中考数学专项复习 一次函数练习
中考数学复习《一次函数》专项提升训练题-附答案
中考数学复习《一次函数》专项提升训练题-附答案学校:班级:姓名:考号:一、选择题1.把一次函数的图象向上平移4个单位长度,得到图象表达式是()A.B.C.D.2.小红骑自行车到离家为千米书店买书,行驶了分钟后,遇到一个同学因说话停留分钟,继续骑了分钟到书店.图中的哪一个图象能大致描述她去书店过程中离书店的距离千米与所用时间分之间的关系()A.B.C.D.3.已知直线与x轴的交点在,之间(包括A,B两点),则a的取值范围是()A.B.C.D.4.已知一次函数的图像经过点,且当时,则该函数图象所经过的象限为()A.一、二、三B.二、三、四C.一、三、四D.一、二、四5.已知正比例函数的图象上两点、且,则下列不等式中一定成立的是()A.B.C.D.6.已知一次函数的图象与的图象交于点.则对于不等式,下列说法正确的是()A.当时B.当时C.当且时D.当且时7.如图,已知直线与轴、轴分别交于点和点,是线段上一点,若将沿折叠,点恰好落在x轴上的点处,则直线所对应的函数表达式是()A. B. C. D.8.如图,正方形、正方形、正方形的顶点、与和、与、分别在一次函数的图像和轴上,若正比例函数则过点,则的值是()A.B.C.D.二、填空题9.与直线垂直且过点的直线解析式是.10.已知一次函数的图象经过点,则不等式的解是. 11.已知为整数,且一次函数的图像不经过第二象限,则= .12.某家庭电话月租费为10元,若市内通话费平均每次为0.2元,则该家庭一个月的话费y(元)与通话次数x(次)之间的关系式是.13.如图,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点B的坐标为(4,3),点D为对角线OB上一点.若OA=OD,则点D到x轴的距离为.三、解答题14.已知是一次函数.(1)求m的值;(2)若,求对应y的取值范围.15.某花农培育甲种樱花 3 株,乙种樱花 2 株,共需要成本 1700 元,乙种樱花 2 株,共需成本 1500 元.(1)求甲、乙两种樱花每株成本分别为多少元?(2)据市场调研,1 株甲种樱花售价为 160 元,1 株乙种樱花售价为 840 元.该花农决定在成本不超过 29000 元的前提下培育甲、乙两种樱花,那么要使总利润不少于 5000 元,花农有哪几种具体的培育方案?(3)求出选何种方案成本最少?16.如图,一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象解决下列问题:(1)求慢车和快车的速度;(2)求线段所表示的y与x之间的函数关系式,并写出自变量x的取值范围.17.为提升学生的文学素养,培养学生的阅读兴趣,某校准备购进A,B两种图书.经调查,购进A 种图书费用y元与购进A种图书本数x之间的函数关系如图所示,B种图书每本20元.(1)当和时,求y与x之间的函数关系式;(2)现学校准备购进300本图书,其中购进A种图书x本,设购进两种图书的总费用为w元.①当时,求出w与x间的函数表达式;②若购进A种图书不少于60本,且不超过B种图书本数的2倍,那么应该怎样分配购买A,B两种图书才能使总费用最少?最少总费用多少元?18.如图,在平面直角坐标系中,直线与轴交于点,直线与轴、轴分别交于点和点,且与直线交于点.(1)求直线的解析式;(2)若点为线段BC上一个动点,过点作轴,垂足为,且与直线交于点,当时,求点的坐标;(3)若在平面上存在点,使得以点A,C,D,H为顶点的四边形是平行四边形,请直接写出点的坐标.参考答案:1.A2.D3.D4.D5.C6.D7.B8.B9.10.11.-3或-212.13.14.(1)解:因为是一次函数,所以且,解得(2)解:由(1)可知,该一次函数的表达式为,因为,所以随的增大而减小.当时;当时,所以当时,.15.(1)解:设甲、乙两种樱花每株成本分别为 x则:解得:故甲种樱花每株成本为 100 元,乙种樱花每株成本为 700元。
中考数学常考考点专题之一次函数测试卷
中考数学常考考点专题之一次函数测试卷一.选择题(共15小题)1.如图1,在平面直角坐标系中,将平行四边形ABCD 放置在第一象限,且AB ∥x 轴.直线y =﹣x 从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l 与直线在x 轴上平移的距离m 的函数图象如图2,那么平行四边形ABCD 的面积为( )A .4√5B .4C .8√5D .82.一次函数y =mx +m 2(m ≠0)的图象过点(0,4),且y 随x 的增大而增大,则m 的值为( )A .﹣2B .﹣2或2C .1D .23.如图,直线y 1=x +b 与y 2=kx ﹣1相交于点P ,若点P 的横坐标为﹣1,则关于x 的不等式x +b >kx ﹣1的解集是( )A .x ≥﹣1B .x >﹣1C .x ≤﹣1D .x <﹣14.如果直线y =3x +6与y =2x ﹣4交点坐标为(a ,b ),则解为{x =a y =b 的方程组是( )A .{y −3x =62y +x =−4B .{y −3x =62y −x =4C .{3x −y =63x −y =4D .{3x −y =−62x −y =45.在平面直角坐标系中,点A 1(﹣1,1)在直线y =x +b 上,过点A 1作A 1B 1⊥x 轴于点B 1,作等腰直角三角形A 1B 1B 2(B 2与原点O 重合),再以A 1B 2为腰作等腰直角三角形A 2A 1B 2;以A2B2为腰作等腰直角三角形A2B2B3;按照这样的规律进行下去,那么A2019的坐标为()A.(22018﹣1,22018)B.(22018﹣2,22018)C.(22019﹣1,22019)D.(22019﹣2,22019))6.已知一次函数y=kx+b的图象如图所示,则k,b的取值范围是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0 7.关于x的一次函数y=﹣4x+8的图象,下列说法不正确的是()A.直线不经过第三象限B.直线经过点(1,4)C.直线与x轴交于点(2,0)D.y随x的增大而增大8.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=54或154.其中正确的结论有()A.1个B.2个C.3个D.4个9.已知A、B两地相距4千米.上午8:00,甲从A地出发步行到B的,8:20乙从B地出发骑自行车到A地,甲乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示.由图中的信息可知,乙到达A地的时间为()A.8:30B.8:35C.8:40D.8:410.“漏壶”是古代一种计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间.在漏壶漏完水之前,漏壶内水的深度与对应的漏水时间满足的函数关系式()A.正比例函数关系B.一次函数关系C.反比例函数关系D.二次函数关系11.将直线y=2x+1向右平移2个单位后所得图象对应的函数表达式为()A.y=2x+5B.y=2x+3C.y=2x﹣2D.y=2x﹣3 12.对于某个一次函数y=kx+b(k≠0),根据两位同学的对话得出的结论,错误的是()A.k>0B.kb<0C.k+b>0D.k=−1 2b13.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()A.B.C.D.14.若直线BC和直线y=x+3平行,其中点B的坐标为B(﹣2,3),将直线BC向右平移1个单位后为()A.y=﹣x+2B.y=﹣x+4C.y=x+6D.y=x+415.如图,甲从A村匀速骑自行车到B村,乙从B村匀速骑摩托车到A村,两人同时出发,到达目的地后,立即停止运动,甲、乙两人离A村的距离y(km)与他自骑车的时间x (h)之间的函数关系如图所示,则下列说法错误的是()A.A、B两村的距离为120km B.甲的速度为20kmhC.乙的速度为40km/h D.乙运动3.5h到达目的地二.填空题(共5小题)16.我国古代数学经典著作《九章算术》记载:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之.问几何步及之?”如图是善行者与不善行者行走路程s(单位:步)关于善行者的行走时间t的函数图象,则两图象交点P的纵坐标是.17.若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第象限.18.学校提倡“低碳环保,绿色出行”,小明和小亮分别选择步行和骑自行车上学,两人各自从家同时同向出发,沿同一条路匀速前进.如图所示,l1和l2分别表示两人到小亮家的距离s(km)和时间t(h)的关系,则出发h后两人相遇.19.若函数y=|2x﹣3|﹣2a始终大于y=|x+a|,则a的取值范围为.20.根据图象,可得关于x的不等式kx>﹣x+3的解集是.三.解答题(共5小题)21.在襄阳市创建“经济品牌特色品牌”政策的影响下.每到傍晚,市内某网红烧烤店就食客如云,这家烧烤店的海鲜串和肉串非常畅销,店主从食品加工厂批发以上两种产品进行加工销售,其中海鲜串的成本为m元/支,肉串的成本为n元/支;两次购进并加工海鲜串和肉串的数量与成本如下表所示(成本包括进价和其他费用):次数数量(支)总成本(元)海鲜串肉串第一次3000400017000第二次4000300018000针对团以消费,店主决定每次消费海鲜串不超过200支时,每支售价5元;超过200支时、不超过200支的部分按原价,超过200支的部分打八折.每支肉串的售价为3.5元.(1)求m、n的值;(2)五一当天,一个旅游团去此店吃烧烤,一次性消费海鲜串和肉串共1000支,且海鲜串不超过400支.在本次消费中,设该旅游团消费海鲜串x支,店主获得海鲜串的总利润为y元,求y与x的函数关系式,并写出自变量x的取值范围;(3)在(2)的条件下,该旅游团消费的海鲜串超过了200支,店主决定给该旅游团更多优惠,对每支肉串降价a(0<a<1)元,但要确保本次消费获得肉串的总利润始终不低于海鲜串的总利润,求a的最大值.22.在平面直角坐标系中,点B、E的坐标分别为B(﹣2,√3),E(4,0),过点E作直线l⊥x轴,设直线l上的动点A的坐标为(4,m),连接AB,将线段BA绕点B顺时针方向旋转30°得到线段BA′,在射线BA′上取点C,构造Rt△ABC,使得∠BAC=90°.(1)当m=−√3时,求直线AB的函数表达式.(2)当点C落在坐标轴上时,求△ABC的面积.(3)已知点B关于原点O的对称点是点D,在点A的运动过程中,是否存在某一位置,使以A,C,D为顶点的三角形与△ABC相似?若存在,求出点A的坐标;若不存在,请说明理由.23.在平面直角坐标系中,已知一次函数y1=3x﹣5与y2=2x﹣4.(1)求这两个函数图象的交点坐标;(2)求一次函数y2=2x﹣4的图象与坐标轴所围成三角形的面积.24.在平面直角坐标系xOy中,对于第一象限的P,Q两点,给出如下定义:若y轴正半轴上存在点P',x轴正半轴上存在点Q',使PP'∥QQ',且∠1=∠2=α(如图1),则称点P 与点Q为α﹣关联点.(1)在点Q1(3,1),Q2(5,2)中,与(1,3)为45°﹣关联点的是;(2)如图2,M(6,4),N(8,4),P(m,8)(m>1).若线段MN上存在点Q,使点P与点Q为45°﹣关联点,结合图象,求m的取值范围;(3)已知点A(1,8),B(n,6)(n>1).若线段AB上至少存在一对30°﹣关联点,直接写出n的取值范围.25.近年,净月潭公园将环潭公路改造为东北三省最长的人车分离彩色环保公路,平坦宽敞的路面分橙、黑两色,拓宽了原有的人行步道,成为市民健身的好去处.小明和爸爸参加了此公园举办的“亲子健身赛”,两人的行程y(千米)随时间x(时)变化的图象(全程)如图所示.(1)两人出发后小时相遇,此次“亲子健身赛”的全程是千米.(2)求出AB所在直线的函数关系式.(3)若小明想和爸爸一起到达终点,则需在两人出发 1.5小时后,将速度调整为千米/时.。
中考数学《一次函数》专题练习含答案解析
一次函数一、选择题1.在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法正确的是()A.甲的速度随时间的增加而增大B.乙的平均速度比甲的平均速度大C.在起跑后第180秒时,两人相遇D.在起跑后第50秒时,乙在甲的前面2.在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A.1个 B.2个 C.3个 D.4个3.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度4.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元二、填空题5.一食堂需要购买盒子存放食物,盒子有A,B两种型号,单个盒子的容量和价格如表.现有15升食物需要存放且要求每个盒子要装满,由于A型号盒子正做促销活动:购买三个及三个以上可一次性返还现金4元,则一次性购买盒子所需要最少费用为元.型号A B单个盒子容量(升)23单价(元)566.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要s能把小水杯注满.7.如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省元.三、解答题8.“六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:型号进价(元/只)售价(元/只)A型1012B型1523(1)小张如何进货,使进货款恰好为1300元?(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小张设计一个进货方案,并求出其所获利润的最大值.9.已知某市的光明中学、市图书馆和光明电影院在同一直线上,它们之间的距离如图所示.小张星期天上午带了75元现金先从光明中学乘出租车去了市图书馆,付费9元;中午再从市图书馆乘出租车去了光明电影院,付费12.6元.若该市出租车的收费标准是:不超过3公里计费为m元,3公里后按n元/公里计费.(1)求m,n的值,并直接写出车费y(元)与路程x(公里)(x>3)之间的函数关系式;(2)如果小张这天外出的消费还包括:中午吃饭花费15元,在光明电影院看电影花费25元.问小张剩下的现金够不够乘出租车从光明电影院返回光明中学?为什么?10.某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?11.联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为y1(元),B套餐每月话费为y2(元),月通话时间为x分钟.(1)分别表示出y1与x,y2与x的函数关系式.(2)月通话时间为多长时,A、B两种套餐收费一样?(3)什么情况下A套餐更省钱?12.某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料全部生产A、B两种产品共50件,生产A、B两种产品与所需原料情况如下表所示:甲种原料(千克)乙种原料(千克)原料型号A产品(每件)93B产品(每件)410(1)该工厂生产A、B两种产品有哪几种方案?(2)若生成一件A产品可获利80元,生产一件B产品可获利120元,怎样安排生产可获得最大利润?一次函数参考答案与试题解析一、选择题1.在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法正确的是()A.甲的速度随时间的增加而增大B.乙的平均速度比甲的平均速度大C.在起跑后第180秒时,两人相遇D.在起跑后第50秒时,乙在甲的前面【考点】一次函数的应用.【分析】A、由于线段OA表示甲所跑的路程S(米)与所用时间t(秒)之间的函数图象,由此可以确定甲的速度是没有变化的;B、甲比乙先到,由此可以确定甲的平均速度比乙的平均速度快;C、根据图象可以知道起跑后180秒时,两人的路程确定是否相遇;D、根据图象知道起跑后50秒时OB在OA的上面,由此可以确定乙是否在甲的前面.【解答】解:A、∵线段OA表示甲所跑的路程S(米)与所用时间t(秒)之间的函数图象,∴甲的速度是没有变化的,故选项错误;B、∵甲比乙先到,∴乙的平均速度比甲的平均速度慢,故选项错误;C、∵起跑后180秒时,两人的路程不相等,∴他们没有相遇,故选项错误;D、∵起跑后50秒时OB在OA的上面,∴乙是在甲的前面,故选项正确.故选D.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.2.在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A.1个 B.2个 C.3个 D.4个【考点】一次函数的应用.【分析】根据题目所给的图示可得,两人在1小时时相遇,行程均为10km,出发0.5小时之内,甲的速度大于乙的速度,0.5至1小时之间,乙的速度大于甲的速度,出发1.5小时之后,乙的路程为15千米,甲的路程为12千米,再利用函数图象横坐标,得出甲先到达终点.【解答】解:在两人出发后0.5小时之前,甲的速度小于乙的速度,0.5小时到1小时之间,甲的速度大于乙的速度,故①错误;由图可得,两人在1小时时相遇,行程均为10km,故②正确;甲的图象的解析式为y=10x,乙AB段图象的解析式为y=4x+6,因此出发1.5小时后,甲的路程为15千米,乙的路程为12千米,甲的行程比乙多3千米,故③正确;甲到达终点所用的时间较少,因此甲比乙先到达终点,故④正确.故选C.【点评】本题考查了一次函数的应用,行程问题的数量关系速度=路程后÷时间的运用,解答时理解函数的图象的含义是关键.3.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度【考点】一次函数的应用.【分析】根据函数图象可知,小明40分钟爬山2800米,40~60分钟休息,60~100分钟爬山(3800﹣2800)米,爬山的总路程为3800米,根据路程、速度、时间的关系进行解答即可.【解答】解:A、根据图象可知,在40~60分钟,路程没有发生变化,所以小明中途休息的时间为:60﹣40=20分钟,故正确;B、根据图象可知,当t=40时,s=2800,所以小明休息前爬山的平均速度为:2800÷40=70(米/分钟),故B正确;C、根据图象可知,小明在上述过程中所走的路程为3800米,故错误;D、小明休息后的爬山的平均速度为:(3800﹣2800)÷(100﹣60)=25(米/分),小明休息前爬山的平均速度为:2800÷40=70(米/分钟),70>25,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,故正确;故选:C.【点评】本题考查了函数图象,解决本题的关键是读懂函数图象,获取信息,进行解决问题.4.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元【考点】一次函数的应用.【专题】压轴题.【分析】根据函数图象分别求出设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=﹣x+25,当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=,根据日销售利润=日销售量×一件产品的销售利润,即可进行判断.【解答】解:A、根据图①可得第24天的销售量为200件,故正确;B、设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:,解得:,∴z=﹣x+25,当x=10时,y=﹣10+25=15,故正确;C、当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=k1t+b1,把(0,100),(24,200)代入得:,解得:,∴y=,当t=12时,y=150,z=﹣12+25=13,∴第12天的日销售利润为;150×13=1950(元),第30天的日销售利润为;150×5=750(元),750≠1950,故C错误;D、第30天的日销售利润为;150×5=750(元),故正确.故选:C【点评】本题考查了一次函数的应用,解决本题的关键是利用待定系数法求函数解析式.二、填空题5.一食堂需要购买盒子存放食物,盒子有A,B两种型号,单个盒子的容量和价格如表.现有15升食物需要存放且要求每个盒子要装满,由于A型号盒子正做促销活动:购买三个及三个以上可一次性返还现金4元,则一次性购买盒子所需要最少费用为29元.型号A B单个盒子容量(升)23单价(元)56【考点】一次函数的应用.【分析】设购买A种型号盒子x个,购买盒子所需要费用为y元,则购买B种盒子的个数为个,分两种情况讨论:①当0≤x<3时;②当3≤x时,利用一次函数的性质即可解答.【解答】解:设购买A种型号盒子x个,购买盒子所需要费用为y元,则购买B种盒子的个数为个,①当0≤x<3时,y=5x+=x+30,∵k=1>0,∴y随x的增大而增大,∴当x=0时,y有最小值,最小值为30元;②当3≤x时,y=5x+﹣4=26+x,∵k=1>0,∴y随x的增大而增大,∴当x=3时,y有最小值,最小值为29元;综合①②可得,购买盒子所需要最少费用为29元.故答案为:29.【点评】本题考查了一次函数的应用,解决本题的关键是根据题意列出函数解析式,利用一次函数的性质解决最小值的问题,注意分类讨论思想的应用.6.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要5s能把小水杯注满.【考点】一次函数的应用.【分析】一次函数的首先设解析式为:y=kx+b,然后利用待定系数法即可求得其解析式,再由y=11,即可求得答案.【解答】解:设一次函数的首先设解析式为:y=kx+b,将(0,1),(2,5)代入得:,解得:,∴解析式为:y=2x+1,当y=11时,2x+1=11,解得:x=5,∴至少需要5s能把小水杯注满.故答案为:5.【点评】此题考查了一次函数的实际应用问题.注意求得一次函数的解析式是关键.7.如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省2元.【考点】一次函数的应用.【分析】根据函数图象,分别求出线段OA和射线AB的函数解析式,即可解答.【解答】解:由线段OA的图象可知,当0<x<2时,y=10x,1千克苹果的价钱为:y=10,设射线AB的解析式为y=kx+b(x≥2),把(2,20),(4,36)代入得:,解得:,∴y=8x+4,当x=3时,y=8×3+4=28.当购买3千克这种苹果分三次分别购买1千克时,所花钱为:10×3=30(元),30﹣28=2(元).则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省2元.【点评】本题考查了一次函数的应用,解决本题的关键是分别求出线段OA和射线AB 的函数解析式.三、解答题8.“六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:型号进价(元/只)售价(元/只)A型1012B型1523(1)小张如何进货,使进货款恰好为1300元?(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小张设计一个进货方案,并求出其所获利润的最大值.【考点】一次函数的应用;一元一次方程的应用;一元一次不等式的应用.【分析】(1)设A文具为x只,则B文具为(100﹣x)只,根据题意列出方程解答即可;(2)设A文具为x只,则B文具为(100﹣x)只,根据题意列出函数解答即可.【解答】解:(1)设A文具为x只,则B文具为(100﹣x)只,可得:10x+15(100﹣x)=1300,解得:x=40.答:A文具为40只,则B文具为100﹣40=60只;(2)设A文具为x只,则B文具为(100﹣x)只,可得(12﹣10)x+(23﹣15)(100﹣x)≤40%[10x+15(100﹣x)],解得:x≥50,设利润为y,则可得:y=(12﹣10)x+(23﹣15)(100﹣x)=2x+800﹣8x=﹣6x+800,因为是减函数,所以当x=50时,利润最大,即最大利润=﹣50×6+800=500元.【点评】此题考查一次函数的应用,关键是根据题意列出方程和不等式,根据函数是减函数进行解答.9.已知某市的光明中学、市图书馆和光明电影院在同一直线上,它们之间的距离如图所示.小张星期天上午带了75元现金先从光明中学乘出租车去了市图书馆,付费9元;中午再从市图书馆乘出租车去了光明电影院,付费12.6元.若该市出租车的收费标准是:不超过3公里计费为m元,3公里后按n元/公里计费.(1)求m,n的值,并直接写出车费y(元)与路程x(公里)(x>3)之间的函数关系式;(2)如果小张这天外出的消费还包括:中午吃饭花费15元,在光明电影院看电影花费25元.问小张剩下的现金够不够乘出租车从光明电影院返回光明中学?为什么?【考点】一次函数的应用.【分析】(1)根据题意,不超过3公里计费为m元,由图示可知光明中学和市图书馆相距2公里,可由此得出m,由出租车的收费标准是:不超过3公里计费为m元,3公里后按n元/公里计费.当x>3时,由收费与路程之间的关系就可以求出结论;(2)分别计算小张所剩钱数和返程所需钱数,即可得出结论.【解答】解:(1)∵由图示可知光明中学和市图书馆相距2公里,付费9元,∴m=9,∵从市图书馆乘出租车去光明电影院,路程5公里,付费12.6元,∴(5﹣3)n+9=12.6,解得:n=1.8.∴车费y(元)与路程x(公里)(x>3)之间的函数关系式为:y=1.8(x﹣3)+9=1.8x+3.6(x>3).(2)小张剩下坐车的钱数为:75﹣15﹣25﹣9﹣12.6=13.4(元),乘出租车从光明电影院返回光明中学的费用:1.8×7+3.6=16.2(元)∵13.4<16.2,故小张剩下的现金不够乘出租车从光明电影院返回光明中学.【点评】本题考查了分段函数,一次函数的解析式,由一次函数的解析式求自变量和函数值,解答时求出函数的解析式是关键10.某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?【考点】二元一次方程组的应用;一元一次不等式的应用.【分析】(1)设A种货物运输了x吨,设B种货物运输了y吨,根据题意可得到一个关于x的不等式组,解方程组求解即可;(2)运费可以表示为x的函数,根据函数的性质,即可求解.【解答】解:(1)设A种货物运输了x吨,设B种货物运输了y吨,依题意得:,解之得:.答:物流公司月运输A种货物100吨,B种货物150吨.(2)设A种货物为a吨,则B种货物为(330﹣a)吨,依题意得:a≤(330﹣a)×2,解得:a≤220,设获得的利润为W元,则W=70a+40(330﹣a)=30a+13200,根据一次函数的性质,可知W随着a的增大而增大当W取最大值时a=220,即W=19800元.所以该物流公司7月份最多将收到19800元运输费.【点评】本题考查二元一次方程组的应用和一元一次不等式组以及一次函数性质的应用,将现实生活中的事件与数学思想联系起来,读懂题意列出方程组和不等式即可求解.11.联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为y1(元),B套餐每月话费为y2(元),月通话时间为x分钟.(1)分别表示出y1与x,y2与x的函数关系式.(2)月通话时间为多长时,A、B两种套餐收费一样?(3)什么情况下A套餐更省钱?【考点】一次函数的应用.【分析】(1)根据A套餐的收费为月租加上话费,B套餐的收费为话费列式即可;(2)根据两种收费相同列出方程,求解即可;(3)根据(2)的计算结果,小于收费相同时的时间选择B套餐,大于收费相同的时间选择A套餐解答.【解答】解:(1)A套餐的收费方式:y1=0.1x+15;B套餐的收费方式:y2=0.15x;(2)由0.1x+15=0.15x,得到x=300,答:当月通话时间是300分钟时,A、B两种套餐收费一样;(3)由0.1x+15<0.15x,得到x>300,当月通话时间多于300分钟时,A套餐更省钱.【点评】本题考查了一次函数的应用,是典型的电话收费问题,求出两种收费相同的时间是确定选择不同的缴费方式的关键.12.某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料全部生产A、B两种产品共50件,生产A、B两种产品与所需原料情况如下表所示:原料甲种原料(千克)乙种原料(千克)型号A产品(每件)93B产品(每件)410(1)该工厂生产A、B两种产品有哪几种方案?(2)若生成一件A产品可获利80元,生产一件B产品可获利120元,怎样安排生产可获得最大利润?【考点】一次函数的应用;一元一次不等式组的应用.【分析】(1)设工厂可安排生产x件A产品,则生产(50﹣x)件B产品,根据不能多于原料的做为不等量关系可列不等式组求解;(2)可以分别求出三种方案比较即可.【解答】解:(1)设工厂可安排生产x件A产品,则生产(50﹣x)件B产品由题意得:,解得:30≤x≤32的整数.∴有三种生产方案:①A30件,B20件;②A31件,B19件;③A32件,B18件;(2)方法一:方案(一)A,30件,B,20件时,20×120+30×80=4800(元).方案(二)A,31件,B,19件时,19×120+31×80=4760(元).方案(三)A,32件,B,18件时,18×120+32×80=4720(元).故方案(一)A,30件,B,20件利润最大.【点评】本题考查理解题意的能力,关键是根据有甲种原料360千克,乙种原料290千克,做为限制列出不等式组求解,然后判断B生产的越多,A少的时候获得利润最大,从而求得解.。
