实数全章复习与巩固基础巩固练习
70《解析几何初步》全章复习与巩固(基础)-巩固练习_《解析几何初步》全章复习与巩固 -基础 (1)
【巩固练习】1.经过点P(2,-1),且在y 轴上的截距等于它在x 轴上的截距的2倍的直线l 的方程是()A.2x+y=2B.2x+y=4C.2x+y=3D.2x+y=3或x+2y=02.已知A(3,2)和B(-1,4)两点到直线mx+y+3=0的距离相等,则m 的值为()A.0或12-B.12或-6C.12-或12D.0或123.直线l 的方程为Ax+By+C=0,若l 过原点和第二、四象限,则有()A.C=0且B>0B.C=0且B>0,A>0C.C=0且A·B<0D.C=0且A·B>04.经过圆2220x x y ++=的圆心C,且与直线x+y=0垂直的直线方程是()A.10x y -+=B.10x y --=C.10x y +-=D.10x y ++=5.若圆心在x C 位于y 轴左侧,且与直线x+2y=0相切,则圆C 的方程是()A.22(5x y +=B.22(5x y +=C.22(5)5x y -+=D.22(5)5x y ++=6.直线x+y=1与圆2220(0)x y ay a +-=>没有公共点,则a 的取值范围是()1)1-,在1+)C.(11-)1+)7.圆22460x y x y +-+=和圆2260x y x +-=交于A,B 两点,则线段AB 的垂直平分线的方程是()A.x+y+3=0B.2x-y-5=0C.3x-y-9=0D.x-3y+7=08.由直线y=x+1上的一点向圆(x-3)2+y 2=1引切线,则切线长的最小值为()A.1B.D.39.如果圆(x -a )2+(y -a )2=4上总存在两个点到原点的距离为1,那么实数a 的取值范围是_____.10.过点P (2,1)且与圆x 2+y 2-2x +2y +1=0相切的直线的方程为_________.11.若直线x =1与直线2103a x y ⎛⎫-++= ⎪⎝⎭垂直,则a =_________.12.若圆x 2+y 2=4与圆x 2+y 2+4x -4y +4=0关于直线l 对称,则直线l 的方程是__________.13.过点M (0,1)作直线,使它被直线l 1:x -3y +10=0和l 2:2x +y -8=0所截得的线段恰好被M 平分,求此直线方程.14.已知圆C 同时满足下列三个条件:①与y 轴相切;②在直线y =x 上截得弦长为;③圆心在直线x -3y =0上,求圆C 的方程.15.已知方程x 2+y 2-2x -4y +m =0.(1)若此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线x +2y -4=0相交于M 、N 两点,且OM ⊥O N(O 为坐标原点),求m ;(3)在(2)的条件下,求以M N 为直径的圆的方程.16.已知圆C :x 2+y 2-2x +4y -4=0.是否存在斜率是1的直线l ,使l 被圆C 截得的弦AB ,且以AB 为直径的圆经过原点?若存在,写出直线l 的方程;若不存在,请说明理由.【答案与解析】1.【答案】D 【解析】当直线不过原点时,设直线方程为12x y a a +=,将P 点代入可得32a =,即直线方程为2x+y=3;当直线过原点时直线方程为x+2y=0.2.【答案】B 【解析】若A、B 在直线同侧,则有4213m --=--,解得12m =;若A、B 在直线异侧,可求得其中点(1,3),代入直线方程得m+3+3=0,得m=-6.3.【答案】D【解析】由直线过原点,知C=0,过第二、四象限知0AB-<,即A·B>0.4.【答案】A【解析】设所求直线方程为x-y+m=0,又过(-1,0)点,代入得m=l,故直线方程为10x y -+=.5.【答案】D【解析】设圆心为(a,0)(a<0).因为直线x+2y=0==,解得5a =-.所以圆C 的方程为22(5)5x y ++=.6.【答案】A【解析】由题意知,直线与圆相离,圆心(0,a)到1x y +=的距离a >,解得11a -<<.又0a >,故选A.7.【答案】C【解析】公共弦的垂直平分线为两圆的连心线,两圆心分别为(2,-3),(3,0),可得直线方程为3x-y-9=0.8.【答案】C【解析】设满足条件的点为(a ,a+1),则切线长l ==a=1时,min l =.9.【答案】2222⎛⎫⎫ ⎪⎪⎪⎪⎝⎭⎝⎭10.【答案】=2或3-4-2=0【解析】圆的标准方程为(x -1)2+(y +1)2=1,当切线斜率不存在时,x =2满足条件;当切线斜率存在时,可设直线方程为y -1=k (x -2),利用圆心到直线的距离等于半径,即=1,得k =34,∴切线方程为3x -4y -2=0.11.【答案】23【解析】x =1斜率不存在,若要垂直,则23a x ⎛⎫-⎪⎝⎭+y +1=0的斜率为0.12.【答案】x -y +2=0【解析】由已知得两圆的圆心坐标分别为(0,0)和(-2,2).所以直线l 的斜率为1,并过点(-1,1).所以直线l 的方程是y -1=x +1,即x -y +2=0.13.【解析】解法一:直线斜率不存在时,即过点M 且与x 轴垂直的直线是y 轴,它和两已知直线的交点分别是100,3⎛⎫⎪⎝⎭和(0,8),显然不满足中点是点M (0,1)的条件.故可设所求直线方程为y =kx +1,与已知两直线l 1,l 2分别交于A ,B 两点,联立方程组1,3100,y kx x y =+⎧⎨-+=⎩①1,280,y kx x y =+⎧⎨+-=⎩②由①解得x A =731k -,由②解得x B =72k +.∵点M 平分线段AB ,∴x A +x B =2x M ,即731k -+72k +=0.解得k =-14.故所求直线方程为x +4y -4=0.解法二:设所求直线与已知直线l 1,l 2分别交于A ,B 两点.∵点B 在直线l 2:2x +y -8=0上,故可设B(t ,8-2t ),M (0,1)是AB 的中点.由中点坐标公式,得A (-t ,2t -6).又∵点A 在直线l 1:x -3y +10=0上,∴(-t )-3(2t -6)+10=0,解得t =4.∴B (4,0),A (-4,2).故所求直线方程为x +4y -4=0.14.【解析】设所求圆的方程:222()()x a y b r -+-=,∵所求圆与y 轴相切,∴||a r =①.又圆心在30x y -=上,∴a =3b ,圆心到直线x -y =0的距离||3d a ==②,|3a ==,∴|a |=3,∴a =±3,b =±1,即圆心坐标为(3,1)或(-3,-1),半径r =3,所求圆的方程为22(3)(1)9x y -+-=或22(3)(1)9x y +++=.15.【解析】(1)(x -1)2+(y -2)2=5-m ,∴m <5.(2)设M (x 1,y 1),N (x 2,y 2),则x 1=4-2y 1,x 2=4-2y 2,∴x 1x 2=16-8(y 1+y 2)+4y 1y 2.∵OM ⊥ON ,∴x 1x 2+y 1y 2=0,∴16-8(y 1+y 2)+5y 1y 2=0.①由2242,240x y x y x y m =-⎧⎨+--+=⎩得5y 2-16y +m +8=0,∴y 1+y 2=165,y 1y 2=85m +,代入①得,m =85.(3)以MN 为直径的圆的方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0,即x 2+y 2-(x 1+x 2)x -(y 1+y 2)y =0.∴所求圆的方程为x 2+y 2-85x -165y =0.16.【解析】假设存在直线l 满足题设条件,且设l 的方程为y =x +m ,圆C 化为(x -1)2+(y +2)2=9,圆心C (1,-2),则AB 中点N 是两直线x -y +m =0与y +2=-(x -1)的交点,即N 11,22m m +-⎛⎫-⎪⎝⎭.∵以AB 为直径的圆经过原点,∴|AN |=|O N |.又CN ⊥AB ,|CN∴|AN .又|O N |=由|AN |=|O N |,解得m =-4或m =1.∴存在直线l ,其方程为y =x -4或y =x +1.。
实数(全章复习与巩固)(巩固篇)(专项练习)-七年级数学下册基础知识专项讲练(沪科版)
专题6.12 实数(全章复习与巩固)(巩固篇)(专项练习)一、单选题1.在下列各数中,无理数是( ) A .237B 38-C 916D .4π 2.下列说法正确的是( ) A .117是无理数 B 5 C .π2是无理数D .22是有理数 3.下列等式正确的是( ) A .()255-- B 93=± C 382±D 3355--4.一个长、宽,高分别为50cm 、8cm 、20cm 的长方体铁块锻造成一个立方体铁块,则锻造成的立方体铁块的棱长是( )A .20cmB .200cmC .40cmD 80cm5.若32x =-( ) A .32x =-B .32x =-C .(-x)3=-2D .x=(-2)36.已知x ,y 为实数,且22994y x x --,则x y -=( ) A .﹣1B .﹣7C .﹣1或﹣7D .1或﹣77.若24,a =31b =-,则a b +的值是( ) A .1B .-3C .1或-3D .-1或38.已知x ,y 两个实数在数轴上位置如图所示,则化简()2y x x y --( )A .2xB .2yC .22x y -D .22y x -9.如图,在数轴上点A 表示的实数是( )A 5B 51C 31D 310.如图,数轴上表示12A 、B ,点B 关于点A 的对称点是C ,设C 点表示的数为x ,则2x )A .12B .1+2C 21D .2二、填空题1149的算术平方根是______64______. 128x -3x ____________.13()2460x y -+=,那么2x y -的平方根为_______. 14.已知:23+m ,小数部分为n ,则2m n -=_____.15.已知实数a 、b 在数轴上的对应点如图,化简||a a b c b -++-=_________.16101-89.(填“>”或“<”)17.设 a 、b 是有理数,且满足等式2322152a b b ++=-则a+b=___________. 18.对于能使式子有意义的有理数,a b ,定义新运算:a △b 22a ba b+=-.如果1230x y xz -++=则x △(y △z )= _____ .三、解答题19.在数轴上表示下列各数,并将这些数按从小到大的顺序用“<”连接起来. 2,52,038-π-.20.求下列各式中x 的值: (1) 240x -=;(2) 3(1)8x +=.21.化简求值:(1) 已知a 1713b =54ab +(2) 已知:实数a ,b 323(1)2(1)||a b a b -----.22.计算:(1) 2338125(2)---(2) 2722(7)π-(3) 331631270.1251464--(4) 233416(3)22--.23.如图,每个小正方形的边长均为1.(1) 图中阴影部分的面积是______;阴影部分正方形的边长a 是______. (2) 估计边长a 的值在两个相邻整数______与______之间.(3) 我们知道π是无理数,而无理数是无限不循环小数,因此π的小数部分我们不可能全部写出来,我们可以用3来表示它的整数部分,用()3π-表示它的小数部分.设边长a 的整数部分为x ,小数部分为y ,求()x y -的相反数.24.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.小白在草稿纸上画了一条数轴进行操作探究:操作一:(1)折叠纸面,若使表示的点1与﹣1表示的点重合,则﹣2表示的点与表示的点重合;操作二:(2)折叠纸面,若使1表示的点与﹣3表示的点重合,回答以下问题:3表示的点与数表示的点重合;②若数轴上A、B两点之间距离为8(A在B的左侧),且A、B两点经折叠后重合,则A、B两点表示的数分别是__________________;操作三:(3)在数轴上剪下9个单位长度(从﹣1到8)的一条线段,并把这条线段沿某点折叠,然后在重叠部分某处剪一刀得到三条线段(如图). 若这三条线段的长度之比为1:1:2,则折痕处对应的点所表示的数可能是_________________________.参考答案1.D【分析】先对个选项进行化简,再由无理数的概念进行判断即可. 解:237是有理数,故选项A 不符合题意; 382--是有理数,故选项B 不符合题意;93164=是有理数,故选项C 不符合题意; 4π符合无理数的概念,故选项D 符合题意;. 故选:D .【点拨】此题考查的是算术平方根、立方根及无理数的概念,能够根据算术平方根的概念及立方根进行正确化简是解决此题关键.2.C【分析】根据有理数和无理数的定义,逐一判定即可,有理数包括整数和分数,无理数是无限不循环小数.解:A. 117是有理数,故A 选项说法错误; B. 5B 选项说法错误;C. π2是无理数,故C 选项说法正确; D.2D 选项说法错误. 故选:C .【点拨】本题主要考查了有理数和无理数,解决问题的关键是熟练掌握有理数和无理数的定义.3.D【分析】利用平方根与立方根的定义,逐个计算得结论.解: A 、()22555---,故选项错误,不符合题意;B 9=3,故选项错误,不符合题意;C 38=2,故选项错误,不符合题意;D 335=5--,故选项正确,符合题意. 故选:D .【点拨】本题考查了平方根、算术平方根和立方根的性质与化简,掌握平方根和立方根的定义解决本题的关键.4.A【分析】先求出体积,再求立方根即可. 解:∵铁块体积是3508208000(cm )⨯⨯=∴3800020(cm), 故选:A .【点拨】本题考查立方根的应用,会求立方根是解题的关键. 5.B【分析】利用立方根的定义分析得出答案. 解:∵3-2, ∴x 3=-2, 故选B .【点拨】本题考查立方根的定义,正确把握定义是解题关键. 6.C直接利用二次根式的性质得出x ,y 的值,然后讨论进而得出答案. 解:∵22994y x x --, ∴229090x x -≥-≥, ∴290x∴y =4, ∴3x =±,当3,4x y ==时,341x y -=-=-; 当3,4=-=x y 时,347x y -=--=-; ∴1x y -=-或7x y -=-, 故选:C .【点拨】本题考查了二次根式有意义的条件.解答本题的关键由二次根式有意义的条件求出x 、y 的值.7.C【分析】根据题意,利用平方根,立方根的定义求出a ,b 的值,再代入求解即可. 解:24,a =31,b =-2,a ∴=±1b,∴当2,a =-1b时,213a b +=--=-; ∴当2,a =1b 时,211a b +=-=.故选:C .【点拨】本题考查的知识点是平方根以及立方根的定义,根据定义求出a ,b 的值是解此题的关键.8.D【分析】根据点在数轴的位置判断式子的正负,然后化简. 解:根据图示可知:0x y <<∴0y x∴()2y x x y -+-y x y x 22y x =-故选:D .【点拨】此题的考查了数轴,绝对值的性质,合并同类项法则,解题的关键是根据点在数轴的位置判断式子的正负.9.B【分析】先根据勾股定理求出PQ 的长,即可求出点A 所表示的数. 解:如图,22125PQ =+由图可知5PA PQ ==, 所以点A 51, 故点A 51. 故选:B【点拨】本题考查勾股定理以及数轴表示数的意义和方法,掌握解答的方法是关键.。
沪教版八年级下册数学 第二十一章 《代数方程》全章复习与巩固 知识讲解(提高)
《代数方程》全章复习与巩固知识讲解(提高)【学习目标】1.知道一元整式方程与高次方程的有关概念,知道一元整式方程的一般形式. 理解含字母系数的一元一次方程、一元二次方程的概念,掌握它们的基本解法.2.理解和掌握二项方程的意义以及二项方程的解法,理解双二次方程的意义,了解高次方程求解的基本方法是降次,会用换元法把双二次方程转化为一元二次方程;学会判断双二次方程的根的个数.3.会用“换元法”解特殊的分式方程(组).4.理解无理方程的概念,会识别无理方程,知道有理方程及代数方程的概念,领会无理方程“有理化”的化归思想. 会解简单的无理方程(方程中只含一个或两个关于未知数的二次根式).5.知道二元二次方程的概念和二元二次方程组的概念.6.掌握由“代入法”解由一个二元一次方程和二元二次方程组成的方程组;掌握用“因式分解法”解由两个二元二次方程组成的方程组.7.能熟练地列出方程组解应用题.并能根据具体问题的实际意义,检查结果是否合理.通过将实际生活中的问题抽象为方程模型,让学生形成良好思维习惯,学会从数学角度提出问题、理解问题.运用所学知识解决问题,发展应用意识,体会数学的情感与价值.【知识网络】【要点梳理】要点一、整式方程1. 一元整式方程:如果方程中只有一个未知数且两边都是关于未知数的整式,这个方程叫做一元整式方程;2.一元n次方程:一元整式方程中含未知数的项的最高次数是n(n是正整数),这个方程叫做一元n次方程.3.一元高次方程:一元整式方程中含有未知数的项的最高次数是n,若次数n是大于2的正整数,这样的方程统称为一元高次方程.要点诠释:一元高次方程应具备:整式方程;只含一个未知数;含未知数的项最高次数大于2次.4.二项方程概念:如果一元n次方程的一边只有含未知数的一项和非零的常数项,另一边是零,那么这样的方程就叫做二项方程.要点诠释:注:①nax=0(a≠0)是非常特殊的n次方程,它的根是0.②这里所涉及的二项方程的次数不超过6次.5.解的情况:当n为奇数时,方程有且只有一个实数根,x=;当n为偶数时,如果ab<0,那么方程有两个实数根,且这两个根互为相反数;如果ab>0,那么方程没有实数根.6.双二次方程概念:只含有偶数次项的一元四次方程.要点诠释:当常数项不是0时,规定它的次数为0.7.解双二次方程的常用方法:因式分解法与换元法(目的是降次,使它转化为一元一次方程或一元二次方程)通过换元,把双二次方程转化为一元方程体现了“降次”的策略.要点诠释:解高于一次的方程,基本思想就是“降次”,对有些高次方程,可以用因式分解的方法降次.用因式分解的方法时要注意:一定要使方程的一边为零,另一边可以因式分解.要点二、分式方程1.分式方程的定义:分母中含有未知数的方程叫做分式方程.要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.(3)分式方程和整式方程看联系:分式方程可以转化为整式方程.2.分式方程的解法1、解分式的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根.2、解分式方程的一般步骤:(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);(2)解这个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.要点诠释:1、熟练掌握用“去分母”法求解分式方程的方法.2、了解用“换元法”解特殊的分式方程(组).3、领会分式方程“整式化”的化归思想和方法.3.解分式方程产生增根的原因方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根.产生增根的原因:去分母时,方程两边同乘最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根. 要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方程不是同解方程,这时求得的根就是原方程的增根.(2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中没有错误的前提下进行的.要点三、无理方程1.无理方程:方程中含有根式,且被开方数是含有未知数的代数式,这样的方程叫做无理方程.要点诠释:简单说,根号下含有未知数的方程,就是无理方程.2.有理方程:整式方程和分式方程统称为有理方程.3.代数方程:有理方程和无理方程统称为代数方程.要点诠释:代数方程的共同点是:其中对未知数所涉及的运算是加、减、乘、除、乘方、开方等基本运算.4.含有一个根式(根式内有未知数的)的无理方程的解题步骤:①移项,使方程左边是含未知数的根式,其余都移到另一边;②两边同时乘方(若二次根式就平方,三次根式就立方)得整式方程;③解整式方程;④验根;⑤写答案.要点诠释:解简单无理方程的一般步骤,用流程图表示为:5.含有两个根式(根式内含有未知数)的无理方程的解题步骤:①移项,使方程等式的左边只含一个根式,其余移到另一边;②两边同时平方,得到只含有一个根式的无理方程;以下与1步骤相同.要点诠释:解无理方程的关键在于把它转化为有理方程,转化的基本方法是对方程两边同时乘方从而去掉根号,对于简单的无理方程,可通过“方程两边平方”来实施.