分式方程的解法及应用(提高)

合集下载

分式方程的解法与应用技巧

分式方程的解法与应用技巧

分式方程的解法与应用技巧分式方程是含有分数的方程,其求解过程相对复杂。

本文将介绍分式方程的解法与应用技巧,帮助读者更好地掌握这一内容。

一、简单分式方程的解法对于形如$\frac{a}{x}=b$的简单分式方程,其中$a$和$b$为已知数,$x$为未知数。

我们可以通过以下步骤求解:1. 将方程两边乘以$x$,消去分式:$a=bx$。

2. 将方程两边除以$b$,解出未知数:$x=\frac{a}{b}$。

例如,对于分式方程$\frac{2}{x}=3$,我们可以按照以上步骤解得$x=\frac{2}{3}$。

二、复杂分式方程的解法对于形如$\frac{ax+b}{cx+d}=e$的复杂分式方程,其中$a$、$b$、$c$、$d$和$e$为已知数,$x$为未知数。

我们可以通过以下步骤求解:1. 消去分母,得到线性方程:$ax+b=ecx+ed$。

2. 整理方程,将未知数放在一侧,已知数放在另一侧:$ax-ecx=ed-b$。

3. 合并同类项,得到线性方程:$x(a-ec)=ed-b$。

4. 解出未知数:$x=\frac{ed-b}{a-ec}$。

例如,对于分式方程$\frac{2x+1}{3x+2}=4$,我们可以按照以上步骤解得$x=\frac{7}{10}$。

三、分式方程的应用技巧1. 化简分式:在处理分式方程时,我们可以通过化简分式来简化计算过程。

例如,对于分式方程$\frac{3x^2+6x}{2x}=5$,我们可以化简分式为$\frac{3(x+2)}{2}=5$,然后继续求解。

2. 注意特殊解:有些分式方程存在特殊解。

例如,对于分式方程$\frac{x-1}{x}=0$,我们可以通过化简分式得到$x=1$,但这并不是方程的解,因为分母为0时方程无解。

3. 检验解的合法性:在求解分式方程时,我们应该检验解的合法性。

即将解代入原方程,检验等式是否成立。

如果不成立,则解是无效的。

4. 借助整体思维:在处理分式方程的过程中,我们可以借助整体思维,将分数表示为整体,并通过整体与部分的关系,简化方程求解。

分式方程的解法与应用

分式方程的解法与应用

分式方程的解法与应用分式方程是指含有分数形式的方程,其中包含了分数的加减乘除运算。

解决分式方程需要运用一些特定的解法和技巧,以及理解分式方程在实际生活中的应用。

本文将介绍分式方程的解法和应用,并讨论其在数学和日常生活中的重要性。

一、分式方程的解法分式方程的解法有多种方法,以下是其中常见的几种:1. 清除分母法:当分式方程中存在分母时,可以通过乘以适当的整数或者多项式的方法,将方程的分母消除,从而转化为含有整数或多项式的方程。

通过进行这样的清除分母操作,可以简化方程的求解过程。

2. 相同分母法:当分式方程中存在多个分式且分母相同的情况时,可以通过将这些分式相加或相减,生成一个分子相加或相减的新分式,从而将分式方程转化为一个更简单的方程。

然后,可以继续使用其他解方程的方法求解。

3. 倒数法:当分式方程的分子或分母中含有复杂的表达式时,可以通过倒数的方式,将方程进行转化。

将方程的分母转化为分子,分子转化为分母,然后利用等式的性质进行化简,最后得到一个更为简单的方程。

二、分式方程的应用分式方程在实际生活中有着广泛的应用。

以下是一些常见的应用场景:1. 比例问题:比例问题是分式方程的常见应用之一。

在计算比例时,常常需要解决分式方程。

例如,在商业领域中,计算销售增长率、成本与利润的关系等问题,都需要运用分式方程进行计算。

2. 涉及面积和体积的问题:分式方程在计算面积和体积相关问题时也很有用。

例如,计算不规则形状的面积、计算容器中液体的体积等都可能涉及到分式方程的应用。

3. 财务问题:在处理财务问题时,分式方程同样发挥着重要的作用。

例如,在计算股票交易、利息计算以及贷款还款等问题时,常常需要解决分式方程来进行计算。

总结:分式方程是一种特殊的方程类型,运用特定的解法和技巧可以解决。

掌握分式方程的解法不仅在数学学科中重要,也在实际生活中具有广泛的应用。

通过应用不同的解法,我们能够更好地理解和解决涉及分数运算的各类问题,提高解决实际问题的能力。

分式方程的解法与应用

分式方程的解法与应用

分式方程的解法与应用分式方程是含有至少一个分式的方程,其解法与整式方程有一定的区别。

本文将介绍分式方程的解法及其应用。

一、分式方程的解法解分式方程的关键在于将方程化简为整式方程,以下是常见的几种解法:1. 通分法:当分式方程中含有多个分母时,可以通过通分的方式将其转化为整式方程。

