反比例函数知识点归纳(精品文档)_共4页

合集下载

反比例函数知识点归纳

反比例函数知识点归纳

反比例函数知识点归纳反比例函数是指形如y=k/x的函数,其中k为常数,且x≠0.在解决与自变量指数相关的问题时,需要特别注意系数。

另外,反比例函数也可以写成xy=k的形式,通过这个式子可以迅速求出反比例函数的解析式中的k。

反比例函数的图象与x轴和y轴无交点,因此在用描点法画反比例函数图象时,需要取关于原点对称的点。

反比例函数图象的形状为双曲线,其弯曲度与k的大小有关。

当k越大,曲线越平直;当k越小,曲线越弯曲。

反比例函数的图象关于原点对称,同时也关于直线y=x和y=-x对称。

k的几何意义可以通过双曲线上任意一点P(a,b)来解释,其中k等于矩形PBOA的面积除以三角形PAO和三角形PBO的面积之积。

在研究反比例函数的增减性时,需要将双曲线的两个分支分别讨论,不能一概而论。

反比例函数与一次函数之间有联系,而求函数解析式的方法可以采用待定系数法或根据实际意义列函数解析式。

在解决实际问题时,需要充分利用数形结合的思想。

2.图像和性质对于反比例函数,以下是已知函数的情况:①若它的图像在第二、四象限内,则k为负数。

②若y随x的增大而减小,则k为正数。

对于一次函数y=ax+b的图像经过第一、二、四象限,则函数的图像位于第一、三象限。

如果反比例函数通过点(m,2),则一次函数的图像不会通过点(m,2)。

已知a·b<0,点P(a,b)在反比例函数的图像上,则直线y=x不会通过第三象限。

如果P(2,2)和Q(m,n)是反比例函数图像上的两点,则一次函数y=kx+m的图像经过第一、三、四象限。

已知函数y=k/x和y=kx(k≠0),它们在同一坐标系内的图像大致是反比例函数和正比例函数的图像。

3.函数的增减性①在反比例函数的图像上有两个点A(x1,y1)和B(x2,y2),且x1<x2,则y1y2<0,即y1和y2的符号不同。

②在函数y=ax(a为常数)的图像上有三个点A(x1,y1)、B(x2,y2)和C(x3,y3),且x1<x2<x3,则y1<y2<y3.对于四个函数中的①、②、③、④,其中y随x的增大而减小的函数只有一个,即②。

(完整word版)反比例函数知识点总结

(完整word版)反比例函数知识点总结

反比例函数知识点总结 李苗知识点1 反比例函数的定义 一般地,形如x k y =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解:⑴x 是自变量,y 是x 的反比例函数;⑵自变量x 的取值范围是0x≠的一切实数,函数值的取值范围是0y ≠;⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式: ①x k y =(0k ≠),②1kx y -=(0k ≠),③k y x =⋅(定值)(0k ≠); ⑸函数xk y =(0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。

(k 为常数,0k ≠)是反比例函数的一部分,当k=0时,x k y =,就不是反比例函数了,由于反比例函数xk y =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。

知识点2用待定系数法求反比例函数的解析式 由于反比例函数x k y =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。

知识点3反比例函数的图像及画法 反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。

再作反比例函数的图像时应注意以下几点:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。

知识点4反比例函数的性质☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表: 反比例函数x k y =(0k ≠) k 的符号 0k >0k < 图像性质 ①x 的取值范围是0x ≠,y 的取值范围是①x 的取值范围是0x ≠,y 的取值范围是0y ≠②当0k <时,函数图像注意:描述函数值的增减情况时,必须指出“在每个象限内……”否则,笼统地说,当0k >时,y 随x 的增大而减小“,就会与事实不符的矛盾。