要点四、二元二次方程组1. 二元二次方程定义:仅含有两个未知数,并且含有未知数的项的最高次数是2的整式方程,叫做二元二次方程.要点诠释:22ax bxy cy dx ey f o +++++=(a 、b 、c 、d 、e 、f 都是常数,且a 、b 、c 中至少有一个不为零),其中22,,ax bxy cy 叫做这个方程的二次项,a 、b 、c 分别叫做二次项系数,,dx ey 叫做这个方程的一次项,d 、e 分别叫做一次项系数,f 叫做这个方程的常数项.2.二元二次方程的解能使二元二次方程左右两边的值相等的一对未知数的值,叫做二元二次方程的解.要点诠释:二元二次方程有无数个解;二元二次方程的实数解的个数有多种情况.3.二元二次方程组概念:仅含有两个未知数,各方程都是整式方程,并且含有未知数的项的最高次数为2,这样的方程组叫做二元二次方程组.要点诠释:不能认为由两个二元二次方程组成的方程组才叫二元二次方程组,由一个二元一次方程和一个二元二次方程组成的方程组,也是二元二次方程组.4. 二元二次方程组的解:方程组中所含各方程的公共解叫做这个方程组的解.1. 代入消元法代入消元法解“二·一”型二元二次方程组的一般步骤:①把二元一次方程中的一个未知数用另一个未知数的代数式表示;②把这个代数式代入二元二次方程,得到一个一元二次方程;③解这个一元二次方程,求得未知数的值;④把所求得的未知数的值分别代入二元一次方程,求得另一个未知数的值;⑤所得的一个未知数的值和相应的另一个未知数的值分别组在一起,就是原方程组的解; ⑥写出原方程组的解.要点诠释:(1)解一元二次方程、分式方程和无理方程的知识都可以运用于解“二·一”型方程组;(2)“二·一”型方程组最多有两个解,要防止漏解和增解的错误.2. 因式分解法(1) 当方程组中只有一个可分解为两个二元一次方程的方程时,可将分解得到的两个二元一次方程分别与原方程组中的另一个二元二次方程组成两个“二·一”型方程组,解得这两个“二·一”型方程组,所得的解都是原方程组的解.(2) 当方程组中两个二元二次方程都可以分解为两个二元一次方程时,将第一个二元二次方程分解所得到的每一个二元一次方程与第二个二元二次方程分解所得的每一个二元一次方程组成新的方程组,可得到四个二元一次方程组,解这四个二元一次方程组,所得的解都是原方程组的解.5.方程(组)的应用应用二元二次方程组解应用题的一般步骤:(1)审题;(2)设未知数(2个);(3)列二元二次方程组;(4)解方程组;(5)检验是否是方程的解以及是否符合实际;(6)写出答案.要点诠释:一定要检验一下结果是否符合实际问题的要求.【典型例题】类型一、方程的判断1.下列方程中,哪些是二元二次方程?是二元二次方程的请指出它的二次项、一次项和常数项.2222(1) 1 ; (2)320;1(3)20 ; (4)3 1.x y y y y x x y xy+=-+=+-=++= 【思路点拨】该题主要依据二元二次方程的定义.【答案与解析】(1)是,二次项2x 、一次项y ,常数项-1.(2)不是,因为只含一个未知数.(3)不是,因为不是整式方程.(4)不是,因为不含二次项.【总结升华】对于二元二次方程的定义要加深全面的理解.举一反三:【变式】(2015秋•黄浦区期中)在方程2x 2﹣3x=4,xy=1,x 2﹣4y 2=9,中,是二元二次方程的共有( ) A .1个 B .2个 C .3个 D .4个【答案】B.解:2x 2﹣3x=4是一元二次方程;xy=1,x 2﹣4y 2=9是二元二次方程;是分式方程.故是二元二次方程的只有:xy=1,x 2﹣4y 2=9.故选B .2.(2016春•上海校级月考)下列关于x 的方程中,无理方程是( )A .B .C .D .+2x=7 【思路点拨】根号下含有未知数的方程是无理方程,依据定义即可作出判断.【答案】C .【解析】解:A 、x 2+x+1=0是一元二次方程,选项错误;B 、x+1=0是一元一次方程,选项错误;C 、+=0是无理方程,选项正确;D 、+2x=7是关于x 的一元一次方程,选项错误.故选C .【总结升华】本题考查了无理方程的定义,无理方程与整式方程的区别在于被开方数中是否含有未知数,理解定义是关键.举一反三:【变式】(2015春•闵行区期末)已知下列关于x 的方程:①;②+1=0;③+2x=7;④﹣7=0;⑤+=2;⑥﹣=.其中,是无理方程的有()A.2个 B.3个 C.4个 D.5个【答案】B.解:①根号内不含未知数,所以,不是无理方程;故本项不符合题意;②根号内含未知数,所以,是无理方程;故本项符合题意;③根号内不含未知数,所以,不是无理方程;故本项不符合题意;④根号内含未知数,所以,是无理方程;故本项符合题意;⑤根号内含未知数,所以,是无理方程;故本项符合题意;⑥根号内不含未知数,所以,不是无理方程;故本项不符合题意;所以,②④⑤是无理方程;故选B.类型二、判断方程解的情况3.(2016春•上海校级月考)下列关于x的方程中,一定有实数根的是()A. B.x2+x+1=0 C. D.【思路点拨】根据表示a的算术平方根,一定是非负数,以及一元二次方程根的判别式即可作出判断.【答案】C.【解析】解:A、≥0,4>0,则原式一定不成立,则方程没有实数根,选项错误;B、a=1,b=1,c=1,则△=b2﹣4ac=1﹣4=﹣3<0,则方程无实数根,选项错误;C、当x=0时,=﹣x一定成立,即方程有实数根0,选项正确;D、≥0,≥0,则+≥0,因而+=﹣1一定不成立,没有实数根,选项错误.故选C.【总结升华】本题考查了算术平方根的定义以及一元二次方程根的判别式,理解任何非负数的算术平方根是非负数是关键.举一反三:【变式】(2016春•南京校级月考)下列方程中,有实数根的是()A.x2﹣3x+5=0 B.C. D.【答案】C.解:A、△=9﹣20=﹣11<0,方程没有实数解,所以A选项错误;B、方程=﹣1没有实数解,所以B选项错误;C 、解得x=﹣1,正确;D 、去分母得x=1,经检验x=1是不是原方程的解,所以D 选项错误;故选C .类型三、解方程4. 解关于x 的方程:1mx nx -=【思路点拨】解含字母系数的方程时,先化为最简形式ax b =,再考虑有解、无解、无穷多解的模式.然后进行分类讨论.【答案与解析】原方程可化为:()1m n x -=当0m n -≠,即m n ≠时,方程有唯一解为:1x m n=-; 当0m n -=,即m n =时,方程无解.【总结升华】解含字母系数的方程时,先化为最简形式ax b =,再根据x 系数a 是否为零进行分类讨论. 举一反三:【变式】若关于x 的方程(k-4)x =6有正整数解,求自然数k 的值.【答案】解:∵原方程有解,∴ 40k -≠原方程的解为:64x k =-为正整数,∴4k -应为6的正约数,即4k -可为:1,2,3,6 ∴k 为:5,6,7,10答:自然数k 的值为:5,6,7,105.(2016春•长宁区期末)解方程:2220383x x x x +-=+. 【思路点拨】根据换元法,设213u x x=+,可得关于u 的分式方程,根据解方程,可得答案. 【答案与解析】解:设213u x x =+,则原方程化为:1208u u-=, 解得:1211102u ,u ==-, 当110u =时,2310x x +=,解得:1252x ,x =-=,经检验1252x ,x =-=是原分式方程的解; 当12u =-时,232x x +=-,解得:12317317x -+--==,经检验12317317x ,x -+--==是原分式方程的解; 所以原方程的解为:1252x ,x =-=,3431731722x ,x -+-==.【总结升华】本题考查了解分式方程的应用,能正确换元是解此题的关键,难度适中.6. 解方程 223152512x x x x ++++=【答案与解析】 251x x y ++=,则2222513153(1)x x y x x y ++=⇒+=-原方程可化为:23(1)22y y -+=,即23250y y +-=,解得:1y =或53y =-.(1)当1y =225115010x x x x x x ++=⇒+=⇒=-=或;(2)当53y =-2510x x y ++=≥,所以方程无解.检验:把1,0x x =-=分别代入原方程,都适合. 所以,原方程的解是1,0x x =-=.【总结升华】本题若直接平方,会得到一个一元四次方程,难度较大.注意观察方程中含未知数的二次根式与其余有理式的关系,可以发现:2231533(51)x x x x ++=++.因此,251x x y ++=,这样就可将原方程先转化为关于y 的一元二次方程进行处理.举一反三: 【变式】解方程()223323532x x x x +-+=+ 【答案】解:原方程变形为,22352354022x x x x -++-+=, 2235x x -+,则23522x x -+=22y , 则方程可化为,22y +y-4=0, 整理得,2280y y +-=,解得,122,4,y y ==-当y=22235x x -+,解得,1211,2x x ==; 当y=-42235x x -+=-4,无解. 经检验,1211,2x x ==都是原方程的解,所以原方程的解为1211,2x x ==. 7、解方程49324492x x x x +-=+. 【答案与解析】解:设494x y x +=,则214+9x x y=, 原方程可化为,y-1y =32, 整理得,22320y y --=,解得,12,y =21,2y =-当y=2时,492,4x x +=解得,x=34; 当y=-12时,491,42x x +=-无解; 经检验,x=34是原方程的解, 所以原方程的解为x=34. 【总结升华】本题中494x x +与24+9x x 之间互为倒数,采用倒数换元法是本题的最佳选择. 举一反三:【变式】(杨浦区校级期中)解方程:4x 2﹣10x+=17. 【答案】解:方程变形为2(2x 2﹣5x+2)﹣﹣21=0 设=t ,则原方程转化为2t 2+t ﹣21=0,(t ﹣3)(2t+7)=0,解得t 1=3,t2=﹣,当t=3时,=3,则2x 2﹣5x+2=9, 整理得2x 2﹣5x ﹣7=0,解得x 1=,x 2=﹣1;当t=﹣时,=﹣,则方程无解,经检验原方程的解为x 1=,x 2=﹣1.类型四、解方程组 8. 解方程组【答案与解析】解:设1=+u x y ,1=-v x y,则原方程组可化为 80+42=7,40+70=7.u v u v ⎧⎨⎩解得 1=,201=.14u v ⎧⎪⎪⎨⎪⎪⎩ 于是,得 11=,+2011=.-14x y x y ⎧⎪⎪⎨⎪⎪⎩ 因此 +=20,-=14.x y x y ⎧⎨⎩解得 =17,=3.x y ⎧⎨⎩检验:把x=17,y=3代入原方程组中所含各分式的分母,各分母的值都不为零. 所以,原方程组的解是=17,=3.x y ⎧⎨⎩【总结升华】本题中直接去分母解比较麻烦,通过观察发现两个方程所含的分式的分母分别是x+y 和x-y ,所以想到“换元”,设1=+u x y ,1=-v x y,则原方程得以简化. 【变式】解方程组11 (1)28 (2)x y xy +=⎧⎨=⎩【答案与解析】根据一元二次方程的根与系数的关系,把x 、y 看成是方程211280z z -+=的两根,解方程得:4z =或z=7.∴ 原方程组的解是:1147x y =⎧⎨=⎩或2274x y =⎧⎨=⎩.【总结升华】本题可以用代入消元法解方程组,但注意到方程组的特点,可以把x 、y 看成是方程211280z z -+=的两根,则更容易求解. (1) 对于这种对称性的方程组x y a xy b+=⎧⎨=⎩,利用一元二次方程的根与系数的关系构造方程时,未知数要换成异于x 、y 的字母,如z . (2) 对称形方程组的解也应是对称的,即有解47x y =⎧⎨=⎩,则必有解74x y =⎧⎨=⎩. 9.(2016•黄浦区二模)解方程式:.【答案与解析】解:由②可得,(x+y )(x ﹣5y )=0,即x+y=0或x ﹣5y=0,∴x=﹣y 或x=5y ,当x=﹣y 时,把x=﹣y 代入①,得:2y 2=26, 解得:y=±, 故方程组的解为:或; 当x=5y 时,把x=5y 代入①,得:25y 2+y 2=26,解得:y=±1, 故方程组的解为:或; 综上,该方程组的解为:或或或.【总结升华】本题主要考查解高次方程的能力,解高次方程的根本思想是化归思想,次数较高可通过因式分解再代入等方法降幂求解即可.类型五、应用10.(2016•黄埔区模拟)甲乙两人各加工30个零件,甲比乙少用1小时完成任务;乙改进操作方法,使生产效率提高了一倍,结果乙完成30个零件的时间比甲完成24个零件所用的时间少1小时.问甲乙两人原来每小时各加工多少个零件.【思路点拨】设甲乙两人原来每小时各加工零件分别为x 个、y 个,根据各加工30个零件甲比乙少用1小时完成任务,改进操作方法之后,乙完成30个零件的时间比甲完成24个零件所用的时间少1小时,列方程组求解.【答案与解析】解:设甲乙两人原来每小时各加工零件分别为x个、y个,由题意得,,解得:.经检验它是原方程的组解,且符合题意.答:甲乙两人原来每小时各加工零件分别为6个、5个.【总结升华】本题考查了二元一次方程组和分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解,注意检验.举一反三:【变式】甲、乙二人同时从张庄出发,步行15千米到李庄.甲比乙每小时多走1千米,结果比乙早到半小时.二人每小时各走几千米?【答案与解析】解:设乙每小时走x千米,那么甲每小时走(x+1)千米,根据题意,得去分母,整理,得 x2+x-30=0.解这个方程,得 x1=5,x2=-6.经检验,x1=5,x2=-6都是原方程的根.但速度为负数不合题意,所以只取x=5,这时x+1=6.答:甲每小时走6千米,乙每小时走5千米.【总结升华】本题当中要特别注意理解“甲结果比乙早到半小时”这句话,说明乙用的时间长,要在乙的时间上减去12小时,才和甲所用的时间相等.11.k为何值时,方程组.(1)有两组相等的实数解;(2)有两组不相等的实数解;(3)没有实数解.【答案与解析】解:将(2)代入(1),整理得k2x2+(2k-4)x+1=0 (3)(1)当时,方程(3)有两个相等的实数根.即解得:,∴k=1.∴当k=1时,原方程组有两组相等的实数根.(2)当时,方程(3)有两个不相等的实数根.即解得:,∴k<1且k ≠0.∴当k<1且k ≠0时,原方程组有两组不等实根.(3)①若方程(3)是一元二次方程,无解条件是 ,即解得:, ∴k >1.②若方程(3)不是二次方程,则k=0,此时方程(3)为-4x+1=0,它有实数根x=. 综合①和②两种情况可知,当k>1时,原方程组没有实数根.【总结升华】因为在(1)、(2)中已知方程组有两组解,可以确定方程(3)是一元二次方程,但在(3)问中不能确定方程(3)是否是二次方程,所以需要分两种情况讨论.使用判别式“Δ”的前提条件是能确定方程为一元二次方程,不是一元二次方程不能使用Δ.12. 求直角坐标平面内到()()0,15,0,9P Q -的距离都等于15的点的坐标.【答案与解析】解:设满足题意的点为A(x,y),由题意得,2222(15)15(9)15x y x y ⎧+-=⎪⎨++=⎪⎩, 解得,93x y =⎧⎨=⎩或93x y =-⎧⎨=⎩, 经检验,两组都是方程组的解,所以A (9,3)或A (-9,3).答:直角坐标平面内到()()0,15,0,9P Q -的距离都等于15的点的坐标为(9,3)或(-9,3).。
35《函数应用》全章复习与巩固(提高)-巩固练习_《函数应用》全章复习巩固_ 提高 (1)
【巩固练习】1.若函数y=f(x)在区间(-2,2)上的图象是连续不断的曲线,且方程f(x)=0在(-2,2)上仅有一个实数根,则f(-1)·f(1)的值()A.大于0B.小于0C.无法判断D.等于零2.下列给出的四个函数f(x)的图象中能使函数y=f(x)-1没有零点的是()3.方程x 3+3x-3=0的解在区间()A.(0,1)内B.(1,2)内C.(2,3)内D.以上均不对4.已知f(x)、g(x)均为[-1,3]上连续不断的曲线,根据下表能判断方程f(x)=g(x)有实数解的区间是()x -10123f(x)-0.677 3.011 5.432 5.9807.651g(x)-0.530 3.451 4.890 5.241 6.892A .(-1,0)B .(0,1)C .(1,2)D .(2,3)5.若方程0xa x a --=有两个实数解,则a 的取值范围是()A .(1,)+∞B .(0,1)C .(0,2)D .(0,)+∞6.3()21f x x x =--零点的个数为()A .1B .2C .3D .47.若方程310x x -+=在区间(,)(,,1)a b a b Z b a ∈-=且上有一根,则a b +的值为()A .1-B .2-C .3-D .4-8.据报道,青海湖的湖水在最近50年内减少了10%,如果按此规律,设2008年的湖水量为m,从2008起,过x 年后湖水量y 与x 的函数关系式为()A .y=0.950x B .y=(1-0.150x)m C .y=0.950x·m D .y=(1-0.150x )m9.若函数f(x)=x 2-ax-b 的两个零点是2和3,则函数g(x)=bx 2-ax-1的零点是________.10.若一元二次方程f(x)=ax 2+bx +c =0(a>0)的两根x 1、x 2满足m<x 1<n<x 2<p ,则f(m)·f(n)·f(p)________0.(填“>”、“=”或“<”)11.下表列出了一项试验的统计数据,表示将皮球从高h 米处落下,弹跳高度d 与下落高度h 的关系.h(米)5080100150…d(米)25405075…写出一个能表示这种关系的式子为________.12.我国股市中对股票的股份实行涨、跌停制度,即每天的股价最大的涨幅或跌幅均为10%.某股票连续四个交易中日前两日每天涨停,后两日每天跌停,则该股票现在的股价相对于四天前的涨跌情况是________.13.用二分法求方程x 3+3x-5=0的一个近似解(精确度0.1).14.若方程x 2-ax +2=0有且仅有一个根在区间(0,3)内,求a 的取值范围.15.已知函数f (x )=1x +212x -2,试利用基本初等函数的图象,判断f (x )有几个零点,并利用零点存在性定理确定各零点所在的区间(各区间长度不超过1).16.某农产品从5月1日起开始上市,通过市场调查,得到该农产品种植成本Q (单位:元/102kg)与上市时间t (时间:天)的数据如下表:时间t 50110250种植成本Q 150108150(1)根据上表数据,从下列函数中选取一个函数描述该农产品种植成本Q 与上市时间t 的变化关系:Q=at +b ,Q =at 2+bt +c ,Q =ab t,Q =a log b t ;(2)利用你选取的函数,求该农产品种植成本最低时的上市时间及最低种植成本.【答案与解析】1.【答案】C【解析】由题意不能断定零点在区间(-1,1)内部还是外部.2.答案C【解析】把y=f(x)的图象向下平移1个单位后,只有C 图中图象与x 轴无交点.3.【答案】A【解析】将函数y 1=x 3和y 2=3-3x 的图象在同一坐标系中画出,可知方程的解在(0,1)内.4.【答案】B【解析】令φ(x)=f(x)-g(x),φ(0)=f(0)-g(0)<0.φ(1)=f(1)-g(1)>0且f(x),g(x)均为[-1,3]上连续不断的曲线,所以φ(x)的图象.在[-1,3]上也连续不断,因此选B .5.【答案】A【解析】作出图象,发现当1a >时,函数xy a =与函数y x a =+有2个交点6.【答案】A【解析】令3221(1)(221)0x x x x x --=-++=,得1x =,就一个实数根7.【答案】C【解析】容易验证区间(,)(2,1)a b =--8.【答案】C【解析】设湖水量每年为上一年的q%,则(q%)50=0.9,所以q%=0.9150,即x 年后湖水量为y=0.950x·m.9.【答案】-12和-13【解析】2和3是方程x 2-ax-b=0的两根,所以a=5,b=-6,∴g(x)=-6x 2-5x-1.令g(x)=0得x 1=-12,x 2=-13.10.【答案】<【解析】∵a>0,∴f(x)的图象开口向上,∴f(m)>0,f(n)<0,f(p)>0,∴f(m)·f(n)·f(p)<0.11.【答案】d=2h 12.【答案】跌了1.99%【解析】(1+10%)2·(1-10%)2=0.9801,而0.9801-1=-0.0199,即跌了1.99%.13.解f(0)=-5,f(1)=-1,f(2)=9,f(3)=31.所以f(x)在区间(1,2)内存在零点x 0.区间中点m f(m)的符号区间长度(1,2) 1.5+1(1,1.5) 1.25+0.5(1,1.25) 1.125-0.25(1.125,1.25) 1.1875+0.125(1.125,1.1875)0.0625∵|1.875-1.125|=0.0625<0.1,∴x 0可取为1.125(不唯一).14.【解析】令f (x )=x 2-ax +2,则方程x 2-ax +2=0有且仅有一个根在区间(0,3)内⇔203280a a ⎧<<⎪⎨⎪∆=-=⎩或f (0)·f (3)<0⇔a 或a >113.15.【解析】由f(x)=0,得21122x x =-+,令11y x =,22122y x =-+,分别画出它们的图象如图,其中抛物线顶点为(0,2),与x 轴交于点(-2,0)、(2,0),y 1与y 2的图象有3个交点,从而函数y=f(x)有3个零点.由f(x)的解析式知x≠0,f(x)的图象在(-∞,0)和(0,+∞)上分别是连续不断的曲线,且f(-3)=613>0,f(-2)=21-<0,f ⎪⎭⎫ ⎝⎛21=81>0,f(1)=21-<0,f(2)=21>0,即f (-3)·f (-2)<0,1(2f ·f (1)<0,f (1)·f (2)<0,∴三个零点分别在区间(-3,-2)、1,12⎛⎫⎪⎝⎭、(1,2)内.16.【解析】(1)由表中提供的数据知道,描述该农产品种植成本Q 与上市时间t 的变化关系的函数不可能是常函数,从而用函数Q =at +b ,Q =ab t,Q =a log b t 中的任一个进行描述时都应有a ≠0,而此时上述三个函数均为单调函数,这与表格所提供的数据不符合,所以,应选取二次函数Q =at 2+bt +c (a ≠0,当a=0时,为单调函数)进行描述.将表格所提供的三组数据分别代入Q=at2+bt+c,得到:150250050 10812100110 150********a b ca b ca b c=++⎧⎪=++⎨⎪=++⎩.解上述方程组得a=1200,b=-32,c=4252,所以,描述该农产品种植成本Q与上市时间t的变化关系的函数为Q=1200t2-32t+4252.(2)当t=-3212200-⨯=150(天)时,该农产品种植成本最低为Q=1200×1502-32×150+4252=100(元/102kg).所以,该农产品种植成本最低时的上市时间为150天,最低种植成本为100元/102kg.。