首先找到所有分母的公倍数,然后将方程两边都乘以公倍数,从而得到一个整式方程。

最后求解整式方程,即可得到分式方程的解。

2. 消去法:当分式方程中存在相同的因式时,可以通过消去的方式将其化简为整式方程。

首先找出方程中的公因式,然后将其约去,从而得到一个整式方程。

最后求解整式方程,即可得到分式方程的解。

3. 倒数法:当分式方程中含有一个分式的倒数时,可以通过倒数的方式将其转化为整式方程。

首先将方程两边的分式取倒数,然后将其化简为整式方程。

最后求解整式方程,即可得到分式方程的解。

二、分式方程的应用分式方程在实际问题中具有广泛的应用,以下是几个常见的例子:1. 比例问题:比例问题通常可以表示为分式方程。

例如,某商品的原价为x元,打折后的价格为x/2元,求折扣后的价格是多少。

可以建立分式方程x/2 = 折扣后的价格,然后通过解方程求得折扣后的价格。

2. 水箱问题:水箱问题中常涉及到进水速度、出水速度等概念,可以通过分式方程求解。

例如,一个水箱的进水口每小时进水1/3箱,出水口每小时排水1/4箱,求水箱在多长时间内装满。

可以建立分式方程1/3 - 1/4 =水箱装满的时间,然后通过解方程求得水箱装满的时间。

3. 工作效率问题:工作效率问题中常涉及到多个人或物共同工作时的效率关系,可以通过分式方程求解。

例如,甲、乙两人共同完成一项任务需要5小时,如果甲的效率是乙的2倍,那么甲独自完成此任务需要多长时间。

可以建立分式方程1/甲的效率 - 1/乙的效率 = 5,然后通过解方程求得甲独自完成任务的时间。

总之,分式方程的解法与整式方程有一定的区别,可以通过通分法、消去法、倒数法等方式来解决。

分式方程的解法

分式方程的解法

分式方程的解法在代数学中,分式方程是由含有分式的等式组成的方程。

求解分式方程的过程需要运用一些特定的解法和技巧,以便得出方程的解。

本文将介绍几种常见的分式方程解法,帮助读者更好地理解和应用。

一、通分法对于含有分式的方程,通分是一个常见的解法。

通过将方程两边的分式通分,就可以将方程转化为一个等价的方程,从而更容易求解。

例如,考虑以下分式方程:(3/x) + (2/y) = 5为了通分,我们可以将两个分式的分母相乘,得到:(3y + 2x) / (xy) = 5然后,我们可以将方程转化为一个简单的线性方程:3y + 2x = 5xy通过这种方法,我们可以将原始的分式方程转化为一个更易于求解的线性方程,从而求出方程的解。

二、消元法消元法是解决分式方程的另一种常用方法。

该方法通过消除方程中的分式,将其转化为一个只含有整数的方程,从而使求解变得更加简便。

考虑以下分式方程:(1/x) + (1/y) = 2为了消去分式,我们可以将等式两边乘以xy,得到:y + x = 2xy然后,我们可以进一步转化为一个二次方程:2xy - y - x = 0通过求解这个二次方程,我们可以得到方程的解。

三、代入法代入法是解决分式方程的一种简单直接的方法。

该方法通过将已知的解代入到方程中,验证是否满足等式的要求。

例如,考虑以下分式方程:(4/x) - (2/y) = 1假设 x = 2 是方程的一个解,我们可以将其代入方程中:(4/2) - (2/y) = 1简化后得到:2 - (2/y) = 1再进一步简化得到:(2/y) = 1通过验证我们可以发现,x = 2 确实是方程的一个解。

因此,我们可以得出该方程的解为 x = 2。

通过代入法,我们可以将已知的解代入方程中,逐步验证是否满足等式的要求,从而得到方程的解。

综上所述,分式方程的解法主要包括通分法、消元法和代入法。

通过灵活运用这些解法,我们可以求解各种类型的分式方程。

对于复杂的分式方程,可能需要结合多种解法同时使用。

分式方程的解法与技巧、知识精讲

分式方程的解法与技巧、知识精讲

分式方程的解法与技巧【典型例题】1. 局部通分法(分组分解法):例1. 解方程:x x x x x x x x -----=-----34456778分析:该方程的特点是等号两边各是两个分式,相邻两个分式的分子与分子,分母与分母及每个分式的分子与分母都顺序相差1,象这类通常采取局部通分法。

解:方程两边分别通分并化简,得:145178()()()()x x x x --=--去分母得:()()()()x x x x --=--4578解之得:x =6 经检验:x =6是原分式方程的根。

点拨:此题如果用常规法,将出现四次项且比较繁,而采用局部通分法,就有明显的优越性。

但有的时候采用这种方法前需要考虑适当移项,组合后再进行局部通分。

变式:解方程32411423---=---x x x x 分析:要整个方程一起通分,计算量大又易出错。

观察方程中分母的特点可联想分组通分求解。

解:方程两边分别通分,相减得)3)(4(5)1)(2(5---=---x x xx x x当05≠-x 时,)3)(4()1)(2(--=--x x x x ,解得251=x 当05=-x 时,解得52=x 经检验,251=x 52=x 都是原方程的解 2.换元法:例2. 解方程:7643165469222x x x x x x ----+=--+分析:此方程中各分式的分母都是含未知数x 的二次三项式,且前两项完全相同,故可考虑用换元法求解。

令或或或k x x k x x k x x =--=-+=-+222646569 k x x =-26均可。

解:设,则原方程可化为:k x x =-+265793144k k k --=-+ 去分母化简得:20147111602k k --=∴()()k k -+=1220930∴,k k ==-129320当时,k x x =--=126702()()x x -+=710解之得:,x x 1217=-=当时,k x x =--+=-932065932022012019302x x -+=解此方程此方程无解。

数学知识点分式方程的解法和应用

数学知识点分式方程的解法和应用

数学知识点分式方程的解法和应用数学知识点:分式方程的解法和应用分式方程是指方程中含有分式的数学等式。

解分式方程需要运用一些特定的方法和策略,以找到变量的值满足方程的条件。

本文将介绍分式方程的解法和应用。

首先,我们将讨论如何解一元分式方程。

一元分式方程的解法解一元分式方程的方法主要分为两个步骤:首先将分式方程转化为整式方程,然后求解整式方程得到变量的值。

步骤一:转化为整式方程为了将分式方程转化为整式方程,我们可以通过两种方法:通分或消去分母。

例子 1:解方程: 5/x - 2/(3x) = 1/4通分即可得到:15/(3x) - 2/(3x) = 3/(12x)化简为:13/(3x) = 3/(12x)例子 2:解方程: (2x - 1)/3 - (x + 1)/(2x) = 2/3将所有分式通分得到:2(2x - 1)/(6x) - 3(x + 1)/(6x) = 4/6整理化简为:4x - 2 - 3x - 3 = 4/6步骤二:求解整式方程得到整式方程后,我们可以使用常规的方程求解方法,将变量的值计算出来。

例子 1的继续:13/(3x) = 3/(12x)通过交叉相乘可得:39x = 36x整理化简为:x = 0例子 2的继续:4x - 2 - 3x - 3 = 4/6化简为:x - 5 = 2/6继续整理可得:x = 3到此为止,我们已经学习了解一元分式方程的方法。

