BUCK电路工作原理分析
buck电路拓扑及其工作原理
Buck电路拓扑及其工作原理Buck电路是一种常见的降压转换器,也被称为降压型开关电源。
它可以将一个较高的直流电压转换为一个较低的直流电压,同时保持较高的效率。
Buck电路的拓扑结构是基于一个电感元件和一个开关元件。
下面是Buck电路的基本拓扑图示:```Vin ─────┬───────┐││─┼─┬─────┴─┬──Vo││││││Cin│L││││││─┴─┴───────┼─GND││GND GND```在这个拓扑中,Vin代表输入电压,Vo代表输出电压,Cin代表输入电容,L代表电感,以及GND代表接地。
Buck电路的工作原理如下:1. 开关状态:当开关元件(通常是MOSFET)处于导通状态时,电感L储存能量,并将其传递到输出负载。
2. 关断状态:当开关元件处于关断状态时,电感L通过其自感性产生电压,并将这个能量转移到输出负载。
Buck电路的工作周期可以分为以下几个阶段:1. 导通状态(开关打开):开关元件处于导通状态时,输入电压Vin通过电感L传递到输出负载。
电感L储存能量,并将其传递到输出电容Cout。
2. 关断状态(开关关闭):开关元件关闭时,电感L的自感性会产生反向电压,将能量转移到输出电容Cout和负载上。
这个阶段也被称为“放电”阶段。
通过控制开关元件的导通时间和关断时间,可以调节输出电压的大小。
通常使用PWM(脉宽调制)技术来控制开关元件的导通和关断,以实现精确的输出电压调节。
总结起来,Buck电路通过周期性地切换开关元件的状态,将输入电压转换为较低的输出电压。
这种转换过程利用电感和电容储存和传递能量,实现了高效的降压转换。
Buck电路的原理分析和参数设计
Buck电路的原理分析和参数设计连续工作状态一Buck工作原理将快速通断的晶体管置于输入与输出之间,通过调节通断比例(占空比)来控制输出直流电压的平均值。
该平均电压由可调宽度的方波脉冲构成,方波脉冲的平均值就是直流输出电压。
Q导通:输入端电源通过开关管Q及电感器L对负载供电,并同时对电感器L充电。
电感相当于一个恒流源,起传递能量作用电容相当于恒压源,在电路里起到滤波的作用Q闭合:电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。
导通时Q的电流闭合时C的电流L的电流和输出电流的关系。
输出电压与输入电压的关系(不考虑损耗)二 buck 的应用Buck 为降压开关电路,具有效率高,体积小,功率密度高的特点1.Buck 的效率Buck 的损耗:1.交流开关损耗 2.管子导通损耗3.电感电容等效电阻损耗Buck 的效率很高,一般可以达到60%以上,2.Buck 的开关频率频率越高,功率密度越大,但也同时带来了开关损耗。
在25~50KHZ 范围内buck 的体积可随频率的增大而减小。
三.参数的设计1.电感的参数电感的选择要满足直到输出最小规定电流时,电感电流也保持连续。
在临界不连续工作状态时 2120I I I -=ON OI T I V V L 20-=' ON I T LV V I I 012-=- 所以L L '≥ L 越大,进入不连续状态时的电流就越小2.电容的参数电容的选择必须满足输出纹波的要求。
电容纹波的产生:1. 电容产生的纹波: 相对很小,可以忽略不计2. 电容等效电感产生的纹波:在300KHZ~500KHZ 以下可以忽略不计3. 电容等效电阻产生的纹波:与esr 和流过电容电流成正比。
为了减小纹波,就要让esr 尽量的小。
不连续工作状态(1)开关管Q 导通,电感电流由零增加到最大(2)开关管Q 关断,二极管D 续流,电感电流从最大降到零; (3)开关管Q 和二极管D 都关断(截止),在此期间电感电流保持为零,负载由输出滤波电容来供电。
buck电源电路工作原理
buck电源电路工作原理
Buck电源电路工作原理是通过控制开关管的导通时间来降低输入电源的电压,进而得到输出电压较低的电路。
具体来说,Buck电源电路由输入电源、开关管、电感、二极管和输出负载组成。
开关管通常是MOSFET或BJT,而电感用来储存能量,二极管用于输出电流的反向导通。
工作原理如下:
1. 当开关管导通时,电感中储存有一部分电流和磁能量。
2. 开关管关断时,电感中的电流在通过二极管的作用下继续流动,即电感放电。
3. 当电感放电时,输出电流继续供应电载,并从电容中释放能量。
4. 重复上述过程,可以实现稳定的输出电压。
Buck电源电路通过改变开关管的导通比例来调节输出电压。
开关管导通时间越长,输出电压越高;导通时间越短,输出电压越低。
此外,通过精确控制开关管的导通频率和占空比,可以实现更稳定的输出电压。
