工程热力学公式大全
工程热力学的公式大全
![工程热力学的公式大全](https://img.taocdn.com/s3/m/4877a35baef8941ea66e0516.png)
工程热力学公式大全1.梅耶公式:R c c v p =- R c c v p 0''ρ=-0R MR Mc Mc v p ==-2.比热比: vp vp vp Mc Mc c c c c ===''κ1-=κκRc v 1-=κnR c p 外储存能:1.宏观动能:221mc E k =2.重力位能:mgz E p =式中g —重力加速度。
系统总储存能:1.p k E E U E ++= 或mgz mc U E ++=2212.gz c u e ++=221 3.U E = 或u e =(没有宏观运动,并且高度为零)热力学能变化:1.dT c du v =,⎰=∆21dT c u v适用于理想气体一切过程或者实际气体定容过程 2.)(12T T c u v -=∆适用于理想气体一切过程或者实际气体定容过程(用定值比热计算)3.1020121221t c t c dt c dt c dt c u t vmt vmt v t v t t v ⋅-⋅=-==∆⎰⎰⎰适用于理想气体一切过程或者实际气体定容过程(用平均比热计算) 4.把()T f c v =的经验公式代入⎰=∆21dT c u v 积分。
适用于理想气体一切过程或者实际气体定容过程(用真实比热公式计算) 5.∑∑====+++=ni i i ni i n u m U U U U U 1121由理想气体组成的混合气体的热力学能等于各组成气体热力学能之与,各组成气体热力学能又可表示为单位质量热力学能与其质量的乘积。
6.⎰-=∆21pdv q u适用于任何工质,可逆过程。
7.q u =∆适用于任何工质,可逆定容过程8.⎰=∆21pdv u适用于任何工质,可逆绝热过程。
9.0=∆U适用于闭口系统任何工质绝热、对外不作功的热力过程等热力学能或理想气体定温过程。
10.W Q U -=∆适用于mkg 质量工质,开口、闭口,任何工质,可逆、不可逆过程。
工程热力学基本概念
![工程热力学基本概念](https://img.taocdn.com/s3/m/3efe18a7f524ccbff12184e2.png)
工程热力学基本概念及基本公式1.准静态过程(Quasi-static Process )过程中热力学系统经历的是一系列平衡状态并在每次状态变化时仅无限小地偏离平衡状态。
A quasi-static process is one in which the departure from thermodynamic equilibrium is at most infinitesimal.2.外界(Surroundings ):系统之外的一切其它物质。
边界(Boundary ):系统与外界之间的分界面。
闭口系统(Closed System ) ←→控制质量(Control Mass ):系统与外界之间没有物质交换,但有能量交换。
0;0≠=E m δδ开口系统(Open System )←→控制体积(Control Volume ):系统与外界之间不仅有物质交换,还有能量交换。
0;0≠≠E m δδ 孤立系统(Isolated System ):系统与外界之间既无质量交换又无能量交换。
0;0==E m δδ 3.热力学第一定律(First Law of Thermodynamics ):在系统两个状态之间的所有绝热过程的净功是一样的,也就是说,闭口系统在经历给定两点的绝热过程对环境所作的净功仅与系统初态和终态有关,而与绝热过程的具体路径无关。
It is found by experiment that for all adiabatic processes between two states the value of the net work done by or on the system is the same. That is, the value of the net work done by or on a closed system undergoing an adiabatic process between two given states depends solely on the end states and not on the details of the adiabatic process.dE Q W δδ=-→dE QW dt=- 4.第二定律的陈述(Statements of the Second Law )克劳修斯陈述: ① 热能不可能单独地从低温物体传向高温物体。
工程热力学的公式大全
![工程热力学的公式大全](https://img.taocdn.com/s3/m/3c271b99d05abe23482fb4daa58da0116c171fb8.png)
工程热力学的公式大全1.热力学第一定律:ΔU=Q-W其中,ΔU表示系统内能的变化,Q表示系统所吸收的热量,W表示系统所做的功。
2.理想气体状态方程:PV=nRT其中,P表示气体的压力,V表示气体的体积,n表示气体的物质的分子数,R表示气体常数,T表示气体的温度。
3.等温过程:Q=W在等温过程中,系统所吸收的热量等于所做的功。
4.绝热过程:P1V1^γ=P2V2^γ在绝热过程中,气体的压强与体积之积的γ次方是一个常数,γ为气体的绝热指数。
5.等容过程:ΔU=Qv在等容过程中,系统内能的变化等于吸收的热量。
6.等压过程:Q=ΔH在等压过程中,系统所吸收的热量等于焓的变化。
7.等焓过程:ΔH=Qp在等焓过程中,焓的变化等于吸收的热量。
8.热机效率:η=1-,Qc,/,Qh热机效率表示热机从高温热源吸收的热量减去放出的低温热量占高温热量的比例。
9.士温定理:η=1-(Tc/Th)士温定理是热力学第二定律的一种表述,表示热机效率与高温热源温度和低温热源温度的比值有关。