接下来,我们将探讨分式方程的应用。

分式方程的应用分式方程在实际问题中具有广泛的应用。

下面将介绍两个常见的应用场景:比例问题和物体混合问题。

应用一:比例问题比例问题是指涉及到数量比例关系的问题。

通过设立分式方程,我们可以解决这类问题。

例子 3:甲、乙、丙三个人的年龄比例为5:3:2。

如果乙的年龄比甲大9岁,而丙的年龄比乙大8岁,求三个人的年龄。

设甲的年龄为5x岁,则乙的年龄为3x岁,丙的年龄为2x岁。

乙的年龄比甲大9岁,可以设立方程:3x = 5x - 9通过解方程可得:x = 4因此,甲的年龄为20岁,乙的年龄为12岁,丙的年龄为8岁。

分式方程的解法与应用

分式方程的解法与应用

分式方程的解法与应用在数学中,分式方程是含有分数的方程,通常形式为一个或多个包含有未知数的分式等于一个已知数或者另一个分式。

解分式方程的过程需要注意一些特殊的技巧和方法。

本文将介绍解分式方程的常用方法,并探讨分式方程在现实生活中的应用。

一、一次分式方程的解法对于一次分式方程,即含有一个未知数的分式方程,我们可以通过以下步骤来求解:1. 将分式方程的分母清零,即使分子等于0。

这样可以排除分母为0的情况。

2. 化简方程。

将方程两端的分式进行通分,并将分式约简到最简形式。

3. 消去分母。

将方程两端的分母消去,得到一个一次方程。

4. 求解一次方程。

将消去分母后的方程进行移项和合并同类项的运算,得到未知数的解。

二、二次分式方程的解法对于二次分式方程,即含有未知数的平方的分式方程,我们可以通过以下步骤来求解:1. 将方程的分母清零,使分子等于0。

2. 化简方程,将方程两端的分式通分,并将分式约简到最简形式。

3. 进行配方法。

对于二次分式方程,我们可以通过配方法将方程转化为一次分式方程。

4. 解一次分式方程。

按照一次分式方程的解法,求解配方法后得到的一次分式方程。

5. 核对解的有效性。

将求得的解代入原分式方程,并检查是否成立。

三、分式方程的应用分式方程在现实生活中有着广泛的应用,下面举几个例子:1. 比例问题:分式方程可以用于解决比例问题,比如某个产品的销售量与价格之间的关系。

2. 浓度计算:在化学领域,分式方程可用于计算溶液的浓度,如溶液A中含有5%的某种物质,溶液B中含有10%的同种物质,问如何将溶液A和溶液B混合得到含有8%的溶液。

3. 财务分析:在财务领域,分式方程可用于计算财务指标,如利润率、毛利率等。

4. 随机问题:分式方程可以用于解决随机问题,如抛硬币的概率问题、抽奖问题等。

通过上述例子,我们可以看到分式方程在实际生活中的应用十分广泛。

综上所述,解分式方程的方法根据方程的次数和具体形式有所区别,但总体思路是将方程转化为一次方程进行求解。

分式方程的解法和应用

分式方程的解法和应用

分式方程的解法和应用分式方程,又称有理方程,是指包含了分数的方程。

解决分式方程问题可以在数学中发挥很大的作用,因为它们可以用来描述实际问题,特别是在科学和工程领域中。

本文将介绍一些常见的分式方程的解法以及它们在实际应用中的应用。

一、一次分式方程的解法一次分式方程是指分式的分子和分母的次数均为1的方程。

例如,2/x + 3 = 1/2。

解决这类问题的一种常见方法是通过消去分母,使方程转化为线性方程。

在这种情况下,可以通过以下步骤来解决方程:1. 将分数转化为一个等于0的分式形式,例如将2/x转化为2/x - 1/2。

2. 通过求公倍数来消去分母,例如通过乘以2来消去分母。

3. 合并同类项并将方程转化为一元一次方程,例如2 - x = 1/2。

4. 将方程解题得到x的值,检查解的合法性。

二、二次分式方程的解法二次分式方程是指分式的分子或者分母的次数为2的方程。

例如,1/x^2 + 1/x = 2。

解决这类问题的一种常见方法是通过将方程转化为二次方程,然后使用二次方程的解决方法来求解。

在这种情况下,可以通过以下步骤来解决方程:1. 将分数转化为一个等于0的分式形式,例如将1/x^2转化为1/x^2 - 2。

2. 将方程中的分数转化为一个多项式方程,例如通过乘以x^2来消去分母。

3. 合并同类项并将方程转化为二次方程,例如x^2 - 2x + 1 = 0。

4. 使用求解二次方程的方法,例如配方法、因式分解法或者公式法,得到x的值。

5. 检查解的合法性。

三、分式方程的应用分式方程在实际应用中有广泛的用途,常见的应用包括以下几个方面:1. 比例问题:比例问题可以通过设置分式方程来解决。

例如,一个图书馆中有1000本书,其中有3/10是故事书,那么故事书的数目可以表示为(3/10)*1000=300本。

2. 涉及速度、距离和时间的问题:速度、距离和时间之间有一定的关系,可以通过设置分式方程来解决相关问题。

例如,一个人以每小时60公里的速度行驶,问他行驶1小时可以行驶多远,可以通过设置方程60/1=x/1解决。

高中数学解分式方程的方法及相关题目解析

高中数学解分式方程的方法及相关题目解析

高中数学解分式方程的方法及相关题目解析分式方程是高中数学中的重要内容之一,解分式方程需要掌握一定的方法和技巧。

本文将介绍解分式方程的常用方法,并通过具体题目的解析来说明考点和解题技巧,帮助高中学生和家长更好地理解和应用。

一、解分式方程的基本方法解分式方程的基本方法主要包括以下几个步骤:1. 化简分式:首先将分式进行化简,将分子和分母的多项式进行因式分解或者通分,使方程变为更简单的形式。

2. 求解分子方程和分母方程:将化简后的分式方程分别看作分子方程和分母方程,分别解出两个方程的未知数。

3. 检验解的合理性:将求得的解代入原方程,检验是否满足原方程,确保解的正确性。

二、一次分式方程的解法一次分式方程是指分式的分子和分母都是一次多项式的方程。

下面通过一个具体的例子来说明一次分式方程的解法。

例题:求解方程 $\frac{2x+1}{3x-4} = \frac{3x+2}{2x-3}$解析:首先,我们可以将方程进行通分,得到 $(2x+1)(2x-3) = (3x+2)(3x-4)$展开并整理得到 $4x^2 - 6x + 2x - 3 = 9x^2 - 12x + 6x - 8$化简后得到 $4x^2 - 4x - 3 = 9x^2 - 2x - 8$移项整理得到 $5x^2 - 2x - 5 = 0$解这个二次方程,可以使用求根公式或者配方法。