反比例函数知识点

反比例函数知识点

反比例函数知识点反比例函数是一种特殊的函数形式,它描述了两个变量之间的关系。

其特点是当一个变量的值增加时,另一个变量的值会减小,反之亦然。

在数学中,反比例函数通常用一个方程表示,形式为y=k/x,其中k是一个常数。

在本文中,我们将探讨一些与反比例函数相关的知识点。

一、反比例函数的定义反比例函数是一种形如y=k/x的函数形式。

其中,k是一个常数,被称为反比例函数的比例常数。

在反比例函数中,变量x和y的变化满足如下关系:当x增加时,y减小;当x减小时,y增加。

二、反比例函数的图像和性质反比例函数的图像是一条直线,经过原点(0,0)。

该函数的图像与坐标轴都有一个渐近线,与x轴共轭于y轴,与y轴共轭于x轴。

同时,反比例函数的图像在第一象限和第三象限中是上升的,即从左下到右上。

三、反比例函数的图像和实际应用反比例函数的图像常常出现在实际问题中,如物理、经济等领域。

例如,某物体的速度与其所受的力成反比,即速度越大,所受的力越小,反之亦然。

又如,在某种化学反应中,反应速率与溶液中的浓度成反比。

这些实际问题可以通过反比例函数来表示和解决。

四、反比例函数的性质和应用由于反比例函数的性质和图像特点,反比例函数在实际问题中有许多应用。

首先,反比例函数可以用来描述两个变量之间的关系,例如速度和力的关系、反应速率和浓度的关系等。

其次,反比例函数可以用来解决一些实际问题,例如求解未知变量的值或优化问题。

五、反比例函数的变形除了常见形式的反比例函数y=k/x,还有其他形式的反比例函数。

例如,y=k/(x-a)、y=(k+x)/(k-x)等。

这些变形形式的反比例函数在实际问题中也有广泛应用,例如电路中的电阻和电流的关系等。

六、反比例函数的应用举例反比例函数的应用非常广泛。

下面以几个具体的实例来说明。

例1:某车辆以恒定的速度行驶,当行驶时间增加时,其行驶距离减小。

这个问题可以用反比例函数来描述,行驶距离与行驶时间成反比。

例2:某工厂的生产成本与产量成反比,即产量越大,生产成本越低,反之亦然。

(完整版)中考——反比例函数知识点【经典】总结

(完整版)中考——反比例函数知识点【经典】总结

反比例函数一、基础知识1.定义:一般地,形如(为常数,)的函数称为反比例函数。

还可以写成xk y =k o k ≠x ky =kxy =1-2.反比例函数解析式的特征:⑴等号左边是函数,等号右边是一个分式。

分子是不为零的常数(也叫做比例系数),分y k k 母中含有自变量,且指数为1.x ⑵比例系数0≠k ⑶自变量的取值为一切非零实数。

x ⑷函数的取值是一切非零实数。

y 3.反比例函数的图像⑴图像的画法:描点法①列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数)②描点(有小到大的顺序)③连线(从左到右光滑的曲线)⑵反比例函数的图像是双曲线,(为常数,)中自变量,函数值,所xky =k 0≠k 0≠x 0≠y 以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。

⑶反比例函数的图像是是轴对称图形(对称轴是或)。

x y =x y -=⑷反比例函数()中比例系数的几何意义是:过双曲线 ()上任意引x k y =0≠k k xky =0≠k 轴轴的垂线,所得矩形面积为。

x y k 4.反比例函数性质如下表:的取值k 图像所在象限函数的增减性ok >一、三象限在每个象限内,值随的增大而减小y xo k <二、四象限在每个象限内,值随的增大而增大y x 5. 反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即可求出)k 6.“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数中的两个变量必成反比例关系。

xky =7. 反比例函数的应用题型总结:一.反比例函数的图象与性质【例1】对与反比例函数,下列说法不正确的是( )xy 2=A .点()在它的图像上 1,2--B .它的图像在第一、三象限C .当时,0>x 的增大而增大随x yD .当时,0<x 的增大而减小随x y 【例2】已知反比例函数的图象经过点(1,-2),则这个函数的图象一定经过( ()0ky k x=≠)A 、(2,1)B 、(2,-1)C 、(2,4)D 、(-1,-2)【例3】在同一直角坐标平面内,如果直线与双曲线没有交点,那么和的关系x k y 1=xk y 2=1k 2k 一定是( )A. +=0B. ·<0C. ·>0D.=1k 2k 1k 2k 1k 2k 1k 2k 【例4 】已知,且反比例函数的图象在每个象限内,随的增大而增大,如果点3=b xby +=1y x 在双曲线上,求a 是多少?()3,a xb y +=1【例5】两个反比例函数y=k x 和y=1x 在第一象限内的图像如图3所示, 点P 在y=kx的图像上,PC⊥x 轴于点C ,交y=1x 的图像于点A ,PD⊥y 轴于点D ,交y=1x的图像于点B , 当点P 在y=kx的图像上运动时,以下结论: ①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是_______(把你认为正确结论的序号都填上, 少填或错填不给分).二.反比例函数的判定l t y ABC【例1】若与成反比例,与成正比例,则是的( )y x x z y z A 、正比例函数 B 、反比例函数 C 、一次函数 D 、不能确定【例2】如果矩形的面积为6cm 2,那么它的长cm 与宽cm 之间的函数图象大致为( )y x 三.反比例函数的解析式特征(的指数,值与图像分布关系):x k 【例1】如果函数的图像是双曲线,且在第二,四象限内,那么的值是多少?222-+=k k kxy 【例2】如果函数22(1)my m x -=-为反比例函数,则m 的值是 ( )A 、1-B 、0C 、21 D 、1四.比较反比例函数图象上点的横纵坐标大小关系:【例1】在反比例函数的图像上有三点,,,,,。

