金属的电沉积过程讲义
电化学第九章 金属的电沉积过程 2012
表面扩散与并入晶格
两种方式:放电粒子直接在生长点放电而就地并入晶 格;放电粒子在电极表面任一位置放电,形成吸附原 子,然后扩散到生长点并入晶格。
晶体的螺旋位错生长
晶面上的吸附原子扩散到位错的台阶边缘时,可沿位 错线生长。
直接在生长 点放电
通过扩散进入 生长点
ZnOH 2 2e ZnOH (吸附)
ZnOH (吸附)=Zn(晶格中) 2OH
2 2
电子转移
进入晶格
第三节
金属电结晶过程
ቤተ መጻሕፍቲ ባይዱ
金属电结晶的形式 阴极还原的新生态吸附原子聚集形成晶 核,晶核长大成晶体;
新生态吸附原子在电极表面扩散,达到 某一位置并进入晶核,在原有金属的晶 格上延续生长。
简单金属离子的阴极还原
M
n
mH 2 0 ne M mH 2 O
步骤: 水分子的重排和水化程度的降低 水化离子转变为吸附原子(离子) 吸附原子(离子)转变为金属原子
金属络离子的阴极还原
络合剂加入后,与金属络合会使其在溶液中存 在形式和电极上放电的粒子发生改变。 1.使金属电极的平衡电位向负移动。 如 Ag在1mol/L的AgNO3中:
x 6.4 1023 mol/ L
e 0
平
0.0591 lg x 0.533V n
∴ 移动了-1.289V! K 不稳越小, 平 负移越多。 平 越负,金属阴极还 原的初始析出电位也越负,即从热力学角度还 原反应越难进行。
金属络离子的阴极还原机理
溶液中存在不同配位数的络离子和金属离子, 它们的浓度各不相同,当络合剂浓度较高时, 具有特征配位数的络离子是金属在溶液中的主 要存在形式。 例如:锌酸盐镀锌:络合剂NaOH过量,主 要存在 ZnOH 4 2 ,还存在低浓度的 ZnOH 3 , ZnOH 2 , ZnOH 和少量锌离子等。
金属的电沉积过程课件
金属的电沉积过程课 件
REPORTING
目录
• 电沉积过程简介 • 电沉积的物理化学基础 • 电沉积的工艺与参数 • 电沉积的设备与装置 • 电沉积的实践与应用 • 电沉积过程的优化与控制
PART 01
电沉积过程简介
定义与原理
定义
电沉积是一种通过电解液中的金 属离子在阴极上还原并沉积成金 属的过程。
电解液浓度
浓度对电沉积过程有重要 影响,过高或过低的浓度 可能导致沉积不均匀或无 法进行沉积。
添加剂使用
为了改善电沉积效果,有 时需要添加一些添加剂, 如稳定剂、光亮剂等。
电沉积的工艺条件
电流密度
电流密度的大小直接影响 沉积速率和沉积物的质量 ,需要根据实际情况进行 调整。
温度
温度对电沉积过程有一定 影响,过高或过低的温度 可能导致沉积不均匀或无 法进行沉积。
时间
电沉积时间的长短会影响 沉积层的厚度和致密性, 需要根据实际需求进行控 制。
电沉积参数的影响
电流密度对沉积层质量的影响
01
电流密度过小会导致沉积速率慢,过大则可能导致烧焦或气孔
等缺陷。
温度对沉积层质量的影响
02
温度过高可能导致金属离子水解,过低则可能导致沉积不均匀
。
时间对沉积层质量的影响
03
时间过长可能导致过度沉积或偏析,过短则可能导致沉积不完
金属离子的还原过程
还原反应
在电流的作用下,金属离子获得电子,从阳离子变为金属原子。
形核与生长
新形成的金属原子聚集形成晶核,随后晶核不断生长,形成金属沉积层。
PART 03
电沉积的工艺与参数
电解液的选择与制备
第九章_金属的电沉积过程要点
有不同配位数的各种络离子都有,其浓度
也不相同。
2、金属络离子阴极还原机理
(2)配位数较低、浓度适中的络离子在电极 上得到电子而还原。 原因:配位数低,还原所需的能量小; 浓度适中,才能有一定的量。
2、金属络离子阴极还原机理
