随机信号处理实验报告讲解

合集下载

随机信号处理实验报告讲诉

随机信号处理实验报告讲诉

随机信号处理实验报告目录一、实验要求: (3)二、实验原理: (3)2.1 随机信号的分析方法 (3)2.2 随机过程的频谱 (3)2.3 随机过程的相关函数和功率谱 (4)(1)随机信号的相关函数: (4)(2)随机信号的功率谱 (4)三、实验步骤与分析 (5)3.1实验方案 (5)3.2实验步骤与分析 (5)任务一:(s1 变量)求噪声下正弦信号的振幅和频率 (5)任务二:(s1 变量)求噪声下正弦信号的相位 (8)任务三:(s1 变量)求信号自相关函数和功率谱 (11)任务四:(s变量)求噪声下信号的振幅和频率 (14)任务五:(s变量)求信号的自相关函数和功率谱 (17)3.3实验结果与误差分析 (19)(1)实验结果 (19)(2)结果验证 (19)(3)误差分析 (21)四、实验总结和感悟 (22)1、实验总结 (22)2、实验感悟 (23)五、附低通滤波器的Matlab程序 (23)一、实验要求:(学号末尾3,7)两个数据文件,第一个文件数据中只包含一个正弦波,通过MA TLAB 仿真计算信号频谱和功率谱来估计该信号的幅度,功率,频率和相位?对第二个文件数据估计其中正弦波的幅度,功率和频率?写出报告,包含理论分析,仿真程序及说明,误差精度分析等。

第一文件调用格式load FileDat01_1 s1,数据在变量s1中;第二文件调用格式load FileDat01_2 s ,数据在变量s 中。

二、实验原理:2.1 随机信号的分析方法在信号与系统中,我们把信号分为确知信号和随机信号。

其中随机信号无确定的变化规律,需要用统计特新进行分析。

这里我们引入随机过程的概念,所谓随机过程就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。

随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,他们能够对随机过程作完整的描述。

但由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。

随机信号分析实验报告

随机信号分析实验报告

随机信号分析实验报告引言:随机信号是指信号在时间或空间上的其中一种特性是不确定的,不能准确地预测其未来行为的一类信号。

随机信号是一种具有随机性的信号,其值在一段时间内可能是不确定的,但是可以通过概率论和统计学的方法来描述和分析。

实验目的:通过实验,学习了解随机信号的基本概念和特性,学习了解和掌握常见的随机信号分析方法。

实验原理:随机信号可以分为离散随机信号和连续随机信号。

离散随机信号是信号在离散时间点上,在该时间点上具有一定的随机性;而连续随机信号是信号在连续时间上具有随机性。

常见的随机信号分析方法包括概率密度函数、功率谱密度函数等。

实验器材:计算机、MATLAB软件、随机信号产生器、示波器、电缆、电阻等。

实验步骤:1.配置实验仪器:将随机信号产生器和示波器与计算机连接。

2.生成随机信号:调节随机信号产生器的参数,产生所需的随机信号。

3.采集数据:使用示波器采集随机信号的样本数据,并将数据导入MATLAB软件。

4.绘制直方图:使用MATLAB软件绘制样本数据的直方图,并计算概率密度函数。

5.计算统计特性:计算随机信号的均值、方差等统计特性。

6.绘制功率谱密度函数:使用MATLAB软件绘制随机信号的功率谱密度函数。

实验结果和讨论:我们采集了一段长度为N的随机信号样本数据,并进行了相应的分析。

通过绘制直方图和计算概率密度函数,我们可以看出随机信号的概率分布情况。

通过计算统计特性,我们可以得到随机信号的均值、方差等重要参数。

通过绘制功率谱密度函数,我们可以分析随机信号的频谱特性。

结论:本实验通过对随机信号的分析,加深了对随机信号的理解。

通过绘制直方图、计算概率密度函数、计算统计特性和绘制功率谱密度函数等方法,我们可以对随机信号进行全面的分析和描述,从而更好地理解随机信号的特性和行为。

2.王五,赵六.随机信号分析方法.物理学报,2024,30(2):120-130.。

《随机信号分析与处理》实验报告完整版(GUI)内附完整函数代码

《随机信号分析与处理》实验报告完整版(GUI)内附完整函数代码

《随机信号分析与处理》实验报告指导教师:班级:学号:姓名:实验一 熟悉MA TLAB 的随机信号处理相关命令一、实验目的1、熟悉GUI 格式的编程及使用。

2、掌握随机信号的简单分析方法3、熟悉语音信号的播放、波形显示、均值等的分析方法及其编程 二、实验原理 1、语音的录入与打开在MATLAB 中,[y,fs,bits]=wavread('Blip',[N1 N2]);用于读取语音,采样值放在向量y 中,fs 表示采样频率(Hz),bits 表示采样位数。

[N1 N2]表示读取从N1点到N2点的值。

2,均匀分布白噪声在matlab 中,有x=rand (a ,b )产生均匀白噪声序列的函数,通过与语言信号的叠加来分析其特性。

3、均值随机变量X 的均值也称为数学期望,它定义为对于离散型随机变量,假定随机变量X 有N 个可能取值,各个取值的概率为则均值定义为上式表明,离散型随机变量的均值等于随机变量的取值乘以取值的概率之和,如果取值是等概率的,那么均值就是取值的算术平均值,如果取值不是等概率的,那么均值就是概率加权和,所以,均值也称为统计平均值。

4、方差定义为随机过程的方差。

方差通常也记为D 【X (t )】 ,随机过程的方差也是时间 t 的函数, 由方差的定义可以看出,方差是非负函数。

5、自相关函数设任意两个时刻1t ,2t ,定义为随机过程X (t )的自相关函数,简称为相关函数。

自相关函数可正,可负,其绝对值越大表示相关性越强。

6.哈明(hamming)窗(10.100)121212121212(,)[()()](,,,)X R t t E X t X t x x f x x t t dx dx +∞+∞-∞-∞==⎰⎰(10.101)B = 1.3Δf,A = -43dB,D= -6dB/oct.哈明窗本质上和汉宁窗是一样的,只是系数不同。

哈明窗比汉宁窗消除旁瓣的效果好一些而且主瓣稍窄,但是旁瓣衰减较慢是不利的方面。

随机信号分析实验报告

随机信号分析实验报告

随机信号分析实验报告实验一:平稳随机过程的数字特征实验二:平稳随机过程的谱分析实验三:随机信号通过线性系统的分析实验四:平稳时间序列模型预测班级:姓名:学号:一、实验目的1、加深理解平稳随机过程数字特征的概念2、掌握平稳随机序列期望、自相关序列的求解3、分析平稳随机过程数字特征的特点二、实验原理平稳随机过程数字特征求解的相关原理三、实验过程function y = experiment number = 49; %学号49 I = 8; %幅值为8 u = 1/number;Ex = I*0.5 + (-I)*0.5; N = 64; C0 = 1; %计数 p(1) = exp(-u);for m = 2:N k = 1:m/2;p(m) = exp(-u*m) + sum((u*m).^(2*k)./factorial(2*k)*exp(-u*m));2222()[()()]{()()}{()()}X R m E X n X n m I P X n X n m I I P X n X n m I =+=+=-+=-E[X(n)]= I P{X(n)=+I}+(-I)P{X(n)=-I}=0⨯⨯0m >当时,/222(){()()}(2)!m k mk m P X n X n m I e P k λλ⎢⎥⎣⎦-=+===∑222()(1)(21)X R m I P I P I P =--=-2()()X X XC m R m m =-me I m n X n X E m R λ22)]()([)(-=+=end;pp = [fliplr(p) C0 p];Rx = (2*pp - 1)*I^2;m = -N:N;Kx = Rx - Ex*Ex;rx = Kx/25;subplot(211), plot(m,Rx); axis([-N N 0 I*I]); title('自相关序列');subplot(212), plot(m,rx); axis([-N N 0 1]); title('自相关序数');四、实验结果及分析自相关序列的特点分析:m>0时Rx(m)随着m的增大而减小,m<0时Rx(m)随着m的增大而增大。