反比例函数知识点归纳(重点)

反比例函数知识点归纳(重点)

反比例函数知识点归纳(一)知识结构(二)学习目标1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式(k为常数,),能判断一个给定函数是否为反比例函数.2.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些的实际问题.3.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法.(三)重点难点1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用.2.难点是反比例函数及其图象的性质的理解和掌握.二、基础知识(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y 随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y 随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图25.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.(四)实际问题与反比例函数。

反比例函数知识点归纳

反比例函数知识点归纳

反比例函数知识点归纳定义:形如函数y=k/x(k为常数且k≠0)叫做反比例函数,其中k叫做比例系数,x 是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。

函数y=k/x 称为反比例函数,其中k≠0,其中x是自变量,1.当k>0时,图象分别坐落于第一、三象限,同一个象限内,y随x的减小而增大;当k<0时,图象分别坐落于二、四象限,同一个象限内,y随x的减小而减小。

2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。

3.x的值域范围就是:x≠0;y的取值范围是:y≠0。

4..因为在y=k/x(k≠0)中,x无法为0,y也无法为0,所以反比例函数的图象不可能将与x轴平行,也不可能将与y轴平行。

但随着x无穷减小或是无穷增加,函数值无穷收敛于0,故图像无穷吻合于x轴5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=xy=-x(即第一三,二四象限角平分线),对称中心是坐标原点。

(k为常数,k≠0)的形式,那么表示y就是x的反比例函数。

其中,x是自变量,y是函数。

由于x在分母上,故取x≠0的一切实数,看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。

补足表明:1.反比例函数的解析式又可以译成: (k就是常数,k≠0).2.要求出反比例函数的解析式,利用待定系数法求出k即可.反比例函数解析式的特征⑴等号左边是函数,等号右边是一个分式。

分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1。

⑵比例系数⑶自变量的取值为一切非零实数。

⑷函数的值域就是一切非零实数。

形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。

自变量x的值域范围就是不等同于0的一切实数。

反比例函数的图像为双曲线。

由于反比例函数属奇函数,存有f(-x)=-f(x),图像关于原点等距。

精编版反比例函数知识点总结

精编版反比例函数知识点总结

精编版反比例函数知识点总结反比例函数是一类特殊的函数形式,其函数定义表示为:y=k/x其中,k是常数,x不等于0。

反比例函数的特点是,当x趋近于无穷大或无穷小时,y趋近于0;当x趋近于0时,y趋近于无穷大或无穷小。

反比例函数的图像是一条曲线,称为反比例曲线或又称为零点曲线。

在学习反比例函数时,需要掌握以下几个关键知识点:1.反比例函数的定义域和值域:反比例函数的定义域为除了x=0的所有实数,即x∈R,x≠0;反比例函数的值域为除了y=0的所有实数,即y∈R,y≠0。

2.反比例函数的图像特点:-当x>0时,y>0;当x<0时,y<0;-反比例函数的图像关于原点对称,即(x,y)和(-x,-y)在图像上对应的点;-反比例曲线在第一象限和第三象限都是递增曲线,在第二象限和第四象限都是递减曲线;-当x趋近于无穷大或无穷小时,y趋近于0;当x趋近于0时,y趋近于无穷大或无穷小。