假设方程的解为 $x_1$ 和$x_2$,则有 $x_1 + x_2 = -\frac{b}{a}$ 和 $x_1 \cdot x_2 = \frac{c}{a}$带入系数得到 $x_1 + x_2 = \frac{2}{5}$ 和 $x_1 \cdot x_2 = -1$因此,方程的解为 $x_1 = -1$ 和 $x_2 = \frac{5}{2}$将解代入原方程进行检验,可以发现两个解都满足原方程,因此解的合理。

三、二次分式方程的解法二次分式方程是指分式的分子和分母至少有一个是二次多项式的方程。

分式方程的解法及应用

分式方程的解法及应用

分式方程的解法及应用一、目标与策略明确学习目标及要紧的学习方式是提高学习效率的首要条件,要做到心中有数!学习目标:分式方程的概念和解法;分式方程产生增根的缘故;分式方程的应用题。

重点难点:重点:分式方程转化为整式方程的方式及其中的转化思想,用分式方程解决实际问题,能从实际问题中抽象出数量关系.难点:查验分式方程解的缘故,实际问题中数量关系的分析.学习策略:经历“实际问题——分式方程——整式方程”的进程,进展分析问题、解决问题的能力,渗透数学的转化思想,培育数学的应用意识。

二、学习与应用“凡事预则立,不预则废”。

科学地预习才能使我们上课听讲更有目的性和针对知识回顾——复习学习新知识之前,看看你的知识贮备过关了吗?(一)什么叫方程?什么叫方程的解?答:含有的叫做方程.使方程两边相等的的值,叫做方程的解.(二)分式的大体性质:分式的分子与分母同乘(或除以)同一个,分式的值不变,那个性质叫做分式的大体性质.用式子表示是:M B M A B A M B M A B A ÷÷=⨯⨯=,(其中M 是不等于0的整式). (三)等式的大体性质:等式的两边都乘(或除以)同一个数或 (除数不能为0),所得的结果仍是等式。

(四)解以下方程:(1)9-3x =5x +5;(2)52221+-=--y y y知识点一:分式方程的概念里含有未知数的方程叫分式方程。

要点诠释:(1)分式方程的三个重要特点:①是 ;②含有 ;③分母里含有 。

(2)分式方程与整式方程的区别就在于分母中是不是含有 (不是一样的字母系数),分母中含有未知数的方程是 ,不含有未知数的方程是方程,如:关于x 的方程x x =-21和12723+=-x x 都是 方程,而关于x 的方程x x a =-21和d cb x =+1都是 方程。

知识点二:分式方程的解法(一)解分式方程的基本思想把分式方程化为 方程,具体做法是“去分母”,即方程两边同乘最简公分母,将分式方程转化为整式方程,然后利用整式方程的解法求解。

分式方程的解法与应用

分式方程的解法与应用

分式方程的解法与应用分式方程是数学中的一种常见形式,它包含有分数的方程。

解决分式方程的过程需要运用一些特定的方法和技巧,同时,分式方程在实际生活中也有着广泛的应用。

本文将介绍分式方程的解法以及其在实际问题中的应用。

一、分式方程的解法解决分式方程的关键是将其转化为简单的等式,然后求解。

下面将介绍几种常用的分式方程解法。

1. 通分法当分式方程中含有多个分母时,可以使用通分法来简化方程。

首先找到方程中所有分母的最小公倍数,然后将方程两边同时乘以最小公倍数,将分母消去,得到一个简化的等式。

最后,通过移项和化简,求得方程的解。

2. 倒数法倒数法是解决分式方程中含有倒数的情况。

首先将方程中的倒数部分转化为分数形式,然后通过移项和化简,求得方程的解。

3. 分解法对于一些特殊的分式方程,可以使用分解法来解决。

例如,对于形如$\frac{1}{x}+\frac{1}{y}=1$的方程,可以将其分解为$\frac{x+y}{xy}=1$,然后通过移项和化简,求得方程的解。

二、分式方程的应用分式方程在实际生活中有着广泛的应用。

下面将介绍几个典型的应用案例。

1. 比例问题比例问题是分式方程的一种常见应用。

例如,某商品原价为$x$元,现在打折后的价格为原价的$\frac{2}{3}$,求打折后的价格。

通过建立方程$\frac{2}{3}x=x-\frac{1}{3}x$,可以求得打折后的价格为$\frac{1}{3}x$。

2. 浓度问题浓度问题也是分式方程的一种常见应用。

例如,某种饮料中含有$30\%$的果汁,现在要制作$1$升含有$20\%$果汁的饮料,需要加入多少升的纯果汁?通过建立方程$\frac{x}{1+x}=0.2$,可以求得需要加入的纯果汁的升数。

3. 财务问题财务问题中也常常涉及到分式方程的应用。

例如,某人的年收入为$x$元,他的生活开销占年收入的$\frac{1}{4}$,求他的生活开销。

通过建立方程$\frac{1}{4}x=x-\frac{3}{4}x$,可以求得他的生活开销为$\frac{3}{4}x$。

分式方程的解法及应用

分式方程的解法及应用

分式方程的解法及应用分式方程是数学中常见的一类方程,其特点是方程中含有分式表达式。

解决分式方程的关键是找到合适的方法,以求得方程的解。

本文将介绍几种常见的分式方程解法,并探讨其在实际应用中的一些案例。

一、通分法通分法是解决分式方程的基本方法之一。

当方程中含有多个分式时,我们可以通过通分的方式,将其转化为一个分子为0的分式方程。

例如,对于方程$\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$,我们可以通过通分得到$yz+xz=xy$,进而得到$xy-xz-yz=0$。

这样,我们就将原方程转化为了一个分子为0的分式方程,可以更方便地求解。

二、代换法代换法是解决分式方程的另一种常用方法。

通过合理的代换,可以将方程转化为一个更简单的形式。

例如,对于方程$\frac{1}{x}+\frac{1}{y}=2$,我们可以令$u=\frac{1}{x}$,$v=\frac{1}{y}$,则原方程可以转化为$u+v=2$。