(3)当有两种络合剂存在,而一种络离子 又比另一种络离子容易放电,则在表面转 化步骤之前,还要经过不同类型配位体的 交换过程。
衡电位,并获得一定过电位。
一、金属离子从水溶液中阴极还原的 可能性
2、某金属在阴极析出的充分条件: 溶液中其他粒子不会优于该金属在阴极上 首先析出。 例如:金属离子还原电位比氢离子还原电 位更负,则氢在电极 上优先大量析出,金 属就很难沉积出来。
一、金属离子从水溶液中阴极还原的 可能性
3、从周期表中的位置,判断金属离子从水 溶液中还原的可能性:
(从难放电的络离子形式转变为易放电的络 离子形式。)
2、金属络离子阴极还原机理
• 例如:氰化镀锌溶液中存在两种络合剂, NaCN 、NaOH 其阴极还原过程如下:
2 Zn(CN ) 2 4 OH Zn ( OH ) 4 CN 配位体交换 4 4 Zn(OH ) 2 Zn ( OH ) 2 OH 4 2 Zn(OH ) 2 2e Zn(OH ) 2 2吸附 Zn(OH ) 2 Zn 2 OH 2吸附 晶格中
第九章 金属的电沉积过程
定义:通过电解的方法,在电解池阴极
上,金属离子通过还原反应和电结晶过
程在固体表面生成金属层。
目的:改变固体材料的表面性能或制取 特定成分和性能的金属材料。
第九章 金属的电沉积过程
§9.1 金属电沉积的基本历程和特点 §9.2 金属的阴极还原过程 §9.3 金属的电结晶过程
电化学第九章金属的电沉积过程
添加剂的影响
添加剂可以改变溶液的电导率、界面张力和金属离子的还原过程,从而影响电沉 积过程。
常用的添加剂包括络合剂、缓冲剂、表面活性剂等。
温度的影响
温度可以影响电沉积过程的反应速率和产物形貌,通常随着温度的升高,电沉积速率加快。
但温度过高可能导致析出金属结构松散和溶液中气体的大量析出。
04
CATALOGUE
总结词
镀镍是一种具有优良防腐蚀性能的金属 电沉积技术,具有较低的孔隙率和较高 的硬度和耐磨性。
VS
详细描述
镀镍层呈银白色,具有良好的抗腐蚀和抗 磨损性能,广泛应用于电子、电力、石油 化工和航空航天等领域。在镀镍过程中, 应控制电流密度、电镀液成分和温度等参 数,以确保获得高质量的镀层。
镀金
总结词
镀金是一种具有优良导电性能和抗氧化性能 的金属电沉积技术,具有美观的外观和良好 的延展性。
电化学第九章金属 的电沉积过程
目录
• 电沉积过程的基本原理 • 金属电沉积的种类与特性 • 电沉积过程的影响因素 • 电沉积的应用领域 • 电沉积技术的发展趋势与展望
01
CATALOGUE
电沉积过程的基本原理
电沉积的定义
总结词
电沉积是指通过在电解液中施加电流,使金属离子还原并沉积在阴极表面上的过程。
03
CATALOGUE
电沉积过程的影响因素
金属离子的影响
金属离子浓度
金属离子浓度越高,电沉积速率越快,但过高的浓度可能导致析 出金属颗粒粗大。
络合剂
络合剂可以控制金属离子的水解和聚合,从而影响电沉积过程。
金属离子的电荷和半径
金属离电沉积过程。
流电沉积和脉冲电沉积。
电沉积的物理化学基础
应用电化学41金属电沉积和电镀原理ppt课件
2)络离子的还原
设 氰化物镀铜电解液基本组成
CuCN 35g/L(0.4 mol/L) NaCN 48g/L (1.0 mol/L) Cu+ 与CN-形成的络离子可能有[Cu(CN)2]-、 [Cu(CN)3]2-、 [Cu(CN)4]3-等不同形式,认为主要存在形式是[Cu(CN)3]2其在水中的电离平衡为:[Cu(CN)3]2-=Cu++3CN-
阴极性镀层 当镀层与基体金属形成腐蚀电池时,镀层因电位比基体更
正,基体金属首先受到腐蚀溶解,这时镀层为阴极性镀层。 阴极性镀层仅能对基体起到机械保护作用,不能起到电化
学保护作用,如:
铁上镀Sn: Sn2 /Sn -0.14V Fe2 /Fe -0.44V?