10.开尔文恒等式:η=1-(Tc/Th)=1-(,Qc,/,Qh,)开尔文恒等式是士温定理的另一种形式,表示任何热机的效率都不可能达到100%。
11.准静态过程:ΔS=∫(dQ/T)准静态过程中,系统的熵变等于系统吸收的微小热量除以系统的温度积分得到。
12.绝热可逆过程:ΔS=0在绝热可逆过程中,系统的熵不发生变化。
13.熵的增加原理:ΔS总=ΔS系统+ΔS环境≥0根据熵的增加原理,系统与环境的熵的变化之和大于等于0。
14.卡诺循环效率:η=1-(Tc/Th)卡诺循环是理想热机,其效率由高温热源温度和低温热源温度决定。
15.等温膨胀系数:β=(1/V)*(∂V/∂T)p等温膨胀系数表示单位温度升高时体积的变化与体积的比值。
16.等压热容量:Cp=(∂Q/∂T)p等压热容量表示在等压条件下单位温度升高吸收的热量与温度的比值。
17.等容热容量:Cv=(∂Q/∂T)v等容热容量表示在等容条件下单位温度升高吸收的热量与温度的比值。
工程热力学公式大全
![工程热力学公式大全](https://img.taocdn.com/s3/m/12d43199d05abe23482fb4daa58da0116c171fc7.png)
工程热力学公式大全1.理想气体状态方程:理想气体状态方程描述了理想气体的状态。
其中,P为气体的压力,V为气体的体积,n为气体的物质量,R为气体的气体常数,T为气体的温度。
方程如下所示:PV=nRT2.热力学第一定律:热力学第一定律是能量守恒定律,描述了能量的转化与传递过程。
其中,Q为系统吸收的热量,W为系统对外作功,ΔE为系统内能的变化。
方程如下所示:Q=ΔE+W3.热力学第二定律-卡诺循环效率:卡诺循环是一个理想的热能转化循环,其效率最高。
其中,Th为高温热源的温度,Tc为低温热源的温度。
卡诺循环效率可以通过以下公式计算:η=1-(Tc/Th)4.热力学第二定律-卡诺热泵效率:卡诺热泵是一个理想的热能转换装置,其性能最佳。
其中,Th为高温热源的温度,Tc为低温热源的温度。
卡诺热泵效率可以通过以下公式计算:η=1-(Tc/Th)5.热力学第二定律-克劳修斯不等式:克劳修斯不等式给出了系统内能转化为功所能达到的最大效率的限制。
其中,η为系统内能转化为功的效率,T1为高温热源的温度,T2为低温热源的温度。
不等式如下所示:η≤1-(T2/T1)6.准静态过程:准静态过程是指系统在整个过程中处于平衡状态的近似过程。
在准静态过程中,系统的每个状态与下一个状态之间的温度、压力等参数都非常接近,因此可以使用热力学公式来描述其变化过程。
7.等温过程:等温过程是指系统在与外界保持恒温接触的条件下发生的过程。
在等温过程中,温度保持不变,因此可以使用以下公式计算其功和热量的变化:Q=W8.绝热过程:绝热过程是指在没有热量传递的情况下进行的过程。
在绝热过程中,可以使用以下公式计算其功和内能的变化:Q=0,ΔE=-W这些是工程热力学中的一些常见公式,它们用于描述热能转化与传递过程、能量守恒和热力学第二定律等内容。
这些公式在工程实践和学术研究中都有着广泛的应用。
工程热力学的公式大全
![工程热力学的公式大全](https://img.taocdn.com/s3/m/f0b464bc581b6bd97e19ea11.png)
工程热力学的公式大全工程热力学公式大全1(梅耶公式:c,c,Rpvc',c',,Rpv0Mc,Mc,MR,Rpv02(比热比:cc'Mcppp,,, ,cc'Mcvvv,nRR ,,ccvp,,1,,1外储存能:1( 宏观动能:12 Emc,k22( 重力位能:E,mgzp式中 g—重力加速度。
系统总储存能:1( E,U,E,Ekp12或 E,U,mc,mgz212 2( e,u,c,gz23( 或(没有宏观运动,并且高度为零) e,uE,U热力学能变化:21(, du,cdT,u,cdT,vv1适用于理想气体一切过程或者实际气体定容过程2( ,u,c(T,T)v21适用于理想气体一切过程或者实际气体定容过程(用定值比热计算)ttt221tt213( ,u,cdt,cdt,cdt,c,t,c,t,,,2100vvvvmvm00t1适用于理想气体一切过程或者实际气体定容过程(用平均比热计算)24(把的经验公式代入积分。
,,c,fT,u,cdT,vv1适用于理想气体一切过程或者实际气体定容过程(用真实比热公式计算) nn5( U,U,U,?,U,U,mu,,12niii,1,1ii由理想气体组成的混合气体的热力学能等于各组成气体热力学能之和,各组成气体热力学能又可表示为单位质量热力学能与其质量的乘积。
2 6( ,u,q,pdv,1适用于任何工质,可逆过程。
7( ,u,q适用于任何工质,可逆定容过程2 8( ,u,pdv,1适用于任何工质,可逆绝热过程。
9( ,U,0适用于闭口系统任何工质绝热、对外不作功的热力过程等热力学能或理想气体定温过程。
10( ,U,Q,W适用于mkg质量工质,开口、闭口,任何工质,可逆、不可逆过程。
11. ,u,q,w适用于1kg质量工质,开口、闭口,任何工质,可逆、不可逆过程12. du,,q,pdv适用于微元,任何工质可逆过程13( ,u,,h,,pv热力学能的变化等于焓的变化与流动功的差值。
工程热力学基本概念及重要公式
![工程热力学基本概念及重要公式](https://img.taocdn.com/s3/m/ef260f6d326c1eb91a37f111f18583d049640fd4.png)
称为热力系统,简称系统。
简称控制体,其界面称为控制界面。
称为工质的热力状态,简称为状态。
如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。
( T)、压力(P)、比容(υ)或者密度(ρ)、内能(u)、焓(h)、熵(s)、自由能 (f)、自由焓(g) 等。
其中温度、压力、比容或者密度可以直接或者间接地用仪表测量出来,称为基本状态参数。
