,,N*7E $GPVTG,0.00,T,,M,0.00,N,0.00,K,N*32$GPGGA,000401.026,8960.0000,N,00000.0000,E,0,0,,137.0,M,13.0,M,,*42 $GPRMC,000401.026,V,8960.0000,N,00000.0000,E,0.00,0.00,060180,,,N*7F $GPVTG,0.00,T,,M,0.00,N,0.00,K,N*32$GPGGA,000402.026,8960.0000,N,00000.0000,E,0,0,,137.0,M,13.0,M,,*41 $GPRMC,000402.026,V,8960.0000,N,00000.0000,E,0.00,0.00,060180,,,N*7C $GPVTG,0.00,T,,M,0.00,N,0.00,K,N*32$GPGGA,000403.026,8960.0000,N,00000.0000,E,0,0,,137.0,M,13.0,M,,*40 $GPRMC,000403.026,V,8960.0000,N,00000.0000,E,0.00,0.00,060180,,,N*7D $GPVTG,0.00,T,,M,0.00,N,0.00,K,N*32$GPGGA,000404.026,8960.0000,N,00000.0000,E,0,0,,137.0,M,13.0,M,,*47 $GPRMC,000404.026,V,8960.0000,N,00000.0000,E,0.00,0.00,060180,,,N*7A $GPVTG,0.00,T,,M,0.00,N,0.00,K,N*32$GPGGA,000405.026,8960.0000,N,00000.0000,E,0,0,,137.0,M,13.0,M,,*46 $GPGSA,A,1,,,,,,,,,,,,,,,*1E有卫星状态:$GPGGA,090113.000,3958.2847,N,11616.6454,E,1,8,1.00,67.6,M,-6.7,M,,*78 $GPRMC,090113.000,A,3958.2847,N,11616.6454,E,0.00,0.00,080110,,,A*60 $GPVTG,0.00,T,,M,0.00,N,0.00,K,A*3D$GPGGA,090114.000,3958.2847,N,11616.6456,E,1,8,1.00,67.7,M,-6.7,M,,*7C $GPRMC,090114.000,A,3958.2847,N,11616.6456,E,0.00,0.00,080110,,,A*65 $GPVTG,0.00,T,,M,0.00,N,0.00,K,A*3D$GPGGA,090115.000,3958.2846,N,11616.6456,E,1,8,1.00,67.7,M,-6.7,M,,*7C $GPRMC,090115.000,A,3958.2846,N,11616.6456,E,0.00,0.00,080110,,,A*65 $GPVTG,0.00,T,,M,0.00,N,0.00,K,A*3D$GPGGA,090116.000,3958.2846,N,11616.6456,E,1,8,1.00,67.8,M,-6.7,M,,*70$GPRMC,090116.000,A,3958.2846,N,11616.6456,E,0.00,0.00,080110,,,A*66 $GPVTG,0.00,T,,M,0.00,N,0.00,K,A*3D$GPGGA,090117.000,3958.2845,N,11616.6457,E,1,8,1.00,67.8,M,-6.7,M,,*73 $GPGSA,A,3,29,15,10,18,09,21,24,27,,,,,1.28,1.00,0.79*08$GPGSV,3,1,10,24,78,302,38,15,77,207,42,29,36,238,48,10,33,073,24*76 $GPGSV,3,2,10,21,29,310,39,08,22,054,,18,15,276,42,27,14,167,36*7D $GPGSV,3,3,10,09,05,175,35,40,,,*45$GPRMC,090117.000,A,3958.2845,N,11616.6457,E,0.00,0.00,080110,,,A*65 $GPVTG,0.00,T,,M,0.00,N,0.00,K,A*3D$GPGGA,090118.000,3958.2846,N,11616.6457,E,1,8,1.00,67.8,M,-6.7,M,,*7F $GPRMC,090118.000,A,3958.2846,N,11616.6457,E,0.00,0.00,080110,,,A*69 $GPVTG,0.00,T,,M,0.00,N,0.00,K,A*3D$GPGGA,090119.000,3958.2846,N,11616.6458,E,1,9,0.85,67.8,M,-6.7,M,,*7C $GPRMC,090119.000,A,3958.2846,N,11616.6458,E,0.00,0.00,080110,,,A*67 $GPVTG,0.00,T,,M,0.00,N,0.00,K,A*3D$GPGGA,090120.000,3958.2847,N,11616.6459,E,1,9,0.85,67.8,M,-6.7,M,,*76 $GPRMC,090120.000,A,3958.2847,N,11616.6459,E,0.00,0.00,080110,,,A*6D $GPVTG,0.00,T,,M,0.00,N,0.00,K,A*3D$GPGGA,090121.000,3958.2847,N,11616.6460,E,1,9,0.85,67.8,M,-6.7,M,,*7D $GPRMC,090121.000,A,3958.2847,N,11616.6460,E,0.00,0.00,080110,,,A*66 $GPVTG,0.00,T,,M,0.00,N,0.00,K,A*3D$GPGGA,090122.000,3958.2847,N,11616.6461,E,1,9,0.85,67.8,M,-6.7,M,,*7F$GPGSA,A,3,29,15,10,18,09,21,24,08,27,,,,1.14,0.85,0.77*0D$GPGSV,3,1,10,24,78,302,38,15,77,207,42,29,36,238,48,10,33,073,22*70$GPGSV,3,2,10,21,29,310,39,08,22,054,21,18,15,276,42,27,14,167,36*7E$GPGSV,3,3,10,09,05,175,35,43,,,*46$GPRMC,090122.000,A,3958.2847,N,11616.6461,E,0.00,0.00,080110,,,A*64$GPVTG,0.00,T,,M,0.00,N,0.00,K,A*3D$GPGGA,090123.000,3958.2848,N,11616.6462,E,1,9,0.85,67.8,M,-6.7,M,,*72$GPRMC,090123.000,A,3958.2848,N,11616.6462,E,0.00,0.00,080110,,,A*69$GPVTG,0.00,T,,M,0.00,N,0.00,K,A*3D2.GPS 语句数据格式GPS模块可以输出多种数据格式输出语句,这样,在源程序中,我们通过对这些输出语句进行解析,就可以得到GPS的定位数据。