形成腐蚀电池时,Sn为阴极,Fe为阳极
(4) 电铸
提纯金属或湿法冶金
(5) 电加工 某些精密的零件,机械加工困难,可采用电加
工成型技术
(6) 表面处理 制备特殊用途材料如发泡镍、中空镍纤维等
(7) 高科技 如电沉积法制备一维纳米线
(8) 材料制备 制备催化材料、复合材料、金属膜材料等
常规电镀对电镀层的基本要求: 通常对电镀层要求:
镀层与基体结合牢固,一定的厚度及厚度均匀 镀层结构致密、孔隙率小等。 进一步要求:镀层内应力小、柔韧性好、有一定的硬度、
自行车轮镀铜镍铬; 吊灯等灯具电镀仿金镀层或仿银镀层; 仪器仪表盘装饰性电镀缎面镍;
功能性镀层 功能性镀层是具有特定功能和特定意义的镀层, 通常是只对 某一种零件和某一种特殊使用条件下所要求的特殊功能,因 此功能性镀层包括的项目较多,而且随着技术的发展和应用 的开发,今后还会越来越多,如: •耐磨镀层: 提高零件的表面硬度,增加抗磨损性能(如直 轴、曲轴、气缸, 纺织机械中的各种辊桶镀硬铬或喷涂陶磁 微粒); •减磨镀层: 多用于滑动接触面,需要电镀韧性好的金属, 如轴瓦,轴套等镀Sn、Pb-Sn、Pb-In等;
第9章金属的电沉积过程
⑵阴极还原产物不是纯金属而是合金有利于还原 反应的实现。
⑶在非水溶液中,由于各种溶剂性质不同于水, 往往在水溶液中不能阴极还原的某些金属元素, 可以在适当的有机溶剂中电沉积出来。
⑷电沉积层的质量
电
化
学
原
理
3、溶剂对金属电化学性质的影响
表9-2金属在水和某些有机溶液中25℃时的标准电极电位(V) 电极 Li|Li+ K|K+ Na|Na+ Ca|Ca2+ Zn|Zn2+ Cd|Cd2+ Pb|Pb2+ H|H+ Ag|AgCl,ClCu|Cu2+ Hg|Hg2+ Ag|Ag+ H2O -3.045 -2.925 -2.714 -2.870 -0.763 -0.402 -0.129 0 0.222 0.337 0.789 0.799 CH3OH -3.095 -2.925 -2.728 --0.74 -0.43 -0 -0.010 --0.764 C2H5OH -3.042 --2.657 ----0 -0.088 ---N2H4 -2.20 -2.02 -1.83 -1.91 -0.41 -0.10 0.35 0 --0.77 -CH3CN -3.23 -3.16 -2.87 -2.75 -0.74 -0.47 -0.12 0 --0.28 -0.23 HCOOH -3.48 -3.36 -3.42 -3.20 -1.05 -0.75 -0.72 0 --0.14 0.18 0.17
目前认为 电结晶过 程有两种 形式
一是阴极还原的新生态吸附原子聚集形成晶核,晶 核逐渐长大形成晶体;
一是新生态吸附原子在电极表面扩散,达到某一位 置并进入晶格,在原有金属的晶格上延
金属的电沉积过程
金属的电沉积过程电镀过程是镀液中的金属离子在外电场的作用下,经电极反应还原成金属原子并在阴极上进行金属沉积的过程。
图4.4是电沉积过程示意图,完成电沉积过程必须经过液相传质、电化学反应和电结晶三个步骤。
电镀时以上三个步骤是同时进行的,但进行的速度不同,速度最慢的一个被称为整个沉积过程的控制性环节。
不同步骤作为控制性环节,最后的电沉积结果是不一样的。
(1)液相传质步骤液相传质使镀液中的水化金属离子或络离子从溶液内部向阴极界面迁移,到达阴极的双电层溶液一侧。
液相传质有三种方式:电迁移、对流和扩散。
在通常的镀液中,除放电金属离子外,还有大量由附加盐电离出的其他离子,使得向阴极迁移的离子中放电金属离子占的比例很小,甚至趋近于零。
因此,电迁移作用可略去不计。
如果镀液中没有搅拌作用,则镀液流速很小,近似处于静止状态,此时对流的影响也可以不予考虑。
扩散传质是溶液里存在浓度差时出现的一种现象,是物质由浓度高区域向浓度低区域的迁移过程。