需要注意的是,为了实现稳定的输出电压,Buck电源电路通常采用反馈控制机制,即输出电压通过反馈回路将信息传递给控制器,控制器再根据该信息调整开关管的导通比例,以保持输出电压稳定。
总之,Buck电源电路通过控制开关管的导通时间来降低输入电压,实现稳定的输出电压。
BUCK电路工作原理分析
BUCK电路工作原理分析BUCK电路是一种常见的降压DC-DC转换器,通过调节开关管的导通时间,将输入电压降低到所需的输出电压。
在实际应用中,BUCK电路主要应用于功率管理领域,如电源适配器、DC-DC模块和电动车充电器等。
BUCK电路的工作原理可以简单概括如下:当输入电压施加到电路上时,开关管施加一个调制的矩形波信号,使得输入电压在开关管通断的过程中传递到输出端,从而实现对输出电压进行调节。
当开关管导通时,电感储能器会储存能量,同时输出电压为输入电压减去开关管压降;而当开关管断开时,电感储能器释放储存的能量,从而输出电压变为输入电压的一部分,供给负载。
在BUCK电路中,主要包括开关管、电感储能器、二极管和输出滤波电容等组件。
具体的工作原理如下:1.开关管:BUCK电路中的开关管主要是承担对输入电压进行开关控制的作用。
当开关管导通时,输入电压通过开关管传递到输出端,同时电感储能器中的能量得以储存;当开关管断开时,电感储能器释放储存的能量,从而输出电压得以维持。
常用的开关管有MOSFET和IGBT等。
2.电感储能器:电感储能器是BUCK电路中的重要元件,用来储存输入电压传递过来的能量。
当开关管导通时,电感储能器中的电流增加,能量被储存起来;而当开关管断开时,电感储能器中的电流减小,能量被释放出来。
通过电感储能器储存和释放能量的交替过程,实现了对输入电压进行降压的目的。
3.二极管:在BUCK电路中,二极管主要用来保护开关管,防止反向电压对开关管造成损害。
当开关管导通时,二极管不导通,电流流经开关管;而当开关管断开时,二极管导通,释放电感储能器中储存的能量,从而实现对输出电压的稳定输出。
二极管的选择要考虑其反向恢复特性和导通损耗等因素。
4.输出滤波电容:输出滤波电容主要用来对输出电压进行滤波处理,去除波动和噪声,保证输出电压的稳定性和平滑性。
输出滤波电容的容值要根据实际应用需求和输出波形的允许范围来选择,可以通过合适的滤波设计来改善电路的性能。
buck电路基本原理
buck电路基本原理
Buck电路是一种常见的降压电路,它通过控制开关器件的导
通时间来将输入电压降低到所需的输出电压级别。
该电路基本原理如下:
1. 输人电压由电源提供,经过一个电感和一个二极管连接到电容和负载上。
开关器件一般是一个MOSFET,它通过控制其
导通与截止的时间来调整输出电压。
2. 当开关器件导通时,电感中储存的能量开始流向负载并充电电容。
此时,电流通过电感和二极管形成闭环。
在这个过程中,电流增加,同时电感中的能量也增加。
3. 当开关器件关断时,电感中的能量需要释放到负载和电容上。
此时,电感产生自感电压,同时二极管充当绕过开关器件的通道,使能量正常流向负载。
电感中的自感电压试图保持电流不变,然后电流开始减小。
4. 电流减小时,电感中储存的能量会进一步降低。
重复这个过程,直到电感中的能量耗尽,或者直到达到所需的输出电压级别。
总之,Buck电路通过控制开关器件的导通与截止来调节电压,同时通过电感和二极管的协同作用实现能量传递和转换,从而实现输入电压的降压。
buck电路简单原理
buck电路简单原理
Buck电路是一种常见的降压转换器,用于将高电压转换为较低的电压。
它是
一种开关电源,通过不断切换开关以控制电流和电压来完成降压操作。
Buck电路的基本原理是利用开关管(通常为MOSFET晶体管)和电感器组成
一个电压调节器。
当开关管关闭时,电流通过电感器,形成一个磁场能量储存器。
当开关管打开时,电感器释放储存的能量,通过输入电压向负载提供较低的电压。
具体工作原理如下:当开关管处于导通状态时,电感器充电,负载电流开始增加。
而当开关管关闭时,电感器上的存储能量将释放到负载上。
这样,周期性地开关和关闭开关管,就能实现对输出电压的调整和稳定。
Buck电路的主要优点之一是效率高,能够提供相对较高的输出功率。
此外,Buck电路具有较小的体积和重量,适用于多种应用场景,如电源适配器、电池充
电器等。
值得注意的是,Buck电路中还包括输出电容器和滤波器,用于减小输出电压
的波动和噪声。
这些元件的合理选择和设计,可以进一步提高电路的性能和稳定性。
总之,Buck电路是一种常用的降压转换器,通过周期性地开关和关闭来实现
对输入电压的降低和稳定输出。
其简单的原理和高效率使其在很多电子设备中得到广泛应用。
Buck电路原理分析详解
同样,在一个周期进行分析,