实数(全章复习与巩固)(基础篇)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)
专题6.11 实数(全章复习与巩固)(基础篇)(专项练习)一、单选题1.4的算术平方根是( ) A .2±B .2C .2D 22.下列实数是无理数的是( ) A 327-B .13C .3.14159D 63.下列说法不正确的是( ) A .0的平方根是0 B .一个负数的立方根是一个负数 C .﹣8的立方根是﹣2D .8的算术平方根是24.若3m x y -和35n x y 的和是单项式,则()3m n +的平方根是( ) A .8B .8-C .4±D .8±5.估计463 ) A .3与4之间B .4与5之间C .5与6之间D .6与7之间6.有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是( )A .22B .32C .23D .87.如图,长方形内有两个相邻的正方形,面积分别为2和4,则阴影部分的面积为( )A .22-2B .2+2C .2D .28.若320a =10b =3c =,则a b c 、、的大小关系为( ) A .a c b <<B .a b c <<C .c<a<bD .c b a <<9.若a 、b 为实数,则下列说法正确的是( )A aB .有理数与无理数的积一定是无理数C .若a 、b 均为无理数,则a b +一定为无理数D .若a 为无理数,且()()220a b ++=,则2b =-10.下面是李华同学做的练习题,他最后的得分是( )姓名 李华 得分______填空题(评分标准,每道题5分) (1)16的平方根是4±(2)立方根等于它本身的数有0和1(3)38-的相反数是2(4)3=3--ππA .5分B .10分C .15分D .20分二、填空题11.16的平方根是___________. 12.计算327________.1321的相反数是__________,3.14π-=____________ 14.若实数a 、b 满足:2a b +,32a b.则()()a b a b +-的值是_____________.15.四个实数2-,023中,最小的实数是______. 16.实数a 在数轴上的位置如图,则|3a =_________.171032(填“>”,“<”或“=”)18.找规律填空:02,262103…,______(第n 个数).三、解答题19.求下列各式中的x : (1) 2481x =(2) ()3227x +=-20.计算(1) 20223113274-+-(2) 223(3)(3)1664---21.已知:9的平方根是3和5x +,y 13 (1) 求x y +的值;(2) 求22x y +的算术平方根.22.如图,长方形ABCD 的长为2cm ,宽为1cm .(1)将长方形ABCD 进行适当的分割(画出分割线),使分割后的图形能拼成一个正方形,并画出所拼的正方形;(标出关键点和数据)(2)求所拼正方形的边长.23.【观察】请你观察下列式子. 第111.第2132+=. 第31353++. 第413574+++=. 第5135795++++. 【发现】根据你的阅读回答下列问题: (1) 写出第7个等式 .(2) 135(21)n +++++= .(3) 利用(241220284452++++++24.阅读材料,完成下列任务:因为无理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:π2等,而常用的“…”或者“≈”的表示方法都不够百分百准确.材料一:479<273<<, ∵1712<. 71的整数部分为1. 7172.材料二:我们还可以用以下方法求一个无理数的近似值.我们知道面积是2221>21x =+,可画出如图示意图.由图中面积计算,2211S x x =+⨯⋅+正方形,另一方面由题意知2S =正方形,所以22112x x +⨯⋅+=.略去2x ,得方程212x +=,解得0.5x =2 1.5. 解决问题:(1) 85(2) 5(画出示意图,标明数据,并写出求解过程)参考答案1.C【分析】根据平方与开平方互为逆运算,可得一个正数的算术平方根. 解:∵22=4, ∵4的算术平方根是2;故选:C .【点拨】本题考查了求一个数的算术平方根,平方与开平方互为逆运算是求一个正数的算术平方根的关键.2.D【分析】无理数即为无限不循环小数,初中阶段接触的无理数的表现形式主要有:∵开方开不尽的数;∵含有π的数;∵0.010010001...(每两个1之间依次多个0)这样的数;据此解答即可.解:A 3273--,属于整数,不是无理数,不符合题意; B 、13为分数,不是无理数,不符合题意;C 、3.14159为有限小数,不是无理数,不符合题意;D 6 故选:D .【点拨】本题考查了无理数的定义以及求一个数的立方根,熟练掌握初中阶段无理数的主要表现形式是解本题的关键.3.D【分析】直接利用算术平方根、平方根、立方根的定义分析得出答案. 解:A 、0的平方根是0,原说法正确,故此选项不符合题意;B 、一个负数的立方根是一个负数,原说法正确,故此选项不符合题意;C 、﹣8的立方根是﹣2,原说法正确,故此选项不符合题意;D 、8的算术平方根是2 故选:D .【点拨】此题主要考查了算术平方根、平方根、立方根,熟练掌握算术平方根、平方根、立方根的定义是解题的关键.4.D【分析】根据题意可得3m x y -和35n x y 是同类项,从而得到3,1m n ==,再代入,即可求解.解:∵3m x y -和35n x y 的和是单项式, ∵3m x y -和35n x y 是同类项,∵3,1m n ==,∵()()333164m n +=+=, ∵()3m n +的平方根是8±. 故选:D .【点拨】本题主要考查了合并同类项,求一个数的平方根,熟练掌握根据题意得到3m x y -和35n x y 是同类项是解题的关键.5.C【分析】先把46332“夹逼法”即可求解. 解:463232== ∵253236<<, ∵5326<<, 故选:C【点拨】本题考查了无理数的估值问题,“夹逼法”的应用是解题的关键. 6.A解:由题中所给的程序可知:把64取算术平方根,结果为8, ∵8是有理数, ∵8 ∵y 82 故选A . 7.A2,2,再根据阴影部分的面积等于矩形的面积减去两个正方形的面积进行计算.解:∵矩形内有两个相邻的正方形面积分别为 4 和 2, ∵2,2,∵阴影部分的面积(22224222=⨯--=. 故选A .【点拨】本题主要考查了算术平方根的应用,解题的关键在于能够准确根据正方形的面积求出边长.8.C10320的值的范围,再进行比较即可得出答案. 解:82027<<, 32203∴<<,3104<<,320310<故选:A .【点拨】本题考查了实数大小比较,估算无理数的大小,熟练掌握估算无理数的大小是解题的关键.9.D【分析】A a B 、有理数与无理数的积不一定是无理数,举例说明; C 、a 、b 均为无理数,a b +不一定还是无理数,举例说明;D 、利用两数相乘积为0,两因式中至少有一个为0求出b 的值,即可做出判断. 解:A a 42=,错误;B 、有理数与无理数的积不一定是无理数,例如:020,错误;C 、a 、b 均为无理数,a b +不一定还是无理数,,例如:220-=,错误;D 、若a 为无理数,且()()220a b ++=,得到20a +≠,20b +=,解得:2b =-,正确,故选:D .【点拨】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 10.B【分析】直接利用平方根、立方根、绝对值、相反数的性质分别判断得出答案. 解:(1164=的平方根是2±,故此选项错误;(2)立方根等于它本身的数有0和1、 1-,故此选项错误;(3382--的相反数是2,故此选项正确;(4)()3=3=3----πππ,故此选项正确. 李华最后得分为10分, 故选:B .【点拨】此题主要考查了实数的性质,绝对值的性质,平方根和立方根概念,正确化简各数是解题关键.11.4±【分析】根据平方根的定义即可求解. 解:即:16的平方根是16=4± 故填:4±【点拨】此题主要考查平方根,解题的关键是熟知平方根的定义. 12.-3【分析】根据立方根的性质计算即可. 解:327--3, 故答案为:-3.【点拨】本题考查了立方根的性质,正数的立方根为正数,负数的立方根为负数,0的立方根为0,熟记立方根的性质是解题的关键.13. 12- 3.14π-【分析】根据相反数的定义及去绝对值符合号法则,即可求得. 21的相反数是)2112-=>3.14π,3.14<0π∴-,()3.14 3.14 3.14πππ∴-=--=-,故答案为:12 3.14π-.【点拨】本题考查了相反数的定义及去绝对值符合号法则,掌握和灵活运用相反数的定义及去绝对值符合号法则是解决本题的关键.14.32【分析】根据算术平方根和立方根的性质得到a +b =4,a -b =8,进而直接代入求解即可.解:∵实数a 、b 2a b +=32a b ,∵a +b =4,a -b =8, ∵()()a b a b +-=4×8=32, 故答案为:32.【点拨】本题考查了算式平方根、立方根、代数式求值,理解算式平方根和立方根的性质是解答的关键.15.-2【分析】根据实数大小比较的方法解答即可. 解:∵2-2<3, ∵最小的实数是-2 故答案为:-2.【点拨】本题考查了实数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.163a【分析】根据数轴上点的位置判断出3a 利用绝对值的代数意义化简即可得到结果.解:∵a <0,∵30a <,则原式3a , 3a 17.>103>,进而即可求解. 解:∵109>, 103>, 1032>, 故答案为:>.10 18()21n -【分析】除第一个数外,其他数变成二次根式后,根号下面的数都是2的倍数,第二个数为2的1倍,第三个数为2的2倍,依此类推,第n 个数为2的()1n -倍,从而得出答案.解:由题意得:由题意得: 第一项:00200==⨯=; 2212⨯ 第三项:24224=⨯= 6236=⨯……第n ()()2121n n ⨯-=-()21n -【点拨】本题考查了算术平方根,解题的关键是发现题目中数据的变化规律,要熟练掌握.19.(1)92x =± (2)5x =-【分析】(1)利用平方根解方程即可;(2)利用立方根解方程.(1)解:2481x =,∵2814x =, ∵81942x =±=±; (2)解:()3227x +=-,∵3227x +=-23x,解得:5x =-.【点拨】本题考查开方法解方程.熟练掌握平方根和立方根的定义,是解题的关键. 20.33 (2)8-【分析】(1)先计算乘方与开方,并去绝对值符号,再计算加减即可.(2)先计算开方与乘方,再计算加减即可.(1)解:原式13132=-+++33;(2)解:原式3344=---8=-.【点拨】本题考查实数的混合运算,求绝对值,平方根和立方根,熟练掌握实数运算法则是解题的关键.21.(1)5- 73【分析】(1)先根据平方根的意义可得350x ++=,从而求出x 的值,13值的范围,从而求出y 的值,然后代入式子中进行计算即可解答;(2)把x ,y 的值代入式子中求出22xy +的值,然后再利用算术平方根的意义,进行计算即可解答.(1)解:9的平方根是3和5x +, 350x ∴++=,解得:8x =-,91316<<,3134∴<<,y 133y ∴=,835x y ∴+=-+=-,x y ∴+的值为5-;(2)当8x =-,3y =时,2222(8)364973x y +=-+=+=,22x y ∴+73【点拨】本题考查了估算无理数的大小,平方根,熟练掌握估算无理数的大小是解题的关键.22.(1)分割方法不唯一,如图,见分析;(22cm .【分析】(1)根据AB=2AD ,可找到CD 的中点,即可分成两个正方形,再沿对角线分割一次,即可补全成一个新的正方形;(2)设拼成的正方形边长为cm x ,根据面积相等得到方程,即可求解.解:(1)如图,∵AB=2AD ,找到CD,AB 的中点,如图所示,可把矩形分割成4个等腰直角三角形,再拼成一个新的正方形;(2)设拼成的正方形边长为cm x ,根据题意得2122x =⨯=,∵2x2cm .【点拨】此题主要考查实数性质的应用,解题的关键是根据图形的特点进行分割. 23.135791113++++++7 (2)n +1(3)14 【分析】(1)根据规律直接写出式子即可;(2135(21)n +++++n +1个式子,根据规律即可得; (3)41220283644524(1357891113)+++++++++++++利用规律即可得.(1)解:根据材料可知,第七个式子的被开方数为1+3+5+7+9+11+13, ∵第7135711137+++++,135711137+++++=; (2(21)1135(21)12n n n +++++++=+,故答案为:1n +;(3)解:根据(2)中的规律知, 11341220283644524(1357891113)4142++++++++++++++=. 【点拨】本题考查了数字变化规律类,解题的关键是掌握是式子的规律.24.859 (2)2.25【分析】(1)根据材料一中的方法求解即可;(2)利用材料二中的方法画出图形,写出过程即可.(1)解:8185100<98510<<,859. 85859.(2)解:我们知道面积是5552>,52x =+,可画出如图示意图.由图中面积计算,2224S x x =+⨯+正方形,另一方面由题意知5S =正方形,所以2445x x ++=.略去2x ,得方程410x -=,解得0.25x =5 2.25.【点拨】本题考查了无理数的估算,解题关键是准确理解题目给出的方法,熟练进行计算.。
专题1第一章集合与函数的概念知识点与基础巩固题(原卷版)高一数学复习巩固练习(人教A版)
专题1人教A 版集合与函数的概念知识点与基础巩固题——寒假作业1(原卷版)集合部分考点一:集合的定义及其关系 基础知识复习 (1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(∅).(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.考点二:集合的基本运算 基础知识复习1.交集的定义:一般地,由所有属于A 且属于B 的元素所组成的集合,叫做A,B 的交集.记作A ∩B(读作”A 交B ”),即A ∩B={x|x ∈A ,且x ∈B}.2、并集的定义:一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A,B 的并集。
记作:A ∪B(读作”A 并B ”),即A ∪B={x|x ∈A ,或x ∈B}.3、交集与并集的性质:A ∩A = A ,A ∩φ= φ, A ∩B = B ∩A ,A ∪A = A ,A ∪φ= A , A ∪B = B ∪A.4、全集与补集(1)全集:如果集合S 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。
通常用U 来表示。
(2)补集:设S 是一个集合,A 是S 的一个子集(即A ⊆S ),由S 中 所有不属于A 的元素组成的集合,叫做S 中子集A 的补集(或余集)。
浙教版初一上册数学实数全章复习与巩固(基础)重点题型巩固练习
浙教版七年级上册初中数学知识点梳理及重点题型巩固练习【巩固练习】一.选择题1. 下列说法正确的是( )A .数轴上任一点表示唯一的有理数B .数轴上任一点表示唯一的无理数C .两个无理数之和一定是无理数D .数轴上任意两点之间都有无数个点2.(2015•日照)的算术平方根是( )A .2B .±2C .D .±3.已知a 、b 是实数,下列命题结论正确的是( )A .若a >b ,则2a >2bB .若a >|b |,则2a >2bC .若|a |>b ,则2a >2bD .若3a >3b ,则2a >2b 4. 3387=-a ,则a 的值是( ) A. 87 B. 87- C. 87± D. 512343- 5. 若式子3112x x -+-有意义,则x 的取值范围是 ( ). A.21≥x B. 1≤x C.121≤≤x D. 以上答案都不对. 6. 下列说法中错误的是( ) A.3a 中的a 可以是正数、负数或零. B.a 中的a 不可能是负数.C. 数a 的平方根有两个.D.数a 的立方根有一个.7. 数轴上A ,B 两点表示实数a ,b ,则下列选择正确的是( )A.0>+b aB. 0ab >C.0a b ->D.||||0a b ->8. 估算219+的值在 ( )A. 5和6之间B.6和7之间C.7和8之间D.8和9之间二.填空题9. a ,则其小数部分用a 表示为 .10.当x 时,32-x 有意义. 11. =--32)125.0( .12. 若12-x 是225的算术平方根,则x 的立方根是 . 13. 3343的平方根是 .14.(2015春•罗山县期末)﹣64的立方根与的平方根之和是 .15. 1- ,-22 , 33 16. 数轴上离原点距离是5的点表示的数是 .三.解答题17. 一个正数x 的平方根是32-a 与a -5,则a 是多少?18.(2015春•桃园县校级期末)已知x ﹣2的平方根是±2,2x+y+7的立方根是3,求x 2+y2的平方根. 19. 已知:表示a 、b 两个实数的点在数轴上的位置如图所示,请你化简()2b a b a ++-20. 阅读题:阅读下面的文字,解答问题. 大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2-1表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:已知:10+3=y x +,其中x 是整数,且10<<y ,求y x -的相反数.【答案与解析】一.选择题1. 【答案】D ;【解析】数轴上任一点都表示唯一的实数.2. 【答案】C3. 【答案】B ;【解析】B 答案表明,||||a b a b >>且,故2a >2b .4. 【答案】B ;【解析】==. 5. 【答案】A ;6. 【答案】C ;【解析】数a 不确定正负,负数没有平方根.7. 【答案】C ;8. 【答案】B ;【解析】45<<,627<<.二.填空题9. a ;10.【答案】为任意实数 ;【解析】任何实数都有立方根.11.【答案】25.0-;【解析】0.25==-.12.【答案】3;【解析】x -12=15, x =3=.13.【答案】7± ;【解析】 3343=7,7的平方根是7±. 14.【答案】﹣2或﹣6.【解析】∵﹣64的立方根是﹣4,=4,∵4的平方根是±2,∵﹣4+2=﹣2,﹣4+(﹣2)=﹣6,∴﹣64的立方根与的平方根之和是﹣2或﹣6.15.【答案】>;<;>;16.【答案】【解析】数轴上离原点距离是5的点有两个,分别在原点的左右两边.三.解答题17.【解析】解:∵一个正数x 的平方根是32-a 与a -5,∴32-a 与a -5互为相反数,即32-a +a -5=0,解得2a =-.18.【解析】解:∵x ﹣2的平方根是±2,2x+y+7的立方根是3,∴x ﹣2=22,2x+y+7=27,解得x=6,y=8,∴x 2+y 2=62+82=100,∴x 2+y 2的平方根是±10.19.【解析】解:∵b <a <0 ∴()2b a b a ++-()||2a b a b a b a b b=-++=--+=-20.【解析】解:∵11<10+3<12∴x =11,y =10+3-111∴()11112x y y x --=-=-=.。