电镀时,靠近阴极表面的放电金属离子不断地进行电化学反应得电子析出,从而使金属离子不断地被消耗,于是阴极表面附近放电金属离子的浓度越来越低。
这样,在阴极表面附近出现了放电金属离子浓度高低逐渐变化的溶液层,称为扩散层。
扩散层两端存在的放电离子的浓度差推动金属离子不断地通过扩散层扩散到阴极表面。
因此,扩散总是存在的,它是液相传质的主要方式。
假如传质作为电沉积过程的控制环节,则电极以浓差极化为主。
由于在发生浓差极化时,阴极电流密度要较大,并且达到极限电流密度i d时,阴极电位才急剧地向负偏移,这时很容易产生镀层缺陷。
因此,电镀生产不希望传质步骤作为电沉积过程的控制环节。
图4.4电沉积过程(2)电化学反应步骤电化学反应水化金属离子或络离子通过双电层,并去掉它周围的水化分子或配位体层,从阴极上得到电子生成金属原子(吸附原子)的过程。
水化金属离子或络离子通过双电层到达阴极表而后,不能直接放电生成金属原子,而必须经过在电极表面上的转化过程。
电化学第九章_金属的电沉积过程
讨论:络合物不稳定常数越小, 平衡电位下降越多;而平衡电位越负, 还原反应越难进行。
2、金属络离子阴极还原机理
(1)金属络离子的存在形式: 在络盐溶液中,金属以简单金属离子到具 有不同配位数的各种络离子都有,其浓度 也不相同。
2、金属络离子阴极还原机理
(2)配位数较低、浓度适中的络离子在电极 上得到电子而还原。 原因:配位数低,还原所需的能量小; 浓度适中,才能有一定的量。
金属元素在周期表中的位置愈靠右边,化学 活泼性越弱,还原的可能性越大。
一、金属离子从水溶液中阴极还原的 可能性
0 1.5V 铬分族
一、金属离子从水溶液中阴极还原的 可能性
4、分析金属离子能否沉积时,还应考虑以下 因素:
①金属以络离子存在时,其平衡电位会明显 负移,还原更加困难。
例如:铁、钴、镍以水溶液形式存在时,可 在阴极还原;而以络盐形式存在时,不能 在阴极还原。
2、金属络离子阴极还原机理
(3)当有两种络合剂存在,而一种络离子 又比另一种络离子容易放电,则在表面转 化步骤之前,还要经过不同类型配位体的 交换过程。
(从难放电的络离子形式转变为易放电的络 离子形式。)
2、金属络离子阴极还原机理
• 例如:氰化镀锌溶液中存在两种络合剂, NaCN、NaOH 其阴极还原过程如下:
化学动力学参数可能不同。
§9.2 金属阴极还原过程
一、金属离子从水溶液中阴极还原的可能性 二、简单金属离子的阴极还原 三、金属络离子的阴极还原
一、金属离子从水溶液中阴极还原的 可能性
1、某金属在阴极析出的必要条件: 阴极的电位负于该金属在该溶液中的平
衡电位,并获得一定过电位。
一、金属离子从水溶液中阴极还原的 可能性
第二章金属电沉积过程中的极化
第二章金属电沉积过程中的极化金属电沉积是在外加电场作用下,将金属离子从溶液中转化成金属膜或金属物体的过程。
在金属电沉积过程中,极化现象是一个重要的现象。
极化是指金属电极在电解质溶液中电化学反应过程中形成电势差,导致电流向相反方向流动的现象。
极化现象可以分为正极化和负极化。
正极化是指电极表面形成了与电流方向相同的极化电位,阻碍了电流的流动。
正极化的主要原因是在电解质溶液中,金属电极表面吸附了反应活性物种,如金属离子和氧化物,形成了阻碍电流传输的物种层。
这种极化效应会使电沉积速率减慢,导致沉积物品质下降。
为了克服正极化,可以通过增加电流密度、提高温度或添加激活物质等方法来降低正极化。
负极化是指电极表面形成了与电流方向相反的极化电位,促进了电流的流动。
负极化的主要原因是在电解质溶液中,金属离子的还原速率大于金属离子的生成速率,导致电极表面形成了过电位,从而促进了电流的流动。
负极化效应可以提高电沉积速度和沉积物品质。
然而,当负极化过大时,可能会导致气泡的生成和沉积物品质下降。
为了控制金属电沉积过程中的极化效应,可以采用以下方法:1.控制电导率:电解质溶液的电导率对极化效应有重要影响。