Buck电路原理分析
三、Buck电路的三种工作模式:CCM,BCM,DCM
3、DCM Mode:关键点原件波形见图六
图六
Buck电路原理分析
三、Buck电路的三种工作模式:CCM,BCM,DCM
3、DCM Mode: 由图六可知,电路系统工作在DCM模式下,需要满足两个条件,一、电感充磁开 始以及消磁结束时流经电感的电流为零;二、电感消磁时间小于开关管关断时
→
, T为工作周期,D为占空比: 为Q管导通时间,所以,
①
伏秒积平衡 即
开关管Q1关断时,同理根据KVL定律:
忽略二极管 的正向压降,有
②
①=② ,可以得出:
Buck电路原理分析
三、Buck电路的三种工作模式:CCM,BCM,DCM
Buck电路原理分析
三、Buck电路的三种工作模式:CCM,BCM,DCM
1、CCM Mode:关键点原件波形见图四
图四
Return To Page 7
Buck电路原理分析
三、Buck电路的三种工作模式:CCM,BCM,DCM
1、CCM Mode:
开关管Q1导通时,根据KVL定律:
即
五、BUCK电路仿真验证:
图七
Buck电路原理分析
上述电路中基本参数设置:
驱动波形:V=14V, f=20KHz,D=50%;输入电压:Vin=10Vdc;储能电感:L=80uH 1、BCM模式仿真验证:根据电路系统工作在BCM模式下的条件,进行理论计算,
Buck工作原理分析,连续模式,断续模式
Buck⼯作原理分析,连续模式,断续模式Part01:Buck电路⼯作原理:图1-1 Buck电路拓扑结构Buck电路的拓扑结构如图1-1所⽰:(1) input接输⼊电源,既直流电动势;(2) IGBT1为开关管,可以选择以全控型开关管为主,对于⾼频状态多使⽤MOSFET,对于⾼电压状态,多采⽤IGBT(MOSFET或者IGBT 由Buck电路具体⼯作情况决定)。
Buck变换器⼜称降压变换器,通过控制input侧直流电动势的供电与断电实现输出测的降压。
开关管的控制⽅式根据控制信号的不同主要⼜分为以下三种⽅式:a) 脉冲调制型:保持开关周期T不变,调节开关导通时刻ton,(PWM: Pulse Width Modulation)最常⽤,最容易实现b) 频率调制(调频型):保持开关导通时间ton不变,改变开关周期T.c) 混合调制:同时改变ton和T,使得占空⽐ton/T发⽣改变。
(3)电感储能,Buck电路中电感起到储能的作⽤,当开关管导通后,电源向电感充电;当开关管关闭后,电感经过⼆极管续流。
通常电感中电流是否连续取决于开关频率、滤波电感L和电容C的数值。
(4)⼆极管为续流⼆极管,当开关管关断以后,为电感的能量提供续流通道。
(5)输出负载侧接负载,⼀般先经过电容滤波然后再接负载。
Part02:⼯作⼯程分析分析⽅法1:常规⾓度分析(时域分析)本次设计中,以MOSFET为例分析Buck电路的⼯作⼯程。
Buck电路根据电感电流IL的连续与断续存在连续导通⼯作状态和⾮连续导通⼯作状态。
(1) CCM模式下:(Continuous Conduction Mode)连续⼯作模式当开关管导通时,等效电路如图2-2所⽰:图2-1 开关管导通时,等效电路图由图2-1所⽰,输⼊电源Vin向整个电路供电,电感电流增加,⼀开始,流过电感的电流⼩于负载电流IL,此时负载电流由电感和电容共同提供。
当电流逐渐增加到⼤于输出的平均电流的时候,电感电流为负载和电容提供能量。
buck斩波电路原理
buck斩波电路原理
"buck 斩波电路" 可能是涉及直流-直流(DC-DC)电源的一种电路,其中“buck”通常指的是“降压型”或“步进降压型”电路。
这类电路通常用于将高电压直流(输入端)降低到较低的电压直流(输出端)。
这种类型的电路包含一个开关元件(通常是一个MOSFET)和一个电感,通常还包括一个二极管和一些滤波电容。
整个电路的工作原理如下:
1.导通阶段:MOSFET导通时,电流通过电感,能量储存在电感
中,同时电压在电感上升。
2.切断阶段:MOSFET截断时,电感上的储能电流通过二极管回
路,输出电压维持。
这个周期性的开关动作可以实现电压的降低。
斩波电路通常由一个控制电路来管理,以确保输出电压稳定。
这里简要描述了Buck 斩波电路的基本原理,具体的电路设计可能会涉及更多的元件和控制电路,以确保性能和稳定性。
如果你需要更详细的信息,最好查阅相关的电源电子学教材、设计手册或应用笔记。
关于BUCK线路的工作原理及调整说明
关于BUCK线路的工作原理及线路调整说明A点一、工作原理其主电路结构为BUCK型开关电路,Q1为主功率开关管,工作在高频开关状态,当其导通时,电流通过整流桥、LED灯珠、变压器T1、Q1形成导通回路。