这样,我们就将原方程转化为了一个线性方程,可以通过求解线性方程的方法得到解。

三、消元法消元法是解决分式方程的另一种常见方法。

通过巧妙地选择消元的方式,可以将方程转化为一个更简单的形式。

例如,对于方程$\frac{x}{y}+\frac{y}{x}=3$,我们可以通过乘以$x$和$y$的方式,得到$x^2+y^2=3xy$。

这样,我们就将原方程转化为了一个二次方程,可以通过求解二次方程的方法得到解。

在实际应用中,分式方程的解法有着广泛的应用。

以下是几个具体的案例:案例一:物体的速度假设一个物体以速度$v$匀速运动,经过时间$t$后的位移为$s$。

根据运动学公式,位移与速度和时间的关系可以表示为$s=vt$。

现在假设物体的速度是变化的,速度与时间的关系可以表示为$v=\frac{a}{t}$,其中$a$是一个常数。

我们可以通过求解分式方程$\frac{s}{t}=\frac{a}{t}$,得到物体的位移与时间的关系。

一元二次方程分式方程的解法及应用知识讲解(提高)含答案

一元二次方程分式方程的解法及应用知识讲解(提高)含答案

1,2=0;当m<0时,方程没有实数解.中考总复习:一元二次方程、分式方程的解法及应用—知识讲解(提高)【考纲要求】1.理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程;2.会解分式方程,解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.【知识网络】【考点梳理】考点一、一元二次方程1.一元二次方程的定义只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程.它的一般形式为ax2+bx+c=0(a≠0).2.一元二次方程的解法(1)直接开平方法:把方程变成x2=m的形式,当m>0时,方程的解为x=±m;当m=0时,方程的解x(2)配方法:通过配方把一元二次方程 ax 2 + bx + c = 0 变形为 x + ⎪ =如果一元二次方程 ax 2 + bx + c = 0 (a ≠0)的两个根是 x 、x ,那么 x + x = - ,x ⋅ x = c .aa⎛ ⎝ b ⎫2 b 2 - 4ac 2a ⎭ 4a 2的形式,再利用直接开平方法求得方程的解.( 3 ) 公 式 法 : 对 于 一 元 二 次 方 程 ax 2 + bx + c = 0 , 当 b 2 - 4ac ≥ 0 时 , 它 的 解 为x = -b ± b 2 - 4ac 2a.(4)因式分解法:把方程变形为一边是零,而另一边是两个一次因式积的形式,使每一个因式等于零,就得到两个一元一次方程,分别解这两个方程,就得到原方程的解.要点诠释:直接开平方法和因式分解法是解一元二次方程的特殊方法,配方法和公式法是解一元二次方程的一 般方法.易错知识辨析:(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中 a ≠ 0 .(2)用公式法和因式分解的方法解方程时要先化成一般形式. (3)用配方法时二次项系数要化 1.(4)用直接开平方的方法时要记得取正、负.3.一元二次方程根的判别式一元二次方程根的判别式为 ∆ = b 2 - 4ac .△>0 ⇔ 方程有两个不相等的实数根; △=0 ⇔ 方程有两个相等的实数根; △<0 ⇔ 方程没有实数根.上述由左边可推出右边,反过来也可由右边推出左边.要点诠释:△≥0 ⇔ 方程有实数根.4.一元二次方程根与系数的关系b 121 212要点诠释:(1)对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0. (2)解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分 解法,再考虑用公式法.(3)一元二次方程 a x 2 + bx + c = 0 (a ≠0)的根的判别式正反都成立.利用其可以①不解方程判定方程根的情况;②根据参系数的性质确定根的范围;③解与根有关的证明题.(4)一元二次方程根与系数的应用很多:①已知方程的一根,不解方程求另一根及参数系数;②已 知方程,求含有两根对称式的代数式的值及有关未知数系数;③已知方程两根,求作以方程两根或其代 数式为根的一元二次方程.考点二、分式方程1.分式方程的定义分母中含有未知数的有理方程,叫做分式方程.要点诠释:(1)分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量.(2)分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和都是分式方程,而关于的方程和都是整式方程.2.分式方程的解法去分母法,换元法.3.解分式方程的一般步骤(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程;(2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根.口诀:“一化二解三检验”.要点诠释:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.考点三、一元二次方程、分式方程的应用1.应用问题中常用的数量关系及题型(1)数字问题(包括日历中的数字规律)关键会表示一个两位数或三位数,对于日历中的数字问题关键是弄清日历中的数字规律.(2)体积变化问题关键是寻找其中的不变量作为等量关系.(3)打折销售问题其中的几个关系式:利润=售价-成本价(进价),利润率=利润成本价×100%.明确这几个关系式是解决这类问题的关键.(4)关于两个或多个未知量的问题重点是寻找到多个等量关系,使能够设出未知数,并且能够根据所设的未知数列出方程.(5)行程问题对于相遇问题和追及问题是列方程解应用题的重点问题,也是易出错的问题,一定要分析其中的特点,同向而行一般是追及问题,相向而行一般是相遇问题.注意:追及和相遇的综合题目,要分析出哪一部分是追及,哪一部分是相遇.(6)和、差、倍、分问题增长量=原有量×增长率;现有量=原有量+增长量;现有量=原有量-降低量.2.解应用题的步骤(1)分析题意,找到题中未知数和题给条件的相等关系;(2)设未知数,并用所设的未知数的代数式表示其余的未知数;(3)找出相等关系,并用它列出方程;(4)解方程求出题中未知数的值;(5)检验所求的答数是否符合题意,并做答.要点诠释:方程的思想,转化(化归)思想,整体代入,消元思想,分解降次思想,配方思想,数形结合的思想用数学表达式表示与数量有关的语句的数学思想.注意:①设列必须统一,即设的未知量要与方程中出现的未知量相同;②未知数设出后不要漏棹单位;③列方程时,两边单位要统一;④求出解后要双检,既检验是否适合方程,还要检验是否符合题意.【典型例题】类型一、一元二次方程1.