人教版七年级数学下册15.实数全章复习与巩固(基础)典型例题(考点)讲解+练习(含答案).doc
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】实数全章复习与巩固(基础)责编:康红梅【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围. 【知识网络】【要点梳理】【:389318 实数复习,知识要点】 类型项目平方根 立方根 被开方数 非负数任意实数符号表示a ±3a性质一个正数有两个平方根,且互为相反数;零的平方根为零; 负数没有平方根;一个正数有一个正的立方根; 一个负数有一个负的立方根; 零的立方根是零;重要结论⎩⎨⎧<-≥==≥=)0()0()0()(22a a a a a a a a a333333)(aa a a aa -=-==要点二:实数有理数和无理数统称为实数. 1.实数的分类 按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2532等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.(4)实数和数轴上点是一一对应的.2.实数与数轴上的点一 一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。
人教版数学七年级下册第六章实数基础知识点讲解+典型例题讲解.doc
【本文档由书林工作坊整理发布,谢谢你的下载和关注!】平方根(基础)【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】知识点一、平方根和算术平方根的概念 1.算术平方根的定义如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根(规定0的算术平方根还是0);a a a 的算术平方根”,a 叫做被开方数.要点诠释:a a a 0,a ≥0. 2.平方根的定义如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. a (a ≥0)的平方根的符号表达为(0)a a ≥a 是a 的算术平方根.知识点二、平方根和算术平方根的区别与联系 1.区别:(1)定义不同;(2)结果不同:a a2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根. (2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.知识点三、平方根的性质20||000a a a a a a a >⎧⎪===⎨⎪-<⎩()20a aa =≥知识点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.62500250=62525= 6.25 2.5=0.06250.25=.【典型例题】类型一、平方根和算术平方根的概念1、下列说法错误的是( )A.5是25的算术平方根B.l 是l 的一个平方根C.()24-的平方根是-4 D.0的平方根与算术平方根都是0【答案】C ;【解析】利用平方根和算术平方根的定义判定得出正确选项.A.因为25=5,所以本说法正确;B.因为±1=±1,所以l 是l 的一个平方根说法正确;C.因为±()24-=±16=±4,所以本说法错误;D.因为0±=0,0=0,所以本说法正确;【总结升华】此题主要考查了平方根、算术平方根的定义,关键是明确运用好定义解决问题. 举一反三:【变式】判断下列各题正误,并将错误改正:(1)9-没有平方根.( )(2)164=±.( ) (3)21()10-的平方根是110±.( ) (4)25--是425的算术平方根.( ) 【答案】√ ;×; √; ×, 提示:(2)164=;(4)25是425的算术平方根. 2、 填空:(1)4-是 的负平方根. (2116表示 的算术平方根,116= . (3181的算术平方根为 . (43x =,则x = ,若23x =,则x = .【思路点拨】(3)181就是181的算术平方根=19,此题求的是19的算术平方根. 【答案与解析】(1)16;(2)11;164(3)13 (4) 9;±3【总结升华】要审清楚题意,不要被表面现象迷惑.注意数学语言与数学符号之间的转化.举一反三:【变式1】下列说法中正确的有( ):①3是9的平方根. ② 9的平方根是3.③4是8的正的平方根.④ 8-是64的负的平方根.A .1个B .2个C .3个D .4个 【答案】B ;提示:①④是正确的.【变式2】求下列各式的值:(1)325 (2)8136+(3)0.040.25- (4)40.36121⋅【答案】(1)15;(2)15;(3)-0.3;(4)6553、使代数式1x +有意义的x 的取值范围是______________. 【答案】x ≥1-;【解析】x +1≥0,解得x ≥1-.【总结升华】当式子a 有意义时,a 一定表示一个非负数,即a ≥0,a ≥0. 举一反三:【变式】(2015春•中江县期中)若+(3x+y ﹣1)2=0,求5x+y 2的平方根.【答案】解:∵+(3x+y ﹣1)2=0, ∴,解得,,∴5x+y 2=5×1+(﹣2)2=9,∴5x+y 2的平方根为±=±3.类型二、利用平方根解方程4、(2015春•鄂州校级期中)求下列各式中的x 值(1)169x2=144(2)(x﹣2)2﹣36=0.【思路点拨】(1)移项后,根据平方根定义求解;(2)先将(x﹣2)看成一个整体,移项后,根据平方根定义求解.【答案与解析】解:(1)169x2=144,两边同时除以169,得1442x=169开平方,得x=(2)(x﹣2)2﹣36=0,移项,得(x﹣2)2=36开平方,得x﹣2=±6,解得:x=8或x=﹣4.【总结升华】本题考查了平方根,根据是一个正数的平方根有两个.类型三、平方根的应用5、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米.求长和宽各是多少米?【答案与解析】解:设宽为x,长为3x,由题意得,x·3x=132332x=1323x=±21x=-21(舍去)答:长为63米,宽为21米.【总结升华】根据面积由平方根的定义求出边长,注意实际问题中边长都是正数.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】立方根【学习目标】1. 了解立方根的含义;2. 会表示、计算一个数的立方根,会用计算器求立方根.【要点梳理】要点一、立方根的定义如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果3=,那么x叫做a的立方根.求一个数的立方根的运算,叫做开立方.x a要点诠释:一个数a3a a是被开方数,3是根指数. 开立方和立方互为逆运算.要点二、立方根的特征立方根的特征:正数的立方根是正数,负数的立方根是负数,0的立方根是0.要点诠释:任何数都有立方根,一个数的立方根有且只有一个,并且它的符号与这个非零数的符号相同. 两个互为相反数的数的立方根也互为相反数. 要点三、立方根的性质33a a -=-33a a =()33a a =要点诠释:第一个公式可以将求负数的立方根的问题转化为求正数的立方根的问题. 要点四、立方根小数点位数移动规律被开方数的小数点向右或者向左移动3位,它的立方根的小数点就相应地向右或者向左移动1位.例如,30.000 2160.06=,30. 2160.6=,3 2166=,3216000 60=. 【典型例题】 类型一、立方根的概念1、(2016春•吐鲁番市校级期中)下列语句正确的是( ) A .如果一个数的立方根是这个数本身,那么这个数一定是0 B .一个数的立方根不是正数就是负数 C .负数没有立方根D .一个不为零的数的立方根和这个数同号,0的立方根是0 【思路点拨】根据立方根的定义判断即可. 【答案】D ;【解析】A .如果一个数的立方根是这个数本身,那么这个数一定是0或1或-1,故错误;B .一个数的立方根不是正数就是负数,错误,还有0;C .负数有立方根,故错误;D .正确.【总结升华】本题考查了立方根,解决本题的关键是熟记立方根的定义. 举一反三:【变式】下列结论正确的是( )A .64的立方根是±4B .12-是16-的立方根 C .立方根等于本身的数只有0和1D .332727-=-【答案】D.类型二、立方根的计算2、求下列各式的值:(1)327102-- (2)3235411+⨯ (3)336418-⋅ (4)23327(3)1-+--- (5)10033)1(412)2(-+÷-- 【答案与解析】解:(1)310227-- (2)3321145⨯+ (3)331864⋅-3642743==33=116425=729=9⨯+ 1=241=2⎛⎫⨯- ⎪⎝⎭-(4)23327(3)1-+---=331=1-++(5)310031(2)2(1)4--÷+-3=21247=1=33÷++【总结升华】立方根的计算,注意符号和运算顺序,带分数要转化成假分数再开立方.举一反三:【变式】计算:(1)30.008-=______;(2)=364611______; (3)=--312719______.(4)=-33511)(______. 【答案】(1)-0.2;(2)54;(3)23;(4)45. 类型三、利用立方根解方程3、(2015春•北京校级期中)(x ﹣2)3=﹣125.【思路点拨】利用立方根的定义开立方解答即可. 【答案与解析】 解:(x ﹣2)3=﹣125, 可得:x ﹣2=﹣5, 解得:x=﹣3.【总结升华】此题考查立方根问题,关键是先将x ﹣2看成一个整体. 举一反三:【变式】求出下列各式中的a :(1)若3a =0.343,则a =______;(2)若3a -3=213,则a =______; (3)若3a +125=0,则a =______;(4)若()31a -=8,则a =______.【答案】(1)a =0.7;(2)a =6;(3)a =-5;(4)a =3. 类型四、立方根实际应用4、在做物理实验时,小明用一根细线将一个正方体铁块拴住,完全浸入盛满水的圆柱体烧杯中,并用一量筒量得铁块排出的水的体积为643cm ,小明又将铁块从水中提起,量得烧杯中的水位下降了169πcm .请问烧杯内部的底面半径和铁块的棱长各是多少?【思路点拨】铁块排出的643cm 水的体积,是铁块的体积,也是高为169πcm 烧杯的体积. 【答案与解析】解:铁块排出的643cm 的水的体积,是铁块的体积.设铁块的棱长为y cm ,可列方程364,y =解得4y =设烧杯内部的底面半径为x cm ,可列方程216649x ππ⨯=,解得x =6. 答:烧杯内部的底面半径为6cm ,铁块的棱长 4cm .【总结升华】应该熟悉体积公式,依题意建立相等关系(方程),解方程时,常常用到求平方根、立方根,要结合实际意义进行取舍.本题体现与物理学科的综合. 举一反三:【变式】将棱长分别为和的两个正方体铝块熔化,制成一个大正方体铝块,这个大正方体的棱长为____________.(不计损耗) 333a b +.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】实数(基础)【学习目标】1. 了解无理数和实数的意义;2. 了解有理数的概念、运算法则在实数范围内仍适用 . 【要点梳理】要点一、有理数与无理数有限小数和无限循环小数都称为有理数.无限不循环小数又叫无理数. 要点诠释:(1)无理数的特征:无理数的小数部分位数无限.无理数的小数部分不循环,不能表示成分数的形式.(2)常见的无理数有三种形式:①含π类.②看似循环而实质不循环的数,如:1.313113111…….③带有根号的数,但根号下的数字开方开不尽,如5.要点二、实数有理数和无理数统称为实数. 1.实数的分类 按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数2.实数与数轴上的点一一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.要点三、实数大小的比较对于数轴上的任意两个点,右边的点所表示的实数总是比左边的点表示的实数大. 正实数大于0,负实数小于0,两个负数,绝对值大的反而小. 要点四、实数的运算有理数关于相反数和绝对值的意义同样适合于实数.当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.在进行实数的运算时,有理数的运算法则及运算性质等同样适用. 【典型例题】类型一、实数概念1、指出下列各数中的有理数和无理数: 332222,,,9,8,9,0,,12,55,0.1010010001 (7)3π-【思路点拨】对实数进行分类时,应先对某些数进行计算或化简,然后根据它的最后结果进行分类,不能仅看到根号表示的数就认为是无理数.π是无理数,化简后含π的代数式也是无理数.【答案与解析】有理数有3222,9,8,0,,73--无理数有32,,9,12,55,0.1010010001π-……【总结升华】有限小数和无限循环小数都称为有理数.无限不循环小数又叫无理数. 常见的无理数有三种形式:①含π类.②看似循环而实质不循环的数,如:0.1010010001…….③带有根号的数,但根号下的数字开方开不尽,如55,39,2,12-.举一反三: 【变式】(2015春•聊城校级月考)在下列语句中: ①无理数的相反数是无理数; ②一个数的绝对值一定是非负数; ③有理数比无理数小;④无限小数不一定是无理数. 其中正确的是( )A .②③B .②③④C .①②④D .②④ 【答案】C ;解:①因为实数包括有理数和无理数,无理数的相反数 不可能式有理数,故本选项正确; ②一个数的绝对值一定≥0,故本选项正确;③数的大小,和它是有理数还是无理数无关,故本选项是错误的; ④无限循环小数是有理数,故本选项正确.类型二、实数大小的比较2、比较520.5的大小. 【答案与解析】解:作商,得5250.5=51>,即5210.5>50.5>. 【总结升华】根据若a ,b 均为正数,则由“1a b >,1a b =,1ab<”分别得到结论“a b >,a b =,a b <,”从而比较两个实数的大小.比较大小的方法有作差法和作商法等,根据具体情况选用适当的方法.举一反三:【变式】比较大小___ 3.14π-- 7___54__2323___32 32 9___0- 3___10-- |43|___(7)--- 【答案】<; >; <; <; <; >; <.3、(2015•枣庄)实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .ac >bcB .|a ﹣b|=a ﹣bC .﹣a <﹣b <cD .﹣a ﹣c >﹣b ﹣c【答案】D ;【解析】解:∵由图可知,a <b <0<c , ∴A 、ac <bc ,故A 选项错误; B 、∵a <b , ∴a ﹣b <0,∴|a ﹣b|=b ﹣a ,故B 选项错误; C 、∵a <b <0,∴﹣a >﹣b ,故C 选项错误; D 、∵﹣a >﹣b ,c >0,∴﹣a ﹣c >﹣b ﹣c ,故D 选项正确. 故选:D .【总结升华】本题考查的是实数与数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.类型三、实数的运算4、化简:(1)|2 1.4|- (2)|7|74||-- (3)|12|+|23|+|32|--- 【答案与解析】 解:|2 1.4|-2 1.4=-|7|74||-- =|74+7|- =274-|12|+|23|+|32|---2132231=-+-+-=.【总结升华】有理数关于相反数和绝对值的意义同样适合于实数.有理数的运算法则及运算性质等同样适用.5、若2|2|3(4)0a b c ---=,则a b c -+=________.【思路点拨】由有限个非负数之和为零,则每个数都应为零可得到方程中a ,b ,c 的值.【答案】3; 【解析】解:由非负数性质可知:203040a b c -=⎧⎪-=⎨⎪-=⎩,即234a b c =⎧⎪=⎨⎪=⎩,∴ 2343a b c -+=-+=.【总结升华】初中阶段所学的非负数有|a |,2,a a ,非负数的和为0,只能每个非负数分别为0 . 举一反三:【变式】已知2(16)|3|30x y z ++++-=,求xyz 的值.【答案】解:由已知得1603030x y z +=⎧⎪+=⎨⎪-=⎩,解得1633x y z =-⎧⎪=-⎨⎪=⎩.∴xyz =(16)(3)312-⨯-⨯=.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】实数全章复习与巩固(基础)【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围. 【知识网络】【要点梳理】类型项目平方根 立方根 被开方数 非负数任意实数符号表示a ±3a性质一个正数有两个平方根,且互为相反数;零的平方根为零; 负数没有平方根;一个正数有一个正的立方根; 一个负数有一个负的立方根; 零的立方根是零;重要结论⎩⎨⎧<-≥==≥=)0()0()0()(22a a a a a a a a a333333)(aa a a aa -=-==要点二:实数有理数和无理数统称为实数. 1.实数的分类 按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2532等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.(4)实数和数轴上点是一一对应的.2.实数与数轴上的点一 一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。
人教版七年级数学下册第六章《实数》知识点复习与小结优秀教学案例
3.利用问题引导学生进行推理和证明,培养他们的逻辑思维能力。
4.鼓励学生主动寻找解决问题的方法,培养他们的自主学习能力和创新意识。
(三)小组合作1.将学生分为小ຫໍສະໝຸດ ,鼓励他们进行合作学习和讨论交流。
2.设计具有挑战性和综合性的任务,让学生在合作中解决问题,提高解决问题的能力。
(三)学生小组讨论
1.将学生分为小组,给出具有挑战性和综合性的任务,让学生在小组合作中解决问题。例如,可以让学生探讨实数的性质和运算规则,并尝试解决一些实际问题。
2.鼓励学生分享自己的观点和思考过程,培养他们的团队合作意识和沟通能力。例如,可以让每个小组成员依次发表自己的观点,并进行讨论交流。
(四)总结归纳
三、教学策略
(一)情景创设
1.利用生活实际问题,创设情境,引发学生对实数的兴趣和好奇心。
2.通过图形、模型等直观教具,帮助学生形象地理解实数的概念和性质。
3.设计具有挑战性和针对性的问题,激发学生的思考和探索欲望。
4.创设互动交流的平台,让学生分享自己的思考过程和解决问题的方法。
(二)问题导向
1.引导学生提出问题,培养他们的问题意识和解决问题的能力。
3.鼓励学生分享自己的观点和思考过程,培养他们的团队合作意识和沟通能力。
4.注重小组合作的过程和结果,对学生的合作学习和团队精神进行评价和反馈。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,发现自己的优点和不足,提高自我认知能力。
2.让学生通过自我评价和同伴评价,了解自己的学习进展和提高方向。
