利用MATLAB绘制科赫曲线(内含源代码)
Matlab绘图教程(大量实例)

例4 用不同标度在同一坐标内绘制曲线 y1=0.2e-0.5xcos(4πx) 和y2=2e-0.5xcos(πx)。 程序如下: x=0:pi/100:2*pi; y1=0.2*exp(-0.5*x).*cos(4*pi*x); y2=2*exp(-0.5*x).*cos(pi*x); plotyy(x,y1,x,y2);
三维图形
1 三维曲线 plot3函数与plot函数用法十分相似,其调用格式为: plot3(x1,y1,z1,选项1,x2,y2,z2,选项2,…,xn,yn,zn,选项 n) 其中每一组x,y,z组成一组曲线的坐标参数,选项 的定义和plot函数相同。当x,y,z是同维向量时, 则x,y,z 对应元素构成一条三维曲线。当x,y,z是同 维矩阵时,则以x,y,z对应列元素绘制三维曲线, 曲线条数等于矩阵列数。
图形的可视化编辑
MATLAB 6.5版本在图形窗口中提供了可视化的 图形编辑工具,利用图形窗口菜单栏或工具栏中 的有关命令可以完成对窗口中各种图形对象的编 辑处理。
在图形窗口上有一个菜单栏和工具栏。菜单栏包 含File、Edit、View、Insert、Tools、Window和 Help共7个菜单项,工具栏包含11个命令按钮。
MATLAB绘图
二维数据曲线图
plot函数的基本调用格式为: plot(x,y) 其中x和y为长度相同的向量,分别用于存储x坐标和y坐标 数据。 例1 在0≤x≤2区间内,绘制曲线 y=2e-0.5xcos(4πx) 程序如下: x=0:pi/100:2*pi; y=2*exp(-0.5*x).*cos(4*pi*x); plot(x,y)
例3 分析下列程序绘制的曲线。 x1=linspace(0,2*pi,100); x2=linspace(0,3*pi,100); x3=linspace(0,4*pi,100); y1=sin(x1); y2=1+sin(x2); y3=2+sin(x3); x=[x1;x2;x3]'; y=[y1;y2;y3]'; plot(x,y,x1,y1-1)
Matlab图形绘制技巧与实例展示

Matlab图形绘制技巧与实例展示一、介绍Matlab是一种功能强大的计算机软件,常用于科学计算和数据可视化分析。
其中,图形绘制是Matlab的一项重要功能,能够直观地展示数据和结果。
本文将探讨一些Matlab图形绘制的技巧,并通过实例展示其应用。
二、基础图形绘制Matlab提供了多种基础图形绘制函数,如plot、scatter、bar等。
这些函数可以用来绘制折线图、散点图、柱状图等常见图形。
例如我们可以使用plot函数绘制一个简单的折线图:```matlabx = 1:10;y = [1, 2, 3, 4, 5, 4, 3, 2, 1, 0];plot(x, y);```运行以上代码,就可以得到一个由点连接而成的折线图。
通过修改x和y的取值,可以得到不同形状和样式的折线图。
三、图形修饰在绘制图形时,我们通常需要添加标题、坐标轴标签、图例等进行修饰。
Matlab提供了相应的函数,如title、xlabel、ylabel、legend等。
下面是一个例子:```matlabx = 1:10;y = [1, 4, 9, 16, 25, 16, 9, 4, 1, 0];plot(x, y);title('Parabolic Curve');xlabel('X-axis');ylabel('Y-axis');legend('Curve');```执行以上代码,我们得到一个带有标题、坐标轴标签和图例的折线图。
四、子图绘制有时候,我们希望在一幅图中同时显示多个子图,以便比较它们之间的关系。
Matlab提供了subplot函数来实现这个功能。
下面是一个例子:```matlabx = 1:10;y1 = [1, 2, 3, 4, 5, 4, 3, 2, 1, 0];y2 = [0, 1, 0, 1, 0, 1, 0, 1, 0, 1];subplot(2, 1, 1);plot(x, y1);title('Subplot 1');subplot(2, 1, 2);plot(x, y2);title('Subplot 2');通过subplot函数,我们将一幅图分为两个子图,并在每个子图中绘制不同的折线图。