其物理实质是物质内部大量微观份子热运动的强弱程度的宏观反映。
则它们彼此之间也必然处于热平衡。
如工程上常用测压仪表测定系统中工质的压力即为相对压力。
与质量多少无关,没有可加性,如温度、压力等。
在热力过程中,强度性参数起着推动力作用,称为广义力或者势。
如系统的容积、内能、焓、熵等。
在热力过程中,广延性参数的变化起着类似力学中位移的作用,称为广义位移。
使过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近平衡状态,整个过程可看做是由一系列非常接近平衡态的状态所组成,并称之为准静态过程。
系统与外界均能彻底回复到初始状态,这样的过程称为可逆过程。
(增大或者缩小) 而通过界面向外界传递的机械功称为膨胀功,也称容积功。
经历一系列状态变化,最后又回复到初始状态的全部过程称为热力循环,简称循环。
(引力和斥力)、不占有体积的质点所构成。
1K (1℃)所吸收或者放出的热量,称为该物体的比热。
单位物量的物体,温度变化1K(1℃) 所吸收或者放出的热量,称为该物体的定容比热。
单位物量的物体,温度变化1K(1℃) 所吸收或者放出的热量,称为该物体的定压比热。
1K (1℃)时,物体和外界交换的热量,称为该物体的定压质量比热。
1K (1℃)时,物体和外界交换的热量,称为该物体的定压容积比热。
1K (1℃)时,物体和外界交换的热量,称为该物体的定压摩尔比热。
1K (1℃)时,物体和外界交换的热量,称为该物体的定容质量比热。
工程热力学公式知识点总结
![工程热力学公式知识点总结](https://img.taocdn.com/s3/m/43de90c4cd22bcd126fff705cc17552707225e2e.png)
工程热力学公式知识点总结热力学是研究热现象和能量转化的一门物理学科。
它不仅适用于工程领域,也适用于物理、化学、地质等领域。
热力学公式是热力学知识的重要组成部分,掌握好热力学公式可以帮助工程师更好地理解和应用热力学知识。
本文将对工程热力学公式知识点进行总结,并进行详细解释。
1. 热力学基本公式1.1 第一定律:热力学第一定律也称为能量守恒定律,它表明了能量在物质之间的转化和传递过程中的基本规律。
数学表达式为:\[dU = \delta Q - \delta W\]其中,dU表示系统内能的变化量,\(\delta Q\) 表示系统吸收的热量,\(\delta W\) 表示系统对外做功的量。
1.2 第二定律:热力学第二定律指出了自然界不可逆过程的特性,也就是热量永远不能自发地由低温物体传递到高温物体。
热力学第二定律的数学表达式有多种形式,其中最常见的是开尔文表述和克劳修斯表述。
开尔文表述表示为:\[\oint \frac{dQ}{T} \leq 0\]即,对于任何经过完整循环的过程而言,系统吸收的热量与温度的比值总是小于等于零。
而克劳修斯表述表示为:\[\text{不可能使得热量从低温物体自发地转移到高温物体,而不引入外界作用。
}\]1.3 熵增原理:熵是描述系统混乱程度或者无序性的物理量,熵增原理指出了自然界中系统总是朝着熵增长的方向发展。
数学表达式为:\[\Delta S \geq \frac{\delta Q}{T}\]其中,\(\Delta S\)代表系统的熵增量,\(\frac{\delta Q}{T}\)表示系统的对外吸收的热量与温度的比值。
2. 热力学循环公式2.1 卡诺循环公式:卡诺循环是一个理想的热力学循环,它包括两个绝热过程和两个等温过程。
卡诺循环可以用来评价热能机械的性能,其热效率被称为卡诺热效率。
卡诺热效率的数学表达式为:\[\eta_{\text{Carnot}} = 1 - \frac{T_c}{T_h}\]其中,\(\eta_{\text{Carnot}}\)表示卡诺热效率,\(T_c\)表示循环的低温端温度,\(T_h\)表示循环的高温端温度。
工程热力学概念公式
![工程热力学概念公式](https://img.taocdn.com/s3/m/95e0c1ea581b6bd97f19eaeb.png)
第一部分(第一章〜第五章)一、概念(一)基本概念、基本术语1、工程热力学:工程热力学是从工程的观点出发,研究物质的热力性质、能量转换以及热能的直接利用等问题。
2、热力系统:通常根据所研究问题的需要,人为地划定一个或多个任意几何面所围成的空间作为热力学研究对象。
这种空间内的物质的总和称为热力系统,简称系统。
3、闭口系统:没有物质穿过边界的系统称为闭口系统。
系统内包含的物质质量为一不变的常量,所以有时又称为控制质量系统。
4、开口系统:有物质流穿过边界的系统称为开口系统。
开口系统总是一种相对固定的空间,故又称开口系统为控制体积系统,简称控制体。
5、绝热系统:系统与外界之间没有热量传递的系统,称为绝热系统。
6、孤立系统:系统与外界之间不发生任何能量传递和物质交换的系统,称为孤立系统。
7、热力状态:我们把系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。
8、状态参数:我们把描述工质状态特性的各种物理量称为工质的状态参数。
9、强度性状态参数:在给定的状态下,凡系统中单元体的参数值与整个系统的参数值相同,与质量多少无关,没有可加性的状态参数称为强度性参数。
10、广延性状态参数:在给定的状态下,凡与系统内所含物质的数量有关的状态参数称为广延性参数。
11、平衡状态:在不受外界影响(重力场除外)的条件下,如果系统的状态参数不随时间变化,则该系统所处的状态称为平衡状态。
12、热力过程:把工质从某一状态过渡到另一状态所经历的全部状态变化称为热力过程。
13、准静态过程:理论研究可以设想一种过程,这种过程进行得非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近平衡状态,于是整个过程就可看作是由一系列非常接近平衡态的状态所组成,并称之为准静态过程。