当Q1关闭时,变压器T1中贮存的能量通过二极管D1、LED 灯珠的回路来电流释放,这样就是此线路高频开关的一个周期。
从而在LED灯珠上会有连续的电流通过,致其发光照明。
整个电路开启时,三极管Q1的基极驱动电流初次由电阻R6提供,随后其基极驱动电流由T1-2通过R5和C2提供。
三极管Q1的关断由Q2、Q3来控制,低压放大三极管Q2、Q3组成了达林顿结构,当它导通时,会将三极管Q1的基极驱动电流释放掉,使其关闭。
因此控制Q1的导通时间是LED是否恒流的关键点。
R3、R4、RC和Q2、Q3组成了温度补偿线路,其原理如下:RC为一种NTC热敏电阻,当图中A点电压大于{VBE(Q2)+ VBE(Q3)}×(R4+RC+R3)/ (R4+RC)时,Q2、Q3组成的达林顿三极管导通,控制Q1关闭。
当环境温度升高时,根据三极管特性,BE结正向电压会降低,即VBE(Q2)+ VBE(Q3)会降低。
而热敏电阻RC阻值会减小,这样就起到了温度补偿反馈的作用。
使A点电压在不同温度时仍能保证在相同电压值时使Q1关断。
直接的结果就是不同的环境温度下,Q1仍能保持基本相同的导通时间。
减小了温度对LED电流的影响。
T1-2和R1在电路中是起到对电源电压反馈的作用,例如当电源电压升高时,Q1导通时,T1-2电压会升高,通过R1使A点电压提高。
从而能使三极管Q1适当提前关断,来减小LED电流受电源电压的影响。
电阻R0能够检测三极管Q1源极电流,把电流在R0上产生的电压值通过R2加到A点,来控制Q1关断。
电阻R7在电路中可起到使整体电路功率更稳定的作用,并可调整功率因数。
二极管D3是起到负载开路保护作用,当LED开路时,D3就处于反向截止状态,从而使R6没有启动电流流过,电路无法启动,起到开路保护的作用。
BUCKBOOST电路原理分析
BUCKBOOST电路原理分析其原理如下:1.工作原理:当输入电压 Vin 施加到电路中时,开关器件通断周期性地将输入电压施加到能量存储元件上。
当开关器件处于闭合状态时,输入电压 Vin施加到能量存储元件上,储存了一部分能量。
当开关器件处于断开状态时,能量存储元件释放储存的能量,将其转移到输出负载上。
2.降压模式:在降压模式下,输入电压 Vin 大于输出电压 Vout。
当开关器件处于闭合状态时,输入电压 Vi 施加到能量存储元件上,电感储存了一部分能量。
当开关器件处于断开状态时,能量存储元件(电感)释放储存的能量,此时输出电压 Vout 较低。
3.升压模式:在升压模式下,输入电压 Vin 小于输出电压 Vout。
当开关器件处于闭合状态时,能量存储元件(电感)施加输入电压 Vin,将其储存。
当开关器件处于断开状态时,能量存储元件释放储存的能量,此时输出电压Vout 较高。
4.控制电路:控制电路通过检测输出电压 Vout 的大小,控制开关器件的通断状态,以维持所需的输出电压。
当输出电压低于设定值时,控制电路使开关器件闭合,输入电压通过能量存储元件传递给输出负载。
当输出电压高于设定值时,控制电路使开关器件断开,能量存储元件释放储存的能量给输出负载供电。
5.优点:-宽范围的输入电压调整能力,适用于多种应用。
-输出电压可高于或低于输入电压,提供更大的灵活性。
- 由于能量存储元件的存在,Buck Boost电路具有较好的噪声抑制能力。
6.应用领域:-电池供电系统,如电动汽车、无人机等。
-通信设备,如无线基站、卫星通信设备等。
-太阳能电池和风能发电系统。
-各种LED照明应用。
总之,BUCKBOOST电路通过开关器件和能量存储元件的配合,实现对输入电压的降压或升压,可以在宽范围的输入电压下调整输出电压,并具有良好的噪声抑制能力。
这种电路结构在很多领域中发挥着重要的作用。
BUCK电路基本原理
3.两种工作模式
依据电感上电流是否连续可将其工作分为CCM和DCM。
CCM连续电流模式
在重负载电流时 IAVE > ½ IRipple 电感的电流总是由正方向流淌 电流不会降到0 PWM把握,恒定开关频率原理
开关管导通,电感谢磁,电流线性上升
LdiL dt
Vin
Vo
Ipk(VinLVSfo)D
开关管关断,电感去磁, 电流线性
下降
L diL dt
Vo
Vo = D Vin
Ipk
Vo(1D) LfS
伏秒值平衡: Vt =恒定 toff: 去磁
ton: 激磁 B
Vo toff = (Vin – Vo) ton
输出负载电流下降 从CCM-DCM
CCM CCM有最小输出负载电流要求
DCM
DCM不连续电流模式
在轻负载电流时
IAVE < ½ IRipple 电感的电流(能量)完全放电到0,
在电流降到0时刻,二极管自 然关断,阻挡电感电流的反向 流淌,输出由电容供给,纹波 大. 开关频率及输出电压和负载电 流相关