用matlab的曲线拟合工具箱拟合曲线模型

用matlab的曲线拟合工具箱拟合曲线模型课题需要拟合一堆成本曲线,函数形式y=A*x*x+B*x,且A>0,B>0。
一帮人用eviews,spss都没搞定,只好要我编程,没想到matlab拟合工具箱帮了大忙,即形象,又方便。
不到一天工夫所有曲线估计完毕。
使用方法也很简单将x输入如x=[110.3323 148.7328 178.064 202.8258033 224.7105 244.5711 262.908280.0447 296.204 311.5475]输入y=[ 5 10 15 20 25 30 35 40 45 50]启动曲线拟合工具箱》cftool进行曲线拟合工具箱界面点data读入x,y,退出点fit点newfit点dataset进入数据集从type of fit中选custom equations,点new equation点general equation输入函数形式修改待估计参数的上下限,也就是把-inf,inf改成具体数据hko点ok点apply就可以得到函数,如下例:general model:f(x) = a*x*x+b*xCoefficients (with 95% confidence bounds):a = 0.009194 (0.009019, 0.00937)b = 1.78e-011 (fixed at bound)Goodness of fit:SSE: 6.146R-square: 0.997Adjusted R-square: 0.997RMSE: 0.8263analysis功能我就不介绍了曲线拟合工具箱拟合仅能拟合单变量曲线模型。
matlab曲线拟合代码

matlab曲线拟合代码
在MATLAB中进行曲线拟合有多种方法,其中一种常用的方法是使用polyfit函数进行多项式拟合。
下面是一个简单的例子:
假设有一组数据点x和对应的y,我们想要对这些数据进行二次多项式拟合。
可以使用以下代码:
matlab.
x = [1, 2, 3, 4, 5];
y = [2, 3, 5, 7, 9];
p = polyfit(x, y, 2); % 进行二次多项式拟合,这里的2表示二次多项式。
x_fit = 1:0.1:5; % 生成拟合曲线的x坐标。
y_fit = polyval(p, x_fit); % 计算拟合曲线的y坐标。
plot(x, y, 'o', x_fit, y_fit); % 绘制原始数据点和拟合曲线。
legend('原始数据', '拟合曲线');
在这段代码中,我们首先定义了一组数据点x和y。
然后使用polyfit函数对这些数据进行二次多项式拟合,得到拟合的系数p。
接着生成拟合曲线的x坐标x_fit,并利用polyval函数计算对应
的y坐标y_fit。
最后使用plot函数将原始数据点和拟合曲线绘制
在同一张图上。
除了多项式拟合,MATLAB还提供了其他曲线拟合的函数和工具,比如使用fit函数进行各种类型的曲线拟合,或者使用regress函
数进行线性回归分析。
不同的拟合方法适用于不同类型的数据和拟
合需求,你可以根据具体情况选择合适的方法进行曲线拟合。
MATLAB生成koch曲线

koch曲线
MATLAB图形
矩形分形图形
生成元: 选取一条单位线段F0,将该线段三等分,并将中间一段用以该 线段为边的矩形的另外三条边代替,得到图形。
矩形分形图形
MATLAB程序
•p=[0 0;10 0];n=2; •A=[0 -1;1 0]; •for k=1:5 • d=diff(p)/3; %差分运算,比矩阵P少一行 • m=5*n-4; %下一次的节点数 • q=p(1:n-1,:); %每条线段的起点 •p(6:5:m,:)=p(2:n,:); %每条线段的终点
koch曲线
生成方法: 再将F2的每一段都按上述方法修改,直至无穷,则最后得到的 极限曲线,称为koch曲线。
0.5 0.4
0.3
0.2