可以通过调整电解质浓度和温度,以控制电解质的电导率。
较高的电导率有助于减小极化效应。
2.调整电流密度:通过调整电流密度,可以调控极化效应。
较大的电流密度有助于减小正极化,促进负极化。
但是,过大的电流密度可能会导致过极化和沉积物质量下降。
3.控制温度:温度对极化效应有明显影响。
较高的温度有助于减小正极化,促进负极化。
这是因为在较高温度下,溶液中的晶体活性和扩散速率会增加,有利于电流的流动。
4.添加添加剂:在电沉积过程中,可以添加一些特定的添加剂来控制极化效应。
添加剂可以改变溶液的电荷分布,调节极化电位,从而改善电沉积过程。
因为金属电沉积过程中的极化现象对沉积物质量和电化学反应速率有着重要影响,所以在金属电沉积工艺中,需要充分了解和控制极化效应,以获得所需的电沉积效果。
第八章 金属的电沉积
第八章金属的电沉积本章主要讨论水溶液中,金属离子还原成金属的电极过程,并简单介绍电结晶过程的基本理论。
8.1 金属电极过程的特点金属电极过程是电镀、电冶金、化学电源等工业的基础,又与金属的腐蚀及防护、电解加工、电化学分析等领域有着密切的关系。
但是,人们对这类过程的了解却远较氢的析出过程为差。
早期有关金属电极过程的研究大多数偏重于工艺方面,直到本世纪二十年代才转入科学研究和工业开发并行发展的阶段。
只是五十年代后,在电极过程理论的迅速发展以及电化学研究新方法和表面测试技术应用的推动下,金属电极过程的基础研究,才有了较大的进展。
研究金属电极过程所遇到的特殊问题是:1.固态金属表面的不均匀性,这对电极反应来说,意味着表面上各点的反应能力有区别。
而且,在金属电极过程进行的同时,还不断发生着电极表面的生长或破坏;因此,如何在实验过程中保持电极表面状态不变,以及如何计算电极的真实面积和真实电流密度,都成为十分困难的问题。
2.在固态金属电极表面上同时进行着电化学过程(反应粒子的得失电子)和结晶过程(晶格的生长或破坏)。
这两类步骤的动力学规律交叠作用,使极化曲线具有比较复杂的形式,增加了分析实验数据的困难。
3.对于大多数金属和它的简单(水合)离子组成的金属电极体系,除Fe、Co、Ni等几种金属外,一般交换电流密度都很大,电化学反应都进行得很快,电极过程的速度往往是由浓度极化所控制。
因而,在用经典极化曲线的方法研究金属电极过程时,所测得的数据不可能揭示界面步骤的动力学规律。
近年来,随着实验技术的发展,采用了暂态方法和交流电方法后,测量过程中电极表面附近液层中的浓度极化和表面状态的变化都比较轻微,因而有利于突出界面反应动力学性质和在实验过程中保持电极表面条件基本不变。
此外,还广泛利用液态金属电极,特别是滴汞电极和汞齐电极来撇开结晶过程的影响而单纯研究电化学步骤的动力学规律。
大致说来,目前对金属电极过程中的电化学步骤研究得多一些,因而对这一步骤的动力学规律也认识得深一些;而对结晶步骤相对地就研究得比较少。
第九章_金属的电沉积过程课件
例如: Zn(CN )24不稳定常数1.91017
变化Zn(OH )24不稳定常数7.11016
放电粒子在
配位体重排 脱去部分配
合物的能量 接近 但 大 Zn(CN )24
小 Zn
(
OH
)
2 4
三、金属络离子的阴极还原
§9.3 金属电结晶过程
1、金属电结晶的特点: (1)电结晶过程符合一般结晶过程的规律。 (2)电结晶过程在电场的作用下完成,因此
恒电流状态
电极表 面充电
断电
镉的平 衡电位
长大 形核
长大过电位 形核过电位
电结晶形核理论
电沉积过程: • 形成圆柱形二维晶核(半径r、一个原子高h); • 生长为单原子薄层; • 在新的晶面上再次形核、长大; • 一层层生长,直至成为宏观晶体沉积层。
电结晶形核理论
• 通过推导可得体系自由能的总变化:
G 0 r
• 在一定过饱和度的溶液中, 能够继续长大的晶核必须