随机信号分析实验报告

随机信号分析实验报告

实验一 随机噪声的产生与性能测试一、实验内容1.产生满足均匀分布、高斯分布、指数分布、瑞利分布的随机数,长度为N=1024,并计算这些数的均值、方差、自相关函数、概率密度函数、概率分布函数、功率谱密度,画出时域、频域特性曲线; 2.编程分别确定当五个均匀分布过程和5个指数分布分别叠加时,结果是否是高斯分布; 3.采用幅度为2, 频率为25Hz 的正弦信号为原信号,在其中加入均值为2 , 方差为0.04 的高斯噪声得到混合随机信号()X t ,编程求 0()()tY t X d ττ=⎰的均值、相关函数、协方差函数和方差,并与计算结果进行比较分析。

二、实验步骤 1.程序N=1024; fs=1000; n=0:N —1;signal=chi2rnd (2,1,N); %rand(1,N)均匀分布 ,randn(1,N )高斯分布,exprnd(2,1,N )指数分布,raylrnd (2,1,N)瑞利分布,chi2rnd(2,1,N )卡方分布 signal_mean=mean(signal ); signal_var=var (signal );signal_corr=xcorr(signal,signal ,'unbiased ’); signal_density=unifpdf(signal ,0,1); signal_power=fft(signal_corr); %[s,w]=periodogram (signal); [k1,n1]=ksdensity(signal);[k2,n2]=ksdensity (signal,’function ’,'cdf ’); figure ;hist(signal);title (’频数直方图’); figure ;plot (signal);title(’均匀分布随机信号曲线’); f=n *fs/N ; %频率序列 figure;plot(abs (signal_power)); title('功率幅频’); figure;plot(angle (signal_power)); title ('功率相频'); figure;plot (1:2047,signal_corr); title ('自相关函数’); figure;plot(n1,k1);title('概率密度’);figure;plot(n2,k2);title('分布函数’);结果(1)均匀分布(2)高斯分布(3)指数分布(4)瑞利分布(5)卡方分布2.程序N=1024;signal_1=rand(1,N);signal_2=rand(1,N);signal_3=rand(1,N);signal_4=rand(1,N);signal_5=rand(1,N);signal=signal_1+signal_2+signal_3+signal_4+signal_5; [k1,n1]=ksdensity(signal);figure(1)subplot(1,2,1);hist(signal);title('叠加均匀分布随机数直方图');subplot(1,2,2);plot(n1,k1);title(’叠加均匀分布的概率密度');结果指数分布叠加均匀分布叠加结果:五个均匀分布过程和五个指数分布分别叠加时,结果是高斯分布。

随机信号实验报告(模板)(1)

随机信号实验报告(模板)(1)

随机信号实验报告学院通信工程学院专业信息工程班级 1401051班制作人文杰制作人晓鹏一、 摘要根据实验的要求与具体容,我们组做了一下分工,XXX 完成了本次的第一组实验即基于MATLAB 的信号通过线性系统与非线性系统的特性分析,具体容有(高斯白噪声n ,输入信号x ,通过线性与非线性系统的信号a,b,y1,y2的均值,均方值,方差,自相关函数,概率密度,功率谱密度以及频谱并把它们用波形表示出来),XXX 和XXX 两人合力完成了基于QUARTUS II 的2ASK 信号的产生及测试实验具体容有(XXX 负责M 序列发生器以及分频器,XXX 负责载波的产生以及开关函数和管脚配置),最后的示波器调试以及观察2ASK 信号的FFT 变换波形由我们组所有人一起完成的。

二、实验原理及要求实验一、信号通过线性系统与非线性系统的特性分析1、实验原理① 随机过程的均值(数学期望):均值表示集合平均值或数学期望值。

基于随机过程的各态历经性,可用时间间隔T 的幅值平均值表示,即:均值表达了信号变化的中心趋势,或称之为直流分量。

② 随机过程的均方值:信号x(t)的均方值,或称为平均功率,其表达式为:均方值表达了信号的强度,其正平方根值,又称为有效值,也是信号的平均能量的一种表达。

③ 随机信号的方差: 信号x(t)的方差定义为:描述了信号的静态量,方差反映了信号绕均值的波动程度。

在已知均值和均方值的前提下,方差就很容易求得了。

④随机信号的自相关函数信号的相关性是指客观事物变化量之间的相依关系。

对于平稳随机过程X(t)和Y(t)在两个不同时刻t和t+τ的起伏值的关联程度,可以用相关函数表示。

在离散情况下,信号x(n)和y(n)的相关函数定义为:τ,t=0,1,2,……N-1。

⑤随机过程的频谱:信号频谱分析是采用傅立叶变换将时域信号x(t)从另一个角度来了解信号的特征。

时域信号x(t)的傅氏变换为:⑥随机过程的功率谱密度:随机信号的功率普密度是随机信号的各个样本在单位频带的频谱分量消耗在一欧姆电阻上的平均功率的统计均值,是从频域描述随机信号的平均统计参量,表示X(t)的平均功率在频域上的分布。

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告——基于MATLAB语言姓名:_班级:_学号:专业:目录实验一随机序列的产生及数字特征估计 (2)实验目的 (2)实验原理 (2)实验内容及实验结果 (3)实验小结 (6)实验二随机过程的模拟与数字特征 (7)实验目的 (7)实验原理 (7)实验内容及实验结果 (8)实验小结 (11)实验三随机过程通过线性系统的分析 (12)实验目的 (12)实验原理 (12)实验内容及实验结果 (13)实验小结 (17)实验四窄带随机过程的产生及其性能测试 (18)实验目的 (18)实验原理 (18)实验内容及实验结果 (18)实验小结 (23)实验总结 (23)实验一随机序列的产生及数字特征估计实验目的1.学习和掌握随机数的产生方法。

2.实现随机序列的数字特征估计。

实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。

进行随机信号仿真分析时,需要模拟产生各种分布的随机数。

在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。

伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。

伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。

(0,1)均匀分布随机数是最最基本、最简单的随机数。

(0,1)均匀分布指的是在[0,1]区间上的均匀分布, U(0,1)。

即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:,序列为产生的(0,1)均匀分布随机数。

定理1.1若随机变量X 具有连续分布函数,而R 为(0,1)均匀分布随机变量,则有2.MATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。

(2)正态分布的随机序列函数:randn用法:x = randn(m,n)功能:产生m×n 的标准正态分布随机数矩阵。

随机信号分析报告实验

随机信号分析报告实验

实验一 随机序列的产生及数字特征估计一、实验目的1、学习和掌握随机数的产生方法;2、实现随机序列的数字特征估计。

二、实验原理1. 随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。

进行随机信号仿真分析时,需要模拟产生各种分布的随机数。

在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。

伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。

伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。

(0,1)均匀分布随机数是最最基本、最简单的随机数。

(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即U(0,1)。

实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:Ny x N ky Mod y y n n n n /))((110===-, (1.1)序列{}n x 为产生的(0,1)均匀分布随机数。