1.培养学生对数学学科的兴趣和热情,使他们愿意主动学习数学。
2.培养学生的团队合作意识,使他们能够在学习过程中相互帮助、共同进步。
《解直角三角形》全章复习与巩固(基础篇)九年级数学下册基础知识专项讲练
专题1.17《解直角三角形》全章复习与巩固(基础篇)(专项练习)一、单选题1.2sin60°的值等于()A .12B .3C .2D 2.如图,在Rt ABC △中,90B ∠=︒,下列结论中正确的是()A .sin BC A AB=B .cos BC A AC=C .tan AB C BC=D .cos AC C BC=3.如图,在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为6米,那么相邻两树在坡面上的距离AB 为()A .6cos αB .6cos αC .6sin αD .6sin α4.如图,为了测量河岸A 、B 两地间的距离,在与AB 垂直的方向上取点C ,测得AC =a ,ABC α∠=,那么A 、B 两地的距离等于()A .tan a αB .tan a α⋅C .sin a α⋅D .cos a α⋅5.点()sin 60,cos30︒︒关于y 轴对称的点的坐标是().A .12⎛- ⎝⎭B .1,2⎛ ⎝⎭C .22⎛⎫- ⎪ ⎪⎝⎭D .⎝⎭6.如图,在平面直角坐标系中,点A 的坐标为(﹣1,2),以点O 为圆心,将线段OA 逆时针旋转,使点A 落在x 轴的负半轴上点B 处,则点B 的横坐标为()AB C D7.已知,斜坡的坡度i =1:2,小明沿斜坡的坡面走了100米,则小明上升的距离是()A .B .20米C .D .1003米8.为扩大网络信号的辐射范围,某通信公司在一座小山上新建了一座大型的网络信号发射塔.如图,在高为12米的建筑物DE 的顶部测得信号发射塔AB 顶端的仰角∠FEA =56°,建筑物DE 的底部D 到山脚底部C 的距离DC =16米,小山坡面BC 的坡度(或坡比)i =1:0.75,坡长BC =40米(建筑物DE 、小山坡BC 和网络信号发射塔AB 的剖面图在同一平面内,信号发射塔AB 与水平线DC 垂直),则信号发射塔AB 的高约为()(参考数据:sin56°≈0.83,cos56°≈0.56,tan56°≈1.48)A .71.4米B .59.2米C .48.2米D .39.2米9.如图,在ABC ∆中,90ACB ∠=︒.边BC 在x 轴上,顶点,A B 的坐标分别为()2,6-和()7,0.将正方形OCDE 沿x 轴向右平移当点E 落在AB 边上时,点D 的坐标为()A .3,22⎛⎫ ⎪⎝⎭B .()2,2C .11,24⎛⎫ ⎪⎝⎭D .()4,210.某车库出口安装的栏杆如图所示,点A 是栏杆转动的支点,点E 是栏杆两段的联结点.当车辆经过时,栏杆AEF 最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB ⊥BC ,EF ∥BC ,∠AEF =143°,AB =1.18米,AE =1.2米,那么适合该地下车库的车辆限高标志牌为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A .B .C .D .二、填空题11.在Rt △ABC 中,∠C =90°,AB =2,BC sin2A=_____.12.若关于x 的方程x 2+sin α=0有两个相等的实数根,则锐角α的度数为___.13.如图,P (12,a )在反比例函数60y x=图象上,PH ⊥x 轴于H ,则tan ∠POH 的值为_____.14.如图,在矩形ABCD 中,DE AC ⊥,垂足为点E .若4sin 5ADE ∠=,4=AD ,则AB 的长为______.15.如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2=_____.16.如图,在ABC ∆中,1sin 3B =,tan C =3AB =,则AC 的长为_____.17.如图,ABC 的顶点B C 、的坐标分别是(1,0)、,且90,30ABC A ∠=︒∠=︒,则顶点A 的坐标是_____.18.如图,在菱形ABCD 中,∠A =60°,AB =6.折叠该菱形,使点A 落在边BC 上的点M 处,折痕分别与边AB ,AD 交于点E ,F .当点M 与点B 重合时,EF 的长为________;当点M 的位置变化时,DF 长的最大值为________.三、解答题19.计算:(1sin 602︒;(2)26tan 30cos30tan 602sin 45cos 60︒-︒︒-︒+︒ .20.如图,在Rt △ABC 中,∠C =90°,D 是BC 边上一点,AC =2,CD =1,设∠CAD =α.(1)求sin α、cos α、tan α的值;(2)若∠B =∠CAD ,求BD 的长.21.如图,为了测得旗杆AB 的高度,小明在D 处用高为1m 的测角仪CD ,测得旗杆顶点A 的仰角为45°,再向旗杆方向前进10m ,又测得旗杆顶点A 的仰角为60°,求旗杆AB 的高度.22.如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (2,2),B (4,0),C (4,﹣4).(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的12,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.23.如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D 处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)24.如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°.根据有关部门的规定,∠α≤39°时,才能避免滑坡危险.学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin 39°≈0.63,cos 39°≈0.78,tan 39°≈0.81,≈1.41)参考答案1.D【分析】根据特殊锐角三角函数值代入计算即可.解:2sin60°=故选:D .【点拨】本题考查特殊角三角函数值,熟知sin60°的值是正确计算的关键.2.C【分析】根据锐角三角函数的定义解答.解:在Rt △ABC 中,∠B =90°,则sin ,cos ,tan ,cos BC AB AB BCA A C C AC AC BC AC====.故选:C .【点拨】本题考查锐角三角函数,熟练掌握锐角三角函数的定义是解题关键.3.B【分析】根据余弦的定义计算,判断即可.解:在Rt △ABC 中,6BC =米,ABC α∠=,∵cos BCABC AB∠=,∴6cos BC AB ABC coa α==∠,故选:B .【点拨】本题考查的是解直角三角形的应用坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.4.A【分析】根据正切的定义计算选择即可.解:∵tanα=ACAB,∴AB =tan tan AC aαα=,故选A .【点拨】本题考查了正切的定义即对边比邻边,熟练掌握正切的定义是解题的关键.5.C【分析】先利用特殊角的三角函数值得出点的坐标,再写出其关于y 轴对称的坐标即可.解:∵sin60°cos30°,)关于y 轴对称的点的坐标是(.故选:C .【点拨】本题考查了特殊角的三角函数值和关于坐标轴对称的点的特征,掌握特殊角的三角函数值是解决本题的关键.6.C【分析】利用勾股定理求出OA ,可得结论.解:∵A (﹣1,2),∴OA由旋转的性质可知,OB =OA∴B 0).故选:C .【点拨】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是利用勾股定理求出OA 即可.7.A【分析】根据坡度意思可知1tan 2A ∠=,设BC h =米,则2AC h =米,由勾股定理可得:222AB AC BC =+,即2221004h h =+,求出h 即可.解:如图:由题意可知:1tan 2A ∠=,100AB =米,设BC h =米,则2AC h =米,由勾股定理可得:222AB AC BC =+,即2221004h h =+,解得:h =米,h =-.故选:A【点拨】本题考查勾股定理,坡度坡比问题,解题的关键是理解坡度的意思,找出BC ,AC之间的关系.8.D【分析】延长EF交AB于点H,DC⊥AB于点G,可得四边形EDGH是矩形,根据小山坡面BC的坡度i=1:0.75,即43BGCG=,求得BG=32,CG=24,再根据三角函数即可求出信号发射塔AB的高.解:如图,延长EF交AB于点H,DC⊥AB于点G,∵ED⊥DG,∴四边形EDGH是矩形,∴GH=ED=12,∵小山坡面BC的坡度i=1:0.75,即43 BGCG=,设BG=4x,CG=3x,则BC x,∵BC=40,∴5x=40,解得x=8,∴BG=32,CG=24,∴EH=DG=DC+CG=16+24=40,BH=BG﹣GH=32﹣12=20,在Rt△AEH中,∠AEH=56°,∴AH=EH•tan56°≈40×1.48≈59.2,∴AB=AH﹣BH=59.2﹣20=39.2(米).答:信号发射塔AB的高约为39.2米.故选:D.【点拨】本题主要考查解直角三角形,熟练掌握三角函数是解题的关键.9.B【分析】先画出E 落在AB 上的示意图,如图,根据锐角三角函数求解O B '的长度,结合正方形的性质,从而可得答案.解:由题意知:()2,0,C - 四边形COED 为正方形,,CO CD OE ∴==90,DCO ∠=︒()()2,2,0,2,D E ∴-如图,当E 落在AB 上时,()()2,6,7,0,A B - 6,9,AC BC ∴==由tan ,AC EO ABC BC O B'∠=='62,9O B∴='3,O B '∴=734,2,OO OC ''∴=-==()2,2.D ∴故选.B 【点拨】本题考查的是平移的性质的应用,同时考查了正方形的性质,图形与坐标,锐角三角函数,掌握以上知识是解题的关键.10.A【分析】延长BA 、FE ,交于点D ,根据AB ⊥BC ,EF ∥BC 知∠ADE =90°,由∠AEF =143°知∠AED =37°,根据sin ∠AED AD AE=,AE =1.2米求出AD 的长,继而可得BD 的值,从而得出答案.解:如图,延长BA 、FE ,交于点D .∵AB ⊥BC ,EF ∥BC ,∴BD ⊥DF ,即∠ADE =90°.∵∠AEF =143°,∴∠AED =37°.在Rt △ADE 中,∵sin ∠AED AD AE=,AE =1.2米,∴AD =AE •sin ∠AED =1.2×sin37°≈0.72(米),则BD =AB +AD =1.18+0.72=1.9(米).故选:A .【点拨】本题考查了解直角三角形的应用,解题的关键是结合题意构建直角三角形,并熟练掌握正弦函数的概念.11.12【分析】根据∠A 的正弦求出∠A =60°,再根据30°的正弦值求解即可.解:∵sin BC A AB ==∴∠A =60°,∴1sin sin 3022A ︒==.故答案为12.【点拨】本题考查了特殊角的三角函数值,熟记30°、45°、60°角的三角函数值是解题的关键.12.30°##30度解:∵关于x 的方程2sin 0x α+=有两个相等的实数根,∴(241sin 0 ,α=-⨯⨯=解得:1sin 2α=∴锐角α的度数为30°.故答案为∶30°13.512解:∵P (12,a )在反比例函数60y x =图象上,∴a=6012=5,∵PH ⊥x 轴于H ,∴PH=5,OH=12,∴tan ∠POH=512,故答案为512.14.3【分析】在Rt ADE △中,由正弦定义解得165AE =,再由勾股定理解得DE 的长,根据同角的余角相等,得到sin sin ADE ECD ∠=∠,最后根据正弦定义解得CD 的长即可解题.解:在Rt ADE △中,4sin 5AE ADE AD ∠==4AD = 165AE ∴=125DE ∴===DE AC⊥ 90ADE EDC EDC ECD ∴∠+∠=∠+∠=︒ADE ECD∴∠=∠4sin sin 5DE ADE ECD CD ∴∠=∠==534CD DE ∴=⋅=在矩形ABCD 中,3AB CD ==故答案为:3.【点拨】本题考查矩形的性质、正弦、勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.15.45°【分析】根据等角的正切值相等得出∠1=∠3,再根据特殊角的三角函数值即可得出答案.解:如图所示:由题意可得:11tan 3,tan 122BC CF AB EF ∠==∠==∴∠1=∠3,tan 1FM FAM AM∠== 122345FAM ∴∠+∠=∠+∠=∠=︒故答案为:45°.【点拨】本题考查了特殊角的三角函数以及等角三角函数关系,由图得出∠1=∠3是解题的关键.16【分析】过A 作AD 垂直于BC ,在直角三角形ABD 中,利用锐角三角函数定义求出AD 的长,在直角三角形ACD 中,利用锐角三角函数定义求出CD 的长,再利用勾股定理求出AC 的长即可.解:过A 作AD BC ⊥,在Rt ABD ∆中,1sin 3B =,3AB =,∴sin 1AD AB B =⋅=,在Rt ACD ∆中,tan 2C =,∴AD CD =CD ,根据勾股定理得:AC =.【点拨】此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,以及勾股定理,熟练掌握各自的性质是解本题的关键.17.【分析】根据B C 、的坐标求得BC 的长度,60CBO ∠=︒,利用30度角所对的直角边等于斜边的一半,求得AC 的长度,即点A 的横坐标,易得//AC x 轴,则C 的纵坐标即A 的纵坐标.解:B C 、的坐标分别是(1,0)、2BC ∴=tan OC CBOOB∴∠==60CBO ∴∠=︒90,30ABC A ∠=︒∠=︒60,24ACB AC BC ∴∠=︒==//AC x ∴轴A ∴.故答案为:.【点拨】本题考查了含30°角的直角三角形,用到的知识点有特殊角的三角函数,在直角三角形中,30度角所对的直角边等于斜边的一半,熟记特殊角的三角函数是解题的关键.18.6-【分析】当点M 与点B 重合时,EF 垂直平分AB ,利用三角函数即可求得EF 的长;根据折叠的性质可知,AF =FM ,若DF 取最大值,则FM 取最小值,即为边AD 与BC 的距离DG ,即可求解.解:当点M 与点B 重合时,由折叠的性质知EF 垂直平分AB ,∴AE =EB =12AB =3,在Rt △AEF 中,∠A =60°,AE =3,tan60°=EF AB,∴EF当AF 长取得最小值时,DF 长取得最大值,由折叠的性质知EF 垂直平分AM ,则AF =FM ,∴FM ⊥BC 时,FM 长取得最小值,此时DF 长取得最大值,过点D 作DG ⊥BC 于点C ,则四边形DGMF 为矩形,∴FM =DG ,在Rt △DGC 中,∠C =∠A =60°,DC =AB =6,∴DG =DC∴DF 长的最大值为AD -AF =AD -FM =AD -DG故答案为:【点拨】本题考查了菱形的性质,折叠的性质,解直角三角形,解题的关键是灵活运用所学知识解决问题.19.(1(2)1【分析】(1)根据二次根式与特殊角的三角函数值即可求解;(2)根据特殊角的三角函数值即可求解.解:(1)原式=11232-=16(2)原式21316221222=⨯-⨯=--=-【定睛】此题主要考查实数的运算。
苏教版七年级上册数学[《代数式》全章复习与巩固(基础)知识点整理及重点题型梳理]
苏教版七年级上册数学[《代数式》全章复习与巩固(基础)知识点整理及重点题型梳理]代数式》全章复与巩固(基础)知识讲解研究目标:1.进一步理解用字母表示数的意义,能分析简单问题的数量关系,并用代数式表示;2.理解代数式的含义,能解释一些简单代数式的实际背景或几何意义,体会数学与现实生活的密切联系;3.会求代数式的值,能解释值的实际意义,能根据代数式的值推断代数式反映的规律;4.理解并掌握单项式与多项式的相关概念;5.理解整式加减的基础是去括号和合并同类项,并熟练的运用整式的加减运算法则,进行整式的加减运算、求值;6.深刻体会本章体现的主要的数学思想——整体思想。
要点梳理:1.代数式是用运算符号(+、-、×、÷、乘方、开方)把数和表示数的字母连接而成的式子,像16n、2a+3b、34、n、2、(a+b)等式子都是代数式,单独的一个数或一个字母也是代数式。
代数式的书写规范:1) 字母与数字或字母与字母相乘时,通常把乘号写成“·”或省略不写;2) 除法运算一般以分数的形式表示;3) 字母与数字相乘时,通常把数字写在字母的前面;4) 字母前面的数字是分数的,如果既能写成带分数又能写成假分数,一般写成假分数的形式;5) 如果字母前面的数字是1,通常省略不写。
2.单项式是由数与字母的乘积组成的代数式,单独的一个数或一个字母也是单项式。
单项式的系数是指单项式中的数字因数,单项式的次数是指单项式中所有字母的指数和。
多项式是几个单项式的和,每个单项式叫做多项式的项。
在多项式中,不含字母的项叫做常数项。
多项式中次数最高的项的次数,就是这个多项式的次数。
如果一个多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式。
3.多项式的降幂与升幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列。
另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列。
《二次函数》全章复习与巩固—巩固练习(基础)