具有一定大小的尺寸,即
临界晶核尺寸。
• 临界晶核尺寸的大小取决 于体系的能量。
二、电结晶形核过程
• 金属的电结晶是一个电化学过程,其形 核和长大所需的能量来源于界面电场。
• 例子:镉在铂上沉积时,阴极电位随时 间变化。
• 可见:过电位是电结晶过程发生的必要 条件。
讨论:络合物不稳定常数越小, 平衡电位下降越多;而平衡电位
越负, 还原反应越难进行。
2、金属络离子阴极还原机理
(1)金属络离子的存在形式: 在络盐溶液中,金属以简单金属离子到
具有不同配位数的各种络离子都有,其浓 度也不相同。
2、金属络离子阴极还原机理
(2)配位数较低、浓度适中的络离子在电极 上得到电子而还原。 原因:配位数低,还原所需的能量小; 浓度适中,才能有一定的量。
年电镀工艺课件金属电沉积
金属电沉积的应用
电子工业:制造电子元件、电路板等 化学工业:生产化学试剂、催化剂等 材料科学:制造金属材料、合金等 环境保护:废水处理、废气处理等
03
电镀液的成分及作用
主盐
作用:提供金属离子,形成电 镀层
常见种类:硫酸铜、硫酸镍、 氯化锌等
影响因素:浓度、纯度、稳定 性等
应用:广泛应用于电子、机械、 化工等领域
电镀设备的影响
电镀槽:影响镀层的均匀性和 厚度
电流密度:影响镀层的质量和 速度
温度:影响镀层的结晶度和硬 度
搅拌速度:影响镀层的均匀性 和平整度
环境条件的影响
温度:影响镀层厚度和均匀性
湿度:影响镀层质量,过高或 过低都会影响镀层性能
空气污染:影响镀层质量,可 能导致镀层出现缺陷
电场强度:影响镀层厚度和均 匀性,过高或过低都会影响镀 层性能
络合剂
作用:络合剂是 电镀液的重要组 成部分,可以稳 定金属离子,防 止金属离子沉淀
类型:常见的络 合 剂 有 E DTA 、 DT PA 、 N TA 等
作用原理:络合 剂通过与金属离 子形成稳定的络 合物,防止金属 离子沉淀,提高 电镀液的稳定性
应用:络合剂广 泛应用于电镀行 业,可以提高电 镀液的稳定性, 提高电镀质量
排放,降低废水处理成本
发展新型电镀液和添加剂
环保型电镀液:减少有害物质排放, 提高环保性能
功能性电镀液:提高电镀层的性能, 如耐磨性、耐腐蚀性等
纳米电镀液:提高电镀层的精细度 和均匀性
智能电镀液:实现电镀过程的自动 化和智能化控制
新型添加剂:提高电镀液的性能, 如分散性、稳定性等
绿色添加剂:减少有害物质排放, 提高环保性能
电解质:能导电的物质, 包括离子和电子
电化学原理-第九章节-金属的电沉积过程
电镀金和银广泛应用于珠宝、饰品、电子等领域,作为装饰材料 和导电材料。
金和银电镀的优缺点
金和银电镀具有高贵典雅的外观和良好的导电性,但成本较高, 且银易氧化变色。
电镀镍和钴
镍和钴的电沉积原
理
通过电解液中的镍或钴离子在阴 极上还原成金属单质,实现镍或 钴的电沉积。
应用场景
电镀镍和钴广泛应用于汽车、机 械、航空航天等领域,作为防护 涂层和耐磨涂层。
络合剂
02
03
阴离子
络合剂的存在可以稳定金属离子, 影响其在电极表面的沉积行为。
阴离子的种类和浓度也会影响金 属的电沉积过程,例如氯离子可 以促进金属的沉积。
电极的材质和表面状态
电极材质
不同电极材料的电化学性质不同,会影响金 属的沉积过程。
电极表面粗糙度
电极表面粗糙度对金属的电沉积过程有显著 影响,粗糙度越高,电沉积速率越快。
镍和钴电镀的优缺
点
镍和钴电镀具有优良的耐磨、耐 腐蚀性能,但镍易形成氢脆,钴 价格较高。
07
电沉积的未来发展
高性能电沉积材料的开发
总结词
随着科技的不断进步,高性能电沉积材料的开发已成为未来发展的重要方向。
详细描述
目前,科研人员正在研究新型的高性能电沉积材料,如纳米材料、合金材料等, 这些材料具有更高的强度、硬度、耐腐蚀性和导电性等特性,能够满足更广泛的 应用需求。
在这个过程中,电流通过电解液中的 离子传输到电极上,并在电极上还原 成金属原子,这些原子随后在电极表 面沉积形成金属层。