中考数学复习《一次函数》专项练习题-附带有答案
中考数学复习《一次函数》专项练习题-附带有答案一、单选题1.在函数y=√9−3x中,自变量x的取值范围是()A.x≤3B.x<3C.x≥3D.x>32.已知一次函数y=kx−3(k≠0),若y随x的增大而减小,则它的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限3.实数k、b满足kb﹥0,不等式kx<b的解集是x>bk那么函数y=kx+b的图象可能是()A.B.C.D.4.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A.x≥32B.x≤3 C.x≤32D.x≥35.如图,在平面直角坐标系中,直线y=- 32x+3与矩形OABC的边AB、BC分别交于点E、F,若点B的坐标为(m,2),则m的值可能为()A.12B.32C.52D.726.如图,等边△ABC 的顶点A 在y 轴上,顶点B 、C 在x 轴上,直线y =−√3x +√3经过点A 、C ,则等边△ABC 的面积是( )A .4B .2√3C .√5D .√37. 如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过正方形OABC 的顶点A 和C ,已知点A 的坐标为(1,−2),则k 的值为( )A .1B .2C .3D .48.市自来水公司为鼓励居民节约用水,采取月用水量分段收费办法,某户居民应交水费y(元)与用水量x(吨)的函数关系如图,若该用户本月用水21吨,则应交水费( )A .52.5元B .48方C .45元D .42元二、填空题9.函数y= 32 x+m 与y=﹣ 12 x+n 均经过点A (﹣2,0),且与y 轴交于B 、C ,则S △ABC = . 10.已知一次函数y =kx +b (k ≠0)经过(2,-1),(-3,4)两点,则其图象不经过第 象限. 11.现有一小树苗高100cm ,以后平均每年长高50cm .x 年后树苗的总高度y (cm )与年份x (年)的关系式是 .12.如图,函数y =2x +b 与函数y =kx −1的图象交于点P ,关于x 的不等式kx −1<2x +b 的解集是 .13.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与行驶时间x(小时)之间的函数关系如图所示,已知甲对应的函数关系式为y=60x,根据图象提供的信息可知从乙出发后追上甲车需要小时.三、解答题14.已知实数a满足a+b﹣4<0,b=√(−3)2,当2≤x≤4时,一次函数y=ax+1(a≠0)的最大值与最小值之差是6,求a的值.15.已知两直线l1,l2的位置关系如图所示,请求出以点A的坐标为解的二元一次方程组.16.某商店以40元/千克的单价新进一批茶叶,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示。
中考数学总复习《一次函数》专项测试卷带答案
中考数学总复习《一次函数》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.(2024·南宁模拟)若直线y=kx(k是常数,k≠0)经过第一、第三象限,则k的值可为( )A.-2B.-1C.-1D.222.(2024·玉林模拟)将直线y=5x+1向下平移2个单位长度,所得直线的解析式为( )A.y=5x-2B.y=5x-1C.y=5x+3D.y=5(x-1)3.(2024·崇左模拟)已知一次函数y=(m+1)x+5,y随x的增大而减小,则m的取值范围是( )A.m≤-1B.m>-1C.m≥-1D.m<-14.(2024·桂林模拟)如图,直线y=ax+b过点A(0,2)和点B(-3,0),则方程ax+b=0的解是( )A.x=2B.x=0C.x=-1D.x=-35.(2024·北海模拟)直线y=kx+3经过点A(2,1),则不等式kx+3≥0的解集是( )A.x≤3B.x≥3C.x≥-3D.x≤06.(2024·青海)如图,一次函数y=2x-3的图象与x轴相交于点A,则点A关于y轴的对称点是( )A .(-32,0) B .(32,0) C .(0,3) D .(0,-3)7.对于某个一次函数y =kx +b (k ≠0),根据两位同学的对话得出的结论,错误的是( )A .k >0B .kb <0C .k +b >0D .k =-12b8.一种弹簧秤最大能称不超过10 kg 的物体,不挂物体时弹簧的长为12 cm,每挂重1 kg 物体,弹簧伸长0.5 cm,在弹性限度内,挂重后弹簧的长度y (cm)与所挂物体的质量x (kg)之间的函数关系式为( )A.y =12-0.5xB.y =12+0.5xC.y =10+0.5xD.y =0.5x9.(2024·包头)在平面直角坐标系中,若一次函数的图象经过第一、二、三象限,请写出一个符合该条件的一次函数的解析式 .10.(2024·包头)如图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度y(单位: cm)随着碗的数量x(单位:个)的变化规律.下表是小亮经过测量得到的y与x之间的对应数据:x/个1234y/cm68.410.813.2(1)依据小亮测量的数据,写出y与x之间的函数解析式,并说明理由;(2)若整齐叠放成一摞的这种规格的碗的总高度不超过28.8 cm,求此时碗的数量最多为多少个?B层·能力提升x+3分别与x轴,y轴交于点A,B,将△OAB绕着11.(2024·桂林模拟)如图,直线y=-32点A顺时针旋转90°得到△CAD,则点B的对应点D的坐标为( )A.(2,5)B.(3,5)C.(5,2)D.(√13,2)12.(2024·柳州模拟)在平面直角坐标系中,点A1,A2,A3,A4…在x轴的正半轴上,点B1,B2,B3…在直线y=√3x(x≥0)上,若点A1的坐标为(2,0),且3△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形,则点B2 025的坐标为.13.在“探索一次函数y=kx+b的系数k,b与图象的关系”活动中,老师给出了直角坐标系中的三个点:A(0,2),B(2,3),C(3,1).同学们画出了经过这三个点中每两个点的一次函数的图象,并得到对应的函数解析式y1=k1x+b1,y2=k2x+b2,y3=k3x+b3.分别计算k1+b1,k2+b2,k3+b3的值,其中最大的值等于.C层·挑战冲A+14.(2024·广州)一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y和脚长x之间近似存在一个函数关系,部分数据如表:脚长x(cm)…232425262728…身高y(cm)…156163170177184191…(1)在图1中描出表中数据对应的点(x,y);(2)根据表中数据,从y=ax+b(a≠0)和y=k(k≠0)中选择一个函数模型,使它能近似地x反映身高和脚长的函数关系,并求出这个函数的解析式(不要求写出x的取值范围);(3)如图2,某场所发现了一个人的脚印,脚长约为25.8 cm,请根据(2)中求出的函数解析式,估计这个人的身高.参考答案A层·基础过关1.(2024·南宁模拟)若直线y=kx(k是常数,k≠0)经过第一、第三象限,则k的值可为(D)A.-2B.-1C.-1D.222.(2024·玉林模拟)将直线y=5x+1向下平移2个单位长度,所得直线的解析式为(B)A.y=5x-2B.y=5x-1C.y=5x+3D.y=5(x-1)3.(2024·崇左模拟)已知一次函数y=(m+1)x+5,y随x的增大而减小,则m的取值范围是(D)A.m≤-1B.m>-1C.m≥-1D.m<-14.(2024·桂林模拟)如图,直线y=ax+b过点A(0,2)和点B(-3,0),则方程ax+b=0的解是(D)A .x =2B .x =0C .x =-1D .x =-35.(2024·北海模拟)直线y =kx +3经过点A (2,1),则不等式kx +3≥0的解集是(A) A .x ≤3 B .x ≥3 C .x ≥-3 D .x ≤06.(2024·青海)如图,一次函数y =2x -3的图象与x 轴相交于点A ,则点A 关于y 轴的对称点是(A)A .(-32,0) B .(32,0) C .(0,3) D .(0,-3)7.对于某个一次函数y =kx +b (k ≠0),根据两位同学的对话得出的结论,错误的是(C)A .k >0B .kb <0C .k +b >0D .k =-12b8.一种弹簧秤最大能称不超过10 kg 的物体,不挂物体时弹簧的长为12 cm,每挂重1 kg 物体,弹簧伸长0.5 cm,在弹性限度内,挂重后弹簧的长度y (cm)与所挂物体的质量x (kg)之间的函数关系式为(B)A.y=12-0.5xB.y=12+0.5xC.y=10+0.5xD.y=0.5x9.(2024·包头)在平面直角坐标系中,若一次函数的图象经过第一、二、三象限,请写出一个符合该条件的一次函数的解析式y=x+1(答案不唯一).10.(2024·包头)如图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度y(单位: cm)随着碗的数量x(单位:个)的变化规律.下表是小亮经过测量得到的y与x之间的对应数据:x/个1234y/cm68.410.813.2(1)依据小亮测量的数据,写出y与x之间的函数解析式,并说明理由;【解析】(1)由表中的数据,x的增加量不变∴y是x的一次函数设y=kx+b由题意得:{k+b=62k+b=8.4,解得:{k=2.4 b=3.6∴y与x之间的函数解析式为y=2.4x+3.6;(2)若整齐叠放成一摞的这种规格的碗的总高度不超过28.8 cm,求此时碗的数量最多为多少个?【解析】(2)设碗的数量有x个,则:2.4x+3.6≤28.8,解得:x≤10.5,∴x的最大整数解为10答:碗的数量最多为10个.B层·能力提升x+3分别与x轴,y轴交于点A,B,将△OAB绕着11.(2024·桂林模拟)如图,直线y=-32点A顺时针旋转90°得到△CAD,则点B的对应点D的坐标为(C)A.(2,5)B.(3,5)C.(5,2)D.(√13,2)12.(2024·柳州模拟)在平面直角坐标系中,点A1,A2,A3,A4…在x轴的正半轴上,点B1,B2,B3…在直线y=√3x(x≥0)上,若点A1的坐标为(2,0),且3△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形,则点B2 025的坐标为(3×22 024,√3×22 024).13.在“探索一次函数y=kx+b的系数k,b与图象的关系”活动中,老师给出了直角坐标系中的三个点:A(0,2),B(2,3),C(3,1).同学们画出了经过这三个点中每两个点的一次函数的图象,并得到对应的函数解析式y1=k1x+b1,y2=k2x+b2,y3=k3x+b3.分别计算k1+b1,k2+b2,k3+b3的值,其中最大的值等于5.C层·挑战冲A+14.(2024·广州)一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y和脚长x之间近似存在一个函数关系,部分数据如表:脚长x(cm)…232425262728…身高y(cm)…156163170177184191…(1)在图1中描出表中数据对应的点(x,y);【解析】(1)描点如图所示:(2)根据表中数据,从y=ax+b(a≠0)和y=k(k≠0)中选择一个函数模型,使它能近似地x反映身高和脚长的函数关系,并求出这个函数的解析式(不要求写出x的取值范围);【解析】(2)∵y=kx(k≠0)转化为k=xy=23×156≠24×163≠25×170≠…∴y与x的函数不可能是y=kx故选一次函数y=ax+b(a≠0),将点(23,156),(24,163)代入解析式得:{23a+b=15624a+b=163,解得{a=7 b=−5∴一次函数解析式为y=7x-5.(3)如图2,某场所发现了一个人的脚印,脚长约为25.8 cm,请根据(2)中求出的函数解析式,估计这个人的身高.【解析】(3)当x=25.8时,y=7×25.8-5=175.6.答:脚长约为25.8 cm时,估计这个人的身高为175.6 cm.。
中考数学《一次函数》专题训练(附带答案)
中考数学《一次函数》专题训练(附带答案)一、单选题1.已知一次函数y =(1﹣a )x+2a+1的图象经过第二象限,则a 的值可以是( )A .﹣2B .﹣1C .0D .12.如图,直线y =k 1x +b 1和直线y =k 2x +b 2相交于点M(23,−2),则关于x ,y 的方程组{y =k 1x +b 1y =k 2x +b 2,的解为( )A .{x =23,y =−2 B .{x =−2,y =23C .{x =23,y =2D .{x =−2,y =−233.若一次函数y=(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是 ( )A .k >3B .0<k≤3C .0≤k <3D .0<k <34.如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( )A .y=x+5B .y=x+10C .y=﹣x+5D .y=﹣x+105.设min{x ,y}表示x ,y 两个数中的最小值,例如min{0,2}=0,min{12,8}=8,则关于x 的函数y=min{2x ,x+2}可以表示为( ) A .y={2x(x <2)x +2(x ≥2)B .y={x +2(x <2)2x(x ≥2)C .y=2xD .y=x+26.已知一次函数y=kx ﹣1,若y 随x 的增大而增大,则该函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知k≠0,在同一坐标系中,函数y=k(x+1)与y= k x的图象大致为如图所示中的()A.B.C.D.8.下列函数中,当x>0时,y随x的增大而增大的是()A.y=-x+1B.y=x2-1C.y=1x D.y=-x2+19.下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=2x C.y=x2D.y=x+1210.如图,在平面直角坐标系中,O为坐标原点,直线y=−x+4√2与x轴交于B点,与y轴交于A点,点C,D在线段AB上,且CD=2AC=2BD,若点P在坐标轴上,则满足PC+PD=7的点P的个数是()A.4B.3C.2D.111.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.无法确定12.一次函数y=(k-3)x|k|-2+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题13.已知一次函数 y =(k +1)x −b ,若y 随x 的增大而减小,则k 的取值范围是 . 14.如图,一次函数与反比例函数的图象分别是直线 AB 和双曲线.直线 AB 与双曲线的一个交点为点 C ,CD ⊥x 轴于点 D ,OD =2OB =4OA =4 ,则此反比例函数的解析式为 .15.一次函数 y 1=k 1x +b 1 与 y 2=k 2x +b 2 的图象如图,则不等式组 {k 1x +b 1≤0k 2x +b 2>0 的解为 .16.若点 (m,n) 若在直线 y =3x −2 上,则代数式2n -6m+1的值是 .17.已知一次函数y =﹣x ﹣(a ﹣2)中,当a 时,该函数的图象与y 轴的交点坐标在x 轴的下方.18.已知一次函数 y =ax +|a −1| 的图象经过点(0,3),且函数y 的值随x 的增大而减小,则a 的值为 .三、综合题19.甲、乙两车分别从相距480千米的 A 、 B 两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经 C 地,甲车到达 C 地停留1小时,因有事按原路原速返回 A 地.乙车从 B 地直达 A 地,两车同时到达 A 地.甲、乙两车距各自出发地的路程 y (千米)与甲车出发后所用的时间 x (时)的函数图象如图所示.(1)求t的值;(2)求甲车距它出发地的路程y与x之间的函数关系式;(3)求两车相距120千米时乙车行驶的时间.20.根据对某市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx的图象如图②所示.(1)分别求出y1、y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨.①写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式.并求当这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少元?②为了获得两种蔬菜的利润之和不少于8400元,则乙种蔬菜进货量应在什么范围内合适?21.已知一次函数y=-2x-2.(1)画出函数的图象;(2)求图象与x轴,y轴的交点A,B的坐标;(3)求A,B两点之间的距离;(4)求△AOB的面积;(5)当x为何值时,y≥0(利用图象解答)?22.在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,二次函数y=x2+mx+n的图象经过点A.(1)当m=4时,求n的值;(2)设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;(3)当﹣3≤x≤0时,若二次函数﹣3≤x≤0时的最小值为﹣4,求m、n的值.23.同时点燃甲乙两根蜡烛,蜡烛燃烧剩下的长度y(cm)与燃烧时间x(min)的关系如图所示.(1)求点P的坐标,并说明其实际意义;(2)求点燃多长时间,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍.24.冰墩墩是2022年北京冬季奥运会的吉样物.冬奥会来临之际,冰墩墩玩偶非常畅销.小张在某网店选中A,B两款冰墩墩玩偶,决定用900元(全部用完)从该网店进货并销售.两款玩偶的进货价和销售价如下表:A款玩偶B款玩偶进货价(元/个)2520销售价(元/个)3325(1)求y与x之间的函数表达式;(2)如果小张购进A款玩偶20个,那么这次进货全部售完,能盈利多少元?参考答案1.【答案】C 2.【答案】A 3.【答案】A 4.【答案】C 5.【答案】A 6.【答案】B 7.【答案】D 8.【答案】B 9.【答案】C 10.【答案】A 11.【答案】A 12.【答案】C 13.【答案】k <−1 14.【答案】y =−4x15.【答案】x≤-4 16.【答案】-3 17.【答案】>2 18.【答案】-219.【答案】(1)由函数图象得:乙车的速度为:60÷1=60(千米/小时),甲车从A 地出发至返回A 地的时间为:(480−60)÷60=420÷60=7(小时) ∴t =(7−1)÷2=3 即t 的值是3;(2)当0≤x≤3时,设y 与x 的函数关系式为y =kx , 则360=3k ,解得k =120∴当0≤x≤3时,y 与x 的函数关系式为:y =120x 当3<x≤4时,y =360当4<x≤7,设y 与x 的函数关系式为:y =ax +b 则 {4a +b =3607a +b =0 解得: {a =−120b =840∴当4<x≤7,y与x的函数关系式为:y=−120x+840由上可得,y与x的函数关系式为:y={120x(0≤x≤3) 360(3<x≤4)−120x+840(4<x≤7)(3)设乙车行驶的时间为m小时时,两车相距120千米,乙车的速度为60千米/小时,甲车的速度为360÷3=120(千米/小时)甲乙第一次相遇前,60+(60+120)×(m−1)+120=480,得m=8 3甲乙第一次相遇之后,60+(60+120)×(m−1)=480+120,得m=4甲车返回A地的过程中,当m=5时,两车相距5×60-(480-360)=180(千米)∴(120−60)×(m−5)=180−120得m=6答:两车相距120千米时乙车行驶的时间是83小时、4小时或6小时.20.【答案】(1)解:由题意得,设y1=kx5k=3∴k=0.6∴y1=0.6x根据题意得,设y2=ax2+bx+c,由图知,抛物线经过点(0,0)、(1,2)、(5,6),代入得{c=0a+b+c=2 25a+5b+c=6∴{a=−0.2b=2.2c=0∴y2=−0.2x2+2.2x;(2)解:①设乙种蔬菜的进货量为t吨,w=y1+y2=0.6(10−t)+(−0.2t2+2.2t)=−0.2t2+1.6t+6=−0.2(t−4)2+9.2当t=4,利润之和最大W最大=9200(元)答:当乙种蔬菜进货4吨,甲种蔬菜进货6吨,利润之和最大,最大9200元.②w=y1+y2=−0.2t2+1.6t+6当w≥8.4时,即−0.2t2+1.6t+6≥8.4∴−0.2t2+1.6t−2.4≥0令−0.2t2+1.6t−2.4=0t2−8t−12=0(t−2)(t−6)=0解得t1=2,t2=6因为抛物线开口向下,所以2≤t≤6答:乙种蔬菜进货量为2吨到6吨范围内.21.【答案】(1)解:列表:x……-10……y……0-2……(2)解:由(1)可得该图象与x轴,y轴的交点坐标分别为A(-1,0),B(0,-2).(3)解:A,B两点之间的距离为√OA2+OB2=√12+22=√5(4)解:S△AOB= 12OA·OB=12×1×2= 1(5)解:由(1)中图象可得,当x≤-1时,y≥0.22.【答案】(1)解:当y=x+3=0时,x=﹣3∴点A 的坐标为(﹣3,0).∵二次函数y=x 2+mx+n 的图象经过点A ∴0=9﹣3m+n ,即n=3m ﹣9 ∴当m=4时,n=3m ﹣9=3.(2)解:抛物线的对称轴为直线x=﹣ m 2当m=﹣2时,对称轴为x=1,n=3m ﹣9=﹣15 ∴当﹣3≤x≤0时,y 随x 的增大而减小∴当x=0时,二次函数y=x 2+mx+n 的最小值为﹣15.(3)解:①当对称轴﹣ m2 ≤﹣3,即m≥6时,如图1所示.在﹣3≤x≤0中,y=x 2+mx+n 的最小值为0,∴此情况不合题意;②当﹣3<﹣ m2 <0,即0<m <6时,如图2,有 {4n−m 24=49−3m +n =0解得: {m =2n =−3 或 {m =10n =21(舍去)∴m=2、n=﹣3;③当﹣ m2 ≥0,即m≤0时,如图3有 {n =−49−3m +n =0 ,解得: {m =53n =−4(舍去).综上所述:m=2,n=﹣3. 23.【答案】(1)解:设乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=kx+b ,得:{b =4050k +b =0 ,解得: {k =−0.8b =40,即乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=﹣0.8x+40,将x=20代入得y=24,故P (20,24)该点表示的实际意义是点燃20分钟后,两支蜡烛剩下的长度都是24cm ; (2)解:设甲蜡烛剩下的长度y 甲与x 之间的函数表达式为y 甲=mx+n ,得: {48=n 24=20m +n,解得: {m =−1.2n =48 ,∴y 甲与x 之间的函数表达式为y 甲=﹣1.2x+48.∵甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍,∴﹣1.2x+48=1.1(﹣0.8x+40),解得:x=12.5. 答:点燃12.5分钟,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍24.【答案】(1)解:由题意,得25x +20y =900∴y =−54x +45;(2)解:当x =20时,则y =−54×20+45=20∴这次进货全部售完,能盈利=20(33−25)+20(25−20)=260(元) 答:这次进货全部售完,能盈利260元.。
中考数学总复习《一次函数》练习题附含答案