《二次函数》全章复习与巩固—巩固练习(基础)【巩固练习】 一、选择题1.将二次函数2y x =的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( ).A .2(1)2y x =-+ B .2(1)2y x =++ C .2(1)2y x =-- D .2(1)2y x =+- 2.二次函数y=ax 2与一次函数y=ax+a 在同一坐标系中的大致图象为( )3.(2016•永州)抛物线y=x 2+2x +m ﹣1与x 轴有两个不同的交点,则m 的取值范围是( ) A .m <2 B .m >2 C .0<m ≤2 D .m <﹣24. 抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是( )A .22y x x =-- B .211122y x x =-++ C .211122y x x =--+ D .22y x x =-++5.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列结论:①240b ac ->;②abc>0;③8a+c >0;④9a+3b+c <0.其中,正确结论的个数是( ). A .1 B .2 C .3 D .4第4题 第5题6.已知点(1x ,1y ),(2x ,2y )(两点不重合)均在抛物线21y x =-上,则下列说法正确的是( ). A .若12y y =,则12x x = B .若12x x =-,则12y y =- C .若120x x <<,则12y y > D .若120x x <<,则12y y >7.二次函数y=ax 2+bx+c 与一次函数y=ax+c ,它们在同一直角坐标系中的图象大致是( )8.(2015•黔东南州)如图,已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c >0,③a >b ,④4ac ﹣b 2<0;其中正确的结论有( )A .1个B . 2个C . 3个D .4个二、填空题9.已知抛物线2(0)y ax bx c a =++>的对称轴为直线1x =,且经过点1(1,)y -,2(2,)y ,试比较1y 和2y 的大小:1y ________2y (填“>”,“<”或“=”).10.如图,已知抛物线y=﹣x 2+bx+c 的对称轴为直线x=1,且与x 轴的一个交点为(3,0),那么它对应的函数解析式是 .11.抛物线22(2)6y x =--的顶点为C ,已知y =-kx+3的图象经过点C ,则这个一次函数图象与两坐标轴所围成的三角形面积为________.12.已知二次函数22y x x m =-++的部分图象如图所示,则关于x 的一元二次方程220x x m -++=的解为___ _____.13.如图所示的抛物线是二次函数2231y ax x a =-+-的图象,那么a 的值是________.14.烟花厂为扬州“4·18”烟花三月经贸旅游节特别设计制作了一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是252012h t t =-++,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为________.15.已知抛物线2y ax bx c =++经过点A(-1,4),B(5,4),C(3,-6),则该抛物线上纵坐标为-6的另一个点的坐标是________.16.若二次函数26y x x c =-+的图象过A(-1,y 1)、B(2,y 2)、C(32+,y 3)三点,则y 1、y 2、y 3大小关系是 .三、解答题17.(2016•河南)某班“数学兴趣小组”对函数y=x 2﹣2|x |的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x 的取值范围是全体实数,x 与y 的几组对应值列表如下: x … ﹣3 ﹣ ﹣2 ﹣1 0 1 2 3 … y…3m﹣1﹣13…其中,m= .(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质. (4)进一步探究函数图象发现:①函数图象与x 轴有 个交点,所以对应的方程x 2﹣2|x |=0有 个实数根;②方程x 2﹣2|x |=2有 个实数根;③关于x 的方程x 2﹣2|x |=a 有4个实数根时,a 的取值范围是 .18. 如图所示,要设计一个等腰梯形的花坛,花坛上底长120米,下底长180米,上、下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上、下底之间有两条纵向甬道,各甬道的宽度相等,设甬道的宽为x 米.(1)用含x 的式子表示横向甬道的面积;(2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽;(3)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?19.为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80%销售.现购买太阳能路灯x 个,如果全部在甲商家购买,则所需金额为y 1元;如果全部在乙商家购买,则所需金额为y 2元. (1)分别求出y 1、y 2与x 之间的函数关系式;(2)若市政府投资140万元,最多能购买多少个太阳能路灯?20.(2015•温州模拟)已知:如图,抛物线y=﹣x 2+bx+c 与x 轴交于点A (﹣1,0),B (3,0),与y 轴交于点C .过点C 作CD ∥x 轴,交抛物线的对称轴于点D . (1)求该抛物线的解析式;(2)若将该抛物线向下平移m 个单位,使其顶点落在D 点,求m 的值.【答案与解析】 一、选择题 1.【答案】A ;【解析】2y x =向右平移1个单位后,顶点为(1,0),再向上平移2个单位后,顶点为(1,2),开口方向及大小不变,所以1a =,即2(1)2y x =-=.2.【答案】C ;【解析】①当a >0时,二次函数y=ax 2的开口向上,一次函数y=ax+a 的图象经过第一、二、三象限,排除A 、B ;②当a <0时,二次函数y=ax 2的开口向下,一次函数y=ax+a 的图象经过第二、三、四象限,排除D . 故选C .3.【答案】A.【解析】∵抛物线y=x 2+2x +m ﹣1与x 轴有两个交点,∴△=b 2﹣4ac >0, 即4﹣4m +4>0, 解得m <2, 故选A .4.【答案】D ;【解析】由图象知,抛物线与x 轴两交点是(-1,0),(2,0),又开口方向向下,所以0a <,抛物线与y 轴交点纵坐标大于1.显然A 、B 、C 不合题意,故选D . 5.【答案】D ;【解析】抛物线与x 轴交于两点,则0b <. 由图象可知a >0,c <0, 则b <0,故abc >0.当x =-2时,y =4a-2b+c >0. ∵ 12bx a=-=,∴ b =-2a , ∴ 4a-(-2a)×2+c >0,即8a+c >0.当x =3时,y =9a+3b+c <0,故4个结论都正确. 6.【答案】D ;【解析】画出21y x =-的图象,对称轴为0x =,若12y y =,则12x x =-;若12x x =-,则12y y =;若120x x <<,则21y y >;若120x x <<,则12y y >.7.【答案】A ; 8.【答案】C ;【解析】∵二次函数y=ax 2+bx+c 图象经过原点,∴c=0,∴abc=0 ,∴①正确;∵x=1时,y <0,∴a+b+c<0,∴②不正确; ∵抛物线开口向下,∴a<0,∵抛物线的对称轴是x=﹣,∴﹣,b <0,∴b=3a,又∵a<0,b <0,∴a>b ,∴③正确;∵二次函数y=ax 2+bx+c 图象与x 轴有两个交点,∴△>0,∴b 2﹣4ac >0,4ac ﹣b 2<0,∴④正确; 综上,可得正确结论有3个:①③④.故选:C .二、填空题 9.【答案】>;【解析】根据题意画出抛物线大致图象,找出x =-1,x =2时的函数值,比较其大小,易如12y y >. 10.【答案】y=﹣x 2+2x+3;【解析】∵抛物线y=﹣x 2+bx+c 的对称轴为直线x=1,∴=1,解得b=2,∵与x 轴的一个交点为(3,0), ∴0=﹣9+6+c , 解得c=3,故函数解析式为y=﹣x 2+2x+3.11.【答案】1; 【解析】92k =,932y x =-+,与坐标轴交点为(0,3),2,03⎛⎫⎪⎝⎭. 12.【答案】 x 1=3或x 2=-1 ;【解析】由二次函数22y x x m =-++部分图象知,与x 轴的一个交点为(3,0).代入方程得m =3,解方程得x 1=3或x 2=-1.13.【答案】-1;【解析】因为抛物线过原点,所以210a -=,即1a =±,又抛物线开口向下,所以a =-1. 14.【答案】4s ; 【解析】204(s)522t =-=⎛⎫⨯- ⎪⎝⎭.15.【答案】(1,-6);【解析】常规解法是先求出关系式,然后再求点的坐标,但此方法繁琐耗时易出错,仔细分析就会注意到:A 、B 两点纵坐标相同,它们关于抛物线对称轴对称,由A(-1,4),B(5,4)得,对称轴1522x -+==,而抛物线上纵坐标为-6的一点是(3,-6),所以它关于x =2的对称点是(1,-6).故抛物线上纵坐标为-6的另一点的坐标是(1,-6).16.【答案】y 1>y 3>y 2. 【解析】因为抛物线的对称轴为6323x -==⨯.而A 、B 在对称轴左侧,且y 随x 的增大而减小,∵ -1<2,∴ y 1>y 2,又C 在对称轴右侧,且A 、B 、C 三点到对称轴的距离分别 为2,1,2,由对称性可知:y 1>y 3>y 2.三、解答题17.【答案与解析】解:(1)把x=﹣2代入y=x 2﹣2|x |得y=0, 即m=0,故答案为:0; (2)如图所示;(3)由函数图象知:①函数y=x 2﹣2|x |的图象关于y 轴对称;②当x >1时,y 随x 的增大而增大;(4)①由函数图象知:函数图象与x 轴有3个交点,所以对应的方程x 2﹣2|x |=0有3个实数根;②如图,∵y=x 2﹣2|x |的图象与直线y=2有两个交点,∴x 2﹣2|x |=2有2个实数根;③由函数图象知:∵关于x 的方程x 2﹣2|x |=a 有4个实数根, ∴a 的取值范围是﹣1<a <0, 故答案为:3,3,2,﹣1<a <0.18.【答案与解析】 (1)横向甬道的面积为1201801502x +=(m 2). (2)依题意:2112018028015028082x x x +⨯+-=⨯⨯,整理得21557500x x -+=,解得x 1=5,x 2=150(不合题意,舍去).∴ 甬道的宽为5米.(3)设建花坛的总费用为y 万元,则21201800.0280(1601502) 5.72y x x x x +⎡⎤=⨯⨯-+-+⎢⎥⎣⎦. ∴ y =0.04x 2-0.5x+240. 当0.56.25220.04b x a =-==⨯时,y 的值最小. ∵ 根据设计的要求,甬道的宽不能超过6 m .∴ 当x =6m 时,总费用最少,为0.04×62-0.5×6+240=238.44(万元).19.【答案与解析】(1)由题意可知,当x ≥100时,因为购买个数每增加一个,其价格减少10元,但售价不得低于3500元/个,所以5000350010025010x -≤+=,即100≤x ≤250时,购买一个需5000-10(x-100)元.故y 1=6000x-10x 2;当x >250时,购买一个需3500元. 故y 1=3500x .所以215000(0100),600010(100250),3500(250),x x y x xx x x ≤≤⎧⎪=-<≤⎨⎪>⎩y 2=5000×80%x =4000x .(2)当0<x ≤100时,y 1=5000x ≤500000<1400000;当100<x ≤250时,y 1=6000x-10x 2=-10(x-300)2+900000<1400000; 所以,由3500x =1400000,得x =400. 由4000x =1400000,得x =350.故选择甲商家,最多能购买400个路灯.20.【答案与解析】(1)设y =kx ,把(2,4)代入,得k =2,所以y =2x ,自变量x 的取值范围是:0≤x ≤30.(2)当0≤x <5时,设y =a(x-5)2+25, 把(0,0)代入,得25a+25=0,a =-1, 所以22(5)2510y x x x =--+=-+. 当5≤x ≤15时,y =25.即210(05),25(515).x x x y x ⎧-+≤<=⎨≤≤⎩(3)设王亮用于回顾反思的时间为x(0≤x <5)分钟,学习收益总量为Z ,则他用于解题的时间为(30-x)分钟.当0≤x <5时,222102(30)860(4)76Z x x x x x x =-++-=-++=--+. 所以当x =4时,76Z =最大.当5≤x ≤15时,Z =25+2(30-x)=-2x+85. 因为Z 随x 的增大而减小, 所以当x =5时,75Z =最大.综合所述,当x =4时,76Z =最大,此时30-x =26.即王亮用于解题的时间为26分钟,用于回顾反思的时间为4分钟时.学习收益总量最大.。
新人教版九年级上册数学[《二次函数》全章复习与巩固—知识点整理及重点题型梳理](基础)
新人教版九年级上册初中数学重难点有效突破知识点梳理及重点题型巩固练习《二次函数》全章复习与巩固—知识讲解(基础)【学习目标】1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题;4.会利用二次函数的图象求一元二次方程的近似解.【知识网络】【要点梳理】要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数.要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.要点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④,其中;⑤.(以上式子a≠0)几种特殊的二次函数的图象特征如下:函数解析式开口方向对称轴 顶点坐标 当时开口向上 当时开口向下(轴) (0,0) (轴)(0,) (,0)(,)()2.抛物线的三要素:开口方向、对称轴、顶点.(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. (2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线20()y ax bx c a =++≠中,,,a b c 的作用: (1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线, 故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置.当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.4.用待定系数法求二次函数的解析式:(1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式.(2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式.(可以看成的图象平移后所对应的函数.)(3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式:(a≠0).(由此得根与系数的关系:).要点诠释:求抛物线2y ax bx c =++(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.要点三、二次函数与一元二次方程的关系 函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解要点诠释:二次函数图象与x 轴的交点的个数由的值来确定.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.要点四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义. 利用二次函数解决实际问题的一般步骤是: (1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来; (3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题. 要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.【典型例题】类型一、求二次函数的解析式1.已知二次函数的图象经过原点及点11,24⎛⎫-- ⎪⎝⎭,且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为____ ____. 【答案】 21133y x x =-+或2y x x =+. 【解析】 正确找出图象与x 轴的另一交点坐标是解题关键.由题意知另一交点为(1,0)或(-1,0). 因此所求抛物线的解析式有两种. 设二次函数解析式为2y ax bx c =++.则有0,1114420c a b c a b c =⎧⎪⎪-=-+⎨⎪++=⎪⎩,或0,111,4420,c a b c a b c =⎧⎪⎪-=-+⎨⎪-+=⎪⎩解之13130a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,或1,1,0.a b c =⎧⎪=⎨⎪=⎩因此所求二次函数解析式为21133y x x =-+或2y x x =+. 【点评] 此题容易出错漏解的错误.举一反三:【课程名称:二次函数复习357019 :(1)-(2)问精讲】【变式】已知:抛物线y=x 2+bx+c 的对称轴为x=1,交x 轴于点A 、B(A 在B 的左侧),且AB=4,交y 轴于点C.求此抛物线的函数解析式及其顶点M 的坐标. 【答案】∵对称轴x=1,且AB=4∴抛物线与x 轴的交点为:A(-1,0),B(3,0)bb=-212c=-31b c 0⎧-=⎧⎪∴∴⎨⎨⎩⎪-+=⎩∴y=x 2-2x-3为所求,∵x=1时y=-4 ∴M(1,-4) ∵对称轴x=1,且AB=4∴抛物线与x 轴的交点为:A(-1,0),B(3,0)bb=-212c=-31b c 0⎧-=⎧⎪∴∴⎨⎨⎩⎪-+=⎩∴y=x 2-2x-3为所求,∵x=1时y=-4 , ∴M(1,-4).类型二、根据二次函数图象及性质判断代数式的符号2.(2015•盘锦)如图是二次函数y=ax 2+bx+c=0(a ≠0)图象的一部分,对称轴是直线x=﹣2.关于下列结论:①ab <0;②b 2﹣4ac >0;③9a ﹣3b+c <0;④b ﹣4a=0;⑤方程ax 2+bx=0的两个根为x 1=0,x 2=﹣4,其中正确的结论有( )A .①③④B . ②④⑤C . ①②⑤D .②③⑤【答案】B ;【解析】解:∵抛物线开口向下, ∴a <0, ∵﹣=﹣2,∴b=4a ,ab >0,∴①错误,④正确,∵抛物线与x 轴交于﹣4,0处两点,∴b 2﹣4ac >0,方程ax 2+bx=0的两个根为x 1=0,x 2=﹣4, ∴②⑤正确,∵当a=﹣3时y >0,即9a ﹣3b+c >0, ∴③错误,故正确的有②④⑤. 故选:B .【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式以及特殊值的熟练运用.类型三、数形结合3.如图所示是二次函数2y ax bx c =++图象的一部分,其对称轴为直线x =1,若其与x 轴一交点为(3,0),则由图象可知,不等式20ax bx c ++>的解集是________.【思路点拨】根据抛物线的对称性和抛物线与x 轴的交点A 的坐标可知,抛物线与x 轴的另一个交点的坐标,观察图象可得不等式20ax bx c ++>的解集.【答案】x >3或x <-1;【解析】根据抛物线的对称性和抛物线与x 轴的交点A(3,0)知,抛物线与x 轴的另一个交点为(-1,0),观察图象可知,不等式20ax bx c ++>的解集就是2y ax bx c =++函数值,y >0时,x 的取值范围.当x >3或x <-1时,y >0,因此不等式20ax bx c ++>的解集为x >3或x <-1.【点评】弄清20ax bx c ++>与2y ax bx c =++的关系,利用数形结合在图象上找出不等式20ax bx c ++>的解集.类型四、函数与方程4.(2016•台湾)如图,坐标平面上,二次函数y=﹣x 2+4x ﹣k 的图形与x 轴交于A 、B 两点,与y 轴交于C 点,其顶点为D ,且k >0.若△ABC 与△ABD 的面积比为1:4,则k 值为何?( )A.1 B.C.D.【思路点拨】求出顶点和C的坐标,由三角形的面积关系得出关于k的方程,解方程即可.【答案】D.【解析】解:∵y=﹣x2+4x﹣k=﹣(x﹣2)2+4﹣k,∴顶点D(2,4﹣k),C(0,﹣k),∴OC=k,∵△ABC的面积=AB•OC=AB•k,△ABD的面积=AB(4﹣k),△ABC与△ABD的面积比为1:4,∴k=(4﹣k),解得:k=.【点评】本题考查了抛物线与x轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关键.举一反三:【变式1】无论x为何实数,二次函数的图象永远在x轴的下方的条件是( ) A.B.C.D.【答案】二次函数的图象与x轴无交点,则说明y=0时,方程无解,即.又图象永远在x轴下方,则.答案:B【变式2】对于二次函数,我们把使函数值等于0的实数x叫做这个函数的零点,则二次函数(m为实数)的零点的个数是( )A.1 B.2 C.0 D.不能确定【答案】当y=0时,,,即二次函数的零点个数是2.故选B.类型五、分类讨论5.已知点A(1,1)在二次函数22y x ax b =-+的图象上.(1)用含a 的代数式表示b ;(2)如果该二次函数的图象与x 轴只有一个交点,求这个二次函数的图象的顶点坐标. 【思路点拨】(1)将A(1,1)代入函数解析式.(2)由△=b 2-4ac =0求出a . 【答案与解析】(1)因为点A(1,1)在二次函数22y x ax b =-+的图象上,所以1=1-2a+b ,所以b =2a . (2)根据题意,方程220x ax b -+=有两个相等的实数根,所以2244480a b a a -=-=, 解得a =0或a =2.当a =0时,y =x 2,这个二次函数的图象的顶点坐标是(0,0). 当a =2时,2244(2)y x x x =-+=-,这个二次函数的图象的顶点坐标为(2,0).所以,这个二次函数的图象的顶点坐标为(0,0)或(2,0).【点评】二次函数2y ax b c =++(0)a ≠的图象与x 轴只有一个交点时,方程20ax bx c ++=有两个相等的实数根,所以240b ac =-=△.类型六、二次函数与实际问题6.(2015•黄陂区校级模拟)进价为每件40元的某商品,售价为每件50元时,每星期可卖出500件,市场调查反映:如果每件的售价每降价1元,每星期可多卖出100件,但售价不能低于每件42元,且每星期至少要销售800件.设每件降价x 元 (x 为正整数),每星期的利润为y 元. (1)求y 与x 的函数关系式并写出自变量x 的取值范围;(2)若某星期的利润为5600元,此利润是否是该星期的最大利润?说明理由. (3)直接写出售价为多少时,每星期的利润不低于5000元? 【思路点拨】(1)根据利润y=每件利润×销售量,每件利润=50﹣40﹣x ,销售量=500+100x ,而售价50﹣x≥42,销售量=500+100x≥800,列不等式组求x 的取值范围;(2)根据(1)的关系式配方后确定最大利润,与5600比较后即可发现是否为最大利润; (3)设当y=5000时x 有两个解,可推出0≤x≤5时,y≥5000. 【答案与解析】解:(1)依题意,得y=(50﹣40﹣x )•(500+100x )=﹣100x 2+500x+5000,∵,∴3≤x≤8;(2)y=﹣100x2+500x+5000=﹣100(x﹣)2+5625,∵x取正整数,当x=2或3时,y=5600.∴5600元是最大利润.(3)当y=5000时,y=﹣100x2+500x+5000=5000,解得x1=0,x2=5,故当0≤x≤5时,y≥5000,即当售价在不小于45元且不大于50元时,月利润不低于5000元.【点评】本题考查二次函数的实际应用.一般求最值问题,大多是建立二次函数关系,从而借助二次函数解决实际问题.。