金属电沉积的应用
在电子制造中,金属电沉积被用 于制造导线和电路板,以及在半 导体器件上形成金属电极。
在电镀中,金属电沉积可用于将 金属涂层沉积到各种基材上,如 钢铁、铜、铝等,以提高其美观 性和耐久性。
第2章-金属的电沉积
电沉积的金属种类
目前,电沉积单金属的种类众多,有锌、镉、 铜、镍、铁、铬、银、金、锡、铅、铟、钴、 钌、铑、铂、锇、钯、铝、铍、镁、钙、铕、 铈、铼、钇、钐、铀、钍、镎、钚等。
这些金属中有一些不是用来作镀层的,其中还 有不少金属无法从水溶液中得到,而只能从非 水溶剂组成的电解液或熔盐浴中电沉积,至于 电沉积合金的种类更是五花八门、不胜枚举。
在什么情况下,金属会从溶液中阴极还原沉积出来 ,在什么情况下会形成结构致密、厚度均匀,结合 力好的金属层,进而起到防护、装饰、功能性的作 用。
这样就需要首先了解金属的电沉积机理,以及电镀 液和电解规范对镀层质量的影响。
第 2 章 金属的电沉积
2.1 金属离子阴极还原的可能性 2.2 金属电结晶的基本历程 2.3 金属析氢过电势 2.4 电沉积金属的形态和结构 2.5 金属配离子还原时的极化 2.6 金属的E-pH图及其在电镀领域中的应用 2.7 电解液对沉积层结构的影响(简单离子) 2.8 电解规范对沉积层结构的影响
•例如飞机发动机的钢轴承上先镀一层银,然后在氟硼酸盐镀液中镀 上一层厚度为25斗m的铅层,最后镀1μm~2.5μm的铟层,然后在与 空气隔绝条件下进行热处理,在2h内缓慢升温至l50℃-l70℃。另一 种方法是在热油中加热,使得铟在铅中充分进行扩散,这样铟就固 溶于铅层之中。
二、金属离子沉积的情形
•镀镀铅简介
铅的电位比铁正,对钢铁而言是属于阴极性镀层,所以只有铅镀层 厚而无破损、无孔隙时才能有效地保护铁基体不受腐蚀。镀铅层适 用于接触的硫酸的设备和零件,也用于接触二氧化硫气体的器具和 仪表零件的防腐蚀。利用其良好的塑性和韧性,也可作为冷拉加工 的润滑材料。 镀铅的镀液种类很多,如氟硼酸盐、氟硅酸盐、氨基磺酸盐、醋酸 盐等,氟硼酸镀液以其简单、稳定、结晶细密而应用最广。
金属的电沉积过程课件
B、多价金属离子的阴极还原符合多电子电极反应规律(多步反应)
2.3. 金属络离子的阴极还原
加入络合剂后,由于络合剂和金属离子的络合反应,使水化金属离子转变为 不同配位数的络合离子,金属离子在溶液中的存在形式和在电极上的放电粒 子都发生了改变,因而引起了该电极体系的电学性质变化
电冶炼、电精炼、电铸、电镀。
1.1. 金属电沉积的基本历程
A、液相传质步骤 溶液中的反应粒子(金属水化离子)向电极表面迁移
B、前置转化 迁移到电极表面的粒子发生化学转化反应,如离子 水化程度降低、重排,络离子配位数变化 C、电荷转移 反应粒子得到电子、还原为吸附态金属原子
D、电结晶 新生吸附态金属原子沿电极表面扩散到适当位置进 入金属晶格生长,形成晶体
晶核长大时过电 位
晶核生成时过电位
电结晶形核过程规律 一、电结晶形核需要消耗一定电能,因而在平衡电位不能形核,从 物理意义上来说,过电位或阴极极化只所起的作用与盐溶液结晶的 过饱和度相同
二、阴极过电位的大小决定了电结晶层的粗细度,过电位越高,晶 核数量越多,沉积层越细致,反之越粗
3.2. 在已有晶面上的延续生长
A、使金属电极的平衡电位负移 25oC时,银在1mol/L AgNO3中平衡电位:
e = Ө + RT/F lnaAg+ = 0.779 + 0.0591 log(0.4) =0.756 V
加入1mol/L KCN后,因Ag+与CN-形成络离子,平衡反应为:
Ag+ + 2CN- = Ag(CN)2K不 = aAg+ aCN-2/ aAg(CN)2- = 1.6 10-23 Ag+ 的活度为
第八章 金属的电沉积