中考数学总复习《一次函数》练习题附含答案一、单选题(共12题;共24分)1.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有()①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h;⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时A.2个B.3个C.4个D.5个2.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A.x≤3B.x≥32C.x≥3D.x≤323.如图,四个一次函数y=ax,y=bx ,y=cx+1 ,y=dx-3 的图象如图所示,则 a, b, c , d的大小关系是()A.b>a>d>c B.a>b>c>d C.a>b>d>c D.b>a>c>d4.已知一次函数y =kx +b 的图象如图,则k 、b 的符号是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <05.我市某县在实施“村村通”工程中,决定在A 、B 两村之间修筑一条公路,甲、乙两个工程队分别从A 、B 两村同时相向开始修筑.乙队修筑了840米后,因另有任务提前离开,余下的任务由甲队单独完成,直到道路修通.两队开工8天时所修道路的长度都为560米,甲、乙两个工程队所修道路的长度y (米)与修筑时间x (天)之间的关系图象如图所示.下列说法: ①乙工程队每天修路70米;②甲工程队后12天中每天修路50米; ③该公路全长1640米;④若乙工程队不提前离开,则两队只需要13 23 天就能完成任务其中正确的结论有( )A .1个B .2个C .3个D .4个6.下列命题是假命题的是 ( )A .49的平方根是 ±7B .点 M(1,a) 和点 N(3,b) 是一次函数 y =−2x +1 图象上的两点,则 a >bC .无限小数都是无理数D .点 (−2,3) 到y 轴的距离是27.若一次函数 y =kx +b 的图象不经过第二象限,则关于 x 的方程 x 2+kx +b =0 的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定8.已知甲、乙两个函数图象上的部分点的横坐标x 与纵坐标y 如表所示.若在实数范围内,甲、乙的函数值都随自变量的增大而减小,且两个图象只有一个交点,则关于这个交点的横坐标a ,下列判断正确的是( )x ﹣2 0 2 4 y 甲 5 4 3 2 y 乙653.5<2D .2<a <49.函数y=k (x ﹣k )与y=kx 2,y= kx(k ≠0),在同一坐标系上的图象正确的是( )A .B .C .D .10.将直线y=2x 向右平移1个单位后所得图象对应的函数解析式为( )A .y=2x-1B .y=2x-2C .y=2x+1D .y=2x+211.如图,已知函数y =(k −1)x +k 的图象经过二、三、四象限,则k 的取值范围是( )A .k <0B .k <1C .0<k <1D .k >112.如图,在同一坐标系中,关于x 的一次函数y =x+b 与y =bx+1的图象只可能是( )A .B .C .D .二、填空题(共6题;共6分)13.将一次函数y=﹣2x+6的图象向左平移 个单位长度,所得图象的函数表达式为y=﹣2x .14.一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论:①k <0;②a >0;③当x <3时y 1<y 2正确的是 .15.小李从家步行到学校需走的路程为1800米.图中的折线OAB 反映了小李从家步行到学校所走的路程s (米)与时间t (分钟)的函数关系,根据图象提供的信息,当小李从家出发去学校步行16分钟时到学校还需步行 米.16.如图,在矩形OABC 中,点A 在x 轴的正半轴,点C 在y 轴的正半轴.抛物线y= 169 x 2﹣ 163x+4经过点B ,C ,连接OB ,D 是OB 上的动点,过D 作DE ∥OA 交抛物线于点E (在对称轴右侧),过E 作EF ⊥OB 于F ,以ED ,EF 为邻边构造▱DEFG ,则▱DEFG 周长的最大值为 .17.一次函数y=3x + m的图象与两坐标轴所围成的三角形面积为54,则m = .18.已知正比例函数y=kx的图象过点(2,﹣4),则该正比例函数的解析式为.三、综合题(共6题;共60分)19.某商场购进A,B两种商品,已知购进3件A商品和5件B商品费用相同,购进3件A商品和1件B商品总费用为360元.(1)求A,B两种商品每件进价各为多少元?(列方程或方程组求解)(2)若该商场计划购进A,B两种商品共80件,其中A商品m件.若A商品按每件150元销售,B 商品按每件80元销售,求销售完A,B两种商品后获得总利润w(元)与m(件)的函数关系式. 20.如图,在平面直角坐标系中,直线l1:y=−2x+1与y轴交于点A,直线l2与y轴交于点B (0,-2),交直线l1于点C,点C的纵坐标为-1,点D是直线l2上任意一点,过点D作x轴的垂线,交直线l1于点E.(1)求直线l2的解析式;(2)当DE=2AB时求点D的坐标.21.用描点法在同一直角坐标系中画出y1=|x|和y2=x+1的图象,并根据图象回答:(1)当x在什么范围时y1<y2?(2)当x在什么范围时y1>y2?22.如图,在平面直角坐标系xOy中,一次函数y=−x+m的图象过点A(1,3),且与x轴交于点B.(1)求m的值和点B的坐标;(2)求ax2+bx>−x+m的解集.23.冰墩墩(BingDwenDwen),是2022年北京冬季奥运会的吉祥物,将熊猫形象与富有超能量的冰晶外壳相结合,头部外壳造型取自冰雪运动头盔,装饰彩色光环,整体形象酷似航天员,冬奥会来临之际,冰墩墩玩偶非常畅销.小李在某网店选中A,B两款冰墩墩玩偶,决定从该网店进货并销售,两款玩偶的进货价和销售价如表:A款玩偶B款玩偶进货价(元/个)2015销售价(元/个)2518(2)第二次小李进货时网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半,小李计划购进两款玩偶共100个,应如何设计进货方案才能获得最大利润,最大利润是多少?24.如图,在平面直角坐标系xOy中,一次函数y=﹣x+2的图象与x轴交于点A与反比例函数y=kx(x<0)的图象交于点B,过点B作BC⊥x轴于点C,且OA=OC.(1)求点A的坐标和反比例函数的表达式;(2)若点P是反比例函数y=kx(x<0)的图象上的点,过P作PQ∥y轴,交直线AB于点Q,当PQ=BC时求点P的坐标.参考答案1.【答案】B 2.【答案】B 3.【答案】B 4.【答案】D 5.【答案】B 6.【答案】C 7.【答案】A 8.【答案】D 9.【答案】C 10.【答案】B 11.【答案】A 12.【答案】C 13.【答案】3 14.【答案】① 15.【答案】280 16.【答案】2434017.【答案】±18 18.【答案】y =﹣2x19.【答案】(1)解:设A ,B 两种商品每件进价分别为每件x 元,每件y 元,则{3x =5y3x +y =360解得:{x =100y =60答:A ,B 两种商品每件进价分别为每件100元,每件60元. (2)解:由题意可得:w =(150−100)m +(80−60)(80−m) =50m +1600−20m =30m +1600即总利润w (元)与m (件)的函数关系式为:w =30m +1600.20.【答案】(1)解:∵点 C 的纵坐标为 −1 ,点 C 在直线 l 1 上∴−1=−2x +1 解得: x =1∴点 C 坐标为 (1,−1)设直线 l 2 的解析式为 y =kx +b∵直线 l 2 与 y 轴交于点 B(0,−2) ,交直线 l 1 于点 C ∴{k +b =−1b =−2解得: {k =1b =−2∴直线 l 2 的解析式为 y =x −2(2)解:令 x =0 ,得 y =−2×0+1=1 ∴点 A 坐标为 (0,1) ∴AB =3设 D 点横坐标为 m ,则点 D 坐标为 (m ,m −2) ∵DE 平行于 y 轴∴点 E 坐标为 (m ,−2m +1)∴DE =|(m −2)−(−2m +1)|=|3m −3| ∵DE =2AB =6 ∴|3m −3|=6解得 m =3 或 m =−1当 m =3 时点 D 坐标为 (3,1) 当 m =−1 时点 D 坐标为 (−1,−3) .综上所述:点 D 的坐标为 (3,1) 或 (−1,−3) .21.【答案】(1)解:如图所示:两函数的交点坐标是(﹣0.5,0.5) 当x >﹣0.5时y 1<y 2(2)解:当x <﹣0.5时y 1>y 222.【答案】(1)解:∵y =−x +m 的图象过点 A(1,3)∴3=−1+m ∴m =4 . ∴y =−x +4 . 令 y =0 ,得 x =4 ∴点 B 的坐标为 (4,0) ;(2)解:∵二次函数 y =ax 2+bx 图象过 A , B 两点 ∴{3=a +b 0=42a +4b ,解得: {a =−1b =4 画出函数图象如图:由函数图象可得不等式 ax 2+bx >−x +m 的解集为: 1<x <4 .23.【答案】(1)解:设购进A 款玩偶x 个,则购进B 款玩偶(100-x )个由题意可得:20x+15(100-x )=1650,解得x=30,∴100-x=70 答:购进A 款玩偶30个,则购进B 款玩偶70个;(2)解:设购进A 款玩偶a 个,则购进B 款玩偶(100-a )个,利润为w 元 由题意可得:w=(25-20)a+(18-15)(100-a )=2a+300 ∵k=2>0∴w 随a 的增大而增大∵网店规定A 款玩偶进货数量不得超过B 款玩偶进货数量的一半,∴a ≤12(100−a)解得a ≤1003 ∵a 为整数,∴a ≤33∴当a=33时w 取得最大值,此时w=366,100-a=67答:购进A 款玩偶33个,购进B 款玩偶67个时才能获得最大利润,最大利润是366元.24.【答案】(1)解:在y =﹣x+2中,当y =0时﹣x+2=0,解得x =2, ∴A (2,0), 又OA =OC∴OC =OA =2 又∵BC ⊥x 轴于点C∴B 点的横坐标为﹣2,代入y =﹣x+2,可得B 点的纵坐标为4 ∴点B 坐标为(﹣2,4)将点B 坐标为(﹣2,4)代入 y =kx得∴k =﹣8, 故反比例函数的表达式为 y =−8x;(2)解:设P (a , −8a)(a <0), ∵PQ ∥y 轴,交直线AB 于点Q∴Q (a ,﹣a+2)∴PQ =| −8a ﹣(﹣a+2)|=| −8a+a ﹣2|∵点B坐标为(﹣2,4),∴BC=4当PQ=BC时有|−8a+a−2|=4,当﹣2<a<0时有−8a+a−2=4解之得a=3±√17,舍去正值,a=3−√17此时点P(3﹣√17,3+ √17)当a<﹣2时有﹣8a +a﹣2=﹣4,解之得a1=﹣4,a2=2(舍去),此时点P(﹣4,2)综上满足条件的点P坐标为(3﹣√17,3+ √17)或(﹣4,2).第11页共11。
中考数学总复习《一次函数》专项测试卷(带有答案)
中考数学总复习《一次函数》专项测试卷(带有答案)时间:45分钟满分:100分学校:___________班级:___________姓名:___________考号:___________ 1.(2023·鄂州)象棋起源于中国,中国象棋文化历史悠久.如图所示是某次对弈的残图,如果建立平面直角坐标系,使棋子“帅”位于点(-2,-1)的位置,则在同一坐标系下,经过棋子“帅”和“马”所在的点的一次函数解析式为 ( )第1题图A.y=x+1 B.y=x-1C.y=2x+1 D.y=2x-12.(2023·无锡)将函数y=2x+1的图象向下平移2个单位长度,所得图象对应的函数表达式是( )A.y=2x-1 B.y=2x+3C.y=4x-3 D.y=4x+53.(2023·兰州)一次函数y=kx-1的函数值y随x的增大而减小,当x=2时,y的值可以是( )A.2 B.1 C.-1 D.-24.(2023·陕西)在同一平面直角坐标系中,函数y=ax和y=x+a(a为常数,a<0)的图象可能是( )A BC D5.(2023·荆州)如图,直线y =-32x +3分别与x 轴,y 轴交于点A ,B ,将△OAB绕着点A 顺时针旋转90°得到△CAD,则点B 的对应点D 的坐标是( )第5题图A .(2,5)B .(3,5)C .(5,2)D .(13,2)6.(2023·苏州)已知一次函数y =kx +b 的图象经过点(1,3)和(-1,2),则k 2-b 2= .7.(2023·天津)若直线y =x 向上平移3个单位长度后经过点(2,m),则m 的值为 .8.(2023·南充)如图,直线y =kx -2k +3(k 为常数,k <0)与x ,y 轴分别交于点A ,B ,则2OA +3OB的值是 .第8题图9.(2023·迎江区三模)如图,直线y=kx+b与直线y=-x相交于点A,则关于x的不等式0<-x<kx+b的解集为.第9题图10.(2022·东营改编)如图,△AB1A1,△A1B2A2,△A2B3A3,…,是等边三角形,直线y=33x+2经过它们的顶点A,A1,A2,A3,…,点B1,B2,B3,…,在x轴上,则点A2 024的横坐标是.第10题图11.(2023·眉山)如图,在平面直角坐标系xOy中,点B的坐标为(-8,6),过点B分别作x轴,y轴的垂线,垂足分别为点C,点A,直线y=-2x-6与AB交于点D,与y轴交于点E,动点M在线段BC上,动点N在直线y=-2x-6上,若△AMN是以点N为直角顶点的等腰直角三角形,则点M的坐标为.第11题图12.(2023·绥化)某校组织师生参加夏令营活动,现准备租用A,B两型客车(每种型号的客车至少租用一辆).A型车每辆租金500元,B型车每辆租金600元.若5辆A型和2辆B型车坐满后共载客310人;3辆A型和4辆B型车坐满后共载客340人.(1)每辆A型车、B型车坐满后各载客多少人?(2)若该校计划租用A型和B型两种客车共10辆,总租金不高于5 500元,并将全校420人载至目的地.该校有几种租车方案?哪种租车方案最省钱?(3)在这次活动中,学校除租用A,B两型客车外,又派出甲、乙两辆器材运输车.已知从学校到夏令营目的地的路程为300千米,甲车从学校出发0.5小时后,乙车才从学校出发,却比甲车早0.5小时到达目的地.如图是两车离开学校的路程s(千米)与甲车行驶的时间t(小时)之间的函数图象.根据图象信息,求甲、乙两车第一次相遇后,t为何值时两车相距25千米.第12题图参考答案1.(2023·鄂州)象棋起源于中国,中国象棋文化历史悠久.如图所示是某次对弈的残图,如果建立平面直角坐标系,使棋子“帅”位于点(-2,-1)的位置,则在同一坐标系下,经过棋子“帅”和“马”所在的点的一次函数解析式为 ( A)第1题图A.y=x+1 B.y=x-1C.y=2x+1 D.y=2x-12.(2023·无锡)将函数y=2x+1的图象向下平移2个单位长度,所得图象对应的函数表达式是( A)A.y=2x-1 B.y=2x+3C.y=4x-3 D.y=4x+53.(2023·兰州)一次函数y=kx-1的函数值y随x的增大而减小,当x=2时,y的值可以是( D)A.2 B.1 C.-1 D.-24.(2023·陕西)在同一平面直角坐标系中,函数y=ax和y=x+a(a为常数,a<0)的图象可能是( D)A BC D5.(2023·荆州)如图,直线y =-32x +3分别与x 轴,y 轴交于点A ,B ,将△OAB绕着点A 顺时针旋转90°得到△CAD,则点B 的对应点D 的坐标是( C )第5题图A .(2,5)B .(3,5)C .(5,2)D .(13,2)6.(2023·苏州)已知一次函数y =kx +b 的图象经过点(1,3)和(-1,2),则k 2-b 2=-6.7.(2023·天津)若直线y =x 向上平移3个单位长度后经过点(2,m),则m 的值为5.8.(2023·南充)如图,直线y =kx -2k +3(k 为常数,k <0)与x ,y 轴分别交于点A ,B ,则2OA +3OB的值是1.第8题图9.(2023·迎江区三模)如图,直线y =kx +b 与直线y =-x 相交于点A ,则关于x 的不等式0<-x <kx +b 的解集为-2<x <0.第9题图10.(2022·东营改编)如图,△AB 1A 1,△A 1B 2A 2,△A 2B 3A 3,…,是等边三角形,直线y =33x +2经过它们的顶点A ,A 1,A 2,A 3,…,点B 1,B 2,B 3,…,在x 轴上,则点A 2 024的横坐标是(22 025-2)3.第10题图11.(2023·眉山)如图,在平面直角坐标系xOy 中,点B 的坐标为(-8,6),过点B 分别作x 轴,y 轴的垂线,垂足分别为点C ,点A ,直线y =-2x -6与AB 交于点D ,与y 轴交于点E ,动点M 在线段BC 上,动点N 在直线y =-2x -6上,若△AMN 是以点N 为直角顶点的等腰直角三角形,则点M 的坐标为(-8,6)或(-8,23).第11题图12.(2023·绥化)某校组织师生参加夏令营活动,现准备租用A ,B 两型客车(每种型号的客车至少租用一辆).A 型车每辆租金500元,B 型车每辆租金600元.若5辆A 型和2辆B 型车坐满后共载客310人;3辆A 型和4辆B 型车坐满后共载客340人.(1)每辆A 型车、B 型车坐满后各载客多少人?(2)若该校计划租用A 型和B 型两种客车共10辆,总租金不高于5 500元,并将全校420人载至目的地.该校有几种租车方案?哪种租车方案最省钱? (3)在这次活动中,学校除租用A ,B 两型客车外,又派出甲、乙两辆器材运输车.已知从学校到夏令营目的地的路程为300千米,甲车从学校出发0.5小时后,乙车才从学校出发,却比甲车早0.5小时到达目的地.如图是两车离开学校的路程s(千米)与甲车行驶的时间t(小时)之间的函数图象.根据图象信息,求甲、乙两车第一次相遇后,t 为何值时两车相距25千米.第12题图解:(1)设每辆A 型车坐满后载客x 人,每辆B 型车坐满后载客y 人根据题意,得⎩⎪⎨⎪⎧5x +2y =310,3x +4y =340,解得⎩⎪⎨⎪⎧x =40,y =55,∴每辆A 型车坐满后载客40人,每辆B 型车坐满后载客55人; (2)设租用A 型车m 辆,则租用B 型车(10-m)辆 由题意,得⎩⎪⎨⎪⎧500m +600(10-m )≤5 500,40m +55(10-m )≥420, 解得5≤m ≤823∵m 是正整数 ∴m 可取5,6,7,8 ∴共有4种方案 设总租金为w 元根据题意,得w =500m +600(10-m)=-100m +6 000 ∵-100<0∴w 随m 的增大而减小∴m =8时,w 最小为-100×8+6 000=5 200(元); ∴租用A 型车8辆,租用B 型车2辆最省钱; (3)设s 甲=kt ,把(4,300)代入,得 300=4k 解得k =75 ∴s 甲=75t设s 乙=k 1t +b ,把(0.5,0),(3.5,300)代入,得⎩⎪⎨⎪⎧0.5k 1+b =0,3.5k 1+b =300, 解得⎩⎪⎨⎪⎧k 1=100,b =-50,∴s 乙=100t -50∵两车第一次相遇后,相距25千米 ∴100t -50-75t =25或300-75t =25解得t =3或t =113∴在甲乙两车第一次相遇后,当t =3小时或113小时时,两车相距25千米.。
中考数学一轮复习《一次函数》专项练习题-附含答案
中考数学一轮复习《一次函数》专项练习题-附含答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.点P(1,3)在正比例函数y=kx(k≠0)的图象上,则k的值为()A.13B.2 C.3 D.42.直线y=x−1的图象大致是()A.B.C.D.3.对于函数y=3x,下列说法不正确的是()A.该函数是正比例函数B.该函数图象过点(1,2)C.该函数图象经过一、三象限D.y随着x的增大而增大4.对于一次函数y=﹣2x+4,当﹣2≤x≤4时,函数y的取值范围是()A.﹣4≤y≤16 B.4≤y≤8 C.﹣8≤y≤4 D.﹣4≤y≤85.将一次函数y=2x+4的图像向右平移5个单位后,所得的直线与两坐标轴围成的三角形的面积是()A.4 B.6 C.9 D.496.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间x(时)之间的函数关系式为()A.y=40x+5B.y=5x+40C.y=5x−40D.y=40−5x7.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<32B.x<3 C.x>32D.x>38.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA和折线BCD分别表示两车离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.则下列说法正确的是()A.两车同时到达乙地B.轿车行驶1.3小时时进行了提速C.货车出发3小时后,轿车追上货车D.两车在前80千米的速度相等二、填空题9.一次函数y=2x的图象向上平移个单位后经过点A(−2,−1).10.若一次函数y=(k+1)x+2k−4的图象经过第一、三、四象限,则k的取值范围是.11.已知正比例函数y=kx与反比例函数y=3x的图象没有交点,写出一个符合条件的k的值为.12.如图,函数y1=mx,y2=x+3的图象相交于点A(−1,2),则关于x的不等式−2<x+3≤mx的解集是.13.如图,在平面直角坐标系xOy中,已知直线y=ax+b和直线y=kx交于点P(1,2),若关于x、y的二元一次方程组{y=kxy=ax+b的解为x、y,则x+y=.三、解答题14.如图,一次函数y1=kx+b的图象交x轴于点B,OB=12并与一次函数y2=−x+4的图象交于点A,点A的横坐标为1.(1)求一次函数y1=kx+b的解析式.(2)请直接写出kx+b>−x+4时自变量x的取值范围.15.A,B两地距离24km,甲、乙两人同时从A地出发前往B地.甲先匀速慢走2h,而后匀速慢跑;乙始终保持匀速快走,设运动时间为x(单位:h).甲、乙距离A地的路程分别为y1,y2(单位:km)y1,y2分别与x的函数关系如图所示.(1)求y1关于x的函数解析式;(2)相遇前,是否存在甲、乙两人相距1km的时刻?若存在,求运动时间;若不存在,请说明理由.16.如图,一次函数y1=x+m的图象与y轴交于点B,与正比例函数y2=3x的图象交于点A(1,3).(1)求△ABO的面积;(2)利用函数图象直接写出当y1>y2时,x的取值范围.17.为了学生的身体健康,学校课桌、凳的高度都是按照一定的关系科学设计的,研究表明:课桌的高度与椅子的高度符合一次函数关系,小明测量了一套课桌、椅对应的四档高度,得到数据如下表:档次/高度第一档第二档第三档第四档椅高x/cm 37.040.042.045.0桌高y/cm 68.074.078.0(1)设课桌的高度为y(cm),椅子的高度为x(cm),求y与x的函数关系式;(2)在表格中,有一个数据被污染了,则被污染的数据为;(3)小明放学回到家,又测量了家里的写字台的高度为79cm,凳子的高度为43.5cm,请你判断小明家里的写字台与凳子是否符合科学设计,并说明理由.18.已知直线l为x+y=8,点P(x,y)在l上,且x>0,y>0,点A的坐标为(4,0).(1)设△OAP的面积为S,求S与x的函数关系式,并直接写出x的取值范围;(2)当S=10时,求点P的坐标;(3)在直线l上有一点M,使OM+MA的和最小,求点M的坐标.参考答案1.C2.A3.B4.D5.C6.D7.A8.B9.310.−1<k<211.k=−1(答案不唯一)12.−5<x≤−113.314.(1)解:∵OB=12∴B(−12,0).∵点A的横坐标为1,点A在一次函数y2=−x+4的图象上∴x=1时y=3,即A(1,3).将A(1,3),B(−12,0)代入,得{−12k+b=0k+b=3,解得{k=2b=1∴一次函数的解析式为y1=2x+1(2)解:由图象可知,当x>1时,直线y1=kx+b在直线y=−x+4的上方∴kx+b>−x+4时自变量x的取值范围为x>115.(1)解:当0≤x<2时,设y1=kx,把(2,8)代入得:2k=8解得k=4∴y1=4x当x≥2时,设y1=kx+b把(2,8)(3,16)代入得:{2k+b=83k+b=16解得{k =8b =−8∴y 1=8x-8∴y 1关于x 的函数解析式为y 1={4x(0≤x <2)8x −8(x ≥2)(2)解:∵乙3小时运动16千米,乙的速度是163千米/小时 ∴y 2=163x当163x −4x =1时,解得x =34<3 当163x −(8x −8)=1时,解得x =218<3;答:相遇前,存在甲、乙两人相距1km 的时刻,运动时间为34小时或218小时 16.(1)解:∵一次函数 y 1=x +m 的图象过点 A(1,3) ∴3=1+m ∴m =2∴一次函数的表达式为 y 1=x +2 . 当 x =0 时 ∴B(0,2)∴S △ABO =12×2×1=1 .(2)当 y 1>y 2 时, x 的取值范围为 x <117.(1)解:由课桌的高度与椅子的高度符合一次函数关系,设y =kx +b ∵y =kx +b 过点(37.0,68.0)和(40.0,74.0) ∴{68=37k +b74=40k +b 解得{k =2b =−6∴y 与x 的函数关系式y =2x −6 (2)84.0(3)解:小明家里的写字台与凳子不符合科学设计,理由如下∶ 当x =43.5时,y =2×43.5−6=81≠79 ∴小明家里的写字台与凳子不符合科学设计. 18.(1)解:∵点A 的坐标为(4,0) ∴OA =4∵直线l 为x +y =8∴直线l 的解析式为y =−x +8 ∴当y =0时x =8; ∵S =12OA ⋅|y P |,y p >0∴S =2|−x +8|=2(−x +8)=−2x +16 ∴S =−2x +16(0<x <8)(2)解:当S =10时,则−2x +16=10 ∴x =3 ∴−x +8=5 ∴P(3,5);(3)解:作点O 关于直线l 的对称点G ,连接GM ,GD ,AG ,设直线l 与x 轴,y 轴分别交于D 、C ,∴D(8,0),C(0,8) ∴OC =OD =8 ∴∠ODC =45°由对称性可知GD =OD =8,∠GDC =∠ODC =45°,OM =GM ∴∠ODG =90° ∴G(8,8)∵OM +MA =GM +MA∴当A 、M 、G 三点共线时GM +MA 最小,即此时OM +MA 最小,则点M 即为直线AG 与直线l 的交点 设直线AG 的解析式为y =kx +b ∴{8k +b =84k +b =0 ∴{k =2b =−8∴直线AG 的解析式为y =2x −8 联立{y =2x −8y =−x +8,解得{x =163y =83∴M(163,83).。
中考数学《一次函数》专项练习题及答案