阅读材料:为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1看作一个整体,然后设x2-1=y,那么原方程可化为y2-5y+4=0……①,解得y=1,y=4,12当y=1时,x2-1=1,∴x2=2,∴x=±2;当y=4时,x2-1=4,∴x2=5,∴x=±5,故原方程的解为x=2,1x=-2,x=5,x=-5.234解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用________法达到了解方程的目的,体现了转化的数学思想;(2)请利用以上知识解方程x4-x2-6=0.2【思路点拨】此题考查了学生学以致用的能力,解题的关键是掌握换元思想. 【答案与解析】(1)换元法;(2)设 x 2 = y ,那么原方程可化为 y 2 - y - 6 = 0解得 y = 3 ; y = -21 2当 y = 3 时, x 2 = 3 ;∴ x = ± 3当 y = -2 时, x 2 = -2 不符合题意,舍去.所以原方程的解为 x = 3 , x = - 3 .1 2【总结升华】应用换元法解方程,体现了转化的数学思想.举一反三:【高清课程名称:一元二次方程、分式方程的解法及应用 高清 ID 号: 405754 关联的位置名称(播放点名称):例 3】【变式】设 m 是实数,求关于 x 的方程 x 2 - mx - 3x + m + 2 = 0 的根. 【答案】x 1=1,x 2=m+2.2.已知关于 x 的一元二次方程 ax 2 + bx + 1 = 0(a ≠ 0) 有两个相等的实数根,ab 2求的值.(a - 2) 2 + b 2 - 4【思路点拨】由于这个方程有两个相等的实数根,因此⊿=b 2 - 4a = 0 ,可得出 a 、b 之间的关系,ab 2然后将化简后,用含 b 的代数式表示 a ,即可求出这个分式的值.(a - 2) 2 + b 2 - 4【答案与解析】∵ ax 2 + bx + 1 = 0(a ≠ 0) 有两个相等的实数根,∴⊿= b 2 - 4ac = 0 ,即 b 2 - 4a = 0 .ab 2ab 2ab 2 ab 2∵ = = =(a - 2) 2 + b 2 - 4 a 2 - 4a + 4 + b 2 - 4 a 2 - 4a + b 2 a 2∵ a ≠ 0 ,∴ ab 2 b 2 =a a= 4【总结升华】本题需要综合运用分式和一元二次方程来解决问题,考查学生综合运用多个知识点解决问题的能解得,x=3+522力,属于中等难度的试题,具有一定的区分度.举一反三:【变式】关于x的一元二次方程x2-3x-k=0有两个不相等的实数根.(1)求k的取值范围.(2)请选择一个k的负整数值,并求出方程的根.【答案】(1)方程有两个不相等的实数根,∴(-3)2-4(-k)>0.即4k>-9,解得,k>-9 4.(2)若k是负整数,k只能为-1或-2.如果k=-1,原方程为x2-3x+1=0.3-5,x=.12(如果k=-2,原方程为x2-3x+2=0,解得,x=1,x=2.)12类型二、分式方程3.解方程:【思路点拨】把原方程右边化为【答案与解析】代入原方程求解较为简单.原方程变为经检验,【总结升华】是原方程的根.时,x 2 - 6x + 5 = -因为, ,所以最简公分母为:,若采用去分母的通常方法,运算量较大,可采用上面的方法较好.举一反三:【变式 1】解方程:【答案】原方程化为方程两边通分,得化简得 解得经检验:是原方程的根.【变式 2】 解方程:7 31 4- =-x 2 - 6x - 4 x 2 - 6x + 5 x 2 - 6x + 9【答案】设k = x 2 - 6x + 5,则原方程可化为:731 4 -=-k - 9kk + 4去分母化简得:20k 2 - 147k - 1116 = 0∴(k - 12)(20k + 93) = 0∴k = 12 ,k = -9320当k = 12时,x 2 - 6x - 7 = 0(x - 7)(x + 1) = 0解之得:x = -1,x = 712当k = - 93 9320 2020x 2 - 120x + 193 = 0解此方程此方程无解.经检验:x = -1,x = 7是原分式方程的根.124.m为何值时,关于x的方程会产生增根?【思路点拨】先把原方程化为整式方程,使分母为0的根是增根,代入整式方程求出m的值.【答案与解析】方程两边都乘以整理,得,得【总结升华】分式方程的增根,一定是使最简公分母为零的根.举一反三:【变式】当m为何值时,方程会产生增根()A.2B.-1C.3D.-3【答案】分式方程,去分母得,将增根代入,得m=3.所以,当m=3时,原分式方程会产生增根.故选C.类型三、一元二次方程、分式方程的应用5.要在规定的日期内加工一批机器零件,如果甲单独做,刚好在规定日期内完成,乙单独做则要超过3天.现在甲、乙两人合作2天后,再由乙单独做,正好按期完成.问规定日期是多少天?【思路点拨】设规定日期是x天,则甲的工作效率为【答案与解析】设规定日期为x天根据题意,得解得经检验是原方程的根答:规定日期是6天.,乙的工作效率为,工作总量为1.由题意得1000【总结升华】工程问题涉及的量有三个,即每天的工作量、工作的天数、工作的总量.它们之间的基本关系是:工作总量=每天的工作量×工作的天数.举一反三:【高清课程名称:一元二次方程、分式方程的解法及应用高清ID号:405754关联的位置名称(播放点名称):例4-例5】【变式】据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.【答案】设一片国槐树叶一年的平均滞尘量为x毫克,550=,2x-40x解得:x=22,经检验:x=22是原分式方程的解,且符合题意.答:一片国槐树叶一年的平均滞尘量为22毫克.6.某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队工程费共8700元,乙、丙两队合做10天完成,厂家需付乙、丙两队工程费共9500元,甲、丙两队合做5天完成全部工程的,厂家需付甲、丙两队工程费共5500元.⑴求甲、乙、丙各队单独完成全部工程各需多少天?⑵若工期要求不超过15天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由.【思路点拨】第一问是工程问题,工程问题中有三个量:工作总量,工作效率,工作时间,这三个量之间的关系是:工作总量=工作效率×工作时间第二问只要求出每天应各付甲、乙、丙各队多少钱,并由第一问求出甲、乙、丙各队单独完成这项工作所需的天数,即可求出在规定时间内单独完成此项工程哪个队花钱最少.【答案与解析】⑴设甲队单独做需天完成,乙队单独做需天完成,丙队单独做需天完成,依题意,得①×+②×+③×,得++=.④④-①×,得=,即z=30,④-②×,得=,即x=10,④-③×,得=,即y=15.经检验,x=10,y=15,z=30是原方程组的解.⑵设甲队做一天厂家需付元,乙队做一天厂家需付元,丙队做一天厂家需付元,根据题意,得由⑴可知完成此工程不超过工期只有两个队:甲队和乙队.此工程由甲队单独完成需花钱元;此工程由乙队单独完成需花钱元.所以,由甲队单独完成此工程花钱最少.【总结升华】这是一道联系实际生活的工程应用题,涉及工期和工钱两种未知量.对于工期,一般情况下把整个工作量看成1,设出甲、乙、丙各队单独完成这项工程所需时间分别为天,天,天,可列出分式方程组.在求解时,把整式方程组来解.,,分别看成一个整体,就可把分式方程组转化为。