14、可逆过程:当系统进行正、反两个过程后,系统与外界均能完全回复到初始状态,而不留下任何痕迹,这样的过程称为可逆过程。
工程热力学名词解释及公式汇总
![工程热力学名词解释及公式汇总](https://img.taocdn.com/s3/m/ed896ac851e2524de518964bcf84b9d528ea2cfb.png)
⼯程热⼒学名词解释及公式汇总⼯程热⼒学基础知识介绍⼀、基本概念⼯质:⼯作介质的简称。
⼯质的状态参数有六个:1)压⼒2)温度3)⽐容:指单位⼯质所具有的容积。
⽤γ表⽰。
γ=V/m (单位:mз/kg)⽓体⽐容的倒数为⽓体的密度。
4)内能:指⽓体的内位能与内动能之和,⽤u表⽰。
5)焓:是⼀个表⽰能量的状态参数,⽤h表⽰。
它由内能和推动功组成,即h=u+pv6) 熵:是⼀个导出的状态参数,它表⽰能量的传递⽅向。
⽤s表⽰。
⼆、热⼒学两⼤定律热⼒学第⼀定律:热可以变为功,功也可以变为热。
⼀定量的热消失时,必产⽣与之数量相当的功;消耗⼀定量的功时,也必出现相应数量的热。
热⼒学第⼆定律:热量不可能⾃发的,⽆条件的从低温物体传到⾼温物体。
三、热⼒过程热⼒过程指⼯质由⼀种状态变化为另⼀种状态所经过的途径。
常见的热⼒过程有:定容过程、定压过程、定温过程、绝热过程。
理想⽓体状态⽅程:PV=nRT1)定容过程:V=定值, P1/P2=T1/T2定容过程中,⼯质不输出膨胀功,加给⼯质的热量未转化为机械能,全部⽤于增加⼯质的热⼒学能,因⽽⼯质温度升⾼。
2)定压过程:P=定值,V1/V2=T1/T2定压过程中,⼯质流过换热器等设备时,不对外做技术功,这时⼯质吸收热量转化的机械能全部⽤来维持⼯质的流动。
3)定温过程:T=定值,P1V1=P2V2定温过程中,由于热⼒学能不变,所以在定温膨胀时吸收的热量,全部转化未膨胀功。
4)绝热过程:ΔQ=0绝热过程中,⼯质所作的技术功等于焓降,与外界⽆能量交换,过程功只来⾃⼯质本⾝的能量转换。
四、热⼒循环⼀个热⼒系统经过⼀系列的热⼒变化,最后⼜回到原来完全相同的状态称为热⼒循环。
余热电站的热⼒循环即为简单的朗肯循环。
0→1:⽔在锅炉内预热,汽化并过热,变为过热蒸汽,是⼀个定压吸热过程。
1→2:过热蒸汽进⼊汽轮机膨胀做功,放热,是⼀个绝热膨胀过程。
2→3:乏汽进⼊凝汽器,凝结成⽔,是⼀个定压冷凝过程。
工程热力学的公式大全
![工程热力学的公式大全](https://img.taocdn.com/s3/m/ad72e74adf80d4d8d15abe23482fb4daa58d1d3b.png)
工程热力学的公式大全1.热力学第一定律:ΔU=Q-W其中,ΔU代表内能的变化,Q代表系统吸收的热量,W代表系统对外界做功。
2.热力学第二定律:dS≥δQ/T其中,dS代表系统的熵变,δQ代表系统吸收的热量,T代表系统的绝对温度。
该定律表明在孤立系统中熵永不减少。
3.等容过程(内能不变):Q=ΔU在等容过程中,系统发生的任何热量变化都会完全转化为内能的变化。
4.等压过程(体积不变):W=PΔV在等压过程中,系统对外界所做的功等于系统内能的变化。
5.等温过程(温度不变):W = Q = nRT ln(V2/V1)在等温过程中,系统对外界所做的功等于系统从初始状态到最终状态所吸收的热量。
6.等熵过程(熵不变):Q=-W在等熵过程中,热量变化与对外界的功相等,系统的熵保持不变。
7.热机效率:η=1-(T2/T1)其中,η代表热机的效率,T2和T1分别代表工作物质的工作温度和热源的温度。
8.热泵效率:η=1-(T1/T2)其中,η代表热泵的效率,T1和T2分别代表热源的温度和工作物质的工作温度。
9.卡诺循环热机的效率上限:η=1-(T2/T1)卡诺循环是具有最高效率的热力循环,其效率仅取决于热源和冷源的温度。
10.纯物质气体的理想气体状态方程:PV=nRT其中,P代表压力,V代表体积,n代表物质的摩尔数,R为气体常数,T代表温度。
11.热力学温标:T(K)=T(°C)+273.15将摄氏温度转化为开尔文温标。
这只是一部分常用的工程热力学公式,还有其他更多的公式和关系式在工程热力学中发挥重要作用。
理解和应用这些公式可以帮助我们分析和解决实际工程问题,提高能源利用效率,促进工程技术的发展。
工程热力学公式大全
![工程热力学公式大全](https://img.taocdn.com/s3/m/f4635076856a561252d36fe1.png)
第一章基本概念1.基本概念热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。
边界:分隔系统与外界的分界面,称为边界。
外界:边界以外与系统相互作用的物体,称为外界或环境。
闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。
开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。
绝热系统:系统与外界之间没有热量传递,称为绝热系统。
孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。
单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。
复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。
单元系:由一种化学成分组成的系统称为单元系。
多元系:由两种以上不同化学成分组成的系统称为多元系。
均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。
非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。
热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。
平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。