下面给出了上式的3组常用参数: (1) 7101057k 10⨯≈==,周期,N ;(2) (IBM 随机数发生器)8163110532k 2⨯≈+==,周期,N ; (3) (ran0)95311027k 12⨯≈=-=,周期,N ;由均匀分布随机数,可以利用反函数构造出任意分布的随机数。

定理1.1 若随机变量X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有)(1R F X x -= (1.2)由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。

2. MATLAB 中产生随机序列的函数(1) (0,1)均匀分布的随机序列 函数:rand用法:x = rand(m,n)功能:产生m ×n 的均匀分布随机数矩阵。

(2) 正态分布的随机序列 函数:randn用法:x = randn(m,n)功能:产生m ×n 的标准正态分布随机数矩阵。

随机信号分析实验报告

随机信号分析实验报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y实验报告课程名称:随机信号分析院系:电子与信息工程学院班级:姓名:学号:指导教师:实验时间:实验一、各种分布随机数的产生(一)实验原理1.均匀分布随机数的产生原理产生伪随机数的一种实用方法是同余法,它利用同余运算递推产生伪随机数序列。

最简单的方法是加同余法)(mod 1M c y y n n +=+My x n n 11++= 为了保证产生的伪随机数能在[0,1]内均匀分布,需要M 为正整数,此外常数c 和初值y0亦为正整数。

加同余法虽然简单,但产生的伪随机数效果不好。

另一种同余法为乘同余法,它需要两次乘法才能产生一个[0,1]上均匀分布的随机数)(mod 1M ay y n n =+ My x n n 11++= 式中,a 为正整数。

用加法和乘法完成递推运算的称为混合同余法,即)(mod 1M c ay y n n +=+ My x n n 11++= 用混合同余法产生的伪随机数具有较好的特性,一些程序库中都有成熟的程序供选择。

常用的计算语言如Basic 、C 和Matlab 都有产生均匀分布随机数的函数可以调用,只是用各种编程语言对应的函数产生的均匀分布随机数的范围不同,有的函数可能还需要提供种子或初始化。

Matlab 提供的函数rand()可以产生一个在[0,1]区间分布的随机数,rand(2,4)则可以产生一个在[0,1]区间分布的随机数矩阵,矩阵为2行4列。

Matlab 提供的另一个产生随机数的函数是random('unif',a,b,N,M),unif 表示均匀分布,a 和b 是均匀分布区间的上下界,N 和M 分别是矩阵的行和列。

2.随机变量的仿真根据随机变量函数变换的原理,如果能将两个分布之间的函数关系用显式表达,那么就可以利用一种分布的随机变量通过变换得到另一种分布的随机变量。

实验三 随机信号通过线性时不变系统

实验三 随机信号通过线性时不变系统

实验三 随机信号通过线性系统的分析一、实验目的1 模拟产生特定相关函数的连续随机序列或者离散的随机序列,考察其特性。

2 模拟高斯白噪声环境下信号通过系统的问题,实现低通滤波。

3 掌握系统输出信号的数字特征和功率谱密度的求解。

二、实验设备1计算机2 Matlab 软件三、实验原理随机信号通过线性系统分析的中心问题是:给定系统的输入函数(或统计特性:均值和 自相关函数)和线性系统的特性,求输出函数。

如下图所示,H 为线性变换,信号X (t )为系统输入, Y (t )为系统的输出,它也是随机信号。

图3.1 随机信号通过系统的示意图并且满足: H [X (t )] = Y (t )在时域:若X(t)时域平稳,系统冲激响应为h(t),则系统输入和输出的关系为:()()*()()()()()Y t X t h t X h t d h X t d ττττττ∞∞-∞-∞==-=-⎰⎰ 输出期望:∑∞===0m XY )m (h m )]t (Y [E m 输出的自相关函数:)(h )(h )(R )(R X Y τ*τ-*τ=τ输出平均功率:⎰⎰∞∞-∞∞--=τdvdu )u (h )v (h )u v (R )(R X Y 互相关:)()()()()(ττσσσττh R d h R R X X XY *=-=⎰∞∞-在频域:输入与输出的关系:)(H )(X )(Y ωω=ω输出的功率谱:2X X Y )(H )(S )(H )(H )(S )(S ωω=ωω-ω=ω功率谱:)(H )(S )(S X XY ωω=ω四、实验内容与步骤1已知平稳随机过程X(n)的相关函数为:5),()(22==σδσm m R ; 线性系统的单位冲击响应为111,0,)(+-=≥=实验者学号后两位r k r k h k 。

编写程序求:1)输入信号的功率谱密度、期望、方差、平均功率;2)利用时域分析法求输出信号的自相关函数、功率谱密度、期望、方差、平均功率;3)利用频域分析法求输出信号的自相关函数、功率谱密度、期望、方差、平均功率;4)利用频域分析法或时域分析法求解输入输出的互相关函数、互功率谱密度。

随机信号分析实验报告

随机信号分析实验报告

随机信号分析实验报告实验一:平稳随机过程的数字特征实验二:平稳随机过程的谱分析实验三:随机信号通过线性系统的分析实验四:平稳时间序列模型预测班级:姓名:学号:一、实验目的1、加深理解平稳随机过程数字特征的概念2、掌握平稳随机序列期望、自相关序列的求解3、分析平稳随机过程数字特征的特点二、实验原理平稳随机过程数字特征求解的相关原理三、实验过程function y = experimentnumber = 49; %学号49I = 8; %幅值为8u = 1/number;Ex = I*0.5 + (-I)*0.5;N = 64;C0 = 1; %计数p(1) = exp(-u);for m = 2:Nk = 1:m/2;p(m) = exp(-u*m) + sum((u*m).^(2*k)./factorial(2*k)*exp(-u*m));2222()[()()]{()()}{()()}X R m E X n X n m I P X n X n m I I P X n X n m I =+=+=-+=-E[X(n)]= I P{X(n)=+I}+(-I)P{X(n)=-I}=0⨯⨯0m >当时,/2220(){()()}(2)!m k m k m P X n X n m I e P k λλ⎢⎥⎣⎦-=+===∑222()(1)(21)X R m I P I P I P =--=-2()()X X X C m R m m =-me I m n X n X E m R λ22)]()([)(-=+=end;pp = [fliplr(p) C0 p];Rx = (2*pp - 1)*I^2;m = -N:N;Kx = Rx - Ex*Ex;rx = Kx/25;subplot(211), plot(m,Rx); axis([-N N 0 I*I]); title('自相关序列');subplot(212), plot(m,rx); axis([-N N 0 1]); title('自相关序数');四、实验结果及分析自相关序列的特点分析:m>0时Rx(m)随着m的增大而减小,m<0时Rx(m)随着m的增大而增大。

南京理工大学随机信号处理实验报告

南京理工大学随机信号处理实验报告

题目:雷达线性调频信号的脉冲压缩处理线性调频脉冲信号,时宽10us,带宽40MHz,对该信号进行匹配滤波后,即脉压处理,处理增益为多少,脉压后的脉冲宽度为多少?用图说明脉压后的脉冲宽度,内差点看4dB带宽,以该带宽说明距离分辨率与带宽的对应关系。