3.反比例函数的性质:-当x>0时,y>0;当x<0时,y<0;-当x>0时,y单调递减;当x<0时,y单调递增;- 反比例函数的导数为dy/dx = -k/x^2,说明在定义域内,函数的斜率随x的增大而减小。

-y与x成反比例关系,即y和x的乘积为常数,即y*x=k。

4.反比例函数的应用:反比例函数在实际中有广泛的应用,例如:-电阻和电流的关系:根据欧姆定律,电阻R和电流I成反比例关系,即R=k/I,其中k为常数;-时间和速度的关系:根据路程公式,时间t和速度v成反比例关系,即t=k/v,其中k为常数;-负载和产量的关系:在经济学中,负载L和产量Q成反比例关系,即L=k/Q,其中k为常数。

以上是关于反比例函数的基本知识点总结,掌握了这些知识点,就可以理解反比例函数的定义、特点、性质和应用。

同时,通过练习反比例函数的题目,可以加深对反比例函数的理解和运用能力。

反比例函数知识点归纳(重点)

反比例函数知识点归纳(重点)

中考复习反比例函数基础知识(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.图像越远离坐标轴越小,图象的弯曲度越大.图像越靠近坐标轴(2)图象的位置和性质:与坐标轴没有交点,当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图 1 图2 5.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(四)实际问题与反比例函数1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上.(五)充分利用数形结合的思想解决问题.三、例题分析1.反比例函数的概念(1)下列函数中,y是x的反比例函数的是().A.y=3x B.C.3xy=1 D.(2)下列函数中,y是x的反比例函数的是().A.B.C.D.2.图象和性质(1)已知函数是反比例函数,①若它的图象在第二、四象限内,那么k=___________.②若y随x的增大而减小,那么k=___________.(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第______象限.(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_____象限.(4)已知a·b<0,点P(a,b)在反比例函数的图象上,则直线不经过的象限是().A.第一象限B.第二象限C.第三象限D.第四象限(5)若P(2,2)和Q(m,)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过().A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限(6)已知函数和(k≠0),它们在同一坐标系内的图象大致是().A.B.C.D.3.函数的增减性(1)在反比例函数的图象上有两点,,且,则的值为().A.正数B.负数C.非正数D.非负数(2)在函数(a为常数)的图象上有三个点,,,则函数值、、的大小关系是().A.<<B.<<C.<<D.<<(3)下列四个函数中:①;②;③;④.y随x的增大而减小的函数有().A.0个B.1个C.2个D.3个(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x>0时,这个反比例函数的函数值y随x的增大而(填“增大”或“减小”).4.解析式的确定(1)若与成反比例,与成正比例,则y是z的().A.正比例函数B.反比例函数C.一次函数D.不能确定(2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),则m=_____,k=________,它们的另一个交点为________.(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x,3).①求x的值;②求一次函数和反比例函数的解析式.。