0.1
0
-0.1
-0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
koch曲线
算法分析
考虑由直线段(2个点)产生第一个图形(5个点)的过程。设P1
和P5分别为原始直线段的两个端点。现在需要在直线段的中间 依次插入三个点P2、 P3、 P4 产生第一次迭代的图形。0.50.4Fra bibliotek0.3
0.2
0.1
0
-0.1
-0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
koch曲线
算法分析 显然, P2位于P1点右端直线段的三分之一处, P4位于P1点 右端直线段的三分之二处;而P3点的位置可以看成是由P4点绕 P2旋转60度(逆时针方向)而得到的,故可以处理为向量P2P4经
矩形分形图形
MATLAB程序 • p(2:5:m,:)=q+d; %每段新加入的第一个节点 • p(3:5:m,:)=q+d+1*d*A‘; %此处可以是矩形,只需调节1的值 • p(4:5:m,:)=q+2*d+1*d*A‘; • p(5:5:m,:)=q+2*d; • n=m; •end •plot(p(:,1),p(:,2),‘k’) %k表示颜色为黑色 •axis equal •axis off
MATLAB曲线绘制大全

一、二维数据曲线图1.1绘制单根二维曲线plot函数的基本调用格式为:plot(x,y)其中x和y为长度相同的向量,分别用于存储x坐标和y坐标数据。
例1-1在0x2p区间内,绘制曲线y=2e-0.5xcos(4x)程序如下:x=0:pi/100:2*pi;y=2*exp(-0.5*x).*cos(4*pi*x);plot(x,y)例1-2绘制曲线。
程序如下:t=0:0.1:2*pi;x=t.*sin(3*t);y=t.*sin(t).*sin(t);plot(x,y);plot函数最简单的调用格式是只包含一个输入参数:plot(x)在这种情况下,当x是实向量时,以该向量元素的下标为横坐标,元素值为纵坐标画出一条连续曲线,这实际上是绘制折线图。
1.2绘制多根二维曲线1.plot函数的输入参数是矩阵形式(1)当x是向量,y是有一维与x同维的矩阵时,则绘制出多根不同颜色的曲线。
曲线条数等于y矩阵的另一维数,x被作为这些曲线共同的横坐标。
(2)当x,y是同维矩阵时,则以x,y对应列元素为横、纵坐标分别绘制曲线,曲线条数等于矩阵的列数。
(3)对只包含一个输入参数的plot函数,当输入参数是实矩阵时,则按列绘制每列元素值相对其下标的曲线,曲线条数等于输入参数矩阵的列数。
当输入参数是复数矩阵时,则按列分别以元素实部和虚部为横、纵坐标绘制多条曲线。
2含多个输入参数的plot函数调用格式为:plot(x1,y1,x2,y2,,xn,yn)(1)当输入参数都为向量时,x1和yl,x2和y2,,xn和yn分别组成一组向量对,每一组向量对的长度可以不同。
每一向量对可以绘制出一条曲线,这样可以在同一坐标内绘制出多条曲线。
(2)当输入参数有矩阵形式时,配对的x,y按对应列元素为横、纵坐标分别绘制曲线,曲线条数等于矩阵的列数。
例1-3分析下列程序绘制的曲线。
x1=linspace(0,2*pi,100);x2=linspace(0,3*pi,100);x3=linspace(0,4*pi,100);y1=sin(x1);y2=1+sin(x2);y3=2+sin(x3);x=[x1;x2;x3]';y=[y1;y2;y3]';plot(x,y,x1,y1-1)3.具有两个纵坐标标度的图形在MATLAB中,如果需要绘制出具有不同纵坐标标度的两个图形,可以使用plotyy绘图函数。
分形几何中一些经典图形的Matlab画法+[文档在线提供]
![分形几何中一些经典图形的Matlab画法+[文档在线提供]](https://img.taocdn.com/s3/m/da97d930c5da50e2524d7ff5.png)