《一元二次方程》全章复习与巩固—巩固练习(提高)
《一元二次方程》全章复习与巩固—巩固练习(提高)【巩固练习】一、选择题1. 关于x 的一元二次方程(a -1)x 2+x +|a|-1=0的一个根是0,则实数a 的值为( )A.-1B.0C.1D.-1或12.已知a 是方程x 2+x ﹣1=0的一个根,则22211a a a---的值为( ) A.152-+ B.152-± C.﹣1 D.1 3.(2015•德州)若一元二次方程x 2+2x+a=0的有实数解,则a 的取值范围是( )A .a <1B . a≤4C . a≤1D . a≥14.已知关于x 的方程2(2)230m x mx m -+++=有实根,则m 的取值范围是( )A .2m ≠B .6m ≤且2m ≠C .6m <D .6m ≤5.如果是α、β是方程2234x x +=的两个根,则22αβ+的值为( ) A .1 B .17 C .6.25 D .0.256.(2016•台州)有x 支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是( )A .x (x ﹣1)=45B .x (x +1)=45C .x (x ﹣1)=45D .x (x +1)=457. 方程x 2+ax+1=0和x 2-x-a=0有一个公共根,则a 的值是( )A .0B .1C .2D .38. 若关于x 的一元二次方程的两个实数根分别是,且满足. 则k 的值为( )A.-1或B.-1C.D.不存在二、填空题9.关于x 的方程2()0a x m b ++=的解是x 1=-2,x 2=1(a ,m ,b 均为常数,a ≠0),则方程2(2)0a x m b +++=的解是 .10.已知关于x 的方程x 2+2(a+1)x+(3a 2+4ab+4b 2+2)=0有实根,则a 、b 的值分别为 .11.已知α、β是一元二次方程2430x x --=的两实数根,则(α-3)(β-3)=________.12.当m=_________时,关于x 的方程是一元二次方程;当m=_________时,此方程是一元一次方程.13.把一元二次方程3x 2-2x-3=0化成3(x+m)2=n 的形式是____________;若多项式x 2-ax+2a-3是一个完全平方式,则a=_________.14.(2015•绥化)若关于x 的一元二次方程ax 2+2x ﹣1=0无解,则a 的取值范围是 .15.已知,那么代数式的值为________.16.当x=_________时,既是最简二次根式,被开方数又相同.三、解答题17. (2016•南充)已知关于x 的一元二次方程x 2﹣6x +(2m +1)=0有实数根.(1)求m 的取值范围;(2)如果方程的两个实数根为x 1,x 2,且2x 1x 2+x 1+x 2≥20,求m 的取值范围.18.设(a ,b)是一次函数y =(k-2)x+m 与反比例函数n y x =的图象的交点,且a 、b 是关于x 的一元二次方程22(3)(3)0kx k x k +-+-=的两个不相等的实数根,其中k 为非负整数,m 、n 为常数.(1)求k 的值;(2)求一次函数与反比例函数的解析式.19. 长沙市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案以供选择: ①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?20.已知某项工程由甲、乙两队合做12天可以完成,共需工程费用13 800元,乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的2倍少10天,且甲队每天的工程费用比乙队多150元.(1)甲、乙两队单独完成这项工程分别需要多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应该选择哪个工程队?请说明理由.【答案与解析】一、选择题1.【答案】A ;【解析】先把x =0代入方程求出a 的值,然后根据二次项系数不能为0,把a =1舍去.2.【答案】D ; 【解析】先化简22211a a a---,由a 是方程x 2+x ﹣1=0的一个根,得a 2+a ﹣1=0,则a 2+a=1, 再整体代入即可.解:原式=2(1)(1)(1)a a a a a -++-=1(1)a a +, ∵a 是方程x 2+x ﹣1=0的一个根,∴a 2+a ﹣1=0,即a 2+a=1,∴原式=1(1)a a +=1. 故选D .3.【答案】C ;【解析】∵ 关于x 的一元二次方程有实根,∴ △=b 2﹣4ac=4﹣4a≥0,解之得a≤1.故选C .4.【答案】D ;【解析】△≥0得6m ≤,方程有实根可能是一元二次方程有实根,也可能是一元一次方程有实根.5.【答案】C ;【解析】22+=+-=6.25αβαβαβ2()2.6.【答案】A .【解析】∵有x 支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为x (x ﹣1),∴共比赛了45场,∴x (x ﹣1)=45,故选A .7.【答案】C ;【解析】提示:先求公共根m=-1,再把这个公共根m=-1代入原来任意一个方程可求出a=2.8.【答案】C ;【解析】由题意,得: 22121211=1k k k k k x x x x k ⎧⎪⎧⎪=-=-⎨⎨+=⎩⎪=-⎪⎩4≤≥0435 当时,不符合≤,舍去,故354或4. 二、填空题9.【答案】x 1=﹣4,x 2=﹣1.【解析】解:∵关于x 的方程a (x +m )2+b =0的解是x 1=﹣2,x 2=1,(a ,m ,b 均为常数,a ≠0),∴则方程a (x+m +2)2+b =0的解是x 1=﹣2﹣2=﹣4,x 2=1﹣2=﹣1.故答案为:x 1=﹣4,x 2=﹣1.10.【答案】a =1,12b =-. 【解析】 判别式△=[2(a+1)]2-4(3a 2+4ab+4b 2+2)=4(a 2+2a+1)-(12a 2+16ab+16b 2+8)=-8a 2-16ab-16b 2+8a-4=-4(2a 2+4ab+4b 2-2a+1)=-4[(a 2+4ab+4b 2)+(a 2-2a+1)].=-4[(a+2b)2+(a-1)2].因为原方程有实根,所以-4[(a+2b)2+(a-1)2]≥0,(a+2b)2+(a-1)2≤0,又∵ (a+2b)2≥0,(a-1)2≥0,∴ a-1=0且a+2b =0,∴ a =1,12b =-. 11.【答案】-6;【解析】∵ α、β是一元二次方程2430x x --=的两实数根,∴ α+β=4,αβ=-3.∴ (3)(3)3()933496αβαβαβ--=-++=--⨯+=-.12.【答案】-3;. 13.【答案】;2或6.【解析】即2(-)232a a =-.a=2或6.14.【答案】a <﹣1;15.【答案】-2;【解析】原方程化为:. 16.【答案】-5;【解析】由x 2+3x=x+15解出x=-5或x=3,当x=3时,不是最简二次根式,x=3舍去.故x=-5.三、解答题17.【答案与解析】解:(1)根据题意得△=(﹣6)2﹣4(2m +1)≥0,解得m ≤4;(2)根据题意得x 1+x 2=6,x 1x 2=2m +1,而2x 1x 2+x 1+x 2≥20,所以2(2m +1)+6≥20,解得m ≥3,而m ≤4,所以m 的范围为3≤m ≤4.18. 【答案与解析】(1)因为关于x 的方程22(3)(3)0kx k x k +-+-=有两个不相等的实数根,所以220,44(3)4(3)0,k b ac k k k ≠⎧⎨=-=--->⎩△ 解得k <3且k ≠0, 又因为一次函数y =(k-2)x+m 存在,且k 为非负整数,所以k =1.(2)因为k =1,所以原方程可变形为2420x x --=,于是由根与系数的关系知a+b =4,ab =-2, 又当k =1时,一次函数y x m =-+过点(a ,b),所以a+b =m ,于是m =4,同理可得n =-2, 故所求的一次函数与反比例函数的解析式分别为4y x =-+与2y x =-. 19. 【答案与解析】(1)设平均每次下调的百分率是x .依题意得5000(1-x)2=4050.解得x 1=10%,x 2=1910(不合题意,舍去). 答:平均每次下调的百分率为10%.(2)方案①优惠:4050×100×(1-0.98)=8100(元);方案②优惠:1.5×100×12×2=3600(元)∵ 8100>3600.∴ 选方案①更优惠.20. 【答案与解析】(1) 设甲队单独完成需x 天,则乙队单独完成需要(2x -10)天.根据题意,有11121012x x +=-, 解得x 1=3,x 2=20. 经检验均是原方程的根,x 1=3不符题意舍去.故x=20.∴乙队单独完成需要 2x -10=30(天).答:甲、乙两队单独完成这项工程分别需要20天、30天.(2) 设甲队每天的费用为y 元,则由题意有12y+12(y -150)=138 000,解得y=650 .∴ 选甲队时需工程费用650×20=13 000,选乙队时需工程费用500×30=15 000.∵ 13 000 <15 000,∴ 从节约资金的角度考虑,应该选择甲工程队.。
人教版七年级数学下册15.实数全章复习与巩固(提高)巩固练习及答案.doc
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】【巩固练习】 一.选择题1.已知a 、b 是实数,下列命题结论正确的是( ) A .若a >b ,则2a >2bB .若a >|b |,则2a >2bC .若|a |>b ,则2a >2b D .若3a >3b ,则2a >2b 2.下列式子表示算术平方根的是 ( ). ①()233-= ②()()2515--= ③93104-=- ④ 255-= ⑤ 0.010.1±=± ⑥ ()20a a a =≥A .①②④B .①④⑥C .①⑤⑥D .①②⑥ 3. 下列说法正确的有( )①无限小数不一定是无理数; ②无理数一定是无限小数; ③带根号的数不一定是无理数; ④不带根号的数一定是有理数. A ①②③ B ②③④ C ①③④ D ①②④4. 下列语句、式子中 ① 4是16的算术平方根,即.416=±②4是16的算术平方根,即.416=③-7是49的算术平方根,即.7)7(2=-④7是2(7)-的算术平方根,即.7)7(2=-其中正确的是( )A. ①③B. ②③C. ②④D. ①④ 5. (2015•南京)估计介于( )A .0.4与0.5之间B .0.5与0.6之间C .0.6与0.7之间D .0.7与0.8之间6.下列运算中正确的是( )4913=12622-82==)(C. 24±=D. ∣32-∣=23- 7. 已知:a a 则,且,68.2868.82.62333=-==( ) A.2360 B.-2360 C.23600 D.-23600 8. -2781 ) A .0 B .6C .6或-12D .0或6 二.填空题9. 下列命题中正确的有 (填序号)(1)若,b a >那么b a 22>; (2)两数的和大于等于这两数的差;(3)若,b a >那么22b a >; (4)若,b a > c b >则c a >;(5))()(c b a c b a ++=++ (6)一个数越大,这个数的倒数越小; (7)有理数加有理数一定是有理数; (8)无理数加无理数一定是无理数; (9)无理数乘无理数一定是无理数; 10.(2015•庆阳)若﹣2xm ﹣n y 2与3x 4y2m+n是同类项,则m ﹣3n 的立方根是 .11. 若22)3(-=a ,则a = ,若23)3(-=a ,则a = .12. 已知 :===00236.0,536.136.2,858.46.23则 . 13. 若x x -+有意义,则=+1x ________.14. 阅读下列材料:设0.30.333x ==…①,则10 3.333x =…②,则由②-①得:93x =,即13x =.所以0.30.333= (1)=3.根据上述提供的方法把下列两个数化成分数. 0.7= 1.3= ;15. 方程 361(12)164x +-=的解x = _________ . 16. 若,19961995a a a =-+-则21995-a 的值等于_________.三.解答题17. (2015春•和平区期末)已知一个正数的两个平方根分别为a 和2a ﹣9 (1)求a 的值,并求这个正数; (2)求17﹣9a 2的立方根.18. 如图所示,已知A 、B 两点的坐标分别为(5,0)A -,(2,1)B -.(1)求△OAB 的面积和△ACB 的面积(结果保留一位小数); (2)比较点A 所表示的数与-2.4的大小.19. 把下列无限循环小数化成分数:(1)0.6•(2)0.23••(3)0.107••20.细心观察右图,认真分析各式,然后解答问题:()()212211122===+,S ; ()()223312222===+,S; ()()234413322===+,S; ……,……; (1)请用含n(n 为正整数)的等式表示上述变化规律;(2)观察总结得出结论:三角形两条直角边与斜边的关系,用一句话概括为: ; (3)利用上面的结论及规律,请作出等于7的长度;(4)你能计算出210232221S S S S ++++ 的值吗?【答案与解析】 一.选择题1. 【答案】B ;【解析】B 答案表明,||||a b a b >>且,故2a >2b . 2. 【答案】D ;【解析】算术平方根的专用记号是“a ”根号前没有“-”或“±”号. 3. 【答案】A ; 4. 【答案】C ;【解析】算术平方根是平方根中符号为正的那个. 5.【答案】C . 【解析】∵ 2.235,∴﹣1≈1.235,∴≈0.617,∴介于0.6与0.7之间.6. 【答案】D ;7. 【答案】D ;O.....S 5S 4S 3S 2S 1111111A 6A 5A 4A 3A 2A 1【解析】2.868向右移动1位,23.6应向右移动3位得23600,考虑到符号,a =-23600. 8. 【答案】A ;【解析】819=,9的算术平方根是3,故选A. 二.填空题 9. 【答案】(1),(4),(5),(7); 10.【答案】2. 【解析】若﹣2xm ﹣n y 2与3x 4y2m+n是同类项,∴,解方程得:.∴m ﹣3n=2﹣3×(﹣2)=8.8的立方根是2.故答案为:2. 11.【答案】3±39【解析】正数的平方根有2个,实数有一个与它符号相同的立方根. 12.【答案】0.04858【解析】23.6向左移动4位,4.858向左移动2位得0.04858. 13.【答案】1;【解析】x ≥0,-x ≥0,得x =0,所以=+1x 1. 14.【答案】74;93; 【解析】设x =0.777……,10x =7.777……,9x =7, x =79.设y =1.333……,10y =13.333……,9y =12, y =43. 15.【答案】18; 【解析】()31255112,12,6448x x x +=+==. 16.【答案】1996;1996a -a ≥1996,原式=a -19951996a -a 1996a -1995,两边平方得21995-a =1996. 三.解答题17.【解析】 解:(1)由平方根的性质得,a+2a ﹣9=0, 解得a=3,∴这个正数为32=9;(2)当a=3时,17﹣9a 2=﹣64, ∵﹣64的立方根﹣4, ∴17﹣9a 2的立方根为﹣4. 18.【解析】解:(1)∵ (5,0)A ,(2,1)B -,∴ ||5OA =BC =1,AC =OA -OC 52.∴ 115||||51 1.122OAB S OA BC ∆===≈. 115||||(52)110.1222ACB S AC BC ∆==⨯⨯=-≈. (2)点A 表示的实数为5-5 2.24-≈-. ∵ 2.24<2.4,∴ -2.24>-2.4, 即 5 2.4>- 19.【解析】解:(1) 设0.6x •= ① 则10x =6.6•② ②-①得 9x =6∴6293x ==,即20.63•=(2) 设0.23x ••= ① 则10023.23x ••= ② ②-①,得 99x =23∴2399x =,即230.2399••=. (3) 设0.107x ••= ① 则1000107.107x ••= ② ②-①,得 999x =107,∴107999x =,即1070.107999••=. 20.【解析】 解:(1)()2,112nS n n n =+=+. (2)直角三角形中,两条直角边的平方和等于斜边的平方. (3)略.22222222123101231055(4)22224S S S S ⎛⎫⎛⎫⎛⎫⎛⎫++++=+++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
七(下)第1章整式的乘除(全章复习与巩固)知识讲解与专项讲练
2023七(下)第1章整式的乘除知识讲解与专项讲练2023.06.12~6.15【学习目标】1.掌握正整数幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2.会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3.掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算。