1.程序为:T=10e-6;B=112e6;Rmin=8500;Rmax=11500;R=[9000,10000,10020];RCS=[1 1 1 ];C=3e8;K=B/T;Rwid=Rmax-Rmin;Twid=2*Rwid/C;Fs=10*B;Ts=1/Fs;Nwid=ceil(Twid/Ts);t=linspace(2*Rmin/C,2*Rmax/C,Nwid); M=length(R);td=ones(M,1)*t-2*R'/C*ones(1,Nwid);Srt1=RCS*(exp(1i*pi*K*td.^2).*(abs(td)<T/2));Srt=Srt1;Nchirp=ceil(T/Ts);Nfft=2^nextpow2(Nwid+Nwid-1); Srw=fft(Srt,Nfft);Srw1=fft(Srt1,Nfft);t0=linspace(-T/2,T/2,Nchirp);St=exp(1i*pi*K*t0.^2);Sw=fft(St,Nfft);Sot=fftshift(ifft(Srw.*conj(Sw)));Sot1=fftshift(ifft(Srw1.*conj(Sw)));N0=Nfft/2-Nchirp/2;Z=abs(Sot(N0:N0+Nwid-1));Z=Z/max(Z);Z=20*log10(Z+1e-6);figuresubplot(211)plot(t*1e6,real(Srt));axis tight;xlabel('us');ylabel('幅度')title(['线性信号压缩前']);subplot(212)plot(t*C/2,Z)xlabel('Range in meters');ylabel('幅度 ')title(['线性信号压缩后']);选取0.9*10^4HZ 的一个脉冲进行放大分析(调整Y 轴与X 轴的范围)58606264666870727476us幅度线性调频信号压缩前0.850.90.9511.05 1.1 1.15x 104-150-100-5050Range in meters 幅度 线性调频信号压缩后选取主瓣调整:大致可以看出压缩后的带宽为0.1hz理论上分析处理增益为:D=10*10e -6*112*10e6=1120D=112/B1=1120.B1=0.1HZ2.分辩率。

随机信号实验报告

随机信号实验报告

班级:姓名:学号:指导老师:时间:一、信号基本参数1.均值及方差由上图可以看出,该语音信号的能量不是很大,因其均值在0.12左右,方差在0.02左右,故波动不是很大;当加入信噪比为5的白噪声后,其均值明显增大,在0.48左右,说明噪声的能量远大于信号的能量,其方差在0.13左右,故波动很大。

由此看出,白噪声携带能量加大,且波动加大。

2.正态概率分布函数上图为语音信号各点的幅度的概率分布,它与语音信号分布差不多,它放映的是语音信号在各点的能量大小。

当语音信号在某时刻幅值越大,则其概率越大,反之,则越小。

3.自相关上图可以看出,该语音信号的自相关不是很大,因此该语音信号前后相关性不是很大,因此,在信号处理及通信中对信号处理要求不是很高;当加入噪声后,可以看出自相关有明显减小的痕迹,所以白噪声的自相关不大。

4.互相关上图为两个不同的语音信号的互相关,可以看出在前半段完全没有相关性,而在后半段有一定的相关性;当加入白噪声后,互相关增强,且前半段也没有相关性,说明有一语音信号前半段没有信号。

由两图比较可得,高斯白噪声的互相关较大。

二、信号加噪及提取5.信号加入确定噪声后加入确定噪声sin(17500*t)后,时域图上可以看出,振幅较小的语音信号完全被噪声淹没,从回放的声音中可以听到刺耳的噪声信号,从频谱图中也可以看出,在1800Hz左右,有明显的高峰,所含的能量远大于语音信号。

因此,可以用带阻滤波器滤除该噪声信号。

6.去除确定噪声信号sin()从上面两图可以看出,去噪后的频谱中没有高峰突起,确实去掉了噪声信号,从回放的声音中,也听不到刺耳的声音,是比较清晰地声音。

从频谱图中可以明显看到有凹下去的部分,是因为不是理想滤波器,必定会滤掉临近的很小的一部分信号,但并不会语音信号造成太大的影响。

采用的是巴特沃斯带阻滤波器,fp=1700Hz,fs=100Hz,当增大fs后,可以明显看到凹下去的部分增大;而改变fp后,就不能滤掉噪声信号。

随机信号模块实验报告(一)

随机信号模块实验报告(一)

随机信号实验报告(一)学号: 姓名:熟悉Matlab 的随机信号处理相关命令(一)一、实验目的:1、掌握随机信号的简单分析方法。

2、熟悉语音信号的简单变换的分析方法及其编程 。

二、实验原理:1、声音的录入与读取在matlb 中实现对语音信号的读取可以用wavread 函数,如b=wavread('211.wav');括号中为语音信号的存储路径。

还可用sound 函数对录入的声音信号进行发声;用plot 函数把声音信号图谱绘制下来。

这是对声音信号的最基本处理。

2、时域与频域的简单分析语音信号是个随机信号,在matlab 中对随机信号可以有以下分析。

如概率密度分布,如果F X (x,t )对x 的一阶导数存在,则定义xt x F t x f X x ∂∂=),(),( 为随机过程X (t )的一维概率密度。

3、相关性与功率谱自相关估计,同一序列在不同时刻的取值之间的相关程度,自相关函数和功率谱密度函数是一对傅里叶变换。

互相关估计则是两个函数在同一时刻的不同取值之间的相关程度。

互相关函数是两个随机过程联合统计特性中重要的数字特征,它的定义为dxdy t t y x xyft Y t X E t t R xyXY ),,,()]()([),(212121⎰⎰∞∞-∞∞-==在频域要先对信号进行傅里叶变换,然后分析其频谱特性、相位等三、实验内容:对语音信号的读取,此为时域波形这是一个随机信号,横轴为时间t ,范围在0~350000 s 纵轴为声音幅度,范围在-0.25~0.25。

波形是关于x 轴对称的。

此图没有定义范围,是把录入的语音信号全程显示出来。

语音信号的相位分布进行了4096点傅里叶变换,横轴为采样点数,纵轴为信号在此点的相位。

范围集中于-3~3之间。

变换采样点数不一样,波形就会不一样。

概率密度分布直方图信号的概率密度类似正态分布,定义了-3~3之间的概率密度,密度最大在0附近可达450。

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告——基于MATLAB语言姓名:_ 班级:_ 学号:专业:目录实验一随机序列的产生及数字特征估计2实验目的 2实验原理 2实验内容及实验结果 3实验小结 6实验二随机过程的模拟与数字特征7实验目的7实验原理7实验内容及实验结果8实验小结11实验三随机过程通过线性系统的分析12实验目的12实验原理12实验内容及实验结果13实验小结17实验四窄带随机过程的产生及其性能测试18实验目的18实验原理18实验内容及实验结果18实验小结23实验总结23实验一随机序列的产生及数字特征估计实验目的1.学习和掌握随机数的产生方法。

2.实现随机序列的数字特征估计。

实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。

进行随机信号仿真分析时,需要模拟产生各种分布的随机数。

在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。

伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。

伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。

(0,1)均匀分布随机数是最最基本、最简单的随机数。

(0,1)均匀分布指的是在[0,1]区间上的均匀分布,U(0,1)。

即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:序列为产生的(0,1)均匀分布随机数。

定理1.1若随机变量X 具有连续分布函数,而R 为(0,1)均匀分布随机变量,则有2.MATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。

(2)正态分布的随机序列函数:randn用法:x = randn(m,n)功能:产生m×n 的标准正态分布随机数矩阵。

随机信号实验报告(微弱信号的提取)

随机信号实验报告(微弱信号的提取)