中考数学《一次函数》专项练习题及答案一、单选题1.已知二次函数y=ax2+bx+c的部分函数图象如图所示,则一次函数y=ax+b2−4ac与反比例函数y=4a+2b+cx在同一平面直角坐标系中的图象大致是()A.B.C.D.2.已知一次函数y=kx−k的图象过点(−3,4),则下列结论正确的是()A.y随x增大而增大B.k=1C.直线过点(1,0)D.直线过原点3.如图,正比例函数y1=−2x与一次函数y2=ax+3的图象相交于点A(−1,m),则关于x 的不等式−2x>ax+3的解集是()A.x>2B.x<2C.x>−1D.x<−14.如图,若一次函数y1=x+a与一次函数y2=kx+b的图象交于点P(1,3),则关于x的不等式x+a≤kx+b的解集为()A.x≤1B.x≥1C.x≤0D.x≥35.已知y1=2x﹣5,y2=﹣2x+3,如果y1<y2,则x的取值范围是()A.x>2B.x<2C.x>﹣2 D.x<﹣26.如图,一次函数y=kx+b的图象与正比例函数y=2x的图象相交于点A,则不等式0<2x<kx+b的解集是()A.x<1 B.x<0或x>1C.0<x<1D.x>17.已知:抛物线y=−x2−4x+5与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.平行于x轴的直线l与该抛物线交于点D(x1,y1),E(x2,y2),与线段AC交于点F(x3,y3),令g=x3x1+x2,则g的取值范围是()A.0≤g≤52B.−52≤g≤0C.0≤g≤54D.−54≤g≤08.如果一元一次方程3x﹣b=0的根x=2,那么一次函数y=3x﹣b的图象一定过点()A.(0,2)B.(2,0)C.(﹣2,0)D.(0,﹣2)9.如图是一次函数y=-32x+3的图象,当-3<y<3时,x的取值范围是( )A.x>4B.0<x<2C.0<x<4D.2<x<410.一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集是()A.x>﹣2B.x<﹣2 C.x>﹣4 D.x<﹣411.下列变量之间关系中,一个变量是另一个变量的正比例函数的是()A.正方形的周长C随着边长x的变化而变化B.正方形的面积S随着边长x的变化而变化C.面积为20的三角形的一边a随着这边上的高h的变化而变化D.水箱以0.5L/min的流量往外放水,水箱中的剩水量VL随着放水时间tmin的变化而变化12.为了响应“绿水青山就是金山银山”的号召,建设生态文明,某工厂自2019年1月开始限产并进行治污改造,其月利润y(万元)与月份x之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的部分,下列选项错误的是()A.4月份的利润为50万元B.污改造完成后每月利润比前一个月增加30万元C.治污改造完成前后共有4个月的利润低于100万元D.9月份该厂利润达到200万元二、填空题13.某地市话的收费标准为:(1)通话时间在3分钟以内(包括3分钟)话费0.3元;通话时间超过3分钟时,超过部分的话费按每分钟0.11元计算.在一次通话中,如果通话时间超过3分钟,那么话费y(元)与通话时间x(分)之间的关系式为.14.一次函数y=kx+b的图象如图所示,当x>0时,y的取值范围为.15.一个正方形的边长为3 cm,它的边长减少xcm后,得到新正方形的周长为y,y与x之间的函数表达式为.16.若函数y=kx+b的图象平行于直线y=2x,且过点(2,﹣4),则该函数的表达式是.17.一次函数y=2x-6的图象与坐标轴围成的三角形面积为。
中考数学专项复习《一次函数》练习题及答案
中考数学专项复习《一次函数》练习题及答案一、单选题1.如图,在一次函数y=﹣x+10的图象上取一点P,作PA⊥x轴,PB⊥y轴,垂足为B,且矩形PBOA的面积为9,则这样的点P个数共有()A.1个B.2个C.3个D.4个2.在同一坐标系内,函数y=kx2和y=kx+2(k≠0)的图象大致如图()A.B.C.D.3.有甲、乙两个不同的水箱,容量分别为a升和b升,且已各装了一些水.若将甲中的水全倒入乙箱之后,乙箱还可以继续装20升水才会满;若将乙箱中的水倒入甲箱,装满甲箱后,乙箱里还剩10升水,则a,b之间的数量关系是()A.b=a+15B.b=a+20C.b=a+30D.b=a+404.关于一次函数y=5x-3的描述,下列说法正确的是()A.图象经过第一、二、三象限B.向下平移3个单位长度,可得到y=5xC.y随x的增大而增大D.图象经过点(-3,0)5.已知函数y=kx(k≠0)的大致图象如图所示,则函数y=kx-k的图象大致是()A.B.C.D.6.防汛期间,下表记录了某水库16h内水位的变化情况,其中x表示时间(单位:h),y表示水位高度(单位:m),当x=8h时,达到警戒水位,开始开闸放水,此时,y与xx/h012810121416y/m1414.5151814.412119)A.第1小时B.第10小时C.第14小时D.第16小时7.若点P(2,4)在正比例函数y=kx的图象上,则下列各点在此函数图象上的是()A.(−3,4)B.(−2,−4)C.(0.5,4)D.(1,5)8.已知直线y=kx+b(k≠0)与x轴的交点在x轴的正半轴,下列结论:①k>0,b>0;②k>0,b<0;③k<0,b>0;④k<0,b<0.其中正确的结论的个数是()A.1B.2C.3D.49.下列y关于x的函数中是正比例函数的为()A.y=x2B.y=2x C.y=x2D.y=x+1210.如图,一次函数y=kx+b与y=﹣x+4的图象相交于点P(m,1),则关于x、y的二元一次方程组{y=kx+by=−x+4的解是()A .{x =3y =1B .{x =2.6y =1C .{x =2y =1D .{x =1y =111.关于函数y=ax 2和函数y=ax+a (a≠0)在同一坐标系中的图象,A ,B ,C ,D 四位同学各画了一种,你认为可能画对的图象是( )A .B .C .D .12.已知一次函数y=kx ﹣k 与反比例函数 y =k x在同一直角坐标系中的大致图象是( )A .B .C .D .二、填空题13.如图,直线y =kx −3与x 轴、y 轴分别交于点B 与点A ,OB =13OA ,点C 是直线AB 上的一点,且位于第二象限,当⊥OBC 的面积为3时,点C 的坐标为 .14.如图,直线y=kx+b(k>0)与x轴的交点为(﹣2,0),则关于x的不等式kx+b<0的解集是.15.若直线y=kx+b平行直线y=3x+4,且过点(1,﹣2),则直线的关系式为.16.若函数y=−x+3与y=2x+b的图象相交于x轴上的一点,则b的值为.17.在平面直角坐标系中将直线y=x+2沿着y轴向下平移3个单位长度,平移后的直线所对应的函数解析式为.18.某自行车存车处在星期日的存车为4000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元,若普通车存车数为x辆次,存车总收入y(元)与x的函数关系式是.三、综合题19.作出函数y=2x+6的图象并回答:(1)x取何值时,y=0;(2)x取何值时,y>0?(3)x取何值时,y<0?20.某家电集团公司研制生产的新家电,前期投资200万元,每生产一台这种新家电,后期还需投资0.3万元,已知每台新家电售价为0.5万元.设总投资为P万元,总利润为Q万元(总利润=总产值-总投资),新家电总产量为x台.(假设可按售价全部卖出)(1)试用x的代数式表示P和Q;(2)当总产量达到900台时,该公司能否盈利?(3)当总产量达到多少台时,该公司开始盈利?21.如图所示,已知二次函数y1=−x2+2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,与y轴的交点为点C.(1)求m的值;(2)若经过点B的一次函数y2=kx+b平分⊥ABC的面积.求k、b的值.22.阅读下列材料:实验数据显示,一般成人喝250毫升低度白酒后,其血液中酒精含量(毫克/百毫升)随时间的增加逐步增高达到峰值,之后血液中酒精含量随时间的增加逐渐降低.小带根据相关数据和学习函数的经验,对血液中酒精含量随时间变化的规律进行了探究,发现血液中酒精含量y是时间x的函数,其中y表示血液中酒精含量(毫克/百毫升),x表示饮酒后的时间(小时).下表记录了6小时内11个时间点血液中酒精含量y(毫克/百毫升)随饮酒后的时间x(小时)(x >0)的变化情况.下面是小带的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中以上表中各对数值为坐标描点,图中已给出部分点,请你描出剩余的点,画出血液中酒精含量y随时间x变化的函数图象;(2)观察表中数据及图象可发现此函数图象在直线x=32两侧可以用不同的函数表达式表示,请你任选其中一部分写出表达式;(3)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:30在家喝完250毫升低度白酒,第二天早上7:00能否驾车去上班?请说明理由.23.在平面直角坐标系xOy中直线l1:y1=kx+b与直线y=2x平行,且经过点(1,0).(1)求直线l1的解析式;(2)已知直线l2:y2=mx+1,过点p(n,0)作x轴的垂线,与直线l1交于点M,与直线l2交于点N.结合图象回答:①若m=1,当点M在点N的上方时,直接写出n的取值范围;②若对任意的n>2,都有点M在点N的上方,直接写出m的取值范围.24.如图,已知直线y=﹣2x+12分别与Y轴,X轴交于A,B两点,点M在Y轴上,以点M为圆心的⊥M与直线AB相切于点D,连接MD.(1)求证:⊥ADM⊥⊥AOB;(2)如果⊥M的半径为2 √5,请写出点M的坐标,并写出以(﹣52,292)为顶点,且过点M的抛物线的解析式;(3)在(2)条件下,试问在此抛物线上是否存在点P使以P、A、M三点为顶点的三角形与⊥AOB相似?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.参考答案1.【答案】D2.【答案】D3.【答案】C4.【答案】C5.【答案】A6.【答案】C7.【答案】B8.【答案】B9.【答案】C10.【答案】A11.【答案】D12.【答案】B13.【答案】(−3,6)14.【答案】x<﹣215.【答案】y=3x﹣316.【答案】-617.【答案】y=x-118.【答案】y=-0.1x+120019.【答案】(1)解答: 由图象得:x=-3时,y=0;(2)解答:y=2x+6>0,解x>-3当x>-3时,y>0;(3)解答:y=2x+6<0,解x<-3当x<-3时,y<0.20.【答案】(1)解:P=200+0.3x,Q=0.5x-(200+0.3x)=0.2 x-200.(2)解:当x=900时即当总产量达到900台时,没有盈利,亏了20万元.(3)解:当Q >0时,开始盈利,即0.2x −200>0,解得x >1000 当总产量超过1000台时,公司开始盈利.21.【答案】(1)解:∵ 二次函数y 1=−x 2+2x +m 的图象与x 轴的一个交点为A (3,0)∴0=−9+6+m ∴ m=3; (2)解:如图∵一次函数y 2=kx +b 平分⊥ABC 的面积 ∴一次函数y 2=kx +b 平分线段AC ∴ 一次函数y 2=kx +b 经过AC 的中点E ∵m=3∴−x 2+2x +3=0时,解得x 1=−1 x 2=3 ∴ 点B 的坐标为B (-1,0) 当x =0时,y =3∴ 点C 的坐标为C (0,3) ∴ 点E 的坐标为E (32,32)∵ 一次函数y 2=kx +b 经过点B ∴{0=−k +b32=32k +b 解得:{k =35b =3522.【答案】(1)解:图象如图所示.(2)解:y=-200x2+400x(0≤x≤ 32)或y=225x(x> 32)(3)解:不能.理由如下:把y=20代入反比例函数y=225x得x=11.25.∵晚上20:30经过11.25小时为第二天早上7:45∴第二天早上7:45以后才可以驾车上路∴第二天早上7:00不能驾车去上班23.【答案】(1)解:∵直线l1:y1=kx+b与直线y=2x平行∴k=2把点(1,0)代入直线y=2x+b中得到0=2+b解得b=−2∴直线l1的解析式为y=2x−2;(2)解:如图①若m=1,则直线l2:y2=x+1联立{y=x+1y=2x−2解得{x=3y=4由图象可知当n>3时,点M在点N的上方;②把x=2代入y=2x−2求得y=2把x=2,y=2代入y=mx+1得解得m=1 2∴若对任意的n>2,都有点M在点N的上方,m的取值范围是m⩽12.24.【答案】(1)证明:∵AB是⊥M切线,D是切点∴MD⊥AB.∴⊥MDA=⊥AOB=90°又⊥MAD=⊥BAO∴⊥ADM⊥⊥AOB(2)解:设M(0,m)由直线y=2x+12得,OA=12,OB=6则AM=12﹣m,而DM=2 √5在Rt⊥AOB中AB= √OA2+OB2= √122+62=6 √5∵⊥ADM⊥⊥AOB∴AMDM=ABOB即2√5= 6√56,解得m=2∴M(0,2)设顶点为(﹣52,292)的抛物线解析式为y=a(x+52)2+ 292将M点坐标代入,得a(0+ 52)2+ 292=2解得a=﹣2所以,抛物线解析式为y=﹣2(x+ 52)2+ 292(3)解:存在.①当顶点M为直角顶点时,M、P两点关于抛物线对称轴x=﹣52轴对称此时MP=5,AM=12﹣2=10,AM:MP=2:1,符合题意∴P(﹣5,2);②当顶点A为直角顶点时,P点纵坐标为12,代入抛物线解析式,得﹣2(x+ 52)2+ 292=12解得x=﹣52± √52,此时AP=﹣52± √52,AM=10,不符合题意;③当顶点P为直角顶点时,则由相似三角形的性质可知,P(n,﹣2n+2 )或(2n,﹣n+2)若P(n,2n+2),则﹣2n﹣12n=10,解得n=﹣4,当x=﹣4,y=﹣2(﹣4+52)2+292=10,﹣2n+2=10,符合题意若P(2n,﹣n+2),则﹣n﹣4n=10,解得n=﹣2,而当x=2n=﹣4时,y=﹣2(﹣4+ 52)2+292=10,﹣n+2=4,不符合题意所以,符合条件的P点坐标为(5,2),(4,10).。
中考数学《一次函数》专题训练及答案
中考数学《一次函数》专题训练及答案一、单选题1.已知M(1,2),N(3,-3),P(x,y)三点可以确定一个圆,则以下P点坐标不满足要求的是()A.(3,5)B.(-3,5)C.(1,2)D.(1,-2)2.一次函数y=ax+b与二次函数y=ax2+bx+c在同一直角坐标系中的图象可能是()A.B.C.D.3.若函数y=kx的图象经过(1,-2)点,那么它一定经过()A.(2,-1)B.( −12,1)C.(-2,1)D.(-1,12)4.两条直线y1=mx﹣n与y2=nx﹣m在同一坐标系中的图象可能是图中的()A.B.C.D.5.满足k>0,b=13的一次函数y=kx+b的图象大致是()A.B.C .D .6.一次函数 y =kx +b , k <0 , b >0 ,那么它的图像不经过( )A .第一象限B .第二象限C .第三象限D .第四象限7.两条直线y=k 1x+b 1和y=k 2x+b 2相交于点A (﹣2,3),则方程组 {y =k 1x +b 1y =k 2x +b 2的解是( )A .{x =2y =3B .{x =−2y =3C .{x =3y =−2D .{x =3y =28.已知P 1(x 1,y 1),P 2(x 2,y 2)是一次函数y =﹣ 23x+5图象上的两个点,且x 1<x 2,则y 1与y 2的大小关系是( ) A .y 1=y 2B .y 1<y 2C .y 1>y 2D .无法确定9.如图所示,l 1反映了某公司销售一种医疗器械的销售收入y 1(万元)与销售量x(台)之间的关系,l 2反映了该公司销售该种医疗器械的销售成本y 2(万元)与销售量x(台)之间的关系.当销售收入大于销售成本时,该医疗器械才开始赢利.根据图象,则下列判断错误的是( )A .当销售量为4台时,该公司赢利4万元B .当销售量多于4台时,该公司才开始赢利C .当销售量为2台时,该公司亏本1万元D .当销售量为6台时,该公司赢利1万元10.正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图象大致是()A.B.C.D.11.已知一次函数y=x+b的图象经过第一、二、三象限,则b的值可以是().A.-2B.-1C.0D.212.若变量y与x成正比例,变量x又与z成反比例,则y与z的关系是()A.成反比例B.成正比例C.y与z2成正比例D.y与z2成反比例二、填空题13.若直线y=k2x−2与直线y=4x+k没有交点,则k=.14.一次函数y=kx+b的图象经过点(1,5),交y轴于(0,3),则k=,b=. 15.某工程队承建30km的管道铺设,工期60天,施工x天后剩余管道y km,则y与x的关系式为.16.已知:如图,在平面直角坐标系xOy中,一次函数y=34x+3的图象与x轴和y轴交于A、B两点将△AOB绕点O顺时针旋转90°后得到△A′OB′则直线A′B′的解析式是.17.将直线y=(k+1)x﹣2平移能和直线y=﹣3x重合,那么k的值是.18.若点P1(3,y1)、P2(√10,y2)在一次函数y=2x﹣1的图象上,则y1y2(填大小关系).三、综合题19.如图,直线OA和直线AB的交点坐标为A(8,6),B为直线AB与y轴交点,且OA=2OB.(1)求直线OA和直线AB的函数解析式;(2)求△AOB的面积.20.如图,抛物线y=−x2+2x+3与x轴交于A,B两点,交y轴于点C,点M抛物线的顶点.(1)连接BC,求BC与对称轴MN的交点D坐标.(2)点E是对称轴上的一个动点,求OE+CE的最小值.21.某学校计划购A、B两种树苗共500株用来绿化校园,A种树苗每株25元,B种树苗每株30元,经调查了解,A、B两种树苗的成活率分别是93%和97%.(1)若购买这两种树苗共用去14000元,则A、B两种树苗各购买多少株?(2)为确保这批树苗的总成活率不低于95%,则A种树苗最多购买多少株?(3)在(2)的条件下,应如何购买树苗,使购买树苗的费用最低?并求出最低费用.22.某商店以40元/千克的单价新进一批茶叶,经调查发现,在一段时间内,销售量y (千克)与销售单价x (元/千克)之间的函数关系如图所示.(1)根据图象,求y与x的函数表达式;(2)当销售单价为80元/千克时,商店的利润是多少?23.在平面直角坐标系xOy中,函数y=k x(x>0)的图象与直线y=mx交于点A(2,2).(1)求k,m的值;(2)点P的横坐标为n(n>0),且在直线y=mx上,过点P作平行于x轴的直线,交y轴于点M,交函数y=kx(x>0)的图象于点N.①n=1时,用等式表示线段PM与PN的数量关系,并说明理由;②若PN≥3PM,结合函数的图象,直接写出n的取值范围.24.某通讯公司推出A、B两种手机话费套餐,这两种套餐每月都有一定的固定费用和免费通话时间,超过免费通话时间的部分收费标准为:A套餐a元/分,B套餐b元/分,使用A、B两种套餐的通话费用y(元)与通话时间x(分)之间的函数图象如图所示.(1)当手机通话时间为50分钟时,写出A、B两种套餐的通话费用.(2)求a,b的值.(3)当选择B种套餐比A种套餐更合算时,求通话时间x的取值范围.参考答案1.【答案】C 2.【答案】B 3.【答案】B 4.【答案】B 5.【答案】A 6.【答案】C 7.【答案】B 8.【答案】C 9.【答案】A 10.【答案】D 11.【答案】D 12.【答案】A 13.【答案】2 14.【答案】2;315.【答案】y=30-0.5x (0≤x≤60) 16.【答案】y =−43x +417.【答案】-4 18.【答案】<19.【答案】(1)解:设直线OA 的解析式为y =ax把A (8,6)代入得6=8a ∴a =34∴直线OA 为y =34x∵A (8,6) ∴OA =√82+62=10 ∵OA =2OB ∴OB =5 ∴B (0,﹣5)设直线AB 的解析式为y =kx ﹣5 代入A 的坐标得,6=8k ﹣5 ∴k =118∴直线AB 为y =118x ﹣5;(2)解:∵ A (8,6), B (0,﹣5) ∴ OB =5∴S △AOB =12OB ·xA =12×5×8=20.20.【答案】(1)解:对于二次函数 y =−x 2+2x +3当 y =0 时, −x 2+2x +3=0 ,解得 x =−1 或 x =3 则 A(−1,0),B(3,0)当 x =0 时, y =3 ,则 C(0,3)二次函数 y =−x 2+2x +3 化成顶点式为 y =−(x −1)2+4 则二次函数的对称轴为 x =1∵ 点D 为BC 与二次函数的对称轴的交点 ∴ 点D 的横坐标为1设直线BC 的函数解析式为 y =kx +b将点 B(3,0),C(0,3) 代入得: {3k +b =0b =3 ,解得 {k =−1b =3则直线BC 的函数解析式为 y =−x +3 将 x =1 代入得: y =−1+3=2 即点D 的坐标为 D(1,2) ;(2)解:如图,作点C 关于对称轴MN 的对称点 C ′ ,连接 C ′E由二次函数的对称性得:点 C ′ 一定在此二次函数的图象上,其纵坐标与点C 的纵坐标相同,且 C ′E =CE则 OE +CE =OE +C ′E由两点之间线段最短得:当点 O ,E ,C ′ 共线时, OE +C ′E 取最小值,最小值为 OC ′ 设点 C ′ 的坐标为 C ′(a ,3)∵二次函数的对称轴为x=1,点C的坐标为C(0,3)∴0+a2=1解得a=2,即C′(2,3)则最小值OC′=√(2−0)2+(3−0)2=√13故OE+CE的最小值为√13.21.【答案】(1)解:设购甲种树苗x株,乙种树苗y株,由题意,得{x+y=50025x+30y=14000解得:{x=200y=300.答:购甲种树苗200株,乙种树苗300株;(2)解:购买甲种树苗a株,则购买乙种树苗(500−a)株,由题意,得93%a+97%(500−a)≥95%×500解得:a≤250.答:甲种树苗最多购买250株;(3)解:设购买树苗的总费用为W元,购买甲种树苗a株,由题意,得W=25a+30(500−a)=−5a+15000.∵a=−5<0∴W随a的增大而减小∵0<a≤250∴当a=250时,W最小=13750元.∴购买甲种树苗250株,乙种树苗250株时总费用最低,最低费用为13750元.22.【答案】(1)解:设y与x的函数关系式为y=kx+b将(40,160),(120,0)代入,得{40k+b=160120k+b=0,解得{k=−2b=240所以y与x的函数关系式为y=-2x+240(40≤x≤120);(2)解:当销售单价为80元/千克时,销售量y=-160+240=80千克,商店的利润是(80-40)×80=3200元.23.【答案】(1)解:∵ y=kx(x>0)的图象与直线y=mx交于点A(2,2)∴ k=2×2=4,2=2m∴ m=1即k=4,m=1;(2)解:①由(1)知,k=4,m=1∴ 双曲线的解析式为y=4x ,直线OA 的解析式为y=x∵ n=1 ∴ P (1,1) ∵ PM//x 轴∴ M (0,1),N (4,1) ∴ PM=1,PM=4﹣1=3 ∴ PN=3PM ; ②0<n≤1.24.【答案】(1)解:由图象可知,当手机通话时间为50分钟时,A 、B 两种套餐的通话费用分别为10元、20元;(2)解:a= 25−10150−75 =0.2,b= 47−20300−150 =0.18所以,a ,b 的值分别是0.2,0.18;(3)解:A 种套餐超过免费时间y 与x 的函数关系式为y=0.2x ﹣5(x >75) 由图象可知,当75<x <150时,若A 、B 两种套餐的通话费相同,则0.2x ﹣5=20 解得x=125∴当x >125时,选择B 种套餐更合算.。
中考数学总复习《一次函数》专项提升练习题(附答案)