第八章金属的电沉积本章主要讨论水溶液中,金属离子还原成金属的电极过程,并简单介绍电结晶过程的基本理论。
8.1 金属电极过程的特点金属电极过程是电镀、电冶金、化学电源等工业的基础,又与金属的腐蚀及防护、电解加工、电化学分析等领域有着密切的关系。
但是,人们对这类过程的了解却远较氢的析出过程为差。
早期有关金属电极过程的研究大多数偏重于工艺方面,直到本世纪二十年代才转入科学研究和工业开发并行发展的阶段。
只是五十年代后,在电极过程理论的迅速发展以及电化学研究新方法和表面测试技术应用的推动下,金属电极过程的基础研究,才有了较大的进展。
研究金属电极过程所遇到的特殊问题是:1.固态金属表面的不均匀性,这对电极反应来说,意味着表面上各点的反应能力有区别。
而且,在金属电极过程进行的同时,还不断发生着电极表面的生长或破坏;因此,如何在实验过程中保持电极表面状态不变,以及如何计算电极的真实面积和真实电流密度,都成为十分困难的问题。
2.在固态金属电极表面上同时进行着电化学过程(反应粒子的得失电子)和结晶过程(晶格的生长或破坏)。
这两类步骤的动力学规律交叠作用,使极化曲线具有比较复杂的形式,增加了分析实验数据的困难。
3.对于大多数金属和它的简单(水合)离子组成的金属电极体系,除Fe、Co、Ni等几种金属外,一般交换电流密度都很大,电化学反应都进行得很快,电极过程的速度往往是由浓度极化所控制。
因而,在用经典极化曲线的方法研究金属电极过程时,所测得的数据不可能揭示界面步骤的动力学规律。
近年来,随着实验技术的发展,采用了暂态方法和交流电方法后,测量过程中电极表面附近液层中的浓度极化和表面状态的变化都比较轻微,因而有利于突出界面反应动力学性质和在实验过程中保持电极表面条件基本不变。
此外,还广泛利用液态金属电极,特别是滴汞电极和汞齐电极来撇开结晶过程的影响而单纯研究电化学步骤的动力学规律。
大致说来,目前对金属电极过程中的电化学步骤研究得多一些,因而对这一步骤的动力学规律也认识得深一些;而对结晶步骤相对地就研究得比较少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节 金属的阴极还原过程 金属离子从水溶液中阴极还原的可能性 :
满足上式金属 离子平+才能从水溶液中还原。
简单金属离子的阴极还原
M n mH2 0 ne M mH2O
步骤: 水分子的重排和水化程度的降低 水化离子转变为吸附原子(离子) 吸附原子(离子)转变为金属原子
金属络离子的阴极还原
第九章 金属的电沉积过程
第一节 金属电沉积的基本历程的特点
一.基本历程 液相传质 前置转化 电荷传递 电结晶
二.金属电沉积过程的特点
阴极过电位是电沉积过程进行的动力; 双电层的结构,特别是粒子在紧密层中
的吸附对电沉积过程有明显影响; 沉积层的结构、性能与电结晶过程中新
晶粒的生长方式和过程密切相关,同时 与电极表面(基体金属表面)的结晶状 态密切相关。
过电位的大小决定电结晶层的粗细程度。
在已有界面上的延续生长
直接在生长 点放电
通过扩散进入 生长点
机理:(以氰化镀锌为例)
ZnCN24来自4OHZnOH
2
4
4CN
配位体交换
ZnOH
2 4
ZnOH 2
2OH
ZnOH
2 4
2e
ZnOH
2 2
(吸附)
配位数降低
电子转移
ZnOH
2 2
(吸附)=Zn(晶格中)
2OH
进入晶格
第三节 金属电结晶过程
金属电结晶的形式 阴极还原的新生态吸附原子聚集形成晶
核,晶核长大称晶体;
新生态吸附原子在电极表面扩散,达到 某一位置并进入晶核,在原有金属的晶 格上延续生长。
盐溶液中结晶过程 过饱和度越大,结晶出来的晶粒越小;
过饱和度越小,结晶出来的晶粒越大;
在一定过饱和度的溶液中,能继续长大 的晶核必须具有一定大小的尺寸 。
电结晶形核过程规律
电结晶时形成晶核要消耗电能,所以平衡 电位下不能形成晶核,只有达到一定的阴 极极化值时(析出电位)才能形核;