状态参数:描述工质状态特性的各种物理量称为工质的状态参数。
如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。
基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。
温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。
热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。
压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。
相对压力:相对于大气环境所测得的压力。
工程热力学的公式大全
![工程热力学的公式大全](https://img.taocdn.com/s3/m/72c86e973086bceb19e8b8f67c1cfad6195fe91e.png)
工程热力学的公式大全1.理想气体状态方程:PV=nRT其中,P为气体的压强,V为气体的体积,n为气体的摩尔数,R为气体常数,T为气体的温度。
2.纯物质的热力学性质:(1)热容量:C=Q/ΔT其中,C为热容量,Q为吸热或放热的热量,ΔT为温度的变化。
(2)比热容量:c=Q/(m*ΔT)其中,c为比热容量,m为物质的质量。
(3)比熵:s=Q/T其中,s为比熵,Q为吸热或放热的热量,T为温度。
(4)比焓:h=Q/m其中,h为比焓,Q为吸热或放热的热量,m为物质的质量。
(5)等熵过程中的比热容量:Cp-Cv=R其中,Cp为等压比热容量,Cv为等容比热容量,R为气体常数。
3.热功定理:对于封闭系统,其热功等于系统内热能的减少。
W=Q-ΔU其中,W为热功,Q为吸热或放热的热量,ΔU为系统内能的变化。
4. 理想气体的Carnot热机效率:η=1-(Tc/Th)其中,η为Carnot热机的效率,Tc为冷源的温度,Th为热源的温度。
5.热流量:Q=U*A*ΔT其中,Q为热流量,U为热传导系数,A为传热面积,ΔT为温度的差异。
6.常见的传热方式:(1)对流传热:Q=h*A*ΔT其中,Q为对流传热量,h为传热系数,A为传热面积,ΔT为温度差异。
(2)辐射传热:Q=ε*σ*A*(T1^4-T2^4)其中,Q为辐射传热量,ε为发射率,σ为辐射常数,A为辐射面积,T1和T2为两个温度。
7.熵的守恒原理:对于封闭系统,熵的增加等于吸热过程中的热量除以绝对温度。
ΔS=Q/T其中,ΔS为熵的变化,Q为吸热或放热的热量,T为温度。
8.凝聚相变和汽化相变的热量计算:Q=mL其中,Q为相变的热量,m为物质的质量,L为潜热。
9.理想气体的质量分数计算:y=n/N其中,y为质量分数,n为其中一种气体的摩尔数,N为所有气体的总摩尔数。
工程热力学的公式大全
![工程热力学的公式大全](https://img.taocdn.com/s3/m/195d7f75f705cc1754270913.png)
5.梅耶公式:R c c v p =- R c c v p 0''ρ=-0R MR Mc Mc v p ==-6.比热比: vp vp vp Mc Mc c c c c ===''κ1-=κκRc v 1-=κnR c p 外储存能:1. 宏观动能:221mc E k =2.重力位能:mgz E p =式中g —重力加速度。
系统总储存能:1.p k E E U E ++=或mgz mc U E ++=2212.gz c u e ++=2213.U E = 或u e =(没有宏观运动,并且高度为零)热力学能变化:1.dT c du v =,⎰=∆21dT c u v适用于理想气体一切过程或者实际气体定容过程 2.)(12T T c u v -=∆适用于理想气体一切过程或者实际气体定容过程(用定值比热计算) 3.1020121221t c t c dt c dt c dt c u t vmt vmt v t v t t v ⋅-⋅=-==∆⎰⎰⎰适用于理想气体一切过程或者实际气体定容过程(用平均比热计算) 4.把()T f c v =的经验公式代入⎰=∆21dT c u v 积分。
适用于理想气体一切过程或者实际气体定容过程(用真实比热公式计算) 5.∑∑====+++=ni i i ni i n u m U U U U U 1121Λ由理想气体组成的混合气体的热力学能等于各组成气体热力学能之和,各组成气体热力学能又可表示为单位质量热力学能与其质量的乘积。
6.⎰-=∆21pdv q u适用于任何工质,可逆过程。
7.q u =∆适用于任何工质,可逆定容过程8.⎰=∆21pdv u适用于任何工质,可逆绝热过程。
9.0=∆U适用于闭口系统任何工质绝热、对外不作功的热力过程等热力学能或理想气体定温过程。
10.W Q U -=∆适用于mkg 质量工质,开口、闭口,任何工质,可逆、不可逆过程。
最新工程热力学的公式大全
![最新工程热力学的公式大全](https://img.taocdn.com/s3/m/e329a460ba1aa8114531d96c.png)
5.梅耶公式:R c c v p =- R c c v p 0''ρ=-0R MR Mc Mc v p ==-6.比热比: vp vp vp Mc Mc c c c c ===''κ1-=κκRc v 1-=κnR c p 外储存能:1.宏观动能:221mc E k =2.重力位能:mgz E p =式中g —重力加速度。
系统总储存能:1.p k E E U E ++=或mgz mc U E ++=2212.gz c u e ++=2213.U E = 或u e =(没有宏观运动,并且高度为零)热力学能变化:1.dT c du v =,⎰=∆21dT c u v适用于理想气体一切过程或者实际气体定容过程 2.)(12T T c u v -=∆适用于理想气体一切过程或者实际气体定容过程(用定值比热计算) 3.1020121221t c t c dt c dt c dt c u t vmt vmt v t v t t v ⋅-⋅=-==∆⎰⎰⎰适用于理想气体一切过程或者实际气体定容过程(用平均比热计算)4.把()T f c v =的经验公式代入⎰=∆21dT c u v 积分。