分式方程的解法步骤分式方程应用题技巧分式方程的解法例题

分式方程的解法步骤分式方程应用题技巧分式方程的解法例题

分式方程•分式方程是方程中的一种,且分母里含有未知数的(有理)方程叫做分式方程,等号两边至少有一个分母含有未知数。

•分式方程特征:①一是方程②二是分母中含有未知数。

因此整式方程和分式方程的根本区别就在于分母中是否含有未知数。

解分式方程•解法:解分式方程的基本思想是把分式方程转化为整式方程,其一般步骤是:(1)去分母:分式方程两边同乘以方程中各分母的最简公分母,把分式方程转化为整式方程。

(最简公分母:①系数取最小公倍数②出现的字母取最高次幂③出现的因式取最高次幂)(2)解方程:解整式方程,得到方程的根;(3)验根:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解,是原分式方程的增根。

如果分式本身约分了,也要带进去检验。

在列分式方程解应用题时,不仅要检验所得解的是否满足方程式,还要检验是否符合题意。

一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解.注意:(1)注意去分母时,不要漏乘整式项。

(2)増根是分式方程去分母后化成的整式方程的根,但不是原分式方程的根。

(3)増根使最简公分母等于0。

分式方程的特殊解法:换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。

•解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,这也是解分式方程的一般思路和做法。

解分式方程注意:①解分式方程的基本思想是把分式方程转化为整式方程,通过解整式方程进一步求得分式方程的解;②用分式方程中的最简公分母同乘方程的两边,从而约去分母,但要注意用最简公分母乘方程两边各项时,切勿漏项;③解分式方程可能产生使分式方程无意义的情况,那么检验就是解分式方程的必要步骤。

分式方程的解法与应用实例讨论

分式方程的解法与应用实例讨论

分式方程的解法与应用实例讨论一、分式方程的定义与性质1.1 分式方程的概念:分式方程是含有未知数的分式等式。

1.2 分式方程的性质:分式方程的解与方程的系数、常数项有密切关系。

二、分式方程的解法2.1 去分母法:将分式方程中的分母消去,使方程变为整式方程。

2.2 代入法:将分式方程中的未知数表示为其他变量的函数,然后代入整式方程求解。

2.3 加减法:通过对分式方程进行加减运算,消去分式中的分母。

2.4 乘除法:通过对分式方程进行乘除运算,将分式方程转化为整式方程。

三、分式方程的解法实例3.1 去分母法实例:解方程x−12=3−x4。

3.2 代入法实例:解方程x+23=5x−1。

3.3 加减法实例:解方程x3−2x=1。

3.4 乘除法实例:解方程2x−13⋅x+14=12。

四、分式方程的应用实例4.1 实际问题:某商品的原价是100元,打八折后的价格是多少?4.2 实际问题:甲、乙两地相距300公里,甲地到乙地的客车每小时行驶60公里,客车行驶2小时后离甲地还有多少公里?4.3 实际问题:一个长方形的长比宽多5cm,且长方形的面积是30cm²,求长方形的宽是多少cm?五、分式方程的拓展与提高5.1 含有多个未知数的分式方程:解方程组x+y3=2和x−y4=1。