中考数学总复习《一次函数》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________命题点1一次函数的图象与性质 1(2022株洲)在平面直角坐标系中,一次函数y=5x+1的图象与y 轴的交点的坐标为( )A.(0,-1)B.(-15,0) C.(15,0) D.(0,1) 2(2022凉山州)一次函数y=3x+b (b ≥0)的图象一定不经过 ( )A.第一象限B.第二象限C.第三象限 D .第四象限3(2022广安)在平面直角坐标系中,将函数y=3x+2的图象向下平移3个单位长度,所得的函数的解析式是( )A.y=3x+5B.y=3x-5C.y=3x+1D.y=3x-1 4(2022邵阳)在直角坐标系中,已知点A (32,m ),点B (√72,n )是直线y=kx+b (k<0)上的两点,则m ,n 的大小关系是( )A .m<nB .m>nC .m ≥nD .m ≤n5(2022抚顺)如图,在同一平面直角坐标系中,一次函数y=k 1x+b 1与y=k 2x+b 2的图象分别为直线l 1和直线l 2,下列结论正确的是( )A.k 1·k 2<0B.k 1+k 2<0C.b 1-b 2<0D.b 1·b 2<06(2022河南)请写出一个y 随x 的增大而增大的一次函数的表达式: . 7(2022德阳)如图,已知点A (-2,3),B (2,1),直线y=kx+k 经过点P (-1,0).试探究:直线与线段AB 有交点时k 的变化情况,猜想k 的取值范围是 .8(2022北京)在平面直角坐标系xOy 中,函数y=kx+b (k ≠0)的图象过点(4,3),(-2,0),且与y 轴交于点A.(1)求该函数的解析式及点A 的坐标;(2)当x>0时,对于x 的每一个值,函数y=x+n 的值大于函数y=kx+b (k ≠0)的值,直接写出n 的取值范围.命题点2一次函数与方程、不等式结合9(2022陕西)在同一平面直角坐标系中,直线y=-x+4与y=2x+m 相交于点P (3,n ),则关于x ,y 的方程组{x +y -4=0,2x -y +m =0的解为 ( )A.{x =−1,y =5B.{x =1,y =3C.{x =3,y =1D.{x =9,y =−5 10(2022鄂州)数形结合是解决数学问题常用的思想方法.如图,一次函数y=kx+b (k ,b 为常数,且k<0)的图象与直线y=13x 都经过点A (3,1),当kx+b<13x 时,根据图象可知,x 的取值范围是( )A.x>3B.x<3C.x<1D.x>111(2021嘉兴)已知点P (a ,b )在直线y=-3x-4上,且2a-5b ≤0,则下列不等式一定成立的是( )A.a b ≤52B.a b ≥52C.b a ≥25D.b a ≤25命题点3一次函数的实际应用 角度1行程问题12(2021陕西)在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1 min 后,“猫”从同一起点出发去追“鼠”,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回.“鼠”“猫”距起点的距离y (m)与时间x (min)之间的关系如图所示.(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是m/min;(2)求AB的函数表达式;(3)求“猫”从起点出发到返回至起点所用的时间.13(2022湖州)某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/时,轿车行驶的速度是60千米/时.(1)轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB,AB分别表示大巴、轿车离开学校的路程s(千米)与大巴行驶的时间t(小时)的函数关系的图象.试求点B的坐标和AB所在直线的解析式.(3)假设大巴出发a小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a的值.角度2方案选取问题14(2021宁波)某通讯公司就手机流量套餐推出三种方案,如下表:A方案B方案C方案每月基本费用/元20 56 266每月免费使用流1 024 m无限量/兆超出后每兆收费/n n元A,B,C三种方案每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系如图所示.(1)请直接写出m,n的值.(2)在A方案中,当每月使用的流量不少于1 024兆时,求每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系式.(3)在这三种方案中,当每月使用的流量超过多少兆时,选择C方案最划算?角度3最值问题15(2022云南)某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍,怎样购买,才能使总费用W最少?并求出最少费用.16(2022福建)在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰, 问可购买绿萝和吊兰分别多少盆.(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.17(2022南充)南充市被誉为中国绸都,本地某电商销售真丝衬衣和真丝围巾两种商品,它们的进价和售价如下表.用15 000元可购进真丝衬衣50件和真丝围巾25件.(利润=售价-进价)种类真丝衬衣真丝围巾进价/(元/件) a80售价/(元/件) 300 100(1)求真丝衬衣进价a的值.(2)若该电商计划购进真丝衬衣和真丝围巾两种商品共300件,据市场销售分析,真丝围巾进货件数不低于真丝衬衣件数的2倍.如何进货才能使本次销售获得的利润最大?最大利润是多少元?(3)按(2)中最大利润方案进货与销售,在实际销售过程中,当真丝围巾销量达到一半时,为促销并保证销售利润不低于原来最大利润的90%,衬衣售价不变,余下围巾降价销售,每件最多降价多少元?角度4其他问题18(2022哈尔滨)一辆汽车油箱中剩余的油量y(L)与已行驶的路程x(km)的对应关系如图所示,如果这辆汽车每千米的耗油量相同,当油箱中剩余的油量为35 L时,那么该汽车已行驶的路程为()A.150 kmB.165 kmC.125 kmD.350 km19(2022吉林)李强用甲、乙两种具有恒温功能的热水壶同时加热相同质量的水,甲壶比乙壶加热速度快,在一段时间内,水温y(℃)与加热时间x(s)之间近似满足一次函数关系,根据记录的数据,画函数图象如图所示.(1)加热前水温是℃.(2)求乙壶中水温y关于加热时间x的函数解析式.(3)当甲壶中水温刚达到80 ℃时,乙壶中水温是℃.20(2022绍兴)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x表示进水用时(单位:时),y表示水位高度(单位:米).x0 0.5 1 1.5 2y 1 1.5 2 2.5 3为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选(k≠0).择:y=kx+b(k≠0),y=ax2+bx+c(a≠0),y=kx(1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x.命题点4一次函数与几何知识的综合21(2022泸州)如图,在平面直角坐标系xOy 中,矩形OABC 的顶点B 的坐标为(10,4),四边形ABEF 是菱形,且tan ∠ABE=43.若直线l 把矩形OABC 和菱形ABEF 组成的图形的面积分成相等的两部分,则直线l 的解析式为( )A.y=3xB.y=-34x+152 C.y=-2x+11 D .y=-2x+1222(2021扬州)如图,一次函数y=x+√2的图象与x 轴、y 轴分别交于点A ,B ,把直线AB 绕点B 顺时针旋转30°交x 轴于点C ,则线段AC 长为( )A .√6+√2B .3√2C .2+√3D .√3+√223(2021成都)如图,在平面直角坐标系xOy 中,直线y=√33x+2√33与☉O 相交于A ,B 两点,且点A 在x 轴上,则弦AB 的长为 .分类训练7 一次函数1.D 【解析】 当x=0时,y=5x+1=1,故该一次函数图象与y 轴的交点坐标为(0,1).2.D3.D4.A 【解析】 对于一次函数y=kx+b ,∵k<0,∴y 随x 的增大而减小.又∵32>√72,∴m<n.5.D 【解析】 由题图可得k 1>k 2>0,b 1>0>b 2,∴k 1·k 2>0,k 1+k 2>0,b 1-b 2>0,b 1·b 2<0,故选D .6.y=2x+3(答案不唯一)7.k ≤-3或k ≥13 【解析】 当直线y=kx+k 经过点A (-2,3)时,-2k+k=3,解得k=-3;当直线y=kx+k 经过点B (2,1)时,2k+k=1,解得k=13.分析可知,当直线与线段AB 有交点时,k ≤-3或k ≥13.8.【参考答案】 (1)把(4,3),(-2,0)分别代入y=kx+b 得{4k +b =3,-2k +b =0,解得{k =12,b =1,∴该函数的解析式为y=12x+1. 对于y=12x+1,当x=0时,y=1∴A (0,1). (2)n ≥1.解法提示:函数y=12x+1的图象如图所示,易知当直线y=x+n 与y 轴的交点与点A 重合或在点A 上方时符合题意,故n ≥1.9.C 【解析】 把(3,n )代入y=-x+4,可知n=1,故关于x ,y 的方程组{x +y -4=0,2x -y +m =0的解为{x =3,y =1.故选C .10.A11.D 【解析】 ∵点P (a ,b )在直线y=-3x-4上,∴-3a-4=b.又∵2a-5b ≤0,∴2a-5(-3a-4)≤0,解得a ≤-2017.易得a=b+4-3,∴b ≥-817.易知当b=0时,ab 无意义,故A,B 错误.∵2a-5b ≤0,∴2a -5b a≥0,即2-5·b a≥0,∴b a ≤25.故选D .12.【参考答案】 (1)1解法提示:由题图可知,“鼠”的平均速度为30÷6=5(m/min) “猫”的平均速度为30÷(6-1)=6(m/min)故“猫”的平均速度与“鼠”的平均速度的差是6-5=1(m/min).(2)设AB 的函数表达式为y=kx+b (k ≠0),则{30=7k +b ,18=10k +b ,解得{k =−4,b =58,∴y=-4x+58.(3)令y=0,则-4x+58=0,∴x=14.5. 14.5-1=13.5(min)∴“猫”从起点出发到返回至起点所用的时间为13.5 min .13.【参考答案】 (1)设轿车行驶的时间为x 小时,则大巴行驶的时间为(x+1)小时. 根据题意,得60x=40(x+1) 解得x=2则60x=60×2=120.答:轿车出发2小时后追上大巴,此时两车与学校相距120千米. (2)∵轿车追上大巴时,大巴行驶了3小时∴点B 的坐标是(3,120).由题意,得点A 的坐标为(1,0).设AB 所在直线的解析式为s=kt+b则{3k +b =120,k +b =0,解得{k =60,b =−60,∴AB 所在直线的解析式为s=60t-60.(3)由题意,得40(a+1.5)=60×1.5解得a=34 ∴a 的值为34.14.【参考答案】 (1)m=3 072,n=0.3.(2)设函数关系式为y=kx+b (k ≠0)把(1 024,20),(1 144,56)代入y=kx+b得{20=1024k +b ,56=1144k +b ,解得{k =0.3,b =−287.2, ∴y 关于x 的函数表达式为y=0.3x-287.2(x ≥1 024).(注:x 的取值范围对考生不作要求)(3)3 072+(266-56)÷0.3=3 772(兆).由题中图象得,当每月使用的流量超过3 772兆时,选择C 方案最划算.15.【参考答案】 (1)设每桶甲消毒液的价格为x 元,每桶乙消毒液的价格为y 元根据题意,得{9x +6y =615,8x +12y =780,解得{x =45,y =35.答:每桶甲消毒液、每桶乙消毒液的价格分别是45元、35元.(2)由题意,得W=45a+35(30-a )=10a+1 050. 根据题意,得{a ≥30−a +5,a ≤2(30−a ),解得17.5≤a ≤20 ∴a 的取值范围是17.5≤a ≤20,且a 是正整数.∵10>0,∴W 随a 的增大而增大∴当a=18时,W 的值最小,最小值为1 230此时30-a=12.答:当购买甲消毒液18桶、乙消毒液12桶时,总费用最少,最少费用是1 230元.16.【参考答案】 (1)设购买绿萝x 盆,吊兰y 盆.根据题意,得{x +y =46,9x +6y =390,解得{x =38,y =8.因为38>2×8,所以答案符合题意.答:可购买绿萝38盆,吊兰8盆.(2)设购买绿萝m盆,吊兰(46-m)盆,购买两种绿植的总费用为W元则W=9m+6(46-m)=3m+276.根据题意,得m≥2(46-m),解得m≥923.因为3>0,所以W随m的增大而增大.又m为整数,所以m取最小值31时,W的值最小.当m=31时,W=3×31+276=369.答:购买两种绿植总费用的最小值为369元.17.【参考答案】(1)根据题意,得50a+25×80=15 000.解得a=260.(2)设购进真丝衬衣x件,销售利润为y元,则购进真丝围巾(300-x)件.根据题意得y=(300-260)x+(100-80)(300-x)化简得y=20x+6 000.∵300-x≥2x,x≥0,∴0≤x≤100.∵20>0,∴y随x的增大而增大∴当x=100时,y有最大值,为20×100+6 000=8 000.故购进真丝衬衣100件,真丝围巾200件时,获得的利润最大,最大利润为8 000元.(3)设余下围巾每件降价m元,根据题意得100×40+100×20+100×(20-m)≥8 000×90%解得m≤8故余下围巾每件最多降价8元.18.A【解析】设y与x的函数关系式为y=kx+b,将(0,50),(500,0)分别代入,得{b=50,500k+b=0,解得{b=50,k=−110,故y=-110x+50.当y=35时,-110x+50=35,解得x=150.故选A.一题多解500÷50=10(km/L),故该汽车每行驶10 km耗油1 L.由题可知汽车已耗油50-35=15(L),故该汽车已行驶的路程为15×10=150(km).19.【参考答案】(1)20(2)由甲壶比乙壶加热速度快,可知乙壶中水温y关于加热时间x的函数图象经过点(0,20),(160,80).设乙壶中水温y关于加热时间x的函数解析式为y=kx+b将(0,20),(160,80)分别代入得{b =20,160k +b =80,解得{k =38,b =20,故乙壶中水温y 关于加热时间x 的函数解析式为y=38x+20.(3)65解法提示:由甲壶中水温y 关于加热时间x 的函数图象经过点(0,20),(80,60) 易求得甲壶中水温y 关于加热时间x 的函数解析式为y=12x+20.令12x+20=80,解得x=120 将x=120代入y=38x+20中,得y=38×120+20=65.故当甲壶中水温刚达到80 ℃时,乙壶中水温是65 ℃.20. 【参考答案】 (1)画图略.选择y=kx+b ,将(0,1),(1,2)代入得{b =1,k +b =2,解得{k =1,b =1, ∴y=x+1(0≤x ≤5).(2)当y=5时,x+1=5∴x=4.答:当水位高度达到5米时,进水用时x 为4小时.21.D 【解析】 连接OB ,AC 交于点M ,连接AE ,BF 交于点N ,则直线MN 为符合条件的直线l ,如图.∵四边形OABC 是矩形,∴OM=BM.∵点B 的坐标为(10,4),∴M (5,2),AB=10,BC=4.∵四边形ABEF 为菱形,∴BE=AB=10.过点E 作EG ⊥AB 于点G.在Rt △BEG 中,∵tan ∠ABE=43,∴EG BG =43.设EG=4k ,则BG=3k ,∴BE=√EG 2+BG 2=5k ,∴5k=10,∴k=2,∴EG=8,BG=6,∴AG=4,∴E (4,12).又∵A (0,4),点N 为AE 的中点,∴N (2,8).设直线l 的解析式为y=ax+b ,则{5a +b =2,2a +b =8,解得{a =−2,b =12,∴直线l 的解析式为y=-2x+12.22.A 【解析】 当x=0时,y=√2;当y=0时,x=-√2.∴A (-√2,0),B (0,√2),∴OA=OB ,∴△OAB 为等腰直角三角形,∴∠ABO=∠BAO=45°,AB=√(√2)2+(√2)2=2.如图(1),过点C 作CD ⊥AB ,垂足为点D ,∵∠CAD=∠OAB=45°,∴△ACD 为等腰直角三角形.设CD=AD=m ,∴AC=√AD 2+CD 2=√2m.由旋转可知∠ABC=30°,∴BC=2CD=2m.在Rt △BCO 中,BC 2=OC 2+OB 2,即(2m )2=(√2+√2m )2+(√2)2,解得m=1+√3(负值不合题意,已舍去),∴AC=√2m=√2(√3+1)=√6+√2.故选A .图(1) 一题多解当x=0时,y=√2.当y=0时,x=-√2.∴A (-√2,0),B (0,√2),∴OA=OB ,∴△OAB 为等腰直角三角形,∴∠ABO=∠BAO=45°.由旋转可知,∠ABC=30°,∴∠BCO=15°.如图(2),作线段BC 的垂直平分线,交OC 于点E ,连接BE ,则BE =CE ,∴∠EBC=∠ECB=15°,∴∠BEO=30°,∴BE=2BO=2√2,OE=√3OB=√6,∴AC=CE+OE-OA=2√2+√6-√2=√6+√2.图(2)23.2√3 【解析】 如图,设☉O 与x 轴的另一个交点为点C ,AB 交y 轴于点D ,连接BC.对于y=√33x+2√33,当x=0时,y=2√33,当y=0时,x=-2,∴A (-2,0),D (0,2√33),∴AC=4,tan ∠OAD=OD OA =2√332=√33,∴∠OAD=30°.∵AC 为☉O 的直径,∴∠ABC=90°,∴AB=AC cos 30°=4×√32=2√3.。
中考数学复习备考之一次函数(精选40题)
中考数学复习备考之一次函数(精选40题)1.当我们将一条倾斜的直线进行上下平移时,直线的左右位置也发生着变化.下面是关于“一次函数图象平移的性质”的探究过程,请补充完整.(1)如图1,将一次函数y=x+2的图象向下平移1个单位长度,相当于将它向右平移了个单位长度;(2)将一次函数y=﹣2x+4的图象向下平移1个单位长度,相当于将它向(填“左”或“右”)平移了个单位长度;(3)综上,对于一次函数y=kx+b(k≠0)的图象而言,将它向下平移m(m>0)个单位长度,相当于将它向(填“左”或“右”)(k>0时)或将它向(填“左”或“右”)(k<0时)平移了n(n>0)个单位长度,且m,n,k满足等式.2.在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象过点(4,3),(﹣2,0),且与y轴交于点A.(1)求该函数的解析式及点A的坐标;(2)当x>0时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b(k≠0)的值,直接写出n的取值范围.3.如图,直线y=x+1与x轴交于点A,点A关于y轴的对称点为A′,经过点A′和y 轴上的点B(0,2)的直线设为y=kx+b.(1)求点A′的坐标;(2)确定直线A′B对应的函数表达式.4.探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有经验,请画出函数y=﹣|x|的图象,并探究该函数性质.(1)绘制函数图象①列表:下列是x与y的几组对应值,其中a=.x……﹣5﹣4﹣3﹣2﹣112345……y……﹣3.8﹣2.5﹣1155a﹣1﹣2.5﹣3.8……②描点:根据表中的数值描点(x,y),请补充描出点(2,a);③连线:请用平滑的曲线顺次连接各点,画出函数图象;(2)探究函数性质请写出函数y=﹣|x|的一条性质:;(3)运用函数图象及性质①写出方程﹣|x|=5的解;②写出不等式﹣|x|≤1的解集.5.某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时.(1)求轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB,AB分别表示大巴、轿车离开学校的路程s(千米)与大巴行驶的时间t(小时)的函数关系的图象.试求点B的坐标和AB所在直线的解析式;(3)假设大巴出发a小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a的值.6.随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18km/h,乙骑行的路程s(km)与骑行的时间t(h)之间的关系如图所示.(1)直接写出当0≤t≤0.2和t>0.2时,s与t之间的函数表达式;(2)何时乙骑行在甲的前面?7.为满足顾客的购物需求,某水果店计划购进甲、乙两种水果进行销售.经了解,甲水果的进价比乙水果的进价低20%,水果店用1000元购进甲种水果比用1200元购进乙种水果的重量多10千克,已知甲,乙两种水果的售价分别为6元/千克和8元/千克.(1)求甲、乙两种水果的进价分别是多少?(2)若水果店购进这两种水果共150千克,其中甲种水果的重量不低于乙种水果重量的2倍,则水果店应如何进货才能获得最大利润,最大利润是多少?8.为了振兴乡村经济,我市某镇鼓励广大农户种植山药,并精加工成甲、乙两种产品、某经销商购进甲、乙两种产品,甲种产品进价为8元/kg;乙种产品的进货总金额y(单位:元)与乙种产品进货量x(单位:kg)之间的关系如图所示.已知甲、乙两种产品的售价分别为12元/kg和18元/kg.(1)求出0≤x≤2000和x>2000时,y与x之间的函数关系式;(2)若该经销商购进甲、乙两种产品共6000kg,并能全部售出.其中乙种产品的进货量不低于1600kg,且不高于4000kg,设销售完甲、乙两种产品所获总利润为w元(利润=销售额﹣成本),请求出w(单位:元)与乙种产品进货量x(单位:kg)之间的函数关系式,并为该经销商设计出获得最大利润的进货方案;(3)为回馈广大客户,该经销商决定对两种产品进行让利销售.在(2)中获得最大利润的进货方案下,甲、乙两种产品售价分别降低a元/kg和2a元/kg,全部售出后所获总利润不低于15000元,求a的最大值.9.(3分)(2022•深圳)某学校打算购买甲乙两种不同类型的笔记本.已知甲种类型的笔记本的单价比乙种类型的要便宜1元,且用110元购买的甲种类型的数量与用120元购买的乙种类型的数量一样.(1)求甲乙两种类型笔记本的单价.(2)该学校打算购买甲乙两种类型笔记本共100件,且购买的乙的数量不超过甲的3倍,则购买的最低费用是多少.10.(3分)(2022•黔西南州)某乡镇新打造的“田园风光”景区今年计划改造一片绿化地,种植A、B两种花卉,已知3盆A种花卉和4盆B种花卉的种植费用为330元,4盆A 种花卉和3盆B种花卉的种植费用为300元.(1)每盆A种花卉和每盆B种花卉的种植费用各是多少元?(2)若该景区今年计划种植A、B两种花卉共400盆,相关资料表明:A、B两种花卉的成活率分别为70%和90%,景区明年要将枯死的花卉补上相同的新花卉,但这两种花卉在明年共补的盆数不多于80盆,应如何安排这两种花卉的种植数量,才能使今年该项的种植费用最低?并求出最低费用.11.(3分)(2022•南通)某水果店购进甲、乙两种苹果的进价分别为8元/kg、12元/kg,这两种苹果的销售额y(单位:元)与销售量x(单位:kg)之间的关系如图所示.(1)写出图中点B表示的实际意义;(2)分别求甲、乙两种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式,并写出x的取值范围;(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为akg时,它们的利润和为1500元,求a的值.12.(3分)(2022•济宁)某运输公司安排甲、乙两种货车24辆恰好一次性将328吨的物资运往A,B两地,两种货车载重量及到A,B两地的运输成本如表:货车类型载重量(吨/辆)运往A地的成本(元/辆)运往B地的成本(元/辆)甲种161200900乙种121000750(1)求甲、乙两种货车各用了多少辆;(2)如果前往A地的甲、乙两种货车共12辆,所运物资不少于160吨,其余货车将剩余物资运往B地.设甲、乙两种货车到A,B两地的总运输成本为w元,前往A地的甲种货车为t辆.①写出w与t之间的函数解析式;②当t为何值时,w最小?最小值是多少?13.(3分)(2022•长春)已知A、B两地之间有一条长440千米的高速公路.甲、乙两车分别从A、B两地同时出发,沿此公路相向而行,甲车先以100千米/时的速度匀速行驶200千米后与乙车相遇,再以另一速度继续匀速行驶4小时到达B地;乙车匀速行驶至A地,两车到达各自的目的地后停止,两车距A地的路程y(千米)与各自的行驶时间x(时)之间的函数关系如图所示.(1)m=,n=;(2)求两车相遇后,甲车距A地的路程y与x之间的函数关系式;(3)当乙车到达A地时,求甲车距A地的路程.14.(3分)(2022•通辽)为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:甲:所有商品按原价8.5折出售;乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.设需要购买体育用品的原价总额为x元,去甲商店购买实付y甲元,去乙商店购买实付y元,其函数图象如图所示.乙(1)分别求y甲,y乙关于x的函数关系式;(2)两图象交于点A,求点A坐标;(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.15.(3分)(2022•广安)某企业下属A、B两厂向甲乙两地运送水泥共520吨,A厂比B厂少运送20吨,从A厂运往甲乙两地的运费分别为40元/吨和35元/吨,从B厂运往甲乙两地的运费分别为28元/吨和25元/吨.(1)求A、B两厂各运送多少吨水泥;(2)现甲地需要水泥240吨,乙地需要水泥280吨.受条件限制,B厂运往甲地的水泥最多150吨.设从A厂运往甲地a吨水泥,A、B两厂运往甲乙两地的总运费为w元.求w与a之间的函数关系式,请你为该企业设计一种总运费最低的运输方案,并说明理由.16.(3分)(2022•恩施州)某校计划租用甲、乙两种客车送180名师生去研学基地开展综合实践活动.已知租用一辆甲型客车和一辆乙型客车共需500元,租用2辆甲型客车和3辆乙型客车共需1300元.甲型客车每辆可坐15名师生,乙型客车每辆可坐25名师生.(1)租用甲、乙两种客车每辆各多少元?(2)若学校计划租用8辆客车,怎样租车可使总费用最少?17.(3分)(2022•包头)由于精准扶贫的措施科学得当,贫困户小颖家今年种植的草莓喜获丰收,采摘上市16天全部销售完.小颖对销售情况进行统计后发现,在该草莓上市第x天(x取整数)时,日销售量y(单位:千克)与x之间的函数关系式为y=,草莓价格m(单位:元/千克)与x之间的函数关系如图所示.(1)求第14天小颖家草莓的日销售量;(2)求当4≤x≤12时,草莓价格m与x之间的函数关系式;(3)试比较第8天与第10天的销售金额哪天多?18.(3分)(2022•天津)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学生公寓、阅览室、超市依次在同一条直线上,阅览室离学生公寓1.2km,超市离学生公寓2km.小琪从学生公寓出发,匀速步行了12min到阅览室;在阅览室停留70min 后,匀速步行了10min到超市;在超市停留20min后,匀速骑行了8min返回学生公寓.给出的图象反映了这个过程中小琪离学生公寓的距离ykm与离开学生公寓的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:离开学生公寓的时间/min585087112离学生公寓的距离/km0.5 1.6(Ⅱ)填空:①阅览室到超市的距离为km;②小琪从超市返回学生公寓的速度为km/min;③当小琪离学生公寓的距离为1km时,他离开学生公寓的时间为min.(Ⅲ)当0≤x≤92时,请直接写出y关于x的函数解析式.19.(3分)(2022•内蒙古)某商店决定购进A、B两种北京冬奥会纪念品.若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.(1)求购进A、B两种纪念品的单价;(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑市场需求,要求购进A 种纪念品的数量不少于B种纪念品数量的6倍,且购进B种纪念品数量不少于20件,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?求出最大利润.20.(3分)(2022•遵义)遵义市开展信息技术与教学深度融合的“精准化教学”,某实验学校计划购买A,B两种型号教学设备,已知A型设备价格比B型设备价格每台高20%,用30000元购买A型设备的数量比用15000元购买B型设备的数量多4台.(1)求A,B型设备单价分别是多少元;(2)该校计划购买两种设备共50台,要求A型设备数量不少于B型设备数量的.设购买a台A型设备,购买总费用为w元,求w与a的函数关系式,并求出最少购买费用.21.(3分)(2022•黑龙江)为抗击疫情,支援B市,A市某蔬菜公司紧急调运两车蔬菜运往B市.甲、乙两辆货车从A市出发前往B市,乙车行驶途中发生故障原地维修,此时甲车刚好到达B市.甲车卸载蔬菜后立即原路原速返回接应乙车,把乙车的蔬菜装上甲车后立即原路原速又运往B市.乙车维修完毕后立即返回A市.两车离A市的距离y(km)与乙车所用时间x(h)之间的函数图象如图所示.(1)甲车速度是km/h,乙车出发时速度是km/h;(2)求乙车返回过程中,乙车离A市的距离y(km)与乙车所用时间x(h)的函数解析式(不要求写出自变量的取值范围);(3)乙车出发多少小时,两车之间的距离是120km?请直接写出答案.22.(3分)(2022•吉林)李强用甲、乙两种具有恒温功能的热水壶同时加热相同质量的水,甲壶比乙壶加热速度快.在一段时间内,水温y(℃)与加热时间x(s)之间近似满足一次函数关系,根据记录的数据,画函数图象如下:(1)加热前水温是℃.(2)求乙壶中水温y关于加热时间x的函数解析式.