适用于理想气体一切过程或者实际气体定容过程(用真实比热公式计算) 5.∑∑====+++=ni i i ni i n u m U U U U U 1121由理想气体组成的混合气体的热力学能等于各组成气体热力学能之和,各组成气体热力学能又可表示为单位质量热力学能与其质量的乘积。
6.⎰-=∆21pdv q u适用于任何工质,可逆过程。
7.q u =∆适用于任何工质,可逆定容过程8.⎰=∆21pdv u适用于任何工质,可逆绝热过程。
9.0=∆U适用于闭口系统任何工质绝热、对外不作功的热力过程等热力学能或理想气体定温过程。
10.W Q U -=∆适用于mkg 质量工质,开口、闭口,任何工质,可逆、不可逆过程。
工程热力学的公式大全
![工程热力学的公式大全](https://img.taocdn.com/s3/m/90f33db0b7360b4c2e3f64b3.png)
工程热力学的公式大全5.梅耶公式:R c c v p =-R c c v p 0''ρ=-0R MR Mc Mc v p ==-6.比热比:vp vp vp Mc Mc c c c c ===''κ1-=κκRc v 1-=κnR c p 外储存能:1.宏观动能:221mc E k =2.重力位能:mgzE p =式中g —重力加速度。
系统总储存能:1.pk E E U E ++=或mgz mc U E ++=2212.gzc u e ++=2213.U E =或u e =(没有宏观运动,并且高度为零)热力学能变化:1.dT c du v =,⎰=∆21dTc u v 适用于理想气体一切过程或者实际气体定容过程2.)(12T T c u v -=∆适用于理想气体一切过程或者实际气体定容过程(用定值比热计算)3.120121221t c t c dt c dt c dt c u t vmt vmt v t v t t v ⋅-⋅=-==∆⎰⎰⎰适用于理想气体一切过程或者实际气体定容过程(用平均比热计算)4.把()T f c v =的经验公式代入⎰=∆21dT c u v 积分。
适用于理想气体一切过程或者实际气体定容过程(用真实比热公式计算)5.∑∑====+++=ni ii ni i n u m U U U U U 1121 由理想气体组成的混合气体的热力学能等于各组成气体热力学能之和,各组成气体热力学能又可表示为单位质量热力学能与其质量的乘积。
6.⎰-=∆21pdvq u 适用于任何工质,可逆过程。
7.qu =∆适用于任何工质,可逆定容过程8.⎰=∆21pdvu 适用于任何工质,可逆绝热过程。
9.0=∆U 适用于闭口系统任何工质绝热、对外不作功的热力过程等热力学能或理想气体定温过程。
10.WQ U -=∆适用于mkg 质量工质,开口、闭口,任何工质,可逆、不可逆过程。
工程热力学概念公式
![工程热力学概念公式](https://img.taocdn.com/s3/m/1f0f7bdc0722192e4436f611.png)
第一部分(第一章~第五章)一、概念(一)基本概念、基本术语1、工程热力学:工程热力学是从工程的观点出发,研究物质的热力性质、能量转换以及热能的直接利用等问题。
2、热力系统:通常根据所研究问题的需要,人为地划定一个或多个任意几何面所围成的空间作为热力学研究对象。
这种空间内的物质的总和称为热力系统,简称系统。
3、闭口系统:没有物质穿过边界的系统称为闭口系统。
系统内包含的物质质量为一不变的常量,所以有时又称为控制质量系统。
4、开口系统:有物质流穿过边界的系统称为开口系统。
开口系统总是一种相对固定的空间,故又称开口系统为控制体积系统,简称控制体.5、绝热系统:系统与外界之间没有热量传递的系统,称为绝热系统。
6、孤立系统:系统与外界之间不发生任何能量传递和物质交换的系统,称为孤立系统。
7、热力状态:我们把系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。
8、状态参数:我们把描述工质状态特性的各种物理量称为工质的状态参数。
9、强度性状态参数:在给定的状态下,凡系统中单元体的参数值与整个系统的参数值相同,与质量多少无关,没有可加性的状态参数称为强度性参数.10、广延性状态参数:在给定的状态下,凡与系统内所含物质的数量有关的状态参数称为广延性参数.11、平衡状态:在不受外界影响(重力场除外)的条件下,如果系统的状态参数不随时间变化,则该系统所处的状态称为平衡状态。
12、热力过程:把工质从某一状态过渡到另一状态所经历的全部状态变化称为热力过程.13、准静态过程:理论研究可以设想一种过程,这种过程进行得非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近平衡状态,于是整个过程就可看作是由一系列非常接近平衡态的状态所组成,并称之为准静态过程。
14、可逆过程:当系统进行正、反两个过程后,系统与外界均能完全回复到初始状态,而不留下任何痕迹,这样的过程称为可逆过程.15、热力循环:把工质从某一初态开始,经历一系列状态变化,最后又回复到初始状态的全部过程称为热力循环,简称循环。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章基本概念1.基本概念热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。
边界:分隔系统与外界的分界面,称为边界。
外界:边界以外与系统相互作用的物体,称为外界或环境。
闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。