5.2 不等式与分式方程的综合:解不等式组x−12>1和3−x4≤0。

5.3 函数与分式方程的综合:已知函数f(x)=x+2x−1,求函数的值域。

六、分式方程的综合训练6.1 给出一个分式方程,要求解方程并检验解的正确性。

6.2 给出一个实际问题,要求用分式方程表示问题,并求解方程。

6.3 结合函数、不等式等知识,解决一个涉及分式方程的综合问题。

以上是关于分式方程的解法与应用实例讨论的知识点总结。

希望对您的学习有所帮助。

习题及方法:一、去分母法习题1.1 解方程x+12=3−x4。

答案:将方程两边同乘以4,得到2(x+1)=3−x,然后解得x=13。

分式方程的解法与应用

分式方程的解法与应用

分式方程的解法与应用分式方程是指方程中含有分式的方程,通常形式为分子中含有未知数的方程。

解决分式方程问题的关键是找到其中的未知数的值,使等式成立。

本文将介绍常见的分式方程解法以及其在实际问题中的应用。

一、基本解法1. 消去分母将分数方程中的分母通过乘以最小公倍数或通分的方法消去,从而得到一个等式。

然后继续将未知数移到方程的一边,常数移到另一边,最终求得未知数的值。

2. 通分并整理将分式方程的分子进行通分,并整理为一个等式。

然后通过移项和整理,将未知数移到一边,常数移到另一边,继而求解未知数的值。

3. 求最小公倍数对于一些特殊的分式方程,我们可以先求出方程中分母的最小公倍数,然后将方程中的所有分式统一化。

接着,将分母消去,得到一个整式方程,进而解决。

二、分式方程的应用1. 比例问题分式方程经常用于解决比例相关的问题。

比如,A车和B车以不同的速度驶向一个目的地,已知A车比B车快1小时到达目的地,而A 车比B车慢1小时赶上B车。

求A车和B车单独行驶到达目的地所需的时间。

通过建立分式方程可得到两车的速度比,从而解决问题。

2. 涉及水池、容器等物理问题假设有一个水池,一根管子可以独立进行排水,另一根管子可以独立进行注水。

已知两根管子独立工作时分别需要6小时和8小时将水池排干或注满。

求填满一半的水池所需的时间。

通过建立分式方程可得到两根管子的工作效率,进而解决问题。

3. 财务问题分式方程在解决财务问题时也具有重要应用。

例如,某人通过两种不同的投资方式投资了一笔钱,两种方式的年利率分别为4%和6%。

已知一年后获得的总收益为800元。

求该人分别投资了多少钱。

通过建立分式方程可得到两种投资的金额比例,从而解决问题。

4. 混合液体问题当涉及到两种不同浓度的液体混合时,我们可以利用分式方程解决问题。

例如,混合含有30%盐的溶液和50%盐的溶液,已知混合后的溶液含有40%盐。

求两种溶液的混合比例。

通过建立分式方程可得到两种溶液的体积比例,进而解决问题。

中考总复习一元二次方程分式方程的解法及应用--知识讲解

中考总复习一元二次方程分式方程的解法及应用--知识讲解

中考总复习一元二次方程分式方程的解法及应用--知识讲解一、一元二次方程的解法一元二次方程是指一个未知数的平方最高次数为2的方程。

一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b和c为已知常数,且a≠0。

解一元二次方程的方法有以下几种:1.因式分解法:对方程进行因式分解,然后令每个因式等于0,求解得到方程的解。

2. 公式法:利用求根公式(-b±√(b^2-4ac))/2a,计算出方程的根。

3.完全平方式:对一元二次方程进行配方处理,将其化为完全平方的形式,然后求解。

4.图像法:将方程的解与图像相结合,通过观察图像的交点来确定方程的解。

二、一元二次方程的应用1.抛物线问题:一元二次方程常用来描述抛物线的形状与运动轨迹。

在物理学、工程学等领域中,抛物线的特性与运动轨迹有很多应用。

2.几何问题:一元二次方程可以用来解决与几何问题相关的计算和推理。

如求解一个平面图形的面积、找到一个图形的对称轴等。

3.速度问题:一元二次方程可以用来描述具有变速度的运动过程。

在物理学和运动学中,可以通过一元二次方程来计算运动物体的速度、加速度等相关参数。

4.财务问题:一元二次方程可以用来解决与财务相关的问题,如计算利润、成本和销售量之间的关系等。

5.人口增长问题:一元二次方程可以用来描述人口增长的模型。

通过一元二次方程的解,可以预测人口增长的趋势和规律。

总结:一元二次方程是数学中常见的一种方程形式,掌握解一元二次方程的方法对于提高数学学习的能力和解决实际问题具有重要意义。

在解题过程中,要根据具体情况选择合适的方法,并灵活运用数学知识解决问题。

分式方程及其应用

分式方程及其应用

分式方程及其应用一、分式方程的基本解法:1.分式方程的概念:分母中含有未知数的方程叫作分式方程.2.可化为一元一次方程的分式方程的解法:(1)解分式方程的基本思想是:把分式方程转化为整式方程.(2)解可化为一元一次方程的分式方程的一般方法和步骤:①去分母,即在方程的两边同时乘以最简公分母,把原方程化为整式方程;②解这个整式方程;③验根:把整式方程的根代入最简公分母中,使最简公分母不等于零的值是原方程的根;使最简公分母等于零的值是原方程的增根.注意:(1)增根能使最简公分母等于0;(2)增根是去分母后所得整式方程的根.3.解分式方程产生增根的原因:增根的产生是在解分式方程的第一步“去分母”时造成的,根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得的方程是原方程的同解方程,如果方程的两边都乘以的数是0 ,那么所得的方程与原方程不是同解方程,这时求得的根就是原方程的增根.【例1】解下列分式方程:(1)131x x+=-(2)31244xx x-+=--(3)21122xx x=---(4)11222xx x-=---(5)212xx x+=+(6)2216124xx x--=+-【例2】(1)若关于x 的方程1233mx x=+--有增根,则m =________.(2)解关于x 的方程2224222x a a x x+-=--会产生增根,则a 的值是________.(3)若关于x 的分式方程11044a xx x---=--无解,则a 的值为________.(4)若关于x 的分式方程2111m x x+=--的解为整数,则m 的取值范围是________.(5)若关于x 的分式方程311x a x x--=-无解,则a =________.二、巧解分式方程: 【例3】(1)111141086x x x x +=+---- (2)2263503x x x x-++=-(3)()()()()()1111111220212022x x x x x x x +++=------…(4)方程222313x x x x-+=-中,如设23y x x =-,原方程可化为整式方程:________.【拓1】观察下列方程及其解的特征:①12x x+=的解为121x x ==; ②152x x +=的解为12x =,212x =;③1103x x +=的解为13x =,213x =;…… 解答下列问题: ①请猜想:方程1265x x +=的解为________; ②请猜想:关于x 的方程1x x +=________的解为1x a =,21x a=(0a ≠); ③上题中的结论可以证明是正确的,请用该结论来解方程:315132x x x x -+=-.【拓2】24111181111x x x x +++=-+++.三、分式方程的应用:【例4】(20宝应模拟)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x 米,则根据题意所列的方程是( ) A .600060001520x x -=+ B .600060001520x x -=+ C .600060002015x x -=- D .600060002015x x-=-【拓3】某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问原计划每天加工服装多少套?在这个问题中,设原计划每天加工x 套,则根据题意可得方程为( ) A .()16040018120%x x +=+ B .()16040016018120%x x -+=+ C .1604001601820%x x -+= D .()40040016018120%x x-+=+【例5】一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度行驶,一小时后加速为原来的1.5倍,并比原计划提前40分钟到达目的地,求前一小 时的平均速度.【拓4】有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独 完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队 先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超 过79000元,则两工程队最多可以合作施工多少天?四、真题演练:1.(21扬州三模)若关于x 的分式方程21mx x=-有正整数解,则整数m 的值是( ) A .3 B .5 C .3或5 D .3或42.(19仪征期中)定义:如果一个关于x 的分式方程a b x=的解等于1a b -,我们就说这个方程叫差解方程.比如:243x =就是个差解方程.如果关于x 的分式方程2mm x =-是一个差解方程,那么m 的值是( ) A .2 B .12 C .12- D .2-3.(20邗江月考)扬州轨道交通线网规划2020年由4条线路组成,其中1号线一期工程全长30千米,预计运行后的平均速度是原来乘公交车的1.5倍,行驶时间则缩短半小时.设原来公交车的平均速度为x 千米/时,则下列方程正确的是( ) A .30301.50.5x x +=B .30301.50.5x x -= C .30300.5 1.5x x +=D .30300.5 1.5x x-=4.(21高邮期末)如果关于x 的不等式组521113()22m x x x -≥⎧⎪⎨-<+⎪⎩有且仅有四个整数解,且关于y的分式方程28122my y y --=--有非负数解,则符合条件的所有整数m 的和是( ) A .13 B .15 C .20 D .225.(21仪征期末)若关于x 的分式方程312mx -=+的解为负数,则m 的取值范围为________.6.(21邗江期末)关于x 的方程1122m x x-=--有增根,则m 的值为________.7.(19宝应月考)若关于x 的分式方程21011m x x -=-+无解,则m =________.8.(18高邮期中)已知关于x 的分式方程111x k kx x +-=+-的解为负数,则k 的取值范围是________.9.(19江都期中)若关于x 的方程4122ax x x =+--无解,则a 的值是________.10.(20广陵期中)要使方程121x x a=--有正数解,则a 的取值范围是________.11.(21仪征期末)若关于x 的分式方程12221(2)(1)x x x ax x x x --+-=-+-+的解为负数,则a 的取值范围是________.12.(19邗江月考)对于非零实数a 、b ,规定21a ab b a⊗=-.若(21)1x x ⊗-=,则x 的值为________.13.(20