(3)当甲壶中水温刚达到80℃时,乙壶中水温是℃.23.(3分)(2022•苏州)某水果店经销甲、乙两种水果,两次购进水果的情况如表所示:进货批次甲种水果质量(单位:千克)乙种水果质量(单位:千克)总费用(单位:元)第一次60401520第二次30501360(1)求甲、乙两种水果的进价;(2)销售完前两次购进的水果后,该水果店决定回馈顾客,开展促销活动.第三次购进甲、乙两种水果共200千克,且投入的资金不超过3360元.将其中的m千克甲种水果和3m千克乙种水果按进价销售,剩余的甲种水果以每千克17元、乙种水果以每千克30元的价格销售.若第三次购进的200千克水果全部售出后,获得的最大利润不低于800元,求正整数m的最大值.24.(3分)(2022•衡阳)冰墩墩(BingDwenDwen)、雪容融(ShueyRhonRhon)分别是2022年北京冬奥会、冬残奥会的吉祥物.冬奥会来临之际,冰墩墩、雪容融玩偶畅销全国.小雅在某网店选中两种玩偶.决定从该网店进货并销售.第一次小雅用1400元购进了冰墩墩玩偶15个和雪容融玩偶5个,已知购进1个冰墩墩玩偶和1个雪容融玩偶共需136元,销售时每个冰墩墩玩偶可获利28元,每个雪容融玩偶可获利20元.(1)求两种玩偶的进货价分别是多少?(2)第二次小雅进货时,网店规定冰墩墩玩偶进货数量不得超过雪容融玩偶进货数量的1.5倍.小雅计划购进两种玩偶共40个,应如何设计进货方案才能获得最大利润,最大利润是多少元?25.(3分)(2022•绍兴)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x表示进水用时(单位:小时),y表示水位高度(单位:米).x00.51 1.52y1 1.52 2.53为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:y=kx+b(k ≠0),y=ax2+bx+c(a≠0),y=(k≠0).(1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x.26.(3分)(2022•云南)某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍.怎样购买,才能使总费用W最少?并求出最少费用.27.(3分)(2022•凉山州)为全面贯彻党的教育方针,严格落实教育部对中小学生“五项管理”的相关要求和《关于进一步加强中小学生体质健康管理工作的通知》精神,保障学生每天在校1小时体育活动时间,某班计划采购A、B两种类型的羽毛球拍.已知购买3副A型羽毛球拍和4副B型羽毛球拍共需248元;购买5副A型羽毛球拍和2副B型羽毛球拍共需264元.(1)求A、B两种类型羽毛球拍的单价.(2)该班准备采购A、B两种类型的羽毛球拍共30副,且A型羽毛球拍的数量不少于B 型羽毛球拍数量的2倍,请给出最省钱的购买方案,求出最少费用,并说明理由.28.(3分)(2022•丽水)因疫情防控需要,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km,货车行驶时的速度是60km/h.两车离甲地的路程s(km)与时间t(h)的函数图象如图.(1)求出a的值;(2)求轿车离甲地的路程s(km)与时间t(h)的函数表达式;(3)问轿车比货车早多少时间到达乙地?29.(3分)(2022•德阳)习近平总书记对实施乡村振兴战略作出重要指示强调:实施乡村振兴战略,是党的十九大作出的重大决策部署,是新时代做好“三农”工作的总抓手.为了发展特色产业,红旗村花费4000元集中采购了A种树苗500株,B种树苗400株,已知B种树苗单价是A种树苗单价的1.25倍.(1)求A、B两种树苗的单价分别是多少元?(2)红旗村决定再购买同样的树苗100株用于补充栽种,其中A种树苗不多于25株,在单价不变,总费用不超过480元的情况下,共有几种购买方案?哪种方案费用最低?最低费用是多少元?30.(3分)(2022•牡丹江)在一条平坦笔直的道路上依次有A,B,C三地,甲从B地骑电瓶车到C地,同时乙从B地骑摩托车到A地,到达A地后因故停留1分钟,然后立即掉头(掉头时间忽略不计)按原路原速前往C地,结果乙比甲早2分钟到达C地,两人均匀速运动,如图是两人距B地路程y(米)与时间x(分钟)之间的函数图象.请解答下列问题:(1)填空:甲的速度为米/分钟,乙的速度为米/分钟;(2)求图象中线段FG所在直线表示的y(米)与时间x(分钟)之间的函数解析式,并写出自变量x的取值范围;(3)出发多少分钟后,甲乙两人之间的路程相距600米?请直接写出答案.31.(3分)(2022•梧州)梧州市地处亚热带,盛产龙眼.新鲜龙眼的保质期短,若加工成龙眼干(又叫带壳圆肉)则有利于较长时间保存.已知3kg的新鲜龙眼在无损耗的情况下可以加工成1kg的龙眼干.(1)若新鲜龙眼售价为12元/kg.在无损耗的情况下加工成龙眼干,使龙眼干的销售收益不低于新鲜龙眼的销售收益,则龙眼干的售价应不低于多少元/kg?(2)在实践中,小苏发现当地在加工龙眼干的过程中新鲜龙眼有6%的损耗,为确保果农的利益,龙眼干的销售收益应不低于新鲜龙眼的销售收益,此时龙眼干的定价取最低整数价格.市场调查还发现,新鲜龙眼以12元/kg最多能卖出100kg,超出部分平均售价是5元/kg,可售完.果农们都以这种方式出售新鲜龙眼.设某果农有akg新鲜龙眼,他全部加工成龙眼干销售获得的收益与全部以新鲜龙眼销售获得的收益之差为w元,请写出w与a的函数关系式.32.(3分)(2022•十堰)某商户购进一批童装,40天销售完毕.根据所记录的数据发现,日销售量y(件)与销售时间x(天)之间的关系式是y=,销售单价p(元/件)与销售时间x(天)之间的函数关系如图所示.(1)第15天的日销售量为件;(2)0<x≤30时,求日销售额的最大值;(3)在销售过程中,若日销售量不低于48件的时间段为“火热销售期”,则“火热销售期”共有多少天?33.(3分)(2022•齐齐哈尔)在一条笔直的公路上有A、B两地,甲、乙二人同时出发,甲从A地步行匀速前往B地,到达B地后,立刻以原速度沿原路返回A地.乙从B地步行匀速前往A地(甲、乙二人到达A地后均停止运动),甲、乙二人之间的距离y(米)与出发时间x(分钟)之间的函数关系如图所示,请结合图象解答下列问题:(1)A、B两地之间的距离是米,乙的步行速度是米/分;(2)图中a=,b=,c=;(3)求线段MN的函数解析式;(4)在乙运动的过程中,何时两人相距80米?(直接写出答案即可)34.(3分)(2022•黑龙江)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:运动鞋价格甲 乙进价(元/双)m m ﹣20 售价(元/双) 240 160 已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m 的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a (50<a <70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?35.(3分)(2022•兰州)在平面直角坐标系中,P (a ,b )是第一象限内一点,给出如下定义:k 1=和k 2=两个值中的最大值叫做点P 的“倾斜系数”k .(1)求点P (6,2)的“倾斜系数”k 的值;(2)①若点P (a ,b )的“倾斜系数”k =2,请写出a 和b 的数量关系,并说明理由; ②若点P (a ,b )的“倾斜系数”k =2,且a +b =3,求OP 的长;(3)如图,边长为2的正方形ABCD 沿直线AC :y =x 运动,P (a ,b )是正方形ABCD 上任意一点,且点P 的“倾斜系数”k <,请直接写出a 的取值范围.36.(3分)(2022•河北)如图,平面直角坐标系中,线段AB 的端点为A (﹣8,19),B (6,5).(1)求AB所在直线的解析式;(2)某同学设计了一个动画:在函数y=mx+n(m≠0,y≥0)中,分别输入m和n的值,使得到射线CD,其中C(c,0).当c=2时,会从C处弹出一个光点P,并沿CD飞行;当c≠2时,只发出射线而无光点弹出.①若有光点P弹出,试推算m,n应满足的数量关系;②当有光点P弹出,并击中线段AB上的整点(横、纵坐标都是整数)时,线段AB就会发光.求此时整数m的个数.37.(3分)(2022•攀枝花)如图,直线y=x+6分别与x轴、y轴交于点A、B,点C为线段AB上一动点(不与A、B重合),以C为顶点作∠OCD=∠OAB,射线CD交线段OB于点D,将射线OC绕点O顺时针旋转90°交射线CD于点E,连结BE.(1)证明:=;(用图1)(2)当△BDE为直角三角形时,求DE的长度;(用图2)(3)点A关于射线OC的对称点为F,求BF的最小值.(用图3)38.(3分)(2022•沈阳)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A,与y轴交于点B(0,9),与直线OC交于点C(8,3).(1)求直线AB的函数表达式;(2)过点C作CD⊥x轴于点D,将△ACD沿射线CB平移得到的三角形记为△A′C′D′,点A,C,D的对应点分别为A′,C′,D′,若△A′C′D′与△BOC重叠部分的面积为S,平移的距离CC′=m,当点A′与点B重合时停止运动.①若直线C′D′交直线OC于点E,则线段C′E的长为(用含有m的代数式表示);②当0<m<时,S与m的关系式为;③当S=时,m的值为.39.(3分)(2022•泰州)定义:对于一次函数y1=ax+b、y2=cx+d,我们称函数y=m(ax+b)+n(cx+d)(ma+nc≠0)为函数y1、y2的“组合函数”.(1)若m=3,n=1,试判断函数y=5x+2是否为函数y1=x+1、y2=2x﹣1的“组合函数”,并说明理由;(2)设函数y1=x﹣p﹣2与y2=﹣x+3p的图象相交于点P.①若m+n>1,点P在函数y1、y2的“组合函数”图象的上方,求p的取值范围;②若p≠1,函数y1、y2的“组合函数”图象经过点P.是否存在大小确定的m值,对于不等于1的任意实数p,都有“组合函数”图象与x轴交点Q的位置不变?若存在,请求出m的值及此时点Q的坐标;若不存在,请说明理由.40.(3分)(2022•黑龙江)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.。
中考数学《一次函数》专项练习(附答案解析)
中考数学《一次函数》专项练习(附答案解析)一、单选题 1.对于正比例函数y kx =,当自变量x 的值增加2时,对应的函数值y 减少6,则k 的值为( ) A .3B .2-C .3-D .0.5-2.已知1,2A a ⎛⎫⎪⎝⎭,(),B m n 是一次函数2y x b =+图象上的两点,若mn 的最小值为8-,则a 的值为( ) A .7-B .9C .7-或9D .9或113.如图,在平面直角坐标系中,点12P a ⎛⎫⎪⎝⎭,在直线22y x =+与直线24y x =+之间,则a 的取值范围是( )A .24a <<B .13a <<C .12a <<D .02a <<4.已知,一次函数3y kx =+的图象经过点()1,5-,下列说法中不正确的是( ) A .若x 满足4x ≥,则当4x =时,函数y 有最小值5- B .该函数的图象与坐标轴围成的三角形面积为94C .该函数的图象与一次函数23y x =--的图象相互平行D .若函数值y 满足77y -≤≤时,则自变量x 的取值范围是25x -≤≤5.如图,直线43y x =与双曲线()0ky x x =>交于点A ,将直线43y x =向右平移92个单位后,与双曲线()0ky x x =>交于点B ,与x 轴交于点C ,若2AOBC=,则k 的值为( )A .2B .6C .12D .86.已知一次函数()21y m x m =++的图象与x 轴交于点A ,与y 轴交于点()0,4B ,且y 随着x 的增大而增大,则点A 的坐标为( )A .4,03⎛⎫- ⎪⎝⎭B .3,04⎛⎫- ⎪⎝⎭C .()2,0D .4,03⎛⎫ ⎪⎝⎭7.在同一直角坐标系内作一次函数1y ax b 和2y bx a =-+图象,可能是( )A .B .C .D .8.下列是对一次函数21y x =-+的描述:①y 随x 的增大而增大,②图像可由直线2y x =-向上平移1个单位得到,③图像经过第二、三、四象限,④图像与坐标轴围成的三角形的面积为0.25,其中正确的是( ) A .①②B .②③C .②④D .③④9.如图,直线333y x =+x 轴、y 轴分别交于A 、B 两点,()1,0P ,P 与y 轴相切于点O ,将P 向上平移m 个单位长度,当P 与直线AB 第一次相切时,则m 的值是( )A .232B .23C .333D .3310.如图,在平面直角坐标系中,一次函数2y x =x 轴于点A ,交y 轴于点B ,点123,,A A A 在x 轴上,点123,,B B B 在函数图像上,112233,,A B A B A B 均垂直于x 轴,若1211322,,AOB A A B A A B 均为等腰直角三角形,则544A A B 的面积是()A .16B .64C .256D .102411.一次函数11y kx =-(0k ≠)与22y x =-+的图像如图所示,当1x <时,12y y <,则满足条件的k 的取值范围是( )A .1k >-,且0k ≠B .12k -<<,且0k ≠C .2k <,且0k ≠D .1k <-或2k >12.已知直线1:l y kx b =+与直线21:2l y x m =-+都经过68,55C ⎛⎫- ⎪⎝⎭,直线1l 交y 轴于点()0,4B ,交x 轴于点A ,直线2l 交y 轴于点D ,P 为y 轴上任意一点,连接PA ,PC ,有以下说法:①方程组12y kx b y x m =+⎧⎪⎨=-+⎪⎩的解为6585x y ⎧=-⎪⎪⎨⎪=⎪⎩②BCD △为直角三角形; ③6ABDS=;④当PA PC +的值最小时,点P 的坐标为()0,1. 其中正确的说法个数有( )A .1个B .2个C .3个D .4个13.如图,在平面直角坐标系xOy 中,一次函数172y x =+的图象与x 轴、y 轴分别相交于点A 、B ,点P 的坐标为()11m m +-,,且点P 在ABO 的内部,则m 的取值范围是( )A .18m <<B .15m <<C .15m ≤≤D .1m <或3m >14.如图所示,1l 反映了天利公司某种产品的销售收入与销售量的关系,2l 反映了该种产品的销售成本与销售量的关系.根据图象提供信息,下列说法正确的是.( )A .当销售量为2吨时,销售成本是2000元B .销售成本是3000元时,该公司的该产品盈利C .当销售量为5吨时,该公司的该产品盈利1000元D .1l 的函数表达式为1000y x =15.某油库有一储油量为40吨的储油罐,在开始的一段时间内只开进油管,不开出油管;在随后的一段时间内既开进油管,又开出油管直至储油罐装满油.若储油罐中的储油量(吨)与时间(分)的函数关系如图所示,现将装满油的储油罐只开出油管,不开进油管,则放完全部油所需的时间是( )分钟.A .20B .24C .26D .28二、填空题16.已知y 关于x 的一次函数()211y m x =-+,y 值随x 的增大而减小,则m 的值可以是______.(填一个即可)17.一次函数()()()1231y k x k k =--+≠的图像恒过一定点,定点坐标_________.18.已知一次函数y x b =+,它的图象与两坐标轴所围成的图形的面积等于2,则b 的值为______. 19.如图,直线483y x =-+与x 轴、y 轴分别交于点A 、B ,一动点P 从点A 出发,沿A O B --的路线运动到点B 停止,C 是AB 的中点,沿直线PC 截AOB ,若得到的三角形与AOB 相似,则点P 的坐标是 _____.20.如图,点1B 在直线l :13y x =上,点1B 的横坐标为1,过点1B 作11B A x ⊥轴,垂足为1A ,以11A B 为边向右作正方形1112A B C A ,延长21A C 交直线l 于点2B ;以22A B 为边向右作正方形2223A B C A ,延长32A C 交直线l 于点3B ……按照这个规律进行下去,点2023B 的坐标为__________.21.一次函数y kx b =+(k b 、是常数,且0k ≠)的图像如图所示,则方程0kx b +=的解为_______.22.如图,在平面直角坐标系中,OAB 的边OA 在x 轴上,90OAB ∠=︒,2OA =,抛物线2y x 与OB 交于C 点,过点C 作CD OA ∥交AB 于D 点.若CD 过OAB 的重心G ,则点G 的坐标为___________.三、解答题23.某文具店以8元/支的进价购进一批签字笔进行销售,经市场调查后发现,日销量y (支)与零售价x (元)之间的关系图象如下图所示,其中816x ≤≤.(1)求出日销量y (支)与零售价x (元)之间的关系;(2)当零售价定为多少时,该文具店每天销售这种签字笔获得的利润最大?最大利润是多少? 24.在某次大型的活动中,用无人机进行航拍,在操控无人机时根据现场状况调节高度,已知无人机在上升和下降过程中速度相同.设无人机的飞行高度h (米)与操控无人机的时间t (分钟)之间的关系如图中的实线所示,根据图像回答下列问题:(1)图中的自变量是______,因变量是_____; (2)无人机在75米高的上空停留的时间是_____分钟; (3)在上升或下降过程中,无人机的速度为______米/分钟; (4)图中a 表示的数是______;b 表示的数是______; (5)求第14分钟时无人机的飞行高度是多少米?25.阅读理解:七年级一班数学学习兴趣小组在解决下列问题中,发现该类问题可以“建立直角坐标系、应用一次函数”解决问题.请先阅读下列解决问题的方法,然后再应用此方法解决后续问题.问题:如图①,直立在点D 处的标杆CD 长3m ,站立在点F 处的观察者从点E 处看到标杆顶C 、旗杆顶A 在一条直线上.已知15m BD =,2m FD =, 1.6m EF =,求旗杆高AB . 解:建立如图②所示直角坐标系,则线段AE 可看作一个一次函数的图象由题意可得各点坐标为:点()0,1.6E ,()2,3C ,()17,0B ,且所求的高度就为点A 的纵坐标. 设直线AE 的函数关系式为y kx b =+.把()0,1.6E ,()2,3C 代入得 1.623b k b =⎧⎨+=⎩,解得0.71.6k b =⎧⎨=⎩∴0.7 1.6y x =+当17x =时,0.717 1.613.5y =⨯+=,即()13.5m AB =.解决问题:请应用上述方法解决下列问题:如图③,河对岸有一路灯杆AB ,在灯光下,小明在点D 处测得自己的影长3m DF =,沿BD 方向到达点F 处再测得自己的影长4m FG =.如果小明的身高为1.6m ,求路灯杆AB 的高度.(参考:建立直角坐标系如图④)26.如图,在平面直角坐标系xOy 中,一次函数1y kx b =+的图像与反比例函数2my x=的图像交于点()1,2A -和(),1B a .(1)求一次函数1y kx b =+和反比例函数2my x=的表达式; (2)观察图像,直接写出当12y y >时,x 的取值范围;(3)过点B 作直线BC ,交第四象限的反比例函数图像于点C ,当线段BC 被x 轴分成1:2两部分时,直接写出BC 与x 轴所交锐角的正切值.27.某市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过50万件,该产品的生产费用y (万元)与年产量x (万件)之间的函数图像是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z (元/件)与年销售量x (万件)之间的函数图像是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为w 万元.(毛利润=销售额﹣生产费用)(1)直接写出y 与x 以及z 与x 之间的函数关系式 , (不必写出自变量的取值范围);(2)求w 与x 之间的函数关系式;并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过80万元,今年最多可获得多少万元的毛利润?28.已知在平面直角坐标系中,直线4y x =-+与x 轴交于点B ,与y 轴交于点C ,抛物线2y ax x c =++经过B 、C 两点,交x 轴另一点为A .(1)求抛物线的解析式;(2)点D 为第四象限内直线BC 上一点,作DE x ⊥轴于E ,DP y ⊥轴于P ,连接OD ,设D 点的横坐标为t ,OPD △的面积为S ,请写出S 与t 的函数关系式.(不用写出自变量t 的取值范围) (3)在(2)的条件下,过点C 作CF y ⊥轴交抛物线于点F ,交DE 的延长线于G ,连接FB PB 、,并延长PB 交GE 于Q ,连接PF 交BC 于点M ,连接QM ,当FB PB ⊥时,求直线QM 的解析式.参考答案与解析:1.C解:∵正比例函数y kx =,当自变量x 的值增加2时,对应的函数值y 减少6, ∴()()62y k x -=+, ∴62y kx k -=+, ∴26k =-, 解得:3k =-. 故选:C . 2.C解:∵(),B m n 是一次函数2y x b =+图象上的点, ∴2n m b =+,设mn y =,则()22222248b b y m m b m mb m ⎛⎫=+=+=+- ⎪⎝⎭,∵mn 的最小值为8-,∴288b -=-,解得:8b =±,当8b =时,一次函数为28y x =+,把1,2A a ⎛⎫⎪⎝⎭代入得:12892a =⨯+=;当8b =-时,一次函数为28y x =-,把1,2A a ⎛⎫⎪⎝⎭代入得:12872a =⨯-=-;综上分析可知,a 的值为7-或9,故C 正确. 故选:C . 3.B解:当P 在直线22y x =+上时,1221212a ⎛⎫=⨯-+=-+= ⎪⎝⎭,当P 在直线24y x =+上时,1241432a ⎛⎫=⨯-+=-+= ⎪⎝⎭, 则13a <<,故选:B .4.A解:一次函数3y kx =+的图象经过点()1,5-,∴53k =-+,解得:2k =-,∴23y x =-+,∵2k =-,∴y 随x 的增大而减小,A 、x 满足4x ≥,则当4x =时,函数y 有最大值5-,选项错误,符合题意;B 、当0x =时,3y =,当0y =时,32x =,∴与坐标轴的两个交点分别为()0,3,3,02⎛⎫ ⎪⎝⎭, ∴函数的图象与坐标轴围成的三角形面积为:1393224⨯⨯=,选项正确,不符合题意;C 、23y x =--与23y x =-+,k 都为2-,图象相互平行,选项正确,不符合题意;D 、当7y =时,723x =-+,解得:5x =;当7y =-时,723x -=-+,解得:2x =-;∴函数值y 满足77y -≤≤时,则自变量x 的取值范围是25x -≤≤,选项正确,不符合题意; 故选:A .5.C解:过点A 作AD x ⊥轴于D ,过点B 作BE x ⊥轴于E , ∵将直线34y x =向右平移92个单位后得到直线BC ,∴点C 的坐标为902⎛⎫ ⎪⎝⎭,,OA BC ∥, ∴AOD BCE =∠∠,又∵90ADO BEC ==︒∠∠,∴ADO BEC △∽△,∴12BE CE BC AD OD OA ===,∴22AD BE OD CE ==,,设CE t =,则922OD t OE t ==+,,当2x t =时,4833y x t ==,∴点A 的坐标为823t t ⎛⎫⎪⎝⎭,, ∴43BE t =,∴点B 的坐标为9423t t ⎛⎫+ ⎪⎝⎭,,∵点A 和点B 都在反比例函数图象上,∴8492332t t t t ⎛⎫⋅=+ ⎪⎝⎭, 解得32t =(不符合题意的值舍去),∴点A 的坐标为()34,∴3412k =⨯=,故选C .6.A解:把()0,4B 代入()21y m x m =++中,得24m =,解得2m =±, y 随着x 的增大而增大,10m ∴+>,1m ∴>-,2m ∴=,∴一次函数的解析式为:34y x =+,令0y =,得340+=x , 解得43x =-,4,03A ⎛⎫∴- ⎪⎝⎭, 故选:A7.D解:A 、1y 反映0a >,0b >,2y 反映0a >,0b ->,则0b <,故本选项错误;B 、1y 反映a<0,0b >,2y 反映0a >,0b ->,则0b <,故本选项错误;C 、1y 反映a<0,0b <,2y 反映0a >,0b -<,则0b >,故本选项错误;D 、1y 反映a<0,0b <,2y 反映a<0,0b ->,则0b <,故本选项错误;故选:D .8.C解:∵一次函数21y x =-+,∴y 随x 的增大而减小,图像经过第二、一、四象限,∴①③错误;图像可由直线2y x =-向上平移1个单位得到,∴②正确;∵一次函数21y x =-+与y 轴交点为()0,1,与x 轴的交点为1,02⎛⎫ ⎪⎝⎭, ∴图像与坐标轴围成的三角形的面积为1110.2522⨯⨯=,∴④正确;故选C .9.A解:当0x =时,33y =当0y =时,3x =;∴3OA =,33OB =∴()223336AB =+.设平移后P '与直线AB 相切与点E ,与y 轴相切于点F ,连接,,,PE PF PA PB ,则四边形PP FO '是矩形,∴OF PP m '==, ∴33BF m =.∵()1,0P ,P 与y 轴相切于点O ,∴1OP P E P F ''===,∴312AP '=-=.∵APP ABP BFP ABC PP FO S SS S S ''''+++=矩形, ∴()11112613313332222m m m +⨯⨯+⨯⨯+⨯⨯=⨯⨯ ∴232m =. 故选A .10.C 解:∵对于2y x =0x =时,2y ;当0y =时,2x =- ∴2,2OA OB ∵1AOB △为等腰直角三角形, ∴12OA OB ==∴122AA =∵211A A B 为等腰直角三角形,∴1190AA B ∠=︒,∴1145AB A BAO ∠=∠=︒,∴11AA B 为等腰直角三角形, ∴1112AA B A == 同理可得222B A =则22n n B A = ∴4422162B A = ∵544A A B 为等腰直角三角形, ∴()54424412562A AB S B A =⨯=. 