分形几何中一些经典图形的Matlab画法(1)Koch曲线程序koch.mfunction koch(a1,b1,a2,b2,n)%koch(0,0,9,0,3)%a1,b1,a2,b2为初始线段两端点坐标,n为迭代次数a1=0;b1=0;a2=9;b2=0;n=3;%第i-1次迭代时由各条线段产生的新四条线段的五点横、纵坐标存储在数组A、B中[A,B]=sub_koch1(a1,b1,a2,b2);for i=1:nfor j=1:length(A)/5;w=sub_koch2(A(1+5*(j-1):5*j),B(1+5*(j-1):5*j));for k=1:4[AA(5*4*(j-1)+5*(k-1)+1:5*4*(j-1)+5*(k-1)+5),BB(5*4*(j-1)+5*(k-1)+1:5*4*(j-1)+5*(k-1)+5)] =sub_koch1(w(k,1),w(k,2),w(k,3),w(k,4));endendA=AA;B=BB;endplot(A,B)hold onaxis equal%由以(ax,ay),(bx,by)为端点的线段生成新的中间三点坐标并把这五点横、纵坐标依次分别存%储在数组A,B中function [A,B]=sub_koch1(ax,ay,bx,by)cx=ax+(bx-ax)/3;cy=ay+(by-ay)/3;ex=bx-(bx-ax)/3;ey=by-(by-ay)/3;L=sqrt((ex-cx).^2+(ey-cy).^2);alpha=atan((ey-cy)./(ex-cx));if (ex-cx)<0alpha=alpha+pi;enddx=cx+cos(alpha+pi/3)*L;dy=cy+sin(alpha+pi/3)*L;A=[ax,cx,dx,ex,bx];B=[ay,cy,dy,ey,by];%把由函数sub_koch1生成的五点横、纵坐标A,B顺次划分为四组,分别对应四条折线段中%每条线段两端点的坐标,并依次分别存储在4*4阶矩阵k中,k中第i(i=1,2,3,4)行数字代表第%i条线段两端点的坐标function w=sub_koch2(A,B)a11=A(1);b11=B(1);a12=A(2);b12=B(2);a21=A(2);b21=B(2);a22=A(3);b22=B(3);a31=A(3);b31=B(3);a32=A(4);b32=B(4);a41=A(4);b41=B(4);a42=A(5);b42=B(5);w=[a11,b11,a12,b12;a21,b21,a22,b22;a31,b31,a32,b32;a41,b41,a42,b42];图1 V on Koch曲线(2)Levy 曲线程序levy.mfunction levy(n)% levy(16),n为levy曲线迭代次数%x1,y1,x2,y2为初始线段两端点坐标,nn为迭代次数n=16;x1=0;y1=0;x2=1;y2=0;%第i-1次迭代时由各条线段产生的新两条线段的三端点横、纵坐标存储在数组X、Y中[X,Y]=levy1(x1,y1,x2,y2);for i=1:nfor j=1:length(X)/3w=levy2(X(1+3*(j-1):3*j),Y(1+3*(j-1):3*j));[XX(3*2*(j-1)+1:3*2*(j-1)+3),YY(3*2*(j-1)+1:3*2*(j-1)+3)]=levy1(w(1,1),w(1,2),w(1,3),w(1,4) );[XX(3*2*(j-1)+3+1:3*2*(j-1)+3+3),YY(3*2*(j-1)+3+1:3*2*(j-1)+3+3)]=levy1(w(2,1),w(2,2),w( 2,3),w(2,4));endX=XX;Y=YY;endplot(X,Y)hold onaxis equal%由以(x1,y1),(x2,y2)为端点的线段生成新的中间点坐标并把(x1,y1),(x2,y2)连同新点横、纵坐%标依次分别存储在数组X,Y中function [X,Y]=levy1(x1,y1,x2,y2)x3=1/2*(x1+x2+y1-y2);y3=1/2*(-x1+x2+y1+y2);X=[x1,x3,x2];Y=[y1,y3,y2];%把由函数levy1生成的三点横、纵坐标X,Y顺次划分为两组,分别对应两条折线段中每条线%段两端点的坐标,并依次分别存储在2*4阶矩阵w中,w中第i(i=1,2)行数字代表第i条线段%两端点的坐标function