【知识要点】要点一、幂的运算1.同底数幂的乘法:a m ·a n =a m +n (m 、n 为正整数);同底数幂相乘,底数不变,指数相加.2.幂的乘方:(a m )n =a mn =a nm =(a n )m (m 、n 为正整数);幂的乘方,底数不变,指数相乘.3.积的乘方:(ab )n =a n b n ,(a x b y )n =a nx b ny (n 、x 、y 为正整数);积的乘方,等于各因数乘方的积.4.同底数幂的除法:a m ÷a n =a m -n (a ≠0,m 、n 为正整数,并且m >n ).同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即:任何不等于零的数的零次方等于1.6.负整数次幂:p p a a 1=-(a ≠0,p 为正整数),a n 与a -n 互为倒数,n m m n pp a b b a ,a b b a =⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---即:任何一个不等于零的数的-p (p 是正整数)次幂,等于这个数的p 次幂的倒数.特别说明:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.要点二、整式的乘除1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.特别说明:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2x a x b x a b x ab ++=+++.4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式:22()()a b a b a b +-=-两个数的和与这两个数的差的积,等于这两个数的平方差.特别说明:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2.完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-两数和(差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.特别说明:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.【典型例题】类型一、整式的乘除➽➼幂的运算✭✭幂的逆运算1.计算:(1)()3201113823π-⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()2331233282a a a a -⋅-÷举一反三:【变式1】计算:101|2|(2023667)3π-⎛⎫---+ ⎪⎝⎭(2)()()223234(6)x y xy ⋅-÷【变式2】计算:(1)22012()272--+-(2)2642135(2)5x x x x x⋅--+÷(1)253()()[()]a b b a a b -⋅-÷--;(2)先化简,再求值:426223225(3)()(2)a a a a a ⎡⎤⋅-÷÷-⎣⎦,其中5a =-.2.(2022春·福建泉州·八年级福建省永春第三中学校联考期中)阅读:已知正整数a 、b 、c ,显然,当同底数时,指数大的幂也大,若对于同指数,不同底数的两个幂b a 和b c ,当a c >时,则有b b a c >,根据上述材料,回答下列问题(1)比较大小:205______204(填写>、<或=)(2)比较332与223的大小(写出具体过程)(3)已知23a =,86b =求()322a b +的值【答案】(1)>(2)332223<,见分析(3)972【分析】(1)根据同指数,不同底数的两个幂b a 和b c ,当a c >时,则有b b a c >,即可进行解答;(2)将根据幂的乘方的逆运算,将332与223转化为同指数的幂,再比较大小即可;(3)根据同底数幂乘法的逆运算,将()322a b +转化为()3222a b ⨯,再根据积的乘方的逆运算,整理为含有2a 和8b 的性质,进行计算即可.(1)解:∵54>,∴202054>,故答案为:>.(2)∵()1133311228==,()1122211339==,89<,∴332223<.(3)原式()3222a b =⨯()()33222a b =⨯()()32322ba =⨯()2338b =⨯3236=⨯=972.【点拨】本题主要考查了幂的乘方与积的乘方的运算法则和逆运算,解题的关键是熟练掌握幂的乘方和积的乘方的运算法则及其逆运算法则.举一反三:【变式1】已知,若实数a 、b 、c 满足等式54a =,56b =,59c =.(1)求25a b +的值;(2)求25b c -的值;(3)求出a 、b 、c 之间的数量关系.【变式2】(2022春·全国·八年级专题练习)按要求解答下列各小题.(1)已知1012m =,103n =,求10m n -的值;(2)如果33a b +=,求327a b ⨯的值;(3)已知682162m m ⨯÷=,求m 的值.类型二、整式的乘除➽➼整式的乘法3.计算:(1)()()()2332ab a a b --- ;(2)()()221a a -+;(3)()()212x x +-.【答案】(1)446a b -(2)3222a a --(3)2232x x --【分析】(1)按照单项式乘以单项式的法则进行运算即可;(2)按照单项式乘以多项式的法则进行运算即可;(3)按照多项式乘以多项式的法则进行运算即可;(1)解:()()()2332ab a a b --- ()2236a b a b =- 44a b =-.(2)()()221a a -+3222a a =--;(3)()()212x x +-2242x x x =-+-2232x x =--.【点拨】本题考查的是单项式乘以单项式,单项式乘以多项式,多项式乘以多项式,掌握“整式的乘法运算的运算法则”是解本题的关键.举一反三:【变式1】计算:(1)()()202024311202323π-⎛⎫-+-+-- ⎪⎝⎭(2)()()()222x y x y x x y -++--【变式2】(2022春·河南周口·七年级校联考期中)如图,把8张长为a ,宽为b 的小长方形纸片摆放在一个大长方形纸盒内,空白部分分别用A ,B 表示,两个摆放小纸片的长方形(阴影)公共的部分边长为m ,(用a ,b ,m 分别表示周长和面积)(1)填空:①空白部分A 的周长A P =__________,面积A S =_____________,②空白部分B 的周长B P =______________,面积B S =________________;(2)若5a b =,求A B P P -,A B S S -的代数式.类型三、整式的乘除➽➼平方差公式✭✭完全平方公式4.(2022春·山西大同·八年级大同一中校考阶段练习)化简下列多项式:(1)()()()214121x x x +---;(2)()()223223a b a b +--+.【答案】(1)72x -(2)2244129a b b -+-【分析】(1)先计算乘法,再合并同类项,即可求解;(2)利用平方差公式计算,即可求解.(1)解:()()()214121x x x +---22441441x x x x x =-+--+-72x =-(2)解:()()223223a b a b +--+()()223223a b a b =+---⎡⎤⎣⎦()()22223a b =--2244129a b b =-+-【点拨】本题主要考查了整式的混合运算,灵活利用乘法公式计算是解题的关键.举一反三:【变式1】(2022春·重庆·八年级重庆市育才中学校考阶段练习)计算:(1)()()()y x y x y x y +--+;(2)()()224x x x ++-【变式2】运用公式进行简便计算:(1)210.210.2 2.4 1.44-⨯+;(2)2222111111112342022⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.5.(2022春·四川内江·八年级校考阶段练习)(1)已知实数x ,y 满足2296x y -=,8x y -=,求x y +的值.(2)已知实数a 、b 满足()23a b +=,()227a b -=,求22a b ab ++的值.【答案】(1)12x y +=;(2)229a b ab ++=.【分析】(1)利用平方差公式,化简求解即可;(2)利用完全平方公式进行化简,分别求得22a b +和ab 的值,即可求解.解:(1)∵2296x y -=,∴()()96x y x y +-=,∵8x y -=,∴12x y +=;(2)∵()23a b +=,()227a b -=,∴2223a ab b ++=,22227a ab b -+=,∴222a 2b 30+=,424ab =-,∴22a b 15+=,6ab =-,∴()221569a b ab ++=+-=.【点拨】此题考查了完全平方公式和平方差公式,解题的关键是熟练掌握相关基础性质.举一反三:【变式1】已知5a b +=,3ab =.求下列各式的值:(1)22a b +;(2)()2a b -;(3)()()()()1111a b a b ++--.【变式2】已知:221x x +=,将()()()()2(1)3331x x x x x --+----先化简,再求它的值.类型四、整式的乘除➽➼整体的除法6.(2022春·八年级课时练习)计算下列各题:(1)()()322432714x y xy x y ⋅-÷;(2)()()222x y x y y x ⎡⎤+-+÷.【变式1】先化简,再求值:()()()21242x y x y x y y ⎡⎤+--+÷⎣⎦,其中1x =,2y =.【变式2】已知24750a a -+=,求代数式()2232(21)a a a a -÷--的值.类型五、整式的乘除➽➼图形问题7.(2021春·陕西延安·八年级陕西延安中学校考阶段练习)如图所示,两个长方形用不同形式拼成图1和图2两个图形.(1)若图1中的阴影部分面积为22a b -;则图2中的阴影部分面积为_________.(用含字母a ,b 的式子且不同于图1的方式表示)(2)由(1)你可以得到乘法公式____________.(3)根据你所得到的乘法公式解决下面的问题:计算:①10397⨯;②()()22a b c a b c +---.【变式1】图a 是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图b 的形状拼成一个正方形.(1)你认为图b 中的阴影部分的正方形的边长等于多少?(2)请用两种不同的方法求图中阴影部分的面积.方法1:方法2:(3)观察图b 你能写出下列三个代数式之间的等量关系吗?代数式:()()22,,m n m n mn+-(4)根据(3)题中的等量关系,解决如下问题:若75a b ab +==,,则2()a b -=.(请直接写出计算结果)【变式2】(2022春·八年级课时练习)如图,在边长为a 的正方形中挖去一个边长为b 的小正方形(a b >),把余下的部分剪拼成一个矩形.(1)通过计算两个图形的面积(阴影部分的面积),可以验证的等式是:_________A .()2222a ab b a b -+=-B .()()22a b a b a b -=+-C .()2a ab a a b +=+D .()222a b a b -=-(2)应用你从(1)选出的等式,完成下列各题:①已知:3a b -=,2221a b -=,求a b +的值;②计算:22222111111111123420202021⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.【中考真题专练】【1】(2022·江苏常州)计算:(1)201(3)3---+π;(2)2(1)(1)(1)+--+x x x .【2】(2022·广西·统考)先化简,再求值()()()22x y x y xy xy x +-+-÷,其中11,2x y ==.【3】(2022·河北·统考)发现两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.验证:如,()()22212110++-=为偶数,请把10的一半表示为两个正整数的平方和.探究:设“发现”中的两个已知正整数为m ,n ,请论证“发现”中的结论正确.a+,宽为2a的矩形分割成四个全等的直角三角形,拼成“赵【4】(2022·浙江金华)如图1,将长为23爽弦图”(如图2),得到大小两个正方形.(1)用关于a的代数式表示图2中小正方形的边长.(2)当3a=时,该小正方形的面积是多少?2023七(下)第1章整式的乘除知识讲解与专项讲练2023.06.12~6.15【学习目标】1.掌握正整数幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2.会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3.掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算。
浙教版第三章实数复习
第三章实数复习导学案(浙教版)复习目标通过复习,使学生对本章的知识能得到熟练、巩固,并能灵活地运用实数知识去解决问题。
复习重点:1、用对比的方法复习概念。
2、归纳本章内容,把本章学习内容纳入自己的知识体系。
3.通过典型问题的分析,对重点知识有进一步的认识。
复习难点:无理数、实数概念的理解。
教学过程(一)基础知识梳理1、数的分类及概念2、每一个实数都可以用数轴上的点来表示;反过来,数轴上的每一个点都表示一个实数。
即,实数与数轴上的点是对应的。
绝对值相反数倒数,在实数的运算中,仍然成立3、平方根、算术平方根及立方根的区别与联系实数无理数(有理数实数正数a 为a为表示方法( )( )a 的取值a 0, ≥0a 0a 是任何数性 质 0正数( 个) 互为相反数( 个) 正数( 个)0 0 0没有 没有数(一个)开方求一个数的平方根 的运算叫 。
求一个数的立方根 的运算叫开立方 (二)例题讲解例1.下列判断中,错误的是( ) A .﹣1的平方根是±1 B .﹣1的倒数是﹣1C .﹣1的绝对值是1D .﹣1的平方的相反数是﹣1知识考点:本题考查基本数学概念,涉及平方根、倒数、绝对值等,要求学生熟练掌握.,属于基础知识,难度不大.例2.如果一个数的平方根等于这个数本身,那么这个数是( ) A .1 B .﹣1 C .0 D .±1知识考点:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根变式:立方根是本身的数是( ) 例3.的算术平方根是( ) A .±81 B .±9 C .9 D .3知识考点:本题考查的是算术平方根的定义.一个非负数的非负平方根叫做这个数的算术平方根.正数的平方根是正数.特别注意:应首先计算的值变式:9的平方根是( )例4.下列说法正确的是( ) A .带根号的数是无理数 B .无理数就是开方开不尽而产生的数C .无理数是无限小数D .无限小数是无理数aa知识考点:此题主要考查了无理数的定义.解答此题的关键是熟练掌握无理数的定义.初中常见的无理数有三类:①π类;②开方开不尽的数,如;③有规律但无限不循环的数,如0.8080080008…(每两个8之间依次多1个0). 变式:在实数﹣,0.21,,,,0.20202中,无理数的个数为( )A .1B .2C .3D .4例5.若x 2=(﹣3)2,y 3﹣27=0,则x+y 的值是( ) A .0 B .6 C .0或6 D .0或﹣6 知识考点:本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根. 立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根是0. 这类属于基本的题型,要求熟练掌握.变式:若16的平方根是m ,﹣27的立方根是n ,那么m+n 的值为 _________ . 例6.两个无理数的和,差,积,商一定是( ) A .无理数 B .有理数 C .0 D .实数知识考点:此题主要考查了实数的运算及无理数的定义,也考查了学生的综合应用能力,要注意举实例的方法.变式:已知:a 和b 都是无理数,且a ≠b ,下面提供的6个数a+b ,a ﹣b ,ab ,,ab+a ﹣b ,ab+a+b 可能成为有理数的个数有 个. 四:课堂小结1反思基础知识点,例题,巩固练习是否弄懂 2解题要点及方法 五:1、背出知识点2 、试卷一张 一、选择题1.81的平方根是 ( )A.±9B.9C.±3D.32.在下列各数3.1415,0.2060060006……(每两个6之间依次多一个1),0,0..2,-π,35,722,27中,无理数的个数是 ( ) A.1 B.2 C.3 D.43.若规定误差小于1,那么60的估算值为 ( )A.3B.7C.8D.7或B 4.已知|a|=5,2b =7,且|a+b|=a+b ,则“a-b 的值为 ( )A.2或12B.2或-12C.-2或12D.-2或-12 5.化简31--3+25的结果是 ( )A.6-3B.4-3C.-4-3D. 3-4二、填空题6.若2a =3,则a= ;若(b )2=5,则b= .7.3125.0的绝对值是 . 8.5-5的整数部分是 . 三、解答题9.画出数轴,在数轴上表示下列各数和它们的相反数,并把这些数从小到大的顺序排列,用“<”连接: 6,-3.5,21,410.全球气候变暖导致-些冰川融化并消失.在冰川|消失12年后,一种低等植物苔藓,就开始在岩石上生长.每一个苔藓都会长成近似的圆形.苔藓的直径和其生长年限近似地满足如下的关系式:d=712-t (t≥12),其中d 表示苔藓的直径,单位是厘米,t 代表冰川消失的时间(单位:年).(1)计算冰川消失16年后苔藓的直径为多少厘米?(2)如果测得一些苔藓的直径是35厘米,问冰川约是在多少年前消失的?感谢您的阅读,祝您生活愉快。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【巩固练习】
一.选择题
1. 下列说法正确的是( )
A .数轴上任一点表示唯一的有理数
B .数轴上任一点表示唯一的无理数
C .两个无理数之和一定是无理数
D .数轴上任意两点之间都有无数个点
2.(2015•日照)的算术平方根是( )
A .2
B .±2
C .
D .±
3.已知a 、b 是实数,下列命题结论正确的是( )
A .若a >b ,则2a >2b
B .若a >|b |,则2a >2b
C .若|a |>b ,则2a >2b
D .若3a >3b ,则2a >2b 4. 3387=-a ,则a 的值是( ) A. 87 B. 87- C. 8
7± D. 512343- 5. 若式子3112x x -+-有意义,则x 的取值范围是 ( ).
A.21≥x
B. 1≤x
C.12
1≤≤x D. 以上答案都不对. 6. 下列说法中错误的是( ) A.3a 中的a 可以是正数、负数或零. B.a 中的a 不可能是负数.
C. 数a 的平方根有两个.
D.数a 的立方根有一个.
7. 数轴上A ,B 两点表示实数a ,b ,则下列选择正确的是( )
A.0>+b a
B. 0ab >
C.0a b ->
D.||||0a b ->
8. 估算219+的值在 ( )
A. 5和6之间
B.6和7之间
C.7和8之间
D.8和9之间
二.填空题
9. 2005a ,则其小数部分用a 表示为 .
10.当x 92x -.
11. =--32
)125.0( .
12. 若12-x 是225的算术平方根,则x 的立方根是 . 13. 12234-⎛⎫ ⎪⎝⎭
=_________ .
14.(2015春•罗山县期末)﹣64的立方根与
的平方根之和是 . 15. 比较大小:2
1 12- ,5- 22- , 33
2 16. 数轴上离原点距离是5的点表示的数是 .
三.解答题
17. 一个正数x 的平方根是32-a 与a -5,则a 是多少?
18.(2015春•桃园县校级期末)已知x ﹣2的平方根是±2,2x+y+7的立方根是3,求x 2+y 2的平方根.
19. 已知:表示a 、b 两个实数的点在数轴上的位置如图所示,请你化简()2b a b a ++-
20. 阅读题:阅读下面的文字,解答问题.
大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2-1表示2的小数部分,你同意小明的表示方法吗?
事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.
请解答:已知:10+3=y x +,其中x 是整数,且10<<y ,求y x -的相反数.
【答案与解析】
一.选择题
1. 【答案】D ;
【解析】数轴上任一点都表示唯一的实数.
2.【答案】C
3. 【答案】B ;
【解析】B 答案表明,||||a b a b >>且,故2a >2b .
4. 【答案】B ;
【解析】33378a a ⎛⎫-=
-=-- ⎪⎝⎭
. 5. 【答案】A ;
6. 【答案】C ;
【解析】数a 不确定正负,负数没有平方根.
7. 【答案】C ;
8. 【答案】B ;
【解析】4195<<,61927<+<.
二.填空题
9. 【答案】2005a -;
10.【答案】为任意实数 ;
【解析】任何实数都有奇次方根.
11.【答案】25.0-;
【解析】2333(0.125)(0.25)0.25--=--=-.
12.【答案】3;
【解析】x -12=15, x =27,3273=.
13.【答案】2
32-;
【解析】 12
2
233
42--⎛⎫= ⎪⎝⎭. 14.【答案】﹣2或﹣6.
【解析】∵﹣64的立方根是﹣4,
=4,
∵4的平方根是±2,
∵﹣4+2=﹣2,﹣4+(﹣2)=﹣6, ∴﹣64的立方根与的平方根之和是﹣2或﹣6.
15.【答案】>;<;>;
16.【答案】5
【解析】数轴上离原点距离是5的点有两个,分别在原点的左右两边.
三.解答题
17.【解析】
解:∵一个正数x 的平方根是32-a 与a -5,
∴32-a 与a -5互为相反数,
即32-a +a -5=0,解得2a =-.
18.【解析】
解:∵x ﹣2的平方根是±2,2x+y+7的立方根是3,
∴x ﹣2=22,2x+y+7=27,
解得x=6,y=8,
∴x 2+y 2=62+82=100,
∴x 2+y 2的平方根是±10.
19.【解析】
解:∵b <a <0
∴()2
b a b a ++-
()
||
2a b a b a b a b b
=-++=--+=-
20.【解析】
解:∵11<10+3<12
∴x =11,y =10+3-11
1
∴
(
)11112x y y x --=-=-=.。