反比例函数知识点总结

反比例函数知识点总结

反比例函数知识点总结反比例函数是数学中常见的一种函数类型,它在实际生活和工作中有着广泛的应用。

在学习和理解反比例函数时,我们需要掌握一些基本的知识点,本文将对反比例函数的相关概念、特点、图像和应用进行总结,希望能够帮助大家更好地理解和掌握这一部分内容。

1. 反比例函数的概念。

反比例函数是指函数的自变量x与因变量y之间的关系满足y与x成反比的规律。

通常来说,反比例函数可以用以下的形式来表示:y = k/x。

其中,k为比例系数,也称为常数项。

在反比例函数中,x不等于0,因为分母不能为0,否则函数就没有意义。

反比例函数在数学中有着重要的地位,它的特点和性质对于我们解决实际问题具有重要的指导作用。

2. 反比例函数的特点。

反比例函数的图像通常表现为一个开口向下的双曲线。

当x增大时,y会减小,当x减小时,y会增大。

这种特点使得反比例函数在描述一些实际问题时具有很好的适用性,比如人口与资源的关系、时间与速度的关系等。

反比例函数的特点还包括,在坐标系中不经过原点,且在x轴和y轴上都有渐近线。

3. 反比例函数的图像。

反比例函数的图像是一个开口向下的双曲线,其渐近线分别为x轴和y轴。

当k为正数时,双曲线位于第一和第三象限;当k为负数时,双曲线位于第二和第四象限。

通过对反比例函数的图像进行分析,我们可以更直观地理解函数的性质和特点,从而更好地应用到实际问题中去。

4. 反比例函数的应用。

反比例函数在实际生活和工作中有着广泛的应用。

比如,在经济学中,人均收入与人口数量之间的关系可以用反比例函数来描述;在物理学中,时间与速度、力与距离之间的关系也可以用反比例函数来表示。

掌握了反比例函数的知识,我们可以更好地理解和解决这些实际问题,为实际工作和生活提供更科学的依据。

总结:通过对反比例函数的概念、特点、图像和应用进行总结,我们可以更好地理解和掌握这一部分内容。

反比例函数在数学中有着重要的地位,它不仅有着严谨的数学性质,还具有广泛的应用价值。

初中反比例函数知识点总结大全

初中反比例函数知识点总结大全

初中反比例函数知识点总结大全反比例函数知识点总结1、反比例函数的表达式X是自变量,Y是X的函数y=k/x=k·1/xxy=ky=k·x^(-1)(即:y等于x的负一次方,此处X必须为一次方)y=kx(k为常数且k≠0,x≠0)若y=k/nx此时比例系数为:k/n2、函数式中自变量取值的范围①k≠0;②在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;③函数y的取值范围也是任意非零实数。

解析式y=k/x其中X是自变量,Y是X的函数,其定义域是不等于0的一切实数y=k/x=k·1/xxy=ky=k·x^(-1)y=kx(k为常数(k≠0),x不等于0)3、反比例函数图象反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。

4、反比例函数中k的几何意义是什么?有哪些应用?过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的绝对值_y的绝对值=(x_y)的绝对值=|k|研究函数问题要透视函数的本质特征。

反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM·PN=|y|·|x|=|xy|=|k|。

所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。

从而有k的绝对值。

在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。

数学反比例函数知识点归纳y=k/x(k≠0)的图象叫做双曲线.当k0时,双曲线在一、三象限(在每一象限内,从左向右降);当k0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反.以上对反比例函数知识点的讲解,相信同学们能很好的掌握了,希望同学们能很好的学习知识点。