w=levy2(X,Y)a11=X(1);b11=Y(1);a12=X(2);b12=Y(2);a21=X(2);b21=Y(2);a22=X(3);b22=Y(3);w=[a11,b11,a12,b12;a21,b21,a22,b22];图2 Levy 曲线(3)分形树程序tree.hfunction tree(n,a,b)% tree(8,pi/8,pi/8),n为分形树迭代次数%a,b为分枝与竖直方向夹角%x1,y1,x2,y2为初始线段两端点坐标,nn为迭代次数n=8;a=pi/8;b=pi/8;x1=0;y1=0;x2=0;y2=1;plot([x1,x2],[y1,y2])hold on[X,Y]=tree1(x1,y1,x2,y2,a,b);hold onW=tree2(X,Y);w1=W(:,1:4);w2=W(:,5:8);% w为2^k*4维矩阵,存储第k次迭代产生的分枝两端点的坐标, % w的第i(i=1,2,…,2^k)行数字对应第i个分枝两端点的坐标w=[w1;w2];for k=1:nfor i=1:2^k[X,Y]=tree1(w(i,1),w(i,2),w(i,3),w(i,4),a,b);W(i,:)=tree2(X,Y);endw1=W(:,1:4);w2=W(:,5:8);w=[w1;w2];end%由每个分枝两端点坐标(x1,y1),(x2,y2)产生两新点的坐标(x3,y3),(x4,y4),画两分枝图形,并把%(x2,y2)连同新点横、纵坐标分别存储在数组X,Y中function [X,Y]=tree1(x1,y1,x2,y2,a,b)L=sqrt((x2-x1)^2+(y2-y1)^2);if (x2-x1)==0a=pi/2;else if (x2-x1)<0a=pi+atan((y2-y1)/(x2-x1));elsea=atan((y2-y1)/(x2-x1));endendx3=x2+L*2/3*cos(a+b);y3=y2+L*2/3*sin(a+b);x4=x2+L*2/3*cos(a-b);y4=y2+L*2/3*sin(a-b);a=[x3,x2,x4];b=[y3,y2,y4];plot(a,b)axis equalhold onX=[x2,x3,x4];Y=[y2,y3,y4];%把由函数tree1生成的X,Y顺次划分为两组,分别对应两分枝两个端点的坐标,并存储在一维%数组w中function w=tree2(X,Y)a1=X(1);b1=Y(1);a2=X(2);b2=Y(2);a3=X(1);b3=Y(1);a4=X(3);b4=Y(3);w=[a1,b1,a2,b2,a3,b3,a4,b4];图3 分形树(4)IFS算法画Sierpinski三角形程序sierpinski_ifs.hfunction sierpinski_ifs(n,w1,w2,w3)%sierpinski_ifs(10000,1/3,1/3,1/3)%w1,w2,w3出现频率n=10000;w1=1/3;w2=1/3;w3=1/3;M1=[0.5 0 0 0 0.5 0];M2=[0.5 0 0.5 0 0.5 0];M3=[0.5 0 0.25 0 0.5 0.5];x=0;y=0;% r为[0,1]区间内产生的n维随机数组r=rand(1,n);B=zeros(2,n);k=1;% 当0<r(i)<1/3时,进行M1对应的压缩映射;% 当1/3=<r(i)<2/3时,进行M2对应的压缩映射;% 当2/3=<r(i)<1时,进行M3对应的压缩映射;for i=1:nif r(i)<w1a=M1(1);b=M1(2);e=M1(3);c=M1(4);d=M1(5);f=M1(6);else if r(i)<w1+w2a=M2(1);b=M2(2);e=M2(3);c=M2(4);d=M2(5);f=M2(6);else if