微弱信号的检测提取及分析1.实验目的⑴了解随机信号分析理论如何在实践中应用。

⑵了解随机信号自身的特性,包括均值(数学期望)、方差、概率密度、相关函数、频谱及功率谱密度等。

⑶掌握随机信号的检测及分析方法。

⒉实验原理⑴随机信号的分析方法在信号系统中,我们可以把信号分成两大类——确知信号和随机信号。

确知信号具有一定的变化规律,因而容易分析,而随机信号无确知的变化规律,需要用统计特性进行分析。

我们在这里引入了随机过程的概念。

所谓随机过程,就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。

随机过程可分为平稳的和非平稳的、遍历的和非遍历的。

如果随机信号的统计特性不随时间的推移而变化,则随机信号是平稳的。

如果一个平稳的随机过程它的任意一个样本都具有相同的统计特性,则随机过程是遍历的。

我们下面讨论的随机过程都认为是平稳的遍历的随机过程,因此,我们可以取随机过程的一个样本来描述随机过程的统计特性。

随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,它们能够对随机过程作完整的描述。

但是由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。

以下算法都是一种估计算法,条件是N要足够大。

⑵微弱随机信号的检测及提取方法因为噪声总是会影响信号检测的结果,所以信号检测是信号处理的重要内容之一,低信噪比下的信号检测是目前检测领域的热点,而强噪声背景下微弱信号的提取又是信号检测的难点,其目的就是消除噪声,将有用的信号从强噪声背景中提取出来,或者用一些新技术和新方法来提高检测系统输出信号的信噪比。

噪声主要来自于检测系统本身的电子电路和系统外的空间高频电磁场干扰等,通常从两种不同的途径来解决:①降低系统的噪声,使被测信号功率大于噪声功率,达到信噪比S /N > 1 。

②采用相关接收技术,可以保证在被测信号功率< 噪声功率的情况下,仍能检测出信号。

随机信号分析报告实验:随机过程通过线性系统地分析报告

随机信号分析报告实验:随机过程通过线性系统地分析报告

实验三 随机过程通过线性系统的分析实验目的1. 理解和分析白噪声通过线性系统后输出的特性。

2. 学习和掌握随机过程通过线性系统后的特性,验证随机过程的正态化问题。

实验原理1.白噪声通过线性系统设连续线性系统的传递函数为)(ωH 或)(s H ,输入白噪声的功率谱密度为2)(0N S X =ω,那么系统输出的功率谱密度为2)()(02N H S Y ⋅=ωω (3.1) 输出自相关函数为⎰∞∞-=ωωπτωτd e H N R j Y 20)(4)( (3.2)输出相关系数为)0()()(Y Y Y R R ττγ=(3.3) 输出相关时间为⎰∞=00)(ττγτd Y (3.4)输出平均功率为[]⎰∞=202)(2)(ωωπd H N t Y E (3.5)上述式子表明,若输入端是具有均匀谱的白噪声,则输出端随机信号的功率谱主要由系统的幅频特性)(ωH 决定,不再是常数。

2.等效噪声带宽在实际中,常常用一个理想系统等效代替实际系统的)(ωH ,因此引入了等效噪声带宽的概念,他被定义为理想系统的带宽。

等效的原则是,理想系统与实际系统在同一白噪声的激励下,两个系统的输出平均功率相等,理想系统的增益等于实际系统的最大增益。

实际系统的等效噪声带宽为⎰∞=∆022max)()(1ωωωωd H H e (3.6)或⎰∞∞--=∆j j e ds s H s H H j )()()(212maxωω (3.7)3.线性系统输出端随机过程的概率分布 (1)正态随机过程通过线性系统若线性系统输入为正态过程,则该系统输出仍为正态过程。

(2)随机过程的正态化随机过程的正态化指的是,非正态随机过程通过线性系统后变换为正态过程。

任意分布的白噪声通过线性系统后输出是服从正态分布的;宽带噪声通过窄带系统,输出近似服从正态分布。

实验内容设白噪声通过图3.1所示的RC 电路,分析输出的统计特性。

图3.1 RC 电路(1)试推导系统输出的功率谱密度、相关函数、相关时间和系统的等效噪声带宽。

随机信号分析与处理实验报告

随机信号分析与处理实验报告

随机信号分析与处理实验题目:对音频信号的随机处理班级:0312412姓名:肖文洲学号:031241217指导老师:钱楷时间:2014年11月25日实验目的:1、学会利用MATLAB模拟产生各类随机序列。

2、熟悉和掌握随机信号数字特征估计的基本方法。

3、熟悉掌握MATLAB的函数及函数调用、使用方法。

4、学会在MATLAB中创建GUI文件。

实验内容:1、选用任意一个音频信号作为实验对象,进行各种操作并画出信号和波形。

2、操作类型:(1)、概率密度;(2)、希尔伯特变换;(3)、误差函数;(4)、randn;(5)、原始信号频谱;(6)、axis;(7)、原始信号;(8)、normpdf;(9)、unifpdf;(10)、unifcdf;(11)、raylpdf;(12)、raylcdf;(13)、exppdf;(14)、截取声音信号的频谱;(15)、expcdf;(16)、periodogram;(17)、weibrnd;(18)、rand;(19)、自相关函数;(20)、截取信号的均方值。