开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。
绝热系统:系统与外界之间没有热量传递,称为绝热系统。
孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。
单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。
复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。
单元系:由一种化学成分组成的系统称为单元系。
多元系:由两种以上不同化学成分组成的系统称为多元系。
均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。
非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。
热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。
平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。
状态参数:描述工质状态特性的各种物理量称为工质的状态参数。
如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。
基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。
温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。
热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。
压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。
相对压力:相对于大气环境所测得的压力。
如工程上常用测压仪表测定系统中工质的压力即为相对压力。
比容:单位质量工质所具有的容积,称为工质的比容。
密度:单位容积的工质所具有的质量,称为工质的密度。
强度性参数:系统中单元体的参数值与整个系统的参数值相同,与质量多少无关,没有可加性,如温度、压力等。
在热力过程中,强度性参数起着推动力作用,称为广义力或势。
广延性参数:整个系统的某广延性参数值等于系统中各单元体该广延性参数值之和,如系统的容积、内能、焓、熵等。
在热力过程中,广延性参数的变化起着类似力学中位移的作用,称为广义位移。
准静态过程:过程进行得非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近平衡状态,整个过程可看作是由一系列非常接近平衡态的状态所组成,并称之为准静态过程。
可逆过程:当系统进行正、反两个过程后,系统与外界均能完全回复到初始状态,这样的过程称为可逆过程。
膨胀功:由于系统容积发生变化(增大或缩小)而通过界面向外界传递的机械功称为膨胀功,也称容积功。
热量:通过热力系边界所传递的除功之外的能量。
热力循环:工质从某一初态开始,经历一系列状态变化,最后又回复到初始状态的全部过程称为热力循环,简称循环。
2.常用公式状态参数:1212xxdx-=⎰⎰=0dx状态参数是状态的函数,对应一定的状态,状态参数都有唯一确定的数值,工质在热力过程中发生状态变化时,由初状态经过不同路径,最后到达终点,其参数的变化值,仅与初、终状态有关,而与状态变化的途径无关。
温 度 :1.BT w m =22式中22w m —分子平移运动的动能,其中m 是一个分子的质量,w 是分子平移运动的均方根速度; B —比例常数;T —气体的热力学温度。
2.t T +=273压 力 :1.nBT w m n p 322322==式中P —单位面积上的绝对压力;n —分子浓度,即单位容积内含有气体的分子数VNn =,其中N 为容积V 包含的气体分子总数。
2.fFp =F —整个容器壁受到的力,单位为牛(N );f —容器壁的总面积(m 2)。
3.g p B p +=(P >B )H B p -=(P <B )式中 B —当地大气压力P g —高于当地大气压力时的相对压力,称表压力;H —低于当地大气压力时的相对压力,称为真空值。
比容: 1.mVv = m 3/kg式中 V —工质的容积m —工质的质量2.1=v ρ 式中 ρ—工质的密度kg/m3v —工质的比容m 3/kg热力循环:⎰⎰=w q δδ或∑=∆0u ,⎰=0du循环热效率:12121101q q q q q q w t -=-==η 式中 q 1—工质从热源吸热;q 2—工质向冷源放热;w 0—循环所作的净功。
制冷系数:212021q q q w q -==ε 式中 q 1—工质向热源放出热量;q 2—工质从冷源吸取热量;w 0—循环所作的净功。
供热系数:211012q q q w q -==ε 式中 q 1—工质向热源放出热量q 2—工质从冷源吸取热量w 0—循环所作的净功第二章 气体的热力性质 1.基本概念理想气体:气体分子是由一些弹性的、忽略分子之间相互作用力(引力和斥力)、不占有体积的质点所构成。
比热:单位物量的物体,温度升高或降低1K (1℃)所吸收或放出的热量,称为该物体的比热。
定容比热:在定容情况下,单位物量的物体,温度变化1K (1℃)所吸收或放出的热量,称为该物体的定容比热。
定压比热:在定压情况下,单位物量的物体,温度变化1K (1℃)所吸收或放出的热量,称为该物体的定压比热。
定压质量比热:在定压过程中,单位质量的物体,当其温度变化1K (1℃)时,物体和外界交换的热量,称为该物体的定压质量比热。
定压容积比热:在定压过程中,单位容积的物体,当其温度变化1K (1℃)时,物体和外界交换的热量,称为该物体的定压容积比热。
定压摩尔比热:在定压过程中,单位摩尔的物体,当其温度变化1K (1℃)时,物体和外界交换的热量,称为该物体的定压摩尔比热。