反比例函数知识点总结

反比例函数知识点总结

反比例函数知识点总结反比例函数是数学中的重要概念之一,它在我们日常生活中有着广泛的应用。

在本文中,我将为大家总结一下反比例函数的一些基本知识点,让大家对它有更深入的了解。

1. 反比例函数的定义反比例函数是指一个函数,它的函数值和自变量之间的关系满足一个固定的比例关系。

具体来说,当自变量的值增大时,函数值会随之减小,并且二者的乘积保持不变。

这个比例关系可以用一个方程来表示,即:y = k/x,其中k为比例常数。

2. 反比例函数的特点反比例函数具有一些独特的特点,这也是它与其他函数形式的区别之一。

首先,它的定义域不能包含0,因为在反比例函数中,分母不可以为0,否则函数就没有意义。

其次,反比例函数的图像呈现出一种特殊的形状,即双曲线。

这种曲线对称于两个坐标轴,其中一个坐标轴是反比例函数的渐近线,即函数曲线始终趋近于这条直线而不会触及它。

3. 反比例函数的图像和性质反比例函数的图像是一条双曲线,它在坐标平面中的形状与直线重要的不同之处在于,它的图像永远不会与坐标轴相交。

这是因为反比例函数的定义域中不包含0。

除此之外,反比例函数的图像关于原点对称,这也是双曲线的一般特点。

另外,反比例函数的图像在接近坐标轴时会变得越来越陡峭,这意味着当自变量的绝对值变得非常大时,函数值的变化将非常敏感。

4. 反比例函数的应用反比例函数在现实世界中有着广泛的应用。

一个典型的例子是电阻与电流的关系。

根据欧姆定律,电阻与电流之间的关系可以用反比例函数来表示。

当电流增大时,电阻变小,两者之间的比例关系保持不变。

这是因为电流通过电阻时受到的阻力越小,电阻的值就越小。

另一个例子是速度和时间之间的关系。

当我们在一段固定的路程上以恒定速度行驶时,速度和所需时间之间的关系也可以用反比例函数来表示。

速度越大,我们所需的时间就越短,两者的乘积保持不变。

除此之外,反比例函数还可以用于工程学、物理学、经济学等领域中的许多问题,如波动频率与介质密度的关系、产品的成本与销售量之间的关系等。

反比例函数知识点总结

反比例函数知识点总结

反比例函数知识点总结反比例函数,又称为倒数函数,是数学中重要的函数类型之一。

它是一种特殊的函数关系,其中一个量的变化与另一个量的变化成反比。

在反比例函数中,当一个变量增加时,另一个变量会以相应的速度减少,反之亦然。

本文将通过定义、性质、图像和应用等方面,对反比例函数进行详细的知识点总结。

1. 定义与表示:反比例函数是指一种函数关系,其中一个变量的值与另一个变量的值成反比。

一般来说,反比例函数可以通过以下形式来表示:y = k/x其中k是常数,称为比例常数,x和y分别是两个变量的值。

2. 性质:(1) 定义域和值域:反比例函数的定义域为除了x=0外的所有实数,值域也为除了y=0外的所有实数。

(2) 对称性:反比例函数在原点(0,0)处具有对称性,即在x轴和y轴上分别关于原点对称。

(3) 单调性:反比例函数在其定义域内是单调递减的,即当x增加时,y会减小。

(4) 渐进线:反比例函数y=k/x在x趋近正无穷大或负无穷大时,都会逼近x轴和y轴,即有两条渐进线x=0和y=0。

(5) 变换:反比例函数可以通过平移、伸缩等变换来得到相应的函数图像。

3. 图像:反比例函数的图像呈现出一条曲线,并且具有特定的形状。

以y=k/x为例,当k为正数时,函数的图像将出现在第一和第三象限,形状类似于右上方向的双曲线;当k为负数时,图像将出现在第二和第四象限,形状类似于左下方向的双曲线。

同时,倒数函数的图像都会与x轴和y轴有两条渐进线,即x=0和y=0。

4. 应用:反比例函数在现实生活中有着广泛的应用。

以下是一些常见的应用场景:(1) 电阻与电流关系:欧姆定律中,电阻与电流的关系就是一个反比例函数关系。

当电流增大时,电阻会相应减小,反之亦然。

(2) 时间与速度关系:在行驶过程中,车辆在相同的距离内,速度与时间呈反比例。

当时间增加时,速度会相应减小,行驶速度与时间的乘积保持一定的常数。

(3) 人均用水量与总用水量关系:一般情况下,社会的总用水量与人口的数量成反比例。

最新反比例函数知识点归纳(重点)

最新反比例函数知识点归纳(重点)

中考复习反比例函数基础知识(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.图像越远离坐标轴越小,图象的弯曲度越大.图像越靠近坐标轴(2)图象的位置和性质:与坐标轴没有交点,当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图25.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(四)实际问题与反比例函数1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上.(五)充分利用数形结合的思想解决问题.三、例题分析1.反比例函数的概念(1)下列函数中,y是x的反比例函数的是().A.y=3x B.C.3xy=1 D.(2)下列函数中,y是x的反比例函数的是().A.B.C.D.2.图象和性质(1)已知函数是反比例函数,①若它的图象在第二、四象限内,那么k=___________.②若y随x的增大而减小,那么k=___________.(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第______象限.(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_____象限.(4)已知a·b<0,点P(a,b)在反比例函数的图象上,则直线不经过的象限是().A.第一象限B.第二象限C.第三象限D.第四象限(5)若P(2,2)和Q(m,)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过().A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限(6)已知函数和(k≠0),它们在同一坐标系内的图象大致是().A.B.C.D.3.函数的增减性(1)在反比例函数的图象上有两点,,且,则的值为().A.正数B.负数C.非正数D.非负数(2)在函数(a为常数)的图象上有三个点,,,则函数值、、的大小关系是().A.<<B.<<C.<<D.<<(3)下列四个函数中:①;②;③;④.y随x的增大而减小的函数有().A.0个B.1个C.2个D.3个(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x>0时,这个反比例函数的函数值y随x的增大而(填“增大”或“减小”).4.解析式的确定(1)若与成反比例,与成正比例,则y是z的().A.正比例函数B.反比例函数C.一次函数D.不能确定(2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),则m=_____,k=________,它们的另一个交点为________.(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x,3).①求x的值;②求一次函数和反比例函数的解析式.。