实验步骤:1、打开MATLAB软件,然后输入guide创建一个GUI文件。

2、在已经创建好的GUI文件里面穿件所需要的.fig面板(以学号姓名格式命名)。

入下图所示:图为已经创建好的.fig面板3、右击“概率密度”,查看回调,然后点击“callback”.在相应的位置输入程序。

然后点击运行,出现下图:4、依次对后续操作方式进行类似的操作。

5、当完成所有按键的“callback”后,出现的均为上图。

实验程序:function varargout = xiaowenzhou(varargin)% XIAOWENZHOU M-file for xiaowenzhou.fig% XIAOWENZHOU, by itself, creates a new XIAOWENZHOU or raises the existing% singleton*.%% H = XIAOWENZHOU returns the handle to a new XIAOWENZHOU or the handle to% the existing singleton*.%% XIAOWENZHOU('CALLBACK',hObject,eventData,handles,...) calls the local% function named CALLBACK in XIAOWENZHOU.M with the given input arguments.%% XIAOWENZHOU('Property','Value',...) creates a new XIAOWENZHOU or raises the% existing singleton*. Starting from the left, property value pairs are% applied to the GUI before xiaowenzhou_OpeningFunction gets called. An% unrecognized property name or invalid value makes property application% stop. All inputs are passed to xiaowenzhou_OpeningFcn via varargin.%% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one% instance to run (singleton)".%% See also: GUIDE, GUIDATA, GUIHANDLES% Edit the above text to modify the response to help xiaowenzhou% Last Modified by GUIDE v2.5 02-Dec-2014 23:14:41% Begin initialization code - DO NOT EDITgui_Singleton = 1;gui_State = struct('gui_Name', mfilename, ...'gui_Singleton', gui_Singleton, ...'gui_OpeningFcn', @xiaowenzhou_OpeningFcn, ...'gui_OutputFcn', @xiaowenzhou_OutputFcn, ...'gui_LayoutFcn', [] , ...'gui_Callback', []);if nargin && ischar(varargin{1})gui_State.gui_Callback = str2func(varargin{1});endif nargout[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});elsegui_mainfcn(gui_State, varargin{:});end% End initialization code - DO NOT EDIT% --- Executes just before xiaowenzhou is made visible.function xiaowenzhou_OpeningFcn(hObject, eventdata, handles, varargin)% This function has no output args, see OutputFcn.% hObject handle to figure% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% varargin command line arguments to xiaowenzhou (see VARARGIN)% Choose default command line output for xiaowenzhouhandles.output = hObject;% Update handles structureguidata(hObject, handles);% UIWAIT makes xiaowenzhou wait for user response (see UIRESUME)% uiwait(handles.figure1);% --- Outputs from this function are returned to the command line. function varargout = xiaowenzhou_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT);% hObject handle to figure% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% Get default command line output from handles structurevarargout{1} = handles.output;% --- Executes on button press in pushbutton1.function pushbutton1_Callback(hObject, eventdata, handles)[y,Fs,bits]=wavread('Íõ·Æ.wav');y=y(1:5000);N=length(y);i=1:N;[f,i]=ksdensity(y);plot(i,f);grid;xlabel('x');ylabel('f(x)');axis();title('¸ÅÂÊÃܶÈ');% hObject handle to pushbutton1 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton2.function pushbutton2_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=x(20000:40000);y=hilbert(x);y=real(y);plot(x);% hObject handle to pushbutton2 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton3.function pushbutton3_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=randn(500,1);plot(x);% hObject handle to pushbutton3 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton4.function pushbutton4_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');y=erf(x);plot(y);% hObject handle to pushbutton4 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton5.function pushbutton5_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');plot(x);axis([0 5000 -0.01 0.01]);% hObject handle to pushbutton5 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton6.x=wavread('Íõ·Æ.wav');x=x(20000:40000);plot(x);% hObject handle to pushbutton6 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton7.function pushbutton7_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=-6:0.01:7;y=normpdf(x,1,2);plot(y);% hObject handle to pushbutton7 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton8.function pushbutton8_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=0:0.1:5;y=unifpdf(x,1,30);plot(y);% hObject handle to pushbutton8 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton9.function pushbutton9_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=0:0.1:5;y=unifcdf(x,1,5);plot(y);% hObject handle to pushbutton9 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton10.x=wavread('Íõ·Æ.wav');x=0:0.1:3;y=raylpdf(x,2);plot(y);% hObject handle to pushbutton10 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton11.function pushbutton11_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=0:0.1:3;y=raylcdf(x,10);plot(y);% hObject handle to pushbutton11 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton12.function pushbutton12_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=0:0.01:5;y=exppdf(x,1);plot(y);% hObject handle to pushbutton12 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton13.function pushbutton13_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=0:0.01:5;y=expcdf(x,1);plot(y);% hObject handle to pushbutton13 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton14.[y,Fs,bits]=wavread('Íõ·Æ.wav');y1=y(1:1000);t=0:1/Fs:1;y1=periodogram(y1,[],1000,Fs);plot(y1);% hObject handle to pushbutton14 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton15.function pushbutton15_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=0:0.01:5;x=weibrnd(1,1.5,100,1);plot(x);% hObject handle to pushbutton15 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton16.function pushbutton16_Callback(hObject, eventdata, handles)x=wavread('Íõ·Æ.wav');x=rand(200,1);plot(x);% hObject handle to pushbutton16 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton17.function pushbutton17_Callback(hObject, eventdata, handles)[x,Fs,bits]=wavread ('Íõ·Æ.wav');x=x (:,1);X=fft (x,4096);magX=abs (X);angX=angle (X);plot (X); title ('Ô-ʼÐźÅƵÆ×');% hObject handle to pushbutton17 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton18.function pushbutton18_Callback(hObject, eventdata, handles)[y,Fs,bits]=wavread('Íõ·Æ.wav');y=y(500:1000);h=[ones(1,20) zeros(1,20)];y2=conv(h,y);stem(y2,'.');grid;title('½ØÈ¡ÉùÒôÐźŵľí»ý');% hObject handle to pushbutton18 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton19.function pushbutton19_Callback(hObject, eventdata, handles)[y,Fs,bits]=wavread('Íõ·Æ.wav');y=y(1:5000);R=xcorr(y);plot(R);grid;title('×ÔÏà¹Øº¯Êý');% hObject handle to pushbutton19 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)% --- Executes on button press in pushbutton20.function pushbutton20_Callback(hObject, eventdata, handles)[y,Fs,bits]=wavread('Íõ·Æ.wav');y=y(1:1000);n=length(y);x=randn(50,n);square=zeros(1,50);for i=1:50for j=1:1000square(i)=square(i)+x(i,j).^2;endsquare(i)=square(i)/1000;endRMS=sum(square)/30;plot(square);grid;title('½ØÈ¡ÉùÒôÐźŵľù·½Öµ');% hObject handle to pushbutton20 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% --- Executes during object creation, after setting all properties. function pushbutton1_CreateFcn(hObject, eventdata, handles)% hObject handle to pushbutton1 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles empty - handles not created until after all CreateFcns called 实验结果:(1)概率密度(2)希尔伯特变换(3)randn(4)误差函数(5)axis(6)原始信号(7)normpdfd(8)unifpdf(9)unifcdf(10)raylpdf(11)raylcdf(12)exppdf(13)截取声音信号的卷积(14)expcdf(15)periodogram(16)weibrnd(17)rand(18)原始信号频谱(19)自相关函数(20)截取信号的均方值实验总结:随机信号分析与处理是研究随机信号的特点及其处理方法的专业基础课,是目标检测、估计、滤波等信号处理理论的基础。

随机信号分析实验报告

随机信号分析实验报告

.随机信号分析实验报告实验一 各种分布随机数的产生一、 实验目的在很多系统仿真的过程中,需要产生不同分布的随机变量。

利用计算机可以很方便地产生不同分布的随机变量,各种分布的随机变量的基础是均匀分布的随机变量。

有了均匀分布的随机变量,就可以用函数变换等方法得到其他分布的随机变量。

二、 实验内容产生均匀分布的随机数、高斯分布的随机数和其它分布的随机数。

三、 实验原理1. 均匀分布随机数的产生原理产生伪随机数的一种实用方法是同余法,它利用同余运算递推产生伪随机数序列。

最简单的方法是加同余法)(mod 1M c y y n n +=+M y x n n 11++=为了保证产生的伪随机数能在[0,1]内均匀分布,需要M 为正整数,此外常数c 和初值y0亦为正整数。

加同余法虽然简单,但产生的伪随机数效果不好。

另一种同余法为乘同余法,它需要两次乘法才能产生一个[0,1]上均匀分布的随机数)(mod 1M ay y n n =+ M y x n n 11++=式中,a 为正整数。

用加法和乘法完成递推运算的称为混合同余法,即)(mod 1M c ay y n n +=+ M y x n n 11++=用混合同余法产生的伪随机数具有较好的特性,一些程序库中都有成熟的程序供选择。

常用的计算语言如Basic 、C 和Matlab 都有产生均匀分布随机数的函数可以调用,只是用各种编程语言对应的函数产生的均匀分布随机数的范围不同,有的函数可能还需要提供种子或初始化。

Matlab 提供的函数rand()可以产生一个在[0,1]区间分布的随机数,rand(2,4)则可以产生一个在[0,1]区间分布的随机数矩阵,矩阵为2行4列。

Matlab 提供的另一个产生随机数的函数是random('unif',a,b,N,M),unif 表示均匀分布,a 和b 是均匀分布区间的上下界,N 和M 分别是矩阵的行和列。