r(i)<w1+w2+w3a=M3(1);b=M3(2);e=M3(3);c=M3(4);d=M3(5);f=M3(6);endendendx=a*x+b*y+e;y=c*x+d*y+f;B(1,k)=x;B(2,k)=y;k=k+1;endplot(B(1,:),B(2,:),'.','markersize',0.1)图4 Sierpinski三角形(5)IFS算法画Julia集程序julia_ifs.hfunction julia_ifs(n,cx,cy)% julia_ifs(100000,-0.77,0.08)% f(z)=z^2+c,cx=real(c);cy=image(c);n=10000;cx=-0.77;cy=0.08;% z^2+c=z0,x=real(z0);y=image(z0);x=1;y=1;B=zeros(2,n);k=1;% A为产生的服从标准正态分布的n维随机数组A=randn(1,n);for i=1:nwx=x-cx;wy=y-cy;if wx>0alpha=atan(wy/wx);endif wx<0alpha=pi+atan(wy/wx);endif wx==0alpha=pi/2;endalpha=alpha/2;r=sqrt(wx^2+wy^2);if A(i)<0r=-sqrt(r);elser=sqrt(r);endx=r*cos(alpha);y=r*sin(alpha);B(1,k)=x;B(2,k)=y;k=k+1;endplot(B(1,:),B(2,:),'.','markersize',0.1)图5 Julia 集(6)逃逸时间算法画Sierpinski垫片程序sierpinski.hfunction sierpinski(a,b,c,d,n,m,r)%sierpinski(0,0,1,1,12,200,200)%(a,b),(c,d)收敛区域左上角和右下角坐标,m为分辨率% n为逃逸时间,需要反复试探,r逃逸半径a=0;b=0;c=1;d=1;n=12;m=200;r=200;B=zeros(2,m*m);w=1;for i=1:mx0=a+(c-a)*(i-1)/m;for j=1:my0=b+(d-b)*(j-1)/m;x=x0;y=y0;for k=1:nif y>0.5x=2*x;y=2*y-1;else if x>=0.5x=2*x-1;y=2*y;elsex=2*x;y=2*y;endif x^2+y^2>rbreak;endendif k==nB(1,w)=i;B(2,w)=j;w=w+1;endendendplot(B(1,:),B(2,:),'.','markersize',0.1)图6 Sierpinski三角形垫片(7)元胞自动机算法画Sierpinski三角形程序一维元胞自动机sierpinski_ca1.hfunction sierpinski_ca1(m,n)%sierpinski_ca1(1000,3000)m=1000;n=3000;x=1;y=1;t=1;w=zeros(2,m*n);s=zeros(m,n);s(1,fix(n/3))=1;for i=1:m-1for j=2:n-1if (s(i,j-1)==1&s(i,j)==0&s(i,j+1)==0)|(s(i,j-1)==0&s(i,j)==0&s(i,j+1)==1) s(i+1,j)=1;w(1,t)=x+3+3*j;w(2,t)=y+5*i;t=t+1;endendendplot(w(1,:),w(2,:),'.','markersize',1)图7.1 一维元胞自动机画Sierpinski三角形二维元胞自动机sierpinski_ca2.hfunction sierpinski_ca2(m,n)%sierpinski_ca2(400,400)m=400;n=400;t=1;w=zeros(2,m*n);s=zeros(m,n);s(m/2,n/2)=1;for i=[m/2:-1:2,m/2:m-1]for j=[n/2:-1:2,n/2:n-1]ifmod(s(i-1,j-1)+s(i,j-1)+s(i+1,j-1)+s(i-1,j)+s(i+1,j)+s(i-1,j+1)+s(i,j+1)+s(i+1,j+1),2)==1 