反比例函数最全知识点

反比例函数最全知识点

反比例函数的图象和性质知识点一:反比例函数的概念及其图象、性质关键点拨与对应举例1.反比例函数的概念(1)定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下三种基本形式:①y=kx;②y=kx-1; ③xy=k.(其中k为常数,且k≠0)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况(1)判断点是否在反比例函数图象上的方法:①把点的横、纵坐标代入看是否满足其解析式;②把点的横、纵坐标相乘,判断其乘积是否等于k.失分点警示(2)反比例函数值大小的比较时,首先要判断自变量的取值是否同号,即是否在同一个象限内,若不在则不能运用性质进行比较,可以画出草图,直观地判断.k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.例:若(a,b)在反比例函数kyx=的图象上,则(-a,-b)在该函数图象上.(填“在"、"不在")4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可.例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x.知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-.6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义.例:如图所示,三个阴影部分的面积按。

反比例函数知识点总结

反比例函数知识点总结

反比例函数知识点总结知识点1 反比例函数的定义一般地,形如xky =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解:⑴x 是自变量,y 是x 的反比例函数;⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式: ①xk y =(0k ≠),②1kx y -=(0k ≠),③k y x =⋅(定值)(0k ≠); ⑸函数xky =(0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。

(k 为常数,0k ≠)是反比例函数的一部分,当k=0时,xky =,就不是反比例函数了,由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。

知识点2用待定系数法求反比例函数的解析式由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。

知识点3反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。

再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。

知识点4反比例函数的性质☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:注意:描述函数值的增减情况时,必须指出“在每个象限内……”否则,笼统地说,当0k >时,y 随x 的增大而减小“,就会与事实不符的矛盾。

反比例函数知识点大全

反比例函数知识点大全

反比例函数知识点大全反比例函数的定义定义:形如函数y=k/x(k为常数且k≠0)叫做反比例函数,其中k叫做比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。

反比例函数的性质函数y=k/x 称为反比例函数,其中k≠0,其中X是自变量,1.当k0时,图象分别位于第一、三象限,同一个象限内,y随x 的增大而减小;当k0时,图象分别位于二、四象限,同一个象限内,y 随x的增大而增大。

2.k0时,函数在x0上同为减函数、在x0上同为减函数;k0时,函数在x0上为增函数、在x0上同为增函数。

3.x的取值范围是: x≠0;y的取值范围是:y≠0。

4..因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。

但随着x无限增大或是无限减少,函数值无限趋近于0,故图像无限接近于x轴5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=x y=-x(即第一三,二四象限角平分线),对称中心第1页共6页是坐标原点。

反比例函数的一般形式(k为常数,k≠0)的形式,那么称y是x的反比例函数。

其中,x是自变量,y是函数。

由于x在分母上,故取x≠0的一切实数,看函数y的取值范围,因为k≠0,且x≠0,所以函数值y 也不可能为0。

补充说明:1.反比例函数的解析式又可以写成: (k是常数,k ≠0).2.要求出反比例函数的解析式,利用待定系数法求出k即可.反比例函数解析式的特征⑴等号左边是函数,等号右边是一个分式。

分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1。

⑵比例系数⑶自变量的取值为一切非零实数。

⑷函数的取值是一切非零实数。

反比例函数(高一数学)知识点形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。

自变量x的取值范围是不等于0的一切实数。

反比例函数图像性质:反比例函数的图像为双曲线。

由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数知识点归纳
一、知识结构
二、基础知识
(一)反比例函数的概念
1.()可以写成()的形式,注意自变量x的
指数为
2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;
3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象
在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).
(三)反比例函数及其图象的性质
1.函数解析式:()
2.自变量的取值范围:
3.图象:
(1)图象的形状:双曲线.
越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.
(2)图象的位置和性质:
与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.
当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;
当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.
(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(
,)在双曲线的另一支上.
图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.
4.k的几何意义
如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,
PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积
都是).
如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.
图1 图2
5.说明:
(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.
(2)直线与双曲线的关系:
当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.
(四)实际问题与反比例函数
1.求函数解析式的方法:
(1)待定系数法;(2)根据实际意义列函数解析式.
2.注意学科间知识的综合,但重点放在对数学知识的研究上.
(五)充分利用数形结合的思想解决问题.。

相关文档
最新文档