故选C .11.B解:联立11y kx =-与22y x =-+,得12kx x -=-+, 解得31x k =+, 即一次函数11y kx =-(0k ≠)与22y x =-+的图像的交点的横坐标为31k +, 当1x <时,12y y <, ∴311k >+, 当10k +>,即1k >-时,31k >+,解得12k -<<;当10+<k ,即1k <-时,31k <+,解得2k >,与1k <-矛盾,不合题意;又0k ≠,∴满足条件的k 的取值范围是12k -<<且0k ≠,故选B .12.C 解:直线1:l y kx b =+与直线21:2l y x m =-+都经过68,55C ⎛⎫- ⎪⎝⎭,∴方程组12y kx b y x m =+⎧⎪⎨=-+⎪⎩的解为:6585x y ⎧=-⎪⎪⎨⎪=⎪⎩,故①正确; 把68,55C ⎛⎫- ⎪⎝⎭代入直线21:2l y x m =-+,可得1m = 112y x ∴=-+令0x =,则1y =()0,1D ∴413BD ∴=-=把()0,4B ,68,55C ⎛⎫- ⎪⎝⎭代入直线1:l y kx b =+,可得48655bk b =⎧⎪⎨=-+⎪⎩解得:24k b =⎧⎨=⎩∴直线1:24l y x =+令0y =,则2x =-()2,0A ∴-2OA ∴=13232ABD S ∴=⨯⨯=,故③错误;()0,4B ,68,55C ⎛⎫- ⎪⎝⎭,()0,1D222683604555BC ⎛⎫⎛⎫∴=++-= ⎪ ⎪⎝⎭⎝⎭,22268901555CD ⎛⎫⎛⎫=++-= ⎪ ⎪⎝⎭⎝⎭,()2214=9BD =-222BC CD BD ∴+=BCD ∴△为直角三角形,故②正确;点A 关于y 轴对称点为()2,0A '设过点C ,A '的直线为y ax n =+,则0=28655a na n +⎧⎪⎨=-+⎪⎩ 解得:121a n ⎧=-⎪⎨⎪=⎩112y x ∴=-+令0x =,则1y =∴当PA PC +的值最小时,点P 的坐标为()0,1,故④正确故选C .13.B 解:∵函数172y x =+的图象与x 轴、y 轴分别相交于点A 、B ,∴()()14007A B ,,,, ∵点P 在ABO 的内部, ∴()011401711172m m m m ⎧⎪<+<⎪<-<⎨⎪⎪-<-++⎩, ∴15m <<.故选:B .14.D解:A. 当销售量为2吨时,销售成本是3000元,故选项A 说法错误,不符合题意;B. 销售成本是3000元时,销售利润是2000元,该公司的该产品亏损,故选项B 说法错误,不符合题意;C. 当销售量为5吨时,该公司的该产品盈利50004500500-=元,故选项C 说法错误,不符合题意;D. 设1l 的解析式为11y k x =,由图象,得,140004k =解得:11000k =,故1l 的解析式为:11000y x =,所以,选项D 正确,符合题意,故选:D15.A解:由已知函数图象得:每分钟的进油量为:3824=÷(吨),每分钟的出油量为:3(4024)(248)2--÷-=(吨),所以放完全部油所需的时间为:40220÷=(分钟).故选:A .16.0(答案不唯一)解:∵一次函数()211y m x =-+,y 值随x 的增大而减小,∴210m -<,∴12m <,∴当0m =时,即可满足题意;故答案为:0(答案不唯一).17.()2,5-解:根据题意得:()()123y k x k =--+23xk x k =--- ()23k x x =---,当2x =时,y 的值与k 无关,把2x =代入得:235y =--=-,∴定点坐标为:()2,5-,故答案为:()2,5-.18.2±解:∵y x b =+,当0x =时,y b =;当0y =时,x b =-;∴一次函数与坐标轴的交点坐标为:()()0,,,0b b -, ∴211222b b b ⋅-==, ∴2b =±.故答案为:2±.19.(3,0)或(70,4)或(0,4). 解:直线483y x =-+,当0x =时,8y =;当0y =时,则4803x -+=,解得6x =,∴(6,0),(0,8)A B ,∵90,6,8AOB OA OB ∠=︒==, ∴22226810AB OA OB ++=,∵C 是AB 的中点,∴152AC CB AB ===,如图1,点P 在OA 上,且APC AOB ∽,∴APC AOB ∠=∠,∴PC OB ∥, ∴1APACPO CB ==, ∴132PO AP OA ===,∴(3,0)P ;如图2,点P 在OB 上,且PCB AOB ∽,∴PBCBAB OB =, ∴1052584AB CBPB OB ⋅⨯===, ∴257844OB =-=, ∴7(0,)4P ;如图3,点P 在.OB 上,且CPB AOB ∽,∴CPB AOB ∠=∠,∴PC OA ∥, ∴1OP AC PB CB==, ∴142OP PB OB ===,∴(0,4)P ,综上所述,点P 的坐标是(3,0)或(70,4)或(0,4).20.404440442022202322,33⎛⎫ ⎪⎝⎭ 解:∵点1B 在直线l :13y x =上,点1B 的横坐标为1,过点1B 作11B A x ⊥轴,垂足为1A ,∴110A (,),1113B (,), ∵四边形1112A BC A 是正方形, ∴2233444441616)(,0),(,),(,0),(,),16646464339992727278,(,0),1(A B A B A B ,⋯⋯2222221122,(233(,0),)3,n n n n n n n n A B ∴点2023B 的坐标为404440442022202322,33⎛⎫ ⎪⎝⎭, 故答案为:404440442022202322,33⎛⎫ ⎪⎝⎭. 21.2x =-解:∵一次函数y kx b =+(k b 、是常数,且0k ≠)的图像与x 轴交点的坐标的横坐标为2x =-, ∴0kx b +=的解为2x =-.故答案为:2x =-.22.4439(,) 解:连接BG ,延长BG 与OA 交于点E ,则10E (,),设B 点坐标为2b (,),∵G 是OAB 的重心, ∴13GE BE =,∴G 点横坐标()()114211333B E E x x x =-+=-+=, G 点横坐标()()1110333B E y y b b =-=-=, ∴4133G b (,), 设直线OB 的解析式为y kx =,则2k b =, ∴12k b =,∴直线OB 的解析式为12y bx =, 当212bx x =时,0x =或12b , ∴21124C b b (,), ∵∥CG x 轴, ∴21143b b =, 解得0b =(舍)或43b =,∴4439G (,), 故答案为:4439(,). 23.(1)5100y x =-+(2)当零售价定为14元时,每天销售利润最大,最大利润是180元(1)解:设y 与x 之间的关系式为y kx b =+,把()860,和()1620,代入y kx b =+得6082016k b k b =+⎧⎨=+⎩, ∴5100k b =-⎧⎨=⎩, ∴5100y x =-+;(2)解:设每天利润为w 元,由题意得()()85100w x x =--+2540100800x x x =-++-()2514180x =--+,∵50816x -<≤≤,, ∴当14x =时,w 的最大值为180,∴当零售价定为14元时,每天销售利润最大,最大利润是180元.24.(1)时间(或t ),飞行高度(或h )(2)5(3)25(4)2;15(5)第14分钟时无人机的飞行高度是25米(1)解:由题意可得,∵无人机高度随时间变化而变化,∴自变量是时间(或t ),因变量是飞行高度(或h ),故答案为:时间(或t ),飞行高度(或h ),;(2)解:由图像可得,712分钟无人机在75米高的上空停留,∴无人机在75米高的上空停留的时间是:1275-=分钟,故答案为:5;(3)解:由67~分钟图像可得, 无人机的速度为:75502576-=-(米/分钟), 故答案为25;(4)解:由(3)可得,5025a =,752512b =-, 解得:2a =,15b =,故答案为:2,15;(5)解:由(3)可得,25(1412)50⨯-=,∴第14分钟时无人机的飞行高度是:755025-=(米),答:第14分钟时无人机的飞行高度是25米.25.6.4m解:由题意可得各点坐标为:()0,1.6E ,()4,0G ,()3,1.6C -且所求的高度就为点A 的纵坐标. 设直线AE 的函数关系式为y kx b =+.把()0,1.6E ,()4,0G 代入得 1.604b k b =⎧⎨=+⎩,解得 1.625b k =⎧⎪⎨=-⎪⎩. ∴直线AE 的函数关系式为21.65y x =-+①.∵直线AF 过点()3,1.6C -,()0,0F ,同理可得直线AF 的解析式为815y x =-②, 联立①②解得,12x =-, 6.4y =答:路灯杆AB 的高度6.4m .26.(1)13y x =+,22y x =-(2)2<<1x --或0x >(3)1(1)解:根据题意,将点()1,2A -代入2m y x=中,得()122m =-⨯=-, ∴反比例函数的表达式为22y x =-;将(),1B a 代入22y x =-中,得2a =-,则()2,1B -,将()1,2A -、()2,1B -代入1y kx b =+中,得221k b k b -+=⎧⎨-+=⎩,解得13k b =⎧⎨=⎩,∴一次函数的表达式为13y x =+;(2)解:根据图像,当2<<1x --或0x >时,12y y >;(3)解:设直线AB 交x 轴于H ,设2,C m m ⎛⎫- ⎪⎝⎭,(),0H t ,则12BHHC =,0m >,过B 作BE x ⊥轴于E ,过C 作CF x ⊥轴于F ,则1BE =,2EH t =+,2CF m =,HF m t =-,BE CF ∥, ∴12BE EHBH CF HF HC ===,即12122t m t m+==-,解得1m =,1t =-,∴121EH =-+=, ∴tan 1BEBHE EH ∠==.即BC 与x 轴所交锐角的正切值为1.27.(1)211,2055y x z x ==-+ (2)22205W x x =-+,年产量为25万件时毛利润最大,最大毛利润为250万元(3)今年最多可获得毛利润240万元(1)解:图①可得函数经过点()50500,, 设抛物线的解析式为20y ax a =≠(), 将点()50500,代入得:5002500a =,解得:15a =, 故y 与x 之间的关系式为215y x =. 图②可得:函数经过点()()0205010,、,, 设z kx b =+,则205010b x b =⎧⎨+=⎩,解得:2015b k =⎧⎪⎨=-⎪⎩, 故z 与x 之间的关系式为1205z x =-+. 故答案为:211,2055y x z x ==-+. (2)解:22112055W zx y x x x =-=-+-22205x x =-+ 22(50)5x x =-- 22(25)2505x =--+∵205-<,∴当x =25时,W 有最大值250,∴年产量为25万件时毛利润最大,最大毛利润为250万元.(3)解:令80y =,得21805x =,解得:20x =±(负值舍去), 由图像可知,当080y ≤<时,020x ≤<,由()225250y x =--+,的性质可知,当020x ≤<时,W 随x 的增大而增大,故当x =20时,W 有最大值240.答:今年最多可获得毛利润240万元.28.(1)2142y x x =-++(2)S =2122-t t (3)133y x =-+(1)解:当0x =时,4y =,∴()0,4C ,当0y =时,4x =,∴()4,0B ,把()4,0B ,()0,4C 代入抛物线解析式得40164c a c=⎧⎨=++⎩, ∴124a c ⎧=-⎪⎨⎪=⎩, ∴抛物线的解析式为2142y x x =-++; (2)∵OC OB =,∴45OCB OBC ∠=∠=︒,∵DE x ⊥轴于E ,∴90DEB ∠=︒,∴45DBE BDE ∠=∠=︒,∴4DE BE t ==-,∵DP y ⊥轴于P ,∴四边形OPDE 为矩形,∴4OP DE t ==-, ∴()2114222S t t t t =-=-;(3)∵CF y ⊥轴,∴F 的纵坐标为4,把4y =代入抛物线解析式得10x =,22x =, ∴()2,4F ,作FH x ⊥轴于H ,∴90FHB ∠=︒,∴90BFH FBH ∠+∠=︒,∵FB PB ⊥,∴90FBP ∠=︒,∴90PBO FBH ∠+∠=︒,∴BFH PBO ∠=∠,∵FHB BOP ∠=∠,FH BO =,∴FHB BOP ≌,∴2BH OP ==,∴2BE DE OP ===,∵OP QE ∥, ∴12QE BE OP OB ==, ∴1QE =,∴()6,1Q ,作MN y ⊥轴于N ,∴CN MN =,∵MN CF ∥, ∴MN PN CF PC =, ∴626MN MN -=, ∴32MN =,32CN ∴=, 35422ON ∴=-=, ∴35,22M ⎛⎫ ⎪⎝⎭, 设直线QM 的解析式为y kx b =+,把Q 、M 坐标代入得, 165322k b k b =+⎧⎪⎨=+⎪⎩, 解得133k b ⎧=-⎪⎨⎪=⎩, ∴直线QM 的解析式为:133y x =-+.。
中考数学专题复习:一次函数练习题(含答案)
中考数学专题复习:一次函数练习题一.选择题1.若正比例函数y=mx(m是常数,m≠0)的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于()A.2B.﹣2C.4D.﹣42.关于一次函数y=2x﹣b(b为常数),下列说法正确的是()A.y随x的增大而减小B.当b=4时,图象与坐标轴围成的面积是4C.图象一定过第二、四象限D.与直线y=3﹣2x一定相交于第四象限内一点3.如图,直线y=kx+b与x轴交于点(2,0),则当y>0时,x的取值范围是()A.x<0B.x>0C.x>2D.x<24.如图,在平面直角坐标系中,已知A(﹣3,0),B(0,﹣2),C(﹣3,﹣2),D是线段BC上的一个动点,作直线AD,过点D作DE⊥AD交y轴于点E,若AD=DE,设点D、E在直线y=kx+b上,则k为()A.2B.C.3D.5.如图,直线y =kx (k ≠0)与y =x +2在第二象限交于A ,y =x +2交x 轴,y 轴分别于B 、C 两点.3S △ABO =S △BOC ,则方程组的解为( )A .B .C .D . 6.如图,直线y =x +2与x 轴、y 轴分别交于点A 和点B ,点C 、D 分别为线段AB 、OB 的中点,点P 为OA 上一动点,PC +PD 值最小时点P 的坐标为( )A .(﹣,0)B .(﹣,0)C .(﹣,0)D .(﹣,0) 7.如图,一次函数y =kx +b 的图象与直线y =1交点的横坐标为5,则不等式kx +b ≥1的解集为( )A .x ≥1B .x ≥5C .x ≤1D .x ≤58.如图,在平面直角坐标系中有一个3×3的正方形网格,其右下角格点(小正方形的顶点)A 的坐标为(﹣1,1),左上角格点B 的坐标为(﹣4,4),若分布在过定点(﹣1,0)的直线y=﹣k(x+1)两侧的格点数相同,则k的取值可以是()A.B.C.2D.9.已知张强家、体育场、文具店在同一直线上.如图的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x表示时间,y表示张强离家的距离.则下列说法错误的是()A.体育场离张强家2.5千米B.体育场离文具店1千米C.张强在文具店逗留了15分D.张强从文具店回家的平均速度是千米/分10.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3…和点C1,C2,C3…分别在直线y=x+1和x轴上,则点A2019的坐标是()A.(22018,22019)B.(22018﹣1,22018)C.(22019,22018)D.(22018﹣1,22019)二.填空题11.在平面直角坐标系中,横、纵坐标都是整数的点叫作整点,直线y=kx﹣3(k>0),与坐标轴围成的三角形内部(不包含边界)有且只有三个整点,则k的取值范围是.12.甲、乙两车分别从A、B两地同时相向匀速行驶,当乙车到达A地后,继续保持原速向远离B的方向行驶,而甲车到达B地后,休息半小时后立即掉头,并以原速的倍与乙车同向行驶,经过一段时间后,两车先后到达距A地300km的C地并停下来,设两车行驶的时间为x(h),两车之间的距离为y(km),y与x的函数关系如图,则当甲车从B 地掉头追到乙车时,乙车距离C地km.13.如图所示,直线y=x+2与两坐标轴分别交于A、B两点,点C是OB的中点,D、E 分别是直线AB、y轴上的动点,当△CDE周长最小时,点D的坐标为.14.已知A、B、C三地在一条直线上,C地位于A地、B地之间.甲、乙两车分别从A、C 两地同时出发,甲计划从A地到达B地后立即返回C地停止,乙从C地到达B地后停止.实际上,当甲追上乙后立马掉头并原速返回C地,接下来一直以原速的2倍从C地出发到达B地后,再次返回C地,最后两人同时到达各自的目的地.甲、乙两人距C地的距离和y(m)与甲出发的时间x(min)之间的关系如图所示(甲掉头的时间忽略不计),则甲、乙两人第二次相遇时,乙距B地还有米.15.如图,直线y=x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,..按此做法进行下去,点A4的坐标为,点A n的坐标为.三.解答题16.在一次800米的长跑比赛中,甲、乙两人所跑的路程S(米)与各自所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD(如图所示),请根据图象,回答下列问题.(1)在起跑后60秒时,乙在甲的前面还是后面?(2)在起跑后多少秒时,两人相遇?17.(1)如图,已知点A(﹣4,4),一个以A为顶点的45°角绕点A旋转,角的两边分别交x轴正半轴,y轴负半轴于E、F,连接EF.当△AEF是直角三角形时,点E的坐标是.(2)已知实数x+y=12,则+的最小值是.18.甲、乙两人驾车都从P地出发,沿一条笔直的公路匀速前往Q地,乙先出发一段时间后甲再出发,甲、乙两人到达Q地后均停止.已知P、Q两地相距200km,设乙行驶的时间为t(h)甲、乙两人之间的距离为y(km),表示y与t函数关系的部分图象如图所示.请解决以下问题:(1)由图象可知,甲比乙迟出发h,图中线段BC所在直线的函数解析式为;(2)设甲的速度为v1km/h,求出v1的值;(3)根据题目信息补全函数图象(不需要写出分析过程,但必须标明关键点的坐标);并直接写出当甲、乙两人相距32km时t的值.19.如图,在平面直角坐标系中,点A(4,0)、点B(0,4),过原点的直线l交直线AB 于点P.(1)∠BAO的度数为°,△AOB的面积为;(2)当直线l的解析式为y=3x时,求△AOP的面积;(3)当时,求直线l的解析式.20.如图1,已知直线y=3x+3与y轴,x轴分别交于A,B两点,过点B在第二象限内作BC⊥AB且BC=AB,连接AC.(1)求点C的坐标;(2)如图2,过点C作直线CD∥x轴交AB于点D,交y轴于点E请从下列A,B两题中任选一题作答,我选择题A.①求线段CD的长;②在坐标平面内,是否存在点M(除点B外),使得以点M,C,D为顶点的三角形与△BCD全等?若存在,请直接写出所有符合条件的点M的坐标:若不存在,请说明理由.B.①如图3,在图2的基础上,过点D作DF⊥AC于点F,求线段DF的长;②在坐标平面内,是否存在点M(除点F外),使得以点M,C,D为顶点的三角形与△FCD全等?若存在,请直接写出所有符合条件的点M的坐标;若不存在,请说明理由.参考答案一.选择题1.解:∵y=mx(m是常数,m≠0)的图象经过点A(m,4),∴m2=4,∴m=±2,∵y的值随x值的增大而减小,∴m<0,∴m=﹣2,故选:B.2.解:k=2>0,y随x的增大而增大,因此选项A不符合题意,当b=4,时,函数y=2x﹣4与x轴、y轴的交点分别为(2,0),(0,﹣4)因此图象与坐标轴围成的面积是2×4÷2=4,故选项B符合题意,k=2>0,当b>0时,图象过一、三、四象限,当b<0时,图象过一、二、三象限,因此选项C不符合题意,直线y=3﹣2x过一、二、四象限,与y=2x﹣b相交可能在一、二、四象限,因此选项D 不符合题意,故选:B.3.解:直线y=kx+b与x轴交于点(2,0),且过一、二、四象限,由图象可知,当x<2时,y的值大于0,故选:D.4.解:连接AC,∵A(﹣3,0),B(0,﹣2),C(﹣3,﹣2),∴OACB是矩形,∴AC=OB=2,OA=BC=3,∠ACD=∠DBE=90°,又∵DE⊥AD,∴∠ADE=90°,∴∠ADC+∠DAC=∠ADC+∠EDB=90°,∴∠DAC=∠EDB,∵AD =DE ,∴△ACD ≌△DEB (AAS )∴DB =AC =2,CD =BE =3﹣2=1,∴D (﹣2,0),E (0,1)代入y =kx +b 得:﹣2k +b =0,且b =1,解得:k =,故选:B .5.解:由可得,B (﹣3,0),C (0,2),∴BO =3,OC =2,∵3S △ABO =S △BOC ,∴3××3×|y A |=×3×2,解得y A =±,又∵点A 在第二象限,∴y A =,当y =时,=x +2,解得x =﹣2, ∴方程组的解为.故选:C .6.解:作点D 关于x 轴的对称点D ′,连接CD ′交x 轴于点P ,此时PC +PD 值最小,如图.令y =x +2中x =0,则y =2,∴点B 的坐标为(0,2);令y=x+2中y=0,则x+2=0,解得:x=﹣3,∴点A的坐标为(﹣3,0).∵点C、D分别为线段AB、OB的中点,∴点C(﹣,1),点D(0,1).∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣1).设直线CD′的解析式为y=kx+b,∵直线CD′过点C(﹣,1),D′(0,﹣1),∴有,解得:,∴直线CD′的解析式为y=﹣x﹣1.令y=0,则0=﹣x﹣1,解得:x=﹣,∴点P的坐标为(﹣,0).故选:A.7.解:由图象可得:当x≥5时,kx+b≥1,所以不等式kx+b≥1的解集为x≥5,故选:B.8.解:∵直线y=﹣k(x+1)过定点(﹣1,0),分布在直线y=﹣k(x+1)两侧的格点数相同,由正方形的对称性可知,直线y=﹣k(x+1)两侧的格点数相同,∴在直线CD和直线CE之间,两侧格点相同,(如图)∵E(﹣3,3),D(﹣3,4),∴﹣2<﹣k<﹣,则<k<2.故选:B.9.解:观察图象可知:体育场离张强家2.5千米,体育场离文具店1千米,张强从文具店回家的平均速度==千米/分,张强在文具店逗留了20分,故A,B,D正确,故选:C.10.解:当x=0时,y=0+1=1,当y=0时,x=﹣1,∴OC=OA1=1,△A1OC是等腰直角三角形,同理可得:△A1B1A2,△A2B2A3,△A3B3A4……都是等腰直角三角形,于是:A1(0,1),A2(1,2),A3(3,4),A4(7,8)……A2019(22018﹣1,22018)故选:B.二.填空题(共5小题)11.解:如图:直线y=kx﹣3(k>0),一定过点(0,﹣3),把(3,0)代入y=kx﹣3得,k=1;把(3,﹣1)代入y=kx﹣3得,k=;直线y=kx﹣3(k>0),与坐标轴围成的三角形内部(不包含边界)有且只有三个整点,则k的取值范围为<k<1,故答案为:<k<1.12.解:由图象可得:当x=0时,y=300,∴AB=300千米.∴甲车的速度=300÷5=60千米/小时,又∵300÷3=100千米/小时,∴乙车的速度=100﹣60=40千米/小时,∴当甲车从B地掉头追到乙车时,乙车距离C地=600﹣40×5.5=380km,故答案为:380.13.解:如图,作点C关于AB的对称点F,关于AO的对称点G,连接DF,EG,∵直线y=x+2与两坐标轴分别交于A、B两点,点C是OB的中点,∴B(﹣2,0),C(﹣1,0),∴BO=2,OG=1,BG=3,易得∠ABC=45°,∴△BCF是等腰直角三角形,∴BF=BC=1,由轴对称的性质,可得DF=DC,EC=EG,当点F,D,E,G在同一直线上时,△CDE的周长=CD+DE+CE=DF+DE+EG=FG,此时△DEC周长最小,设直线FG的解析式为:y=kx+b,∵F(﹣2,1),G(1,0),∴,∴,直线FG的解析式为:y=﹣x+,解得,∴点D的坐标为(﹣,),故答案为:(﹣,).14.解:由图象可得:AC距离为1000米,2分钟甲到C地,∴甲的速度==500米/分,由图象可得,甲6分钟后回到C地,∴乙的速度==250米/分,设BC距离为x米,解得x=3000,∴BC=3000米,设甲返回C地后经过y分钟追上乙,1000y=250(6+y)解得:y=2,∴甲、乙两人第二次相遇时,乙距B地还有(3000﹣1000×2)=1000米,故答案为1000.15.解:在Rt△OA1B1中,OA1=1,∠A1OB1=60°,∴OB1=2OA1=2,∴点A2的坐标为(2,0).同理,可得出:点A3的坐标为(4,0),点A4的坐标为(8,0),点A5的坐标为(16,0),…,A n(2n﹣1,0)故答案为:(8,0),(2n﹣1,0)三.解答题(共5小题)16.解:如图所示:(1)∵甲、乙两人同时同地起跑,由图可知,起跑后60秒时S甲<300m,S乙=300m,∴乙跑在甲的前面;(2)设直线OA的解析式为y=k1t(k1≠0),直线BC的解析式为y=k2t+b(k2≠0)∵点A(200,800)在直线OA上,∴200k1=800,解得:k1=4,∴直线OA的解析式为y=4t,又∵点B(60,300),点C(260,600)在直线BC上,∴,∴解得:,∴直线BC的解析式为,当两直线相交时,就是甲、乙两人相遇时刻,,解得:,∴在起跑后84秒时,两人相遇.17.解:(1)①如图所示:当∠AFE=90°,∴∠AFD+∠OFE=90°,∵∠OEF+∠OFE=90°,∴∠AFD=∠OEF∵∠AFE=90°,∠EAF=45°,∴∠AEF=45°=∠EAF,∴AF=EF,在△ADF和△FOE中,,∴△ADF≌△FOE(AAS),∴FO=AD=4,OE=DF=OD+FO=8,∴E(8,0)②当∠AEF=90°时,同①的方法得,OF=8,OE=4,∴E(4,0),综上所述,满足条件的点E坐标为(8,0)或(4,0),故答案为:(8,0)或(4,0),(2)∵x+y=12,∴y=12﹣x,∴原式=,即可理解为x轴上的一点A(x,0)到B(0,2),C(12,3)的距离的最小值,即AB+AC的最小值,如图,作B关于x轴的对称点B′,连接B′C,与x轴的交点即为点A,此时AB+AC 的最小值为B′C的长度,∵B(0,2),∴B′(0,﹣2),∴B′C==13,∴的最小值为13,故答案为:1318.解:(1)设线段BC所在直线的函数解析式为y=kx+b,根据题意得:,解得,∴线段BC所在直线的函数解析式为y=15x﹣40.故答案为:y=15x﹣40;(2)设甲的速度为v1km/h,设乙的速度为v2km/h,由题意得:,解得;答:甲的速度为40km/h.(3)如图所示:根据题意得:40(t﹣1)﹣25t=32或25t=200﹣32,解得t=4.8或6.72.答:当甲、乙两人相距32km时t的值为4.8或6.72.19.解:(1)∵点A(4,0)、点B(0,4),∴OA=OB,∵∠AOB=90°,∴△AOB是等腰直角三角形,∴∠BAO=45°,△AOB的面积=×4×4=8;故答案为:45,8;(2)设直线AB的解析式为:y=kx+b,把点A(4,0)、点B(0,4)代入得,解得:,∴直线AB的解析式为:y=﹣x+4,∵直线l的解析式为y=3x,解得,,∴P(1,3),∴△AOP的面积=×4×3=6;(3)如图,过P作PC⊥OA于C,则PC∥OB,∵,∴=,∴=,∵PC∥OB,∴△APC∽△ABO,∴==,∴==,∴PC=1,AC=1,∴OC=3,∴P(3,1),∴直线l的解析式为y=x.20.解:(1)在y=3x+3中,当x=0时,y=3,∴点A的坐标为((0,3),∴AO=3,在y=3x+3中,当y=0时,0=3x+3,x=﹣1,∵点B的坐标为(﹣1,0),∴BO=1,过点C作CH⊥x轴于点H,则∠BHC=90°,∵BC⊥AB,∴∠ABC=90°,∴∠CBH+∠ABO=180°﹣∠ABC=90°,∵∠AOB=90°,∴∠BAO+∠AB O=90°,∴∠CBH=∠BAO,∵∠BHC=∠ABO=90°,BC=AB,∴△BCH≌△ABO(AAS),∴CH=BO=1,BH=AO=3,∴OH=BH+BO=4∵点C在第二象限,∴点C的坐标为(﹣4,1)(2)A.①由(1)知点C的坐标为(﹣4,1),∵CD∥x轴交AB于点D,∴点D的纵坐标为1,将y=1代入y=3x+3得1=3x+3,∴∴点D的坐标为,∴;②存在,理由:以点M,C,D为顶点的三角形与△BCD全等,点M与点B对应,有如图2的三种情况:当△M1DC≌△BDC时,则点M1和点B关于直线CE对称,则点M1的坐标为:(﹣1,2);当△M2CD≌△BDC时,则点M2和点B关于CD的中垂线对称,故点M2(﹣,0);当△M3CD≌△BDC时,同理可得:点M3(﹣,2);综上:;B.①由(1)知点C的坐标为(﹣4,1),∵CD∥x轴交AB于点D,交y轴于点E,∴点D的纵坐标为1,AE=3﹣1=2将y=1代入y=3x+3得1=3x+3,∴,∴点D的坐标为,∴在Rt△AOB中,AO=3,B O=1,由勾股定理得,∵BC=AB,∴,∴,∴,∴;②存在,理由:如图3,作点A关于x轴的对称轴A′,连接A′C,以点M,C,D为顶点的三角形与△FCD全等,则点D与点B为对应点,此时图3和图2情况相同,同理可得,点M的坐标为:.。