定容质量比热:在定容过程中,单位质量的物体,当其温度变化1K (1℃)时,物体和外界交换的热量,称为该物体的定容质量比热。
定容容积比热:在定容过程中,单位容积的物体,当其温度变化1K (1℃)时,物体和外界交换的热量,称为该物体的定容容积比热。
定容摩尔比热:在定容过程中,单位摩尔的物体,当其温度变化1K (1℃)时,物体和外界交换的热量,称为该物体的定容摩尔比热。
混合气体的分压力:维持混合气体的温度和容积不变时,各组成气体所具有的压力。
道尔顿分压定律:混合气体的总压力P 等于各组成气体分压力P i 之和。
混合气体的分容积:维持混合气体的温度和压力不变时,各组成气体所具有的容积。
阿密盖特分容积定律:混合气体的总容积V 等于各组成气体分容积V i 之和。
混合气体的质量成分:混合气体中某组元气体的质量与混合气体总质量的比值称为混合气体的质量成分。
混合气体的容积成分:混合气体中某组元气体的容积与混合气体总容积的比值称为混合气体的容积成分。
混合气体的摩尔成分:混合气体中某组元气体的摩尔数与混合气体总摩尔数的比值称为混合气体的摩尔成分。
对比参数:各状态参数与临界状态的同名参数的比值。
对比态定律:对于满足同一对比态方程式的各种气体,对比参数r p 、r T 和r v 中若有两个相等,则第三个对比参数就一定相等,物质也就处于对应状态中。
2.常用公式 理想气体状态方程: 1.RT pv =式中 p —绝对压力 Pa v —比容m 3/kgT —热力学温度 K 适用于1千克理想气体。
2.mRT pV =式中 V —质量为m kg 气体所占的容积 适用于m 千克理想气体。
3.T R pV M 0=式中 V M = M v —气体的摩尔容积,m 3/kmol ;R 0=MR —通用气体常数,J/kmol ·K适用于1千摩尔理想气体。
4.T nR pV 0=式中V —nK mol 气体所占有的容积,m 3;n —气体的摩尔数,Mmn =,kmol适用于n 千摩尔理想气体。
5.通用气体常数:R 083140=RJ/Kmol ·KR 0与气体性质、状态均无关。
6.气体常数:RMM R R 83140==J/kg ·K R 与状态无关,仅决定于气体性质。
7.112212p v p v T T =比热:1.比热定义式:dTqc δ=表明单位物量的物体升高或降低1K 所吸收或放出的热量。
其值不仅取决于物质性质,还与气体热力的过程和所处状态有关。
2.质量比热、容积比热和摩尔比热的换算关系:04.22'ρc Mcc ==式中 c —质量比热,kJ/Kg ·k 'c —容积比热,kJ/m 3·kM c —摩尔比热,kJ/Kmol ·k3.定容比热:vv vvT u dT du dTq c ⎪⎭⎫⎝⎛∂∂===δ 表明单位物量的气体在定容情况下升高或降低1K 所吸收或放出的热量。
4.定压比热:dTdh dTq c pp==δ 表明单位物量的气体在定压情况下升高或降低1K 所吸收或放出的热量。
5.梅耶公式:R c c v p =- R c c v p 0''ρ=- 0R MR Mc Mc v p ==-6.比热比: vp vp vp Mc Mc c c c c ===''κ1-=κκRc v 1-=κnRc p道尔顿分压定律:VT ni i n p p p p p p ,1321⎥⎦⎤⎢⎣⎡=++++=∑=阿密盖特分容积定律:PT ni i n V V V V V V ,1321⎥⎦⎤⎢⎣⎡=++++=∑=质量成分:ii m g m=1211nn i i g g g g =+++==∑容积成分: ii V r V=1211nn i i r r r r r ==++==∑ 摩尔成分: i i n x n =1211nn i i x x x x x ==+++==∑容积成分与摩尔成分关系:i i i nr x n==质量成分与容积成分:i i i i i i i i m n M M M g x r m nM M M====i i i ii i i M Rg r r r M R ρρ===折合分子量:111ni in ni i i i i i i n Mm M x M r M nn=======∑∑∑1211211nn i i niM g g g g M M M M ===+++∑折合气体常数:0010001nnii ni i ii i i R m n R R nRM R g R M mmm========∑∑∑001122n n R R R M r M r M r M ==+++12121n n r r r R R R =+++11ni i ir R==∑分压力的确定i i i Vp p r p V==i i i i i i i R Mp g p g p g p M R ρρ=== 混合气体的比热容:121nn n i ii c g g c g c ==+=∑12c +g c +混合气体的容积比热容:121'''nn n i i i c r r c rc ==+=∑12c'+r c'+混合气体的摩尔比热容:11n ni i i i i i i Mc M g c x M c ====∑∑混合气体的热力学能、焓和熵 1ni i UU ==∑ 或1ni i i U m u ==∑1n i i H H ==∑ 或 1ni i i H m h ==∑1ni i S S ==∑ 或 1ni i i S m s ==∑ 范德瓦尔(Van der Waals)方程()2a p v b RTv ⎛⎫+-= ⎪⎝⎭ 对于1kmol 实际气体()02M M a p V b R T V ⎛⎫+-= ⎪⎝⎭ 压缩因子:id v pvz v RT==对比参数: r c TT T =, r cpp p =,r cv v v =第三章 热力学第一定律 1.基本概念热力学第一定律:能量既不能被创造,也不能被消灭,它只能从一种形式转换成另一种形式,或从一个系统转移到另一个系统,而其总量保持恒定,这一自然界普遍规律称为能量守恒与转换定律。