BUCK电路根本原理及工作方 式分析
1.BUCK电路根本拓扑
Buck变换器:也称降压式变换器,是一种输出电压小于输入电压的单管 不隔离直流变换器。
图中,Q为开关管,其驱动电压一般为PWM(Pulse width modulation脉宽调制)信号,信号周期为Ts,则信号频率为 f=1/Ts,导通时间为Ton,关断时间为Toff,则周期 Ts=Ton+Toff,占空比Dy= Ton/Ts。
降压buck电路原理
降压buck电路原理
关键参数和元件:
- 输入电压(Vin):需要降低的高电压。 - 输出电压(Vout):降压后的目标电压。 - 电感(L):储存和传递能量的元件。 - 开关管(通常是MOSFET):控制电流的开关。 - 输出电容(C):平滑输出电压的元件。 Buck电路的工作原理是通过周期性地开关和关闭开关管,使电感和电容储存和释放能量 ,以达到降压的效果。通过控制开关管的导通和关闭时间,可以调节输出电压的大小。此外 ,还需要注意电感和电容的选取和参数设计,以满足电路的稳定性和效率要求。
降压buck电路原理
降压Buck电路是一种常见的DC-DC转换器,用于将高电压降低到较低的电压。其原理如下: 1. 输入电压(Vin)通过一个开关管(通常是MOSFET)接入电感(L)和负载(RL)。 2. 当开关管导通时,电感L储存能量,并将电流传递给负载。同时,电感的磁场储能。 3. 当开关管关闭时,电感L的储能磁场崩溃,产生一个反向电压,使电流继续流向负载。 4. 通过控制开关管的导通和关闭时间,可以调节输出电压(Vout)的大小。
降压buck电路原理
Buck电路是一种降压转换器,适用于输出电压低于输入电压的情况。如果需要升压转换 ,可以使用Boost电路或其它升压拓扑结构。
buck电路的基本原理
buck电路的基本原理Buck电路的基本原理Buck电路是一种常见的直流-直流降压转换电路,它具有简单、高效的特点,被广泛应用于各种电子设备中。
本文将介绍Buck电路的基本原理,包括其工作原理、关键组成部分和应用范围等。
一、工作原理Buck电路通过控制开关管的导通时间来实现电压的降低。
其基本原理是利用电感储能和电容滤波的方式,将输入电压转换为所需的输出电压。
当开关管导通时,电感储能,此时电感上的电流增大,而输出电压维持在正常范围。
当开关管关闭时,电感释放储能,通过二极管向负载提供电能,同时电容器对电流进行滤波,使输出电压保持稳定。
二、关键组成部分1.开关管:Buck电路中常用的开关管为MOSFET,它具有低导通电阻和快速开关速度的特点,能够有效地控制电流的流动。
2.电感:电感是Buck电路中的能量储存元件,通过电感的储能和释能来实现电压降低。
3.二极管:二极管在Buck电路中起到了反向电流的导通作用,它能够保证电压的平稳输出。
4.电容:电容用于对电流进行滤波和储能,使输出电压更加稳定。
5.控制电路:控制电路负责监测输出电压,并根据需要调整开关管的导通时间,以保持输出电压的稳定性。
三、应用范围Buck电路具有高效、简单、稳定的特点,因此被广泛应用于各种电子设备中:1.电源适配器:Buck电路常被用于电源适配器中,将市电的高电压转换为设备所需的低电压,以满足电子设备对电压的要求。
2.电动车充电器:电动车充电器需要将市电的交流电转换为直流电进行充电,Buck电路可以有效地降低电压,保证电动车电池的安全充电。
3.太阳能充电器:Buck电路可以将太阳能电池板输出的低电压升高至所需的充电电压,实现对电池的高效充电。
4.LED驱动器:LED灯需要稳定的电流来保证其正常工作,Buck电路可以将输入电压降低为LED所需的电压,同时保持恒定的电流输出。
总结:Buck电路作为一种常见的直流-直流降压转换电路,通过控制开关管的导通时间来实现电压的降低。
Buck电路原理分析
N
图三
Return To Page 6
- + tuoV 1 R + 1 L - 1 D
Buck电路原理分析
三、Buck电路的三种工作模式:CCM,BCM,DCM
1、CCM Mode:关键点原件波形见图四
图四
Return To Page 7
Buck电路原理分析
三、Buck电路的三种工作模式:CCM,BCM,DCM
L max
L min
L max
d
Io
2 T
2 T
即 2T I o I Lmin I LmaxTD T d
当Q管导通时
id
L
L
dt
V in
V o
I I L Lmax
L min
V V TD
in
o
即
I Lmax
V in V o L
TD I Lmin
2T
I
o
I
L min
V
in
V L
o
时,工作模式也逐渐从CCM进入BCM。根据伏秒积平衡 :
