高一数学必修一第二章讲义与练习

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7;27

教学目标

掌握指数运算,熟悉指数函数的性质。

2)能力目标

会进行复杂的指数运算或化简,会求指数型函数的相关问题。

教学重点难点1)重点:,指数运算,指数函数相关的问题。2)难点:指数型函数的问题求解。

教法与学法通过典型例题分析和解题思路介绍,让学生总结方法和解题套路,掌握上述内容。

教学过程备注

1.复习测试(0~15)测试题目此处填写测试题目答案(简单的答

案,不需要过程)

2.作业和测试讲解

(15~50)

板书上堂课知识点填写讲解效果

3.新课讲解

(50~90)

4.随堂练习

5.板书设计

测试题目测试题目答案

教务公章:

复习测试:

1.已知函数f (x )=ax 2

+bx +c (a ≠0)是偶函数,那么g (x )=ax 3

+bx 2

+cx ( ) A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数 2.已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则( ) A .3

1

=

a ,

b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =0 16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 17.f (x )是定义在( 0,+∞)上的增函数,且f (y

x

) = f (x )-f (y ) (1)求f (1)的值.

(2)若f (6)= 1,解不等式 f ( x +3 )-f (x

1

) <2 .

13.已知函数f (x )是奇函数,且当x >0时,f (x )=x 3

+2x 2

—1,求f (x )在R 上的表达式.

12.已知函数f (x )满足f (x +y )+f (x -y )=2f (x )·f (y )(x ∈R ,y ∈R ),且f (0)≠0,试证f (x )是偶函数.

新课讲解:

指数运算与指数函数,单调性及指数函数型函数的相关性质。

新课测试:

1.(

36

9a )4(6

3

9a )4等于( )

(A )a

16

(B )a

8

(C )a

4

(D )a 2

2.若a>1,b<0,且a b

+a -b

=22,则a b

-a -b

的值等于( )

(A )6 (B )±2 (C )-2 (D )2

3.函数f (x )=(a 2

-1)x

在R 上是减函数,则a 的取值范围是( ) (A )1>a (B )2

4.下列函数式中,满足f(x+1)=2

1

f(x)的是( ) (A)

21(x+1) (B)x+4

1 (C)2x (D)2-x

5.下列f(x)=(1+a x )2

x a -⋅是( )

(A )奇函数 (B )偶函数 (C )非奇非偶函数 (D )既奇且偶函数

6.已知a>b,ab 0≠下列不等式(1)a 2

>b 2

,(2)2a

>2b

,(3)b

a 11<,(4)a 31>

b 31

,(5)(31)a <(31)

b

中恒成立的有( )

(A )1个 (B )2个 (C )3个 (D )4个

7.函数y=1

21

2+-x x 是( )

(A )奇函数 (B )偶函数 (C )既奇又偶函数 (D )非奇非偶函数 8.函数y=

1

21

-x 的值域是( ) (A )(-1,∞) (B )(-,∞0)⋃(0,+∞) (C )(-1,+∞) (D )(-∞,-1)⋃(0,+∞)

9.下列函数中,值域为R +

的是( ) (A )y=5

x

-21 (B )y=(

31)1-x

(C )y=1)2

1(-x (D )y=x 21- 10.函数y=2

x

x e e --的反函数是( )

(A )奇函数且在R +

上是减函数 (B )偶函数且在R +

上是减函数

(C )奇函数且在R +上是增函数 (D )偶函数且在R +

上是增函数 11.下列关系中正确的是( )

(A )(21)32<(51)32<(21)31 (B )(21)31<(21)32<(5

1)32

(C )(51)32<(21)31<(21)32 (D )(51)32<(21)32<(2

1)31

12.若函数y=3+2x-1

的反函数的图像经过P 点,则P 点坐标是( )

(A )(2,5) (B )(1,3) (C )(5,2) (D )(3,1)

13.函数f(x)=3x +5,则f -1

(x)的定义域是( ) (A )(0,+∞) (B )(5,+∞) (C )(6,+∞) (D )(-∞,+∞)

14.若方程a x

-x-a=0有两个根,则a 的取值范围是( ) (A )(1,+∞) (B )(0,1) (C )(0,+∞) (D )φ

15.已知函数f(x)=a x +k,它的图像经过点(1,7),又知其反函数的图像经过点(4,0),则函数f(x)的表达式是( )

(A)f(x)=2x +5 (B)f(x)=5x +3 (C)f(x)=3x +4 (D)f(x)=4x

+3 16.已知三个实数a,b=a a ,c=a

a

a ,其中0.9

(A )a

17.已知0

+b 的图像必定不经过( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限

7;27上午作业:

1.若a 2

3

2

,则a 的取值范围是 。

2.若10x

=3,10y

=4,则10x-y

= 。

3.化简⨯

5

3

x

x 35

x

x ×2

3

5

x

x = 。

4.函数y=

11

51

--x x 的定义域是 。

5.直线x=a(a>0)与函数y=(31)x ,y=(2

1)x ,y=2x ,y=10x

的图像依次交于A 、B 、C 、D 四点,则这四点从上到下的排列次序是 。 6.函数y=32

32x -的单调递减区间是 。

7.若f(5

2x-1

)=x-2,则f(125)= .

8.已知f(x)=2x

,g(x)是一次函数,记F (x )=f[g(x)],并且点(2,4

1)既在函数F (x )的图像上,又在F -1

(x )的图像上,则F (x )的解析式为 . 1. 设0

322+-x x >a

5

22-+x x 。

2. 已知函数y=(3

1)522++x x ,求其单调区间及值域。

相关文档
最新文档