s(i,j)=1;w(1,t)=i;w(2,t)=j;t=t+1;endendendplot(w(1,:),w(2,:),'.','markersize',0.1)图7.2 二维元胞自动机画Sierpinski三角形(8)IFS算法画Helix曲线程序helix_ifs.hfunction helix_ifs(n,w1,w2,w3)%helix_ifs(20000,0.9,0.05,0.05)%w1,w2,w3为出现频率n=20000;w1=0.9;w2=0.05;w3=0.05;M1=[0.787879 -0.424242 1.758647 0.242424 0.859848 1.408065];M2=[-0.121212 0.257576 -6.721654 0.05303 0.05303 1.377236];M3=[0.181818 -0.136364 6.086107 0.090909 0.181818 1.568035];x=0;y=0;% r为[0,1]区间内产生的n维随机数组r=rand(1,n);B=zeros(2,n);k=1;% 当0<r(i)<1/3时,进行M1对应的压缩映射;% 当1/3=<r(i)<2/3时,进行M2对应的压缩映射;% 当2/3=<r(i)<1时,进行M3对应的压缩映射;for i=1:nif r(i)<w1a=M1(1);b=M1(2);e=M1(3);c=M1(4);d=M1(5);f=M1(6);else if r(i)<w1+w2a=M2(1);b=M2(2);e=M2(3);c=M2(4);d=M2(5);f=M2(6);else if r(i)<w1+w2+w3a=M3(1);b=M3(2);e=M3(3);c=M3(4);d=M3(5);f=M3(6);endendendx=a*x+b*y+e;y=c*x+d*y+f;B(1,k)=x;B(2,k)=y;k=k+1;endplot(B(1,:),B(2,:),'.','markersize',0.1)图8 Helix曲线。
案例28使用matlab绘制专业图形——绘制曲线和曲面图

案例28使用MATLAB 绘制专业图形绘制曲线和曲面图案例主要信息提示 ● 案例内容:使用MATLAB 进行专业作图。
● 关键词:MATLAB ,作图,二维作图,三维作图 ● 建议课时:2课时● 适合专业:理工科各专业●光盘中的数字资源:二维曲线绘图M 文件graph_line.m三维曲面绘图M 文件graph_surface.m一、 实验内容实验内容1.绘制曲线图在1个绘图窗口的4个不同子窗口中分别绘制以下曲线: ①在子窗口1中绘制两条二维曲线,分别为:0.510.2cos(4)x y e x π-=和0.522cos()x y e x π-=并显示网格线。
②在子窗口2中绘制两条二维曲线,分别为:0.512x y e -=和2cos(2)y x π=并添加标题、x/y 轴名称、图形说明和图例。
③在子窗口3中绘制一条极坐标曲线,如下:sin()cos()r t t =④在子窗口4中绘制一条极三维螺旋线。
全部4个子窗口绘制效果如图28-1所示。
图28-1曲线绘制效果图实验内容2.绘制曲面图在1个绘图窗口的4个不同子窗口中分别绘制以下曲面:①在子窗口1和子窗口2中以不同着色方式绘制两个球面。
②在子窗口3和子窗口4中以不同视角绘制两个直径相等的圆管相交的图形。
全部4个子窗口绘制效果如图28-2所示。
图28-1曲面绘制效果图二、预备知识2.1 MATLAB绘图功能简介MA TLAB软件提供了丰富的图形表达功能,包括常用的二维图形和三维图形。
其中,各种二维图形近30种,三维图形20多种。
应用MA TLAB除了能作一般的曲线、散点图、条形图等,还能绘制流线图、三维矢量图等工程实用图形。
下面我们介绍一些基本的二维和三维绘图函数。
2.2 二维图形的绘制二维图形是将平面坐标上的数据点连接起来的平面图形。
可以采用不同的坐标系,如直角坐标、对数坐标、极坐标等。
二维图形的绘制是其他绘图操作的基础。
2.2.1绘制二维曲线的plot函数在MATLAB中,plot函数是最简单、最基本而且应用最为广泛的线性绘图函数,利用它可以在二维平面上生成线段、曲线和参数方程曲线等的函数图形。