V in V oT * D V O T 1 D
V V D
o
in
I 同样,在一个周期进行分析,
T L max
Io 2 T
I Lmax 2
Buck电路原理分析
三、Buck电路的三种工作模式:CCM,BCM,DCM
3、DCM Mode:关键点原件波形见图六
T
on
V V o
in
T T on
d
同样,在一个周期对电感电流进行分析:
Io
I Lmax T * D
2T
BUCK-BOOST电路工作原理图文分析
BUCK-BOOST电路⼯作原理图⽂分析BUCK-BOOST 电路⼯作原理图⽂分析【项⽬任务】测试电路如下图4.8⽰,调整函数发⽣器的占空⽐,测量输⼊与输出关系。
Q12,输出波形通道1,驱动波形(a) 测试电路 (b)函数发⽣器信号 (b)输出波形图4.8 BUCK-BOOST 电路(multisim)【信息单】⼀、直流斩波电路的基本原理Buck/Boost 变换器是输出电压可低于或⾼于输⼊电压的⼀种单管直流变换器,其电路如图4.8。
与Buck 和Boost 电路不同的是,电感L f 在中间,不在输出端也不在输⼊端,且输出电压极性与输⼊电压相反。
开关管也采⽤PWM 控制⽅式。
Buck/Boost 变换器也有电感电流连续和断续两种⼯作⽅式,此处以电感电流在连续状态下的⼯作模式。
图4.8是电感电流连续时的主要波形。
图4.10是Buck/Boost 变换器在不同⼯作模态下的等效电路图。
电感电流连续⼯作时,有两种⼯作模态,图4.11(a)的开关管Q 导通时的⼯作模态,图 (b)是开关管Q 关断、D 续流时的⼯作模态。
V o图4.9电路Vi LFi Qi DV图4.10感电流连续⼯作波形V oV o(a) Q 导通 (b) Q 关断,D 续流图5.11 Buck/Boost 不同开关模态下等效电路⼆、电感电流连续⼯作原理和基本关系电感电流连续⼯作时,Buck/Boost 变换器有开关管Q 导通和开关管Q 关断两种⼯作模态。
1.在开关模态1[0~t on ]:t=0时,Q 导通,电源电压V in 加载电感L f 上,电感电流线性增长,⼆极管D 戒指,负载电流由电容C f 提供:f L fin di L V dt=(2-1)oo LDV I R =(2-2)ofo dV C I dt= (2-3)t=t on 时,电感电流增加到最⼤值max L i ,Q 关断。
在Q 导通期间电感电流增加量f L i ?f inL y fV i D T L ?=(2-4)2.在开关模态2[t on ~ T]:t=t on 时,Q 关断,D 续流,电感L f 贮能转为负载功率并给电容C f 充电,fL i 在输出电压Vo 作⽤下下降:f L fo di L V dt=(2-5)f o o oL fo f LDdV dV V i C I C dt dt R =+=+ (2-6)t=T 时,fL i 见到最⼩值min L i ,在t on ~ T 期间fL i 减⼩量fL i ?为:(1)f o o L off y f fV Vi t D T L L ?==- (2-7)此后,Q ⼜导通,转⼊下⼀⼯作周期。
BUCK电路案例分析图文说明
BUCK 电路案例分析图文说明BUCK 电路是一种降压斩波器,降压变换器输出电压平均值U o 总是小于输入电压U d 。
一、BUCK 电路工作原理Q1导通期间(t on ):电力开关器件导通,电感蓄能,二极管D 反偏。
等效电路如图5.7(b)所示 ;Q1关断期间(t off ):电力开关器件断开,电感释能,二极管D 导通续流。
等效电路如5.7 (c)所示;由波形图5.7 (b)可以计算出输出电压的平均值为:)0(1)(100⎰⎰⎰⋅+⋅==SononST tt d ST Sdt dt u T dt t u T U则:d dS onDU U T t U ==0,D 为占空比。
忽略器件功率损耗,即输入输出电流关系为:d d O d O I DI U U I 1==。
图4.6 BUCK电路工作过程二、电感工作模式分析下图4.7为BUCK电路中电感流过电流情况。
图4.7电感电流波形图电感中的电流i L是否连续,取决于开关频率、滤波电感L和电容C的数值。
1.电感电流i L连续模式:⑴在t on 期间:电感上的电压为dtdi Lu LL = 由于电感L 和电容C 无损耗,因此i L 从I 1线性增长至I 2,上式可以写成onLon O d t I L t I I LU U ∆=-=-12Od L on U U LI t -∆=)(式中△I L =I 2-I 1为电感上电流的变化量,U O 为输出电压的平均值。