中考数学高频考点《一次函数》专项测试卷-附答案
中考数学高频考点《一次函数》专项测试卷-附答案学校:___________班级:___________姓名:___________考号:___________1.(10分)某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由;(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价;(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a元,请直接写出a的取值范围.2.(9分)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的倍,用300元在市场上购买的A种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A种菜苗的价格.(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A 种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.3.(9分)猕猴嬉戏是王屋山景区的一大特色,猕猴玩偶非常畅销.小李在某网店选中A,B两款猕猴玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如下表:A款玩偶B款玩偶类别价格进货价(元/个)4030销售价(元/个)5645(1)第一次小李用1100元购进了A,B两款玩偶共30个,求两款玩偶各购进多少个.(2)第二次小李进货时,网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半.小李计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少?(3)小李第二次进货时采取了(2)中设计的方案,并且两次购进的玩偶全部售出,请从利润率的角度分析,对于小李来说哪一次更合算?(注:利润率=×100%)4.(9分)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.5.(9分)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的.请设计出最省钱的购买方案,并说明理由.6.(9分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m87518751875875日销售利润w(元)(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?7.(9分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.按买3个A种魔方和买4个B种魔方钱数相同解答8.(9分)学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元?(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.9.(9分)某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费.②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.10.(9分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.11.(9分)某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售,设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.12.(9分)某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m0<m≤100100<m≤200m>200收费标准(元/人)908575甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20800元,若两校联合组团只需花费18000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?(2)两所学校报名参加旅游的学生各有多少人?13.(9分)为响应“全民植树增绿,共建美丽中国”的号召,学校组织学生到郊外参加义务植树活动,并准备了A,B两种食品作为午餐.这两种食品每包质量均为50g,营养成分表如下.(1)若要从这两种食品中摄入4600kJ热量和70g蛋白质,应选用A,B两种食品各多少包?(2)运动量大的人或青少年对蛋白质的摄入量应更多.若每份午餐选用这两种食品共7包,要使每份午餐中的蛋白质含量不低于90g,且热量最低,应如何选用这两种食品?参考答案1.【答案】解:(1)选择活动一更合算.理由如下:选择活动一需付款:450×0.8=360(元)选择活动二需付款:450﹣80=370(元)∵360<370∴选择活动一更合算;(2)设一件这种健身器材的原价为x元当0<x<300时,则活动一按原价打八折,活动二按原价,此时付款金额不可能相等;当300≤x<500时,由题意,得∴0.8x=x﹣80解得x=400答:一件这种健身器材的原价是400元;当300≤a<600时,a﹣80<0.8a解得a<400;∴300≤a<400;当600≤a<900时,a﹣160<0.8a解得a<800;∴600≤a<800;综上所述,300≤a<400或600≤a<800.2.【答案】解:(1)设菜苗基地每捆A种菜苗的价格是x元根据题意得:=+3解得x=20经检验,x=20是原方程的解,且符合题意.答:菜苗基地每捆A种菜苗的价格是20元;设购买A种菜苗m捆,则购买B种菜苗(100﹣m)捆∵A种菜苗的捆数不超过B种菜苗的捆数∴m≤100﹣m解得m≤50设本次购买花费w元∴w=20×0.9m+30×0.9(100﹣m)=﹣9m+2700∵﹣9<0∴w随m的增大而减小∴m=50时,w取最小值w最小=-9×50+2700=2250(元)答:本次购买最少花费2250元.3.【答案】解:(1)设A款玩偶购进x个,B款玩偶购进(30﹣x)个由题意,得40x+30(30﹣x)=1100解得:x=20.30﹣20=10(个).答:A款玩偶购进20个,B款玩偶购进10个;(2)设A款玩偶购进a个,B款玩偶购进(30﹣a)个,获利y元∵A款玩偶进货数量不得超过B款玩偶进货数量的一半.∴a≤(30﹣a)解得a≤10由题意,得y=(56﹣40)a+(45﹣30)(30﹣a)=a+450.∵k=1>0∴y随a的增大而增大.∴当a=10时,y最大=460元.∴此时B款玩偶为:30﹣10=20(个).答:按照A款玩偶购进10个、B款玩偶购进20个的方案进货才能获得最大利润,最大利润是460元;(3)第一次的利润率=×100%≈42.7%第二次的利润率=×100%=46%∵46%>42.7%∴对于小李来说第二次的进货方案更合算.4.【答案】解:(1)∵y1=k1x+b的图象过点(0,30)与(10,180)∴,解得k1=15表示的实际意义是:购买一张学生暑期专享卡后每次健身费用为15元(2)b=30表示的实际意义是:购买一张学生暑期专享卡的费用为30元;(3)由题意可得,打折前的每次健身费用为15÷0.6=25(元)则k2=25×0.8=20;(3)选择方案一所需费用更少.理由如下:由题意可知,y1=15x+30,y2=20x.当健身8次时选择方案一所需费用:y1=15×8+30=150(元)选择方案二所需费用:y2=20×8=160(元)∵150<160∴选择方案一所需费用更少.5.【答案】解:(1)设A的单价为x元,B的单价为y元根据题意,得,解得答:A的单价30元,B的单价15元;(2)设购买A奖品m个,则购买B奖品为(30﹣m)个,购买奖品的花费为W元由题意可知,m≥(30﹣m)∴m≥,且m为正整数.∴W=30m+15(30﹣m)=15m+450∵15>0∴当m=8时,W有最小值答:购买A奖品8个,购买B奖品22个,花费最少.6.【答案】解:(1)设y关于x的函数解析式为y=kx+b,得即y关于x的函数解析式是y=﹣5x+600当x=115时,y=﹣5×115+600=25即m的值是25;(2)设成本为a元/个当x=85时,875=175×(85﹣a),得a=80w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000∴当x=100时,w取得最大值,此时w=2000(3)设科技创新后成本为b元当x=90时,(﹣5×90+600)(90﹣b)≥3750解得b≤65答:该产品的成本单价应不超过65元.7.【答案】解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个根据题意得:,解得:.答:A种魔方的单价为20元/个,B种魔方的单价为15元/个.(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个根据题意得:活动一w=20m×0.8+15(100﹣m)×0.4=10m+600;活动二w=20m+15(100﹣m﹣m)=-10m+1500.当w活动一<w活动二时,有10m+600<﹣10m+1500解得:m<45;当w活动一=w活动二时,有10m+600=﹣10m+1500解得:m=45;当w活动一>w活动二时,有10m+600>﹣10m+1500解得:45<m≤50.综上所述:当0<m<45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m>45时,选择活动二购买魔方更实惠.(按购买3个A种魔方和4个B种魔方需要130元解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个根据题意得:,解得:.答:A种魔方的单价为26元/个,B种魔方的单价为13元/个.(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个根据题意得:w活动一=26m×0.8+13(100﹣m)×0.4=15.6m+520;w活动二=26m+13(100﹣m﹣m)=1300.当w活动一<w活动二时,有15.6m+520<1300解得:m<50;当w活动一=w活动二时,有15.6m+520=1300解得:m=50;当w活动一>w活动二时,有15.6m+520>1300不等式无解.综上所述:当0<m<50时,选择活动一购买魔方更实惠;当m=50时,选择两种活动费用相同.8.【答案】解:(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元根据题意,得:,解得:答:一只A型节能灯的售价是5元,一只B型节能灯的售价是7元;(2)设购进A型节能灯m只,总费用为W元由题意m≤3(50-m)解得:m≤37.5,且m为正整数根据题意,得:W=5m+7(50-m)=-2m+350∵﹣2<0∴W随m的增大而减小∴当m=37时,W最小=﹣2×37+350=276此时50﹣37=13答:当购买A型灯37只,B型灯13只时,最省钱.9.【答案】解:(1)由题意可得:银卡消费:y=10x+150,普通消费:y=20x;(2)由题意可得:当10x+150=20x解得:x=15,则y=300∴B(15,300)当y=10x+150,x=0时,y=150∴A(0,150)当y=10x+150=600解得:x=45,则y=600∴C(45,600);(3)如图所示:由A,B,C的坐标可得:当0<x<15时,普通消费更划算;当x=15时,银卡、普通票的总费用相同,均比金卡合算;当15<x<45时,银卡消费更划算;当x=45时,金卡、银卡的总费用相同,均比普通票合算;当x>45时,金卡消费更划算.10.【答案】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得解得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150(100﹣x),即y=-50x+15000②据题意得,100﹣x≤2x解得x≥33,且x为正整数.∵-50<0∴y随x的增大而减小∵x为正整数∴当x=34时,y取最大值,则100﹣x=66即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x+150(100﹣x),=(m﹣50)x+15000(33≤x≤70且x为正整数)①当0<m<50时m﹣50<0,y随x的增大而减小∴当x=34时,y取最大值即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;③当50<m<100时m﹣50>0,y随x的增大而增大∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.11.【答案】解:(1)设A、B两种品牌的计算器的单价分别为a元、b元根据题意得,,解得:答:A种品牌计算器30元/个,B种品牌计算器32元/个;(2)A品牌:y1=30x•0.8=24x;B品牌:①当0≤x≤5时,y2=32x②当x>5时,y2=5×32+32×(x﹣5)×0.7=22.4x+48综上所述:y1=24xy2=;(3)当y1=y2时,24x=22.4x+48,解得x=30,即购买30个计算器时,两种品牌都一样;当y1>y2时,24x>22.4x+48,解得x>30,即购买超过30个计算器时,B品牌更合算;当y1<y2时,24x<22.4x+48,解得x<30,即购买不足30个且大于5个计算器时,A品牌更合算.12.【答案】解:(1)这两所学校报名参加旅游的学生人数之和超过200人,理由为:设两校人数之和为a若a>200,则a=18000÷75=240;若100<a≤200,则a=18000÷85=211>200,不合题意则这两所学校报名参加旅游的学生人数之和等于240人,超过200人.(2)设甲学校报名参加旅游的学生有x人,乙学校报名参加旅游的学生有y人,则①当100<x≤200时,得解得(6分)---------------------------②当x>200时,得解得不合题意,舍去.答:甲学校报名参加旅游的学生有160人,乙学校报名参加旅游的学生有80人.13.解:(1)设选用A 种食品x 包,B 种食品y 包根据题意得:7009004600101570x y x y +=⎧⎨+=⎩解得:42x y =⎧⎨=⎩. 答:应选用A 种食品4包,B 种食品2包;(2)设选用A 种食品m 包,则选用B 种食品(7)m -包根据题意得:1015(7)90m m +-解得:3m .设每份午餐的总热量为w kJ ,则700900(7)w m m =+-即2006300w m =-+2000-<w ∴随m 的增大而减小∴当3m =时,w 取得最小值,此时7734m -=-=.答:应选用A 种食品3包,B 种食品4包.。
中考数学复习《一次函数》专项练习题-附带答案
中考数学复习《一次函数》专项练习题-附带答案一、选择题1.经过两点(2,3)、(-1,-3)的一次函数的解析式为()A.y=x+1B.y=x−2C.y=2x−1D.y=−2x+12.直线y=3x向下平移2个单位长度后得到的直线是()A.y=3(x+2)B.y=3(x−2)C.y=3x+2D.y=3x−23.关于函数y=−2x+1,下列结论正确的是()A.图象必经过(−1,1)B.图象经过第一、二、三象限时,y<0D.y随x的增大而增大C.当x>124.已知一次函数y=(1+k)x+k,若y随着x的增大而减小,且它的图象与y轴交于负半轴,则直线y=kx−k 的大致图象是()A.B.C.D.5.已知点(−2,y1),(−1,y2)和(1,y3)都在直线y=−3x+b上,则y1,y2和y3的值的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y3>y1>y2D.y3<y1<y2的图像与函数y2=−2x+6的图像相交于A(2,m),当y1>y2时,x的取值范围是6.如图,函数y1=x+n2()A.x>2B.x<2C.0<x<2D.−2<x<07.一次函数y1=kx+b与y2=x+a的图象如图所示,下列说法:①ak<0;②函数y=ax+k不经过第一象限;③函数y=ax+b中,y随x的增大而增大;④3k+b=3+a;其中说法正确的个数有()A .4个B .3个C .2个D .1个8.A 、B 两地相距12km ,甲骑自行车从A 地出发前往B 地,同时乙步行从B 地出发前往A 地,如图所示的折线O −P −Q 和线段EF 分别表示甲、乙两人与A 地的距离y (km )与时间x (h )之间的函数关系,且OP 与EF 交于点G .下列说法中错误的是( )A .甲乙出发后0.5h 相遇B .甲骑自行车的速度为18km/hC .两人相遇地点与A 地的距离为9kmD .甲、乙相距3km 时,出发时间为x =35h 二、填空题9.若直线y =ax +1经过(1,0),则a = .10.已知一次函数y =kx +5与坐标轴围成的三角形面积为10,则k 的值为 .11.直线l 1:y =kx 与直线l 2:y =ax +b 在同一平面直角坐标系中的图象如图,则关于x 的不等式ax +b >kx的解集为 .12.如图,已知函数y =2x +b 与函数y =kx −3的图象交于点P ,则方程组{2x −y =−b kx −y =3的解是 .13.某医药研究所研发了一种新药,经临床实验发现,成人按规定剂量服用,每毫升血液中含药量y(微克)随时间x(小时)而变化的情况如图所示.研究表明,当血液中含药量y≥5(微克)时,对治疗疾病有效,则有效时间是小时.三、解答题14.已知关于x的函数y=(3a+1)x−(a−1).(1)若函数为正比例函数,求a的值;(2)若y随x的增大而减小,求a的取值范围.15.某服装厂接到一批任务,需要15天内生产出800件服装.生产5天后,为按期完成任务,该服装厂增加了一定数目的工人,恰好在规定时间内完成任务.设该服装厂生产天数为x天,累计生产服装的数量为y件,则y与x之间的关系如图所示.(1)求增加工人后y与x的函数表达式;(2)问生产几天后的服装总件数恰好为500件?16.如图,在平面直角坐标系xOy中,直线y1=−x+b过点A,且与直线y2=x+3相交于点B(m,2),直线y2=x+3与x轴相交于点C.(1)求m的值.(2)求△ABC的面积.(3)根据图象,直接写出关于x的不等式−x+b>x+3的解集.x+4的图象分别与x轴、y轴交于A、B两点,点C在y轴上,AC平分∠OAB.17.如图,函数y=−43(1)求点A、B的坐标;(2)求△ABC的面积;(3)点P在第一象限内,且以A、B、P为顶点的三角形是等腰直角三角形,请你直接写出点P的坐标.18.甲、乙两台机器共同加工一批零件,一共用了6小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y(个)与甲加工时间x(h)之间的函数图象为折线OA﹣AB﹣BC,如图所示.(1)这批零件一共有个,甲机器每小时加工个零件,乙机器排除故障后每小时加工个零件;(2)当3≤x≤6时,求y与x之间的函数解析式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?1.C 2.D 3.C 4.D 5.A 6.A 7.C 8.D 9.−1 10.±54 11.x<112.{x=4y=−613.314.(1)解:∵关于x的函数y=(3a+1)x−(a−1)是正比例函数∴3a+1≠0解得a=1;(2)解:∵y随x的增大而减小,∴3a+1<0,∴a<−13∴a的取值范围是a<−13.15.(1)解:设增加工人后y与x的函数表达式是y=kx+b(k≠0)将(5,200),(15,800)代入上式,得:{5k+b=20015k+b=800解得:{k=60b=−100∴增加工人后y与x的函数表达式是y=60x−100(2)解:在y=60x−100中,令y=500,得:60x−100=500解得:x=10.答:生产10天后的服装总件数恰好为500件16.(1)解:∵直线y2=x+3过点B(m,2)∴2=m+3解得:m=−1(2)解:∵直线y1=−x+b过点B(−1,2)∴2=1+b 解得:b=1∴直线y1的解析式为y1=−x+1;在函数y1=−x+1中当y1=0时,x=1∴点A的坐标为(1,0);在函数y2=x+3中当y2=0时x=−3∴点C的坐标为(−3,0)∴AC=1−(−3)=4∴S△ABC=12AC⋅y B=12×4×2=4;(3)x<−117.(1)解:在y=−43x+4中令y=0可得−43x+4=0解得x=3令x=0,解得y=4∴A(3,0),B(0,4);(2)解:如图,过点C作CD⊥AB于点D∵AC平分∠OAB∴CD=OC 由(1)可知OA=3,OB=4∴AB=5∵S△AOB=S△AOC+S△ABC∴12×3×4=12×3×OC+12×5×OC,解得OC=32∴S△ABC=12×5×32=154;(3)(7,3)或(4,7)或(72,72).18.(1)270;20;40(2)解:设当3≤x≤6时,y与x之间的函数解析式为y=kx+b 把B(3,90),C(6,270),代入解析式,得{3k+b=906k+b=270解得{k=60b=−90∴y=60x−90(3≤x≤6)(3)解:设甲加工x小时时,甲与乙加工的零件个数相等乙机器出现故障时已加工零件50-20=30个20x=30x=1.5;乙机器修好后,根据题意则有20x=30+40(x−3)x=4.5答:甲加工1.5h或4.5h时,甲与乙加工的零件个数相等.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数
1.已知直线y=kx+b,若k+b=-5,kb=5,那该直线不经过的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
2. 直线y=2x+2沿y轴向下平移6个单位后与x轴的交点坐标是( )
A.(-4,0) B.(-1,0) C.(0,2) D.(2,0)
3. 对于函数y=-3x+1,下列结论正确的是( )
A.它的图象必经过点(-1,3)
B.它的图象经过第一、二、三象限
C.当x>1时,y<0
D.y的值随x值的增大而增大
4. 若实数a,b满足ab<0,且a<b,则函数y=ax+b的图象可能是( )
5. 如图,直线y=-x+2与y=ax+b(a≠0且a,b为常数)的交点坐标为(3,-1),则关于x的不等式-x +2≥ax+b的解集为( )
A.x≥-1 B.x≥3C.x≤-1 D.x≤3
6. 如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是( )
A.y=2x+3 B.y=x-3 C.y=2x-3 D.y=-x+3
7. 如图,直线y=kx+b与y轴交于点(0,3),与x轴交于点(a,0),当a满足-3≤a<0时,k的取值范围是( )
A.-1≤k<0 B.1≤k≤3C.k≥1 D.k≥3
8. 已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x________时,y≤0.
9. 在平面直角坐标系中,已知点A(2,3),B(4,7),直线y=kx-k(k≠0)与线段AB有交点,则k的取值范围为____________.
10. 一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b =0的解为.
11. 点(-1,y1),(2,y2)是直线y=2x+1上的两点,则y1____y2(填“>”“=”或“<”).
12. 把直线y=-x-1沿x轴向右平移2个单位,所得直线的函数解析式为.
13. 已知y是x的一次函数,当x=3时,y=1;当x=-2时,y=-4,求这个一次函数的解析式.
14. 在直角坐标系中,一条直线经过A(-1,5),P(-2,a),B(3,-3)三点.
①求a的值;
②设这条直线与y轴相交于点D,求△OPD的面积.
参考答案:
1---7 ADCAD DC
8. ≥2
9. 73
≤k≤3 10. x =-1
11. <
12. y =-x +1
13. 解:设一次函数解析式为y =kx +b ,将x =3,y =1;x =-2,y =-4代入得⎩⎨⎧3k +b =1,-2k +b =-4,
解得k =1,b =-2.则一次函数解析式为y =x -2
14. 解:①设直线的解析式为y =kx +b ,把A(-1,5),B(3,-3)代入,可得⎩⎨⎧-k +b =5,3k +b =-3,解得⎩⎨⎧k =-2,b =3,
所以直线解析式为y =-2x +3,把P(-2,a)代入y =-2x +3中,得a =7;②由①得点P 的坐标为(-2,
7),令x =0,则y =3,所以直线与y 轴的交点D 的坐标为(0,3),所以△OPD 的面积=12
×3×2=3 如有侵权请联系告知删除,感谢你们的配合!。