2. 随机变量的仿真根据随机变量函数变换的原理,如果能将两个分布之间的函数关系用显式表达,那么就可以利用一种分布的随机变量通过变换得到另一种分布的随机变量。

随机信号分析实验报告

随机信号分析实验报告
FSK 广泛应用于低速数据传输设备中,根据国际电联(ITU-T)的建议,传输速率为 1200波特以下的设备一般采用 FSK 方式传输数据。
FSK 具有:调制方法简单易于实现、解调不需要恢复本地载波、可以异步传输、抗噪声和衰落性能较强等特点。由于这些原因,FSK 是在模拟电话网上用来传输数据的低速、低成本异步调制解调器的一种主要调制方式。
⑵仿真波形:
⑶电路在FPGA实验板上的实现:
仿真成功后连接好USB连线和实验板电源,将文件
下载到实验板上,并用示波器观察输出波形。
示波器波形如下:
实验结论及体会
1.做好电路仿真后,发现波形有的有正弦波,有的波发生失谐,相位发生突变,仔细检查后发现问题如下:
⑴ROM输出8位,导致输出精度下降,造成波形失真,后来改为12位,效果明显改善,但波形还不是正弦波。
2FSK键控法调频原理图如下:
4FSK可通过基带信号(00,01,10,11)并联传输0或1来分别用f1,f2,f3,f4四个载频表示,两路基带信号作为控制选通选通开关,1路选通开关发送0时选通载频f1, 发送0时选通载频f2, 1路选通开关发送0时选通载频f3, 送1时选通载频f4。两路不同载频通过相加器得到已调信号发送出去。
参考资料
【1】张辉,曹丽娜.现代通信原理与技术(第三版).西安:西安电子科技大学出版社
⑵在上面调整后出现的问题,我们认为是分频器分频有问题,经过仔细计算发现我们刚开始的分频系数太小了,刚开始第一分频分频系数为16,经过计算后发现我们应该是64(2000/(*32)=64),调整后我们的正弦波就完美了表现出来了。
2.在实验过程中,我们深刻的体会到理论与实践的巨大差距,一个计数器的参数错误就意味着整个实验的失败,但是在实验中我们深刻的体会到做实验必须要有耐心,冷静思考,仔细思考问题会出在哪里,想好后,按照自己的想法一一排除问题,慢慢走向成功。同时我们也感受到合作的重要性,一个人的思维永远比不上两个人的思考,在实验诸多的问题上,我的队员给了我许许多多的帮助,正是这些帮助才让我们的实验完美的完成。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随机信号处理实验报告目录一、实验要求: (3)二、实验原理: (3)2.1 随机信号的分析方法 (3)2.2 随机过程的频谱 (3)2.3 随机过程的相关函数和功率谱 (4)(1)随机信号的相关函数: (4)(2)随机信号的功率谱 (4)三、实验步骤与分析 (5)3.1实验方案 (5)3.2实验步骤与分析 (5)任务一:(s1 变量)求噪声下正弦信号的振幅和频率 (5)任务二:(s1 变量)求噪声下正弦信号的相位 (8)任务三:(s1 变量)求信号自相关函数和功率谱 (11)任务四:(s变量)求噪声下信号的振幅和频率 (14)任务五:(s变量)求信号的自相关函数和功率谱 (17)3.3实验结果与误差分析 (19)(1)实验结果 (19)(2)结果验证 (19)(3)误差分析 (21)四、实验总结和感悟 (22)1、实验总结 (22)2、实验感悟 (23)五、附低通滤波器的Matlab程序 (23)一、实验要求:(学号末尾3,7)两个数据文件,第一个文件数据中只包含一个正弦波,通过MA TLAB 仿真计算信号频谱和功率谱来估计该信号的幅度,功率,频率和相位?对第二个文件数据估计其中正弦波的幅度,功率和频率?写出报告,包含理论分析,仿真程序及说明,误差精度分析等。

第一文件调用格式load FileDat01_1 s1,数据在变量s1中;第二文件调用格式load FileDat01_2 s ,数据在变量s 中。

二、实验原理:2.1 随机信号的分析方法在信号与系统中,我们把信号分为确知信号和随机信号。

其中随机信号无确定的变化规律,需要用统计特新进行分析。

这里我们引入随机过程的概念,所谓随机过程就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。

随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,他们能够对随机过程作完整的描述。

但由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。

2.2 随机过程的频谱信号频谱分析是采用傅立叶变换将时域信号x(t)变换为频域信号X(f),从而帮助人们从另一个角度来了解信号的特征。

时域信号x(t)的傅氏变换为:()()2j ft X f x t e dt π+∞--∞=⎰信号的时域描述只能反映信号的幅值随时间的变化情况,除只有一个频率分量的简谐波外,一般很难明确揭示信号的频率组成和各频率分量的大小。

信号的频谱X(f)代表了信号在不同频率分量处信号成分的大小,它能够提供比时域信号波形更直观,丰富的信息。

在实际的控制系统中能够得到的是连续信号x(t)的离散采样值x(nT),因此需要利用离散信号x(nT)来计算信号x(t)的频谱。

有限长离散信号x(n),n=0,1,…,N-1的DFT 定义为:()()10N knN n X k x n W -==∑其中0,1,2.......1,kN =- 2jNN W eπ-=2.3 随机过程的相关函数和功率谱(1)随机信号的相关函数:信号的相关性是指客观事物变化量之间的相依关系。

对于平稳随机过程X(t)和Y(t)在两个不同时刻t 和t+τ的起伏值的关联程度,可以用相关函数表示。

在离散情况下,信号x(n)和y(n)的相关函数定义为:∑∑-=-+=101N txy N /)t (y )t (x ),t (N R τττ τ,t=0,1,2,……N-1随机信号的自相关函数表示波形自身不同时刻的相似程度。

与波形分析、频谱分析相比,它具有能够在强噪声干扰情况下准确地识别信号周期的特点。

一般来说,信号与噪声在时域内有明显不同,信号前后是有关联的,存在相关性;而噪声在不同时刻基本上不存在关联,即不存在相关性.利用这种相关性原理,已成为从强噪声中提取弱信号的重要手段。

这种技术的理论基础是信息论和随机过程理论,这种检测方法被称为相关检测。

(2)随机信号的功率谱随机信号的功率谱密度是随机信号的各个样本在单位频带内的频谱分量消耗在一欧姆电阻上的平均功率之统计均值,是从频域描述随机信号的平均统计参量,表示X(t)的平均功率在频域上的分布。

它只反映随机信号的振幅信息,而没有反映相位信息。

随机过程的功率谱密度为:]2|)(|lim [)(2TX E x G Ti T ω∞→= -∞<ω<+∞随机信号的平均功率就是随机信号的均方值,功率谱密度曲线下的总面积(即随机信号的全部功率)等于随机信号的均方值。

随机信号的功率谱与它的自相关函数构成一对傅里叶变换对。

三、 实验步骤与分析本实验利用Matlab 软件编程来实现数据文件中波形的仿真与分析,最后通过滤波器还原正弦信号,与结果进行比较。

3.1 实验方案3.2 实验步骤与分析任务一:(s1 变量)求噪声下正弦信号的振幅和频率 (1)原理:采用傅立叶变换将时域信号x(t)变换为频域信号X(f),并作出幅频曲线进行分析,离散信号x(n),n=0,1,…,N-1的DFT 公式如下:()()10N knNn X k x n W -==∑其中0,1,2.......1,kN =- 2j NN W eπ-=在Matlab 的编程实现时,运用的是快速算法傅里叶算法FFT ,它是DFT 的快速算法。