⑵在t off 期间:假设电感中的电流i L 从I 2线性下降到I 1,则有offLO t I LU ∆=则,OLoff U I Lt ∆=可求出开关周期TS 为)(1O d O dL off on S U U U LU I t t fT -∆=+==fLD D U fLU U U U I d d O d O L )1()(-=-=∆上式中△I L 为流过电感电流的峰-峰值,最大为I 2,最小为I 1。
buck电路原理pdf
buck电路原理
总之,Buck电路通过功率开关、电感和电容等元件的协同工作,将高电压降低到较低的 电压级别。它是一种常见的DC-DC转换器,广泛应用于电源管理、电子设备和电动汽车等领 域。
2. 开关控制:Buck电路的功率开关(MOSFET)通过控制开关的导通和截止状态来调节 输出电压。当开关导通时,输入电压Vin通过电感传递到负载和输出电容上;当开关截止时, 电感储 电感和电容:电感(L)和电容(C)是Buck电路中的关键元件。电感通过储存能量来 平滑输出电流,而电容则用于滤波和稳定输出电压。
4. 工作原理:当开关导通时,电感储存能量,电流增加;当开关截止时,电感释放储存的 能量,电流减小。通过调整开关的导通和截止时间比例,可以控制输出电压的大小。
5. 控制方式:Buck电路可以使用不同的控制方式,如固定频率PWM控制、电流模式控制 等。其中,PWM控制通过调整开关的导通和截止时间来控制输出电压,电流模式控制则通 过监测电感电流来实现输出电压的调节。
buck电路原理
Buck电路是一种降压型直流-直流(DC-DC)转换器,用于将高电压降低到较低的电压级 别。它由一个功率开关(通常是MOSFET)和一个电感组成。以下是Buck电路的原理:
1. 输入电压和输出电压:Buck电路的输入电压通常称为Vin,输出电压称为Vout。输入 电压Vin通常较高,而输出电压Vout较低。
BUCK电路工作原理分析
BUCK电路工作原理分析首先介绍BUCK电路的基本组成部分。
BUCK电路由一个开关元件(一般为MOSFET)和一个电感组成。
开关元件用来开关输入电源和电感之间的连接,以控制输出电压的平均值。
电感是储能元件,在开关元件导通期间,通过电流源向电感储存能量;在开关元件截断期间,储存在电感中的能量通过二极管和负载传输到输出端。
BUCK电路的工作周期分为两个阶段:导通阶段和截断阶段。
在导通阶段,开关元件导通,输入电压通过电感和开关元件传递到负载,同时电感储存能量。
在截断阶段,开关元件截断,输入电压被限制在电感和负载之间,储存在电感中的能量则通过二极管和负载传输到输出端。
接下来详细分析BUCK电路的工作过程。
在导通阶段,开关元件导通,电感上的电流线性增大。
根据基尔霍夫电压定律,电感的电压降等于输入电压与输出电压之差,即Vi-Vo。
此时,电感积累的能量与电流和时间的乘积成正比,即E=(1/2)*L*i^2,其中L为电感的电感值,i为通过电感的电流。
由于电流增大连续的速率相同,可以得到E与i成正比。
在截断阶段,开关元件截断,电感储存的能量被传输到输出端。
此时,电感上的电流开始减小。
根据基尔霍夫电压定律,电感的电压降等于输出电压与负载间的电压降,即Vo。
上述能量传输的过程实际上可以看作是电感的电能转换为输出电压的能量转移。
BUCK电路的输出电压与输入电压之比由两个决定因素来控制:占空比和电感的值。
占空比是指开关元件导通时间与一个工作周期的比值。
占空比越小,输出电压越小。
而电感的值越大,输出电压也就越大。
通过合理选择这两个参数的组合,可以实现不同的输出电压。
此外,由于BUCK电路的开关频率相对较高,通常在几十kHz至数百kHz范围内,也就意味着它不会引入明显的视觉闪烁或噪音。
同时,由于BUCK电路的输入端接近恒流源,输出端接近恒压源,因此具有较好的抗扰动能力。
综上所述,BUCK电路基于开关原理和电感储能原理,通过控制开关元件的导通和截断,实现输入电压的降压功能。
buck电路工作原理
buck电路工作原理
Buck电路工作原理。
Buck电路是一种常见的降压型直流电源电路,它能够将输入电压降低到所需的输出电压,因此在各种电子设备中得到广泛应用。
本文将详细介绍Buck电路的工作原理及其基本特性。
Buck电路由输入电压源、开关管、电感、二极管和输出负载等组成。
当输入电压施加到开关管上时,开关管导通,电感储存能量,输出电压为正常工作状态;当开关管断开时,电感释放储存的能量,二极管导通,输出电压维持稳定。
Buck电路的工作原理可以用以下几个步骤来解释:
1. 输入电压施加到开关管上,开关管导通,电感储存能量;
2. 开关管断开,电感释放储存的能量,二极管导通,输出电压稳定;
3. 通过控制开关管的导通时间和断开时间,可以调节输出电压的大小。
Buck电路的工作原理可以用以下几个公式来描述:
1. 输入电压Vin;
2. 输出电压Vout;
3. 开关管的导通时间Ton;
4. 开关管的断开时间Toff;
5. 输出电流Iout。
通过这些公式,可以计算出Buck电路的工作参数,从而设计出符合要求的电路。
Buck电路具有以下特点:
1. 高效率,Buck电路的工作原理能够实现高效的能量转换,减少能量损耗;
2. 稳定性好,Buck电路能够稳定输出所需的电压,适用于各种负载要求;
3. 体积小,Buck电路的工作原理能够实现高频开关,从而减小电感和电容的体积,使整个电路体积小巧。
总之,Buck电路是一种常见的降压型直流电源电路,它通过一定的工作原理和特性,实现了高效的能量转换和稳定的输出电压。
在各种电子设备中得到广泛应用,为现代电子技术的发展做出了重要贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BUCK电路工作原理分析
测试电路如下图4.5所示,改变驱动信号占空比,观察输入与输出关系。
通道2,输出波形
1,驱动波形
(a)BUCK测试电路(b)输出波形(c)输出波形
图4.5 BUCK升压电路(multisim)
BUCK电路是一种降压斩波器,降压变换器输出电压平均值U o总是小于输入电压U d。
一、BUCK电路工作原理
Q1导通期间(t on ):电力开关器件导通,电感蓄能,二极管D反偏。
等效电路如图5.7(b)所示;
Q1关断期间(t off):电力开关器件断开,电感释能,二极管D导通续流。
等效电路如5.7 (c)所示;
由波形图5.7 (b)可以计算出输出电压的平均值为:
)
(
1
)
(
1
0⎰
⎰
⎰⋅
+
⋅
=
=S
on
on
S
T
t
t
d
S
T
S
dt
dt
u
T
dt
t
u
T
U
则:
d
d
S
on DU
U
T
t
U=
=
,D为占空比。
忽略器件功率损耗,即输入输出电流关系为:
d
d
O
d
O
I
D
I
U
U
I
1
=
=。
图4.6 BUCK电路工作过程
二、电感工作模式分析
下图4.7为BUCK电路中电感流过电流情况。
图4.7电感电流波形图
电感中的电流i L是否连续,取决于开关频率、滤波电感L和电容C的数值。
1.电感电流i L连续模式:
⑴在t on 期间:电感上的电压为
dt
di L
u L
L = 由于电感L 和电容C 无损耗,因此i L 从I 1线性增长至I 2,上式可以写成
on
L
on O d t I L t I I L
U U ∆=-=-12
O
d L on U U L
I t -∆=
)(
式中△I L =I 2-I 1为电感上电流的变化量,U O 为输出电压的平均值。
⑵在t off 期间:假设电感中的电流i L 从I 2线性下降到I 1,则有
off
L
O t I L
U ∆=
则,O
L
off U I L
t ∆=
可求出开关周期TS 为
)
(1
O d O d
L off on S U U U LU I t t f
T -∆=
+==
fL
D D U fLU U U U I d d O d O L )
1()(-=
-=
∆
上式中△I L 为流过电感电流的峰-峰值,最大为I 2,最小为I 1。
电感电流一周期内的平均值与负载电流I O 相等,即
2
1
20I I I +=
则)1(201D D L
T U I I S
d --
= 2.电感电流i L 临界连续状态
变换电路工作在临界连续状态时,即有I 1=0,由)1(201D D L
T U I I S
d --=,可得维持电流临界连续的电感值L 0为:
)1(20D D I T U L K
S
d o -=
即电感电流临界连续时的负载电流平均值为 :
)1(2D D L T U I O
S
d OK -=
式中I ok 为电感电流临界连续时的负载电流平均值。
总结:临界负载电流I ok 与输入电压U d 、电感L 、开关频率f 以及开关管T 的占空比D 都有关。
当实际负载电流I o >I ok 时,电感电流连续;当实际负载电流I o =I ok 时,电感电流处于连续(有断流临界点); 当实际负载电流I o <I ok 时,电感电流断流。
三、输出纹波电压:
在Buck 电路中,如果滤波电容C 的容量足够大,则输出电压U 0为常数。
然而在电容C 为有限值的情况下,直流输出电压将会有纹波成份。
电流连续时的输出电压纹波为:
2
22
))(1(28)1(f f D LCf
D U U c -=-=∆π 其中f 为buck 电路的开关频率, f c 为电路的截止频率。
它表明通过选择合适的L 、C 值,当满足f c <<f 时,可以限制输出纹波电压的大小,而且纹波电压的大小与负载无关。