因为给定的数据文件中采样点数N=4096,所以取采样频率fs=4096Hz 。

(2)Matlab仿真结果及分析图1 随机信号的时域图形图2 随机信号的频域图形由时域图形可知,正弦信号被噪声“淹没”了,所以时域上看不出任何信号的特征,进行傅里叶变换,频域特征如图2所示。

已知采样频率fs=4096Hz,所以Nyquist频率为fs/2=2048Hz,傅里叶变换的数据具有对称性,整个频谱以Nyquist频率为对称轴,所以频谱分析的时候只要截取0~2048Hz范围内的频谱进行分析。

由频谱曲线可知,信号在82Hz处有一个峰值,大小为4021,所以可以得出:信号频率:=82f Hz信号绝对幅度:2=⨯=A4021 1.96N(3)附Matlab程序及说明clc; %清空clear all; %清除所有变量close all; %关闭所有窗口load('C:\Users\caolili\Desktop\FileDat01_1.mat')fs=4096; %设定采样频率N=4096; %采样点数n=0:N-1;t=n/fs; %采样时间间隔subplot(211); %两行一列第一幅图plot (n,s1); %画出时域波形xlabel('时间t(1/4096s)');ylabel('信号s1');title('原信号时域波形');grid;%进行FFT变换并做频谱图y=fft(s1,N); %进行fft变换mag=abs(y); %求幅值f=(0:length(y)-1)'*fs/length(y); %进行对应的频率转换subplot(212); %两行一列第二幅图plot(f,mag); %作频谱图xlabel('频率(Hz)');ylabel('幅值');title('信号的幅频谱图N=4096');grid;任务二:(s1 变量)求噪声下正弦信号的相位 (1)原理设观测数据为:1,,...2,1,0),()2cos()(0-=++=N n n w n f A n x φπ式中,w (n )为已知方差2σ的高斯白噪声,正弦信号的幅度A 和频率f 0为已知。

一种估计φ的估计量为⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+-=∑∑-=-=∧101000)2sin()()2cos()(ln Im N n N n n f n x j n f n x ππφ定义信噪比为222σA SNR =。

由上面已经求的信号幅度A=1.96,f=82Hz ,N=4096。

○1产生服从特定概率分布的观测数据x (n ); ○2利用估计算法计算估计量∧φ; ○3上述过程重复M 次,产生M 个∧φ的实现 ○4利用∑=∧∧=∧M ii M11θμθ确定估计量的均值。

○5利用∧=∧∧∑∧∧-=MiM122)(1θθμθσ确定估计量的方差。

○6利用直方图来确定PDF :首先计算落入某指定区间的次数,然后再除以总的实现次数得到概率,再除以区间长度得到PDF 估计。

(2)Matlab仿真结果及分析根据利用matlab仿真得到的PDF估计如图3所示。

图3 随机信号的相位的统计特性由上面的仿真结果可知初相位约在0时具有最大概率,所以:θ=(3)附Matlab程序及说明clc; %清空clear all; %清除所有变量close all; %关闭所有窗口load('C:\Users\caolili\Desktop\FileDat01_1.mat')N=4096;A=1.96; %A为正弦信号幅值,f为其频率f=82;n=0:N-1;s0=300; %设置循环次数for m=1:s0y1=0;任务三:(s1 变量)求信号自相关函数和功率谱 (1)原理:对于噪声中信号的功率谱分析,有传统方法和现代建模方式。

本次实验中主要采用传统谱估计的自相关法,又称为间接法或BT 法。

具体步骤是先由)(n x N 估计出自相关函数)(ˆm r ,然后对)(ˆm r 求傅里叶变换得到)(n x N 的功率谱,记之为)(ˆw P BT,并以此作为对)(w P 的估计,即1,)(ˆ)(ˆ-≤=--=∑N M e m r w P jwmMMm BT。

(2)Matlab 仿真结果及分析在Matlab 中主要用C (Xn) = xcorr(xn,'unbiased')函数来计算Xn 的自相关函数,然后对其进行傅里叶变换,便得到它的功率谱。

图4 随机信号的自相关函数图4 随机信号的功率谱原信号在时域上时被噪声淹没,经过自相关后可以看出信号为正弦信号,并且由自相关函数图象可知:混合信号的平均功率:2[()](0) 2.934E X n R ==正弦信号的平均功率:()2220lim cos 1.922TT T AP A w t dt θ-→∞=+==⎰在功率谱图像上,极值点坐标为(82,27.72),正好对应正弦信号的频率为82Hz ,与上面的频谱分析一致。

对功率谱密度曲线积分也可求出信号的平均功率。

(3)附Matlab程序及说明%自相关函数clc; %清空clear all; %清除所有变量close all; %关闭所有窗口load('C:\Users\caolili\Desktop\FileDat01_1.mat')fs=4096; %设定采样频率N=4096; %采样点数n=0:N-1;t=n/fs;Lag=300; %延迟样点数[c,lags]=xcorr(s1,Lag,'unbiased'); %对原始信号进行无偏自相关估计subplot(1,2,1);plot(n,s1); %绘制原信号的时域波形xlabel('时间t(1/4096s)');ylabel('信号s1');title('带噪声的信号波形');grid on;subplot(1,2,2);plot(lags/fs,c); %绘制自相关函数图象xlabel('时间t');ylabel('Rx(t)');title('带噪声的信号自相关函数');grid on;%功率谱clc; %清空clear all; %清除所有变量close all; %关闭所有窗口load('C:\Users\caolili\Desktop\FileDat01_1.mat')fs=4096; %设定采样频率N=4096; %采样点数n=0:N-1;t=n/fs;Lag=300; %延迟样点数[c,lags]=xcorr(s1,Lag,'unbiased'); %求信号的自相关函数fy=fft(c,N); %对自相关函数做FFT变换t1=0:round(N/2-1);a=t1*fs/N;P=10*log10(fy(t1+1)); %纵坐标为相对功率谱密度,单位dB/Hz figure(gcf);plot(a,P);ylabel('功率谱密度dBw/Hz');title('信号的功率谱');grid;任务四:(s变量)求噪声下信号的振幅和频率(1)原理:同“任务一”的原理相同(2)Matlab仿真结果及分析图5 随机信号的时域波形(s变量)图6 随机信号的频谱(s变量)对于频谱图的局部放大如下图所示:图7 随机信号的局部放大的频谱(s变量)由频域分析可以发现,信号的频谱图上有两个峰值,由Matlab 计算得两个极点分别为:(82,4053) (86,8150)所以信号由两个频率相近的正弦信号组成,根据图形分析,有用信号应该是两个正弦信号相加,形如:()1122sin 2cos 2s s n n S n A f A f f f ππ⎛⎫⎛⎫=⨯+⨯ ⎪ ⎪⎝⎭⎝⎭根据“任务一”的计算方式,可以得出: 有用信号的频率:182f Hz =286f Hz =有用信号的绝对振幅:124053 1.98A N =⨯=228153 3.98A N=⨯=对于此处采样点数N 和采样频率fs 的确定要满足频率分辨率的要求,即:max min12f f f f f N-∆=-=所以,要能有效的区分频率轴上的两个频率点f1和f2,有效数据长度必须满足以下关系式:122sf f f N<-所以此处取采样频率4096s f Hz =,采样点数4096N =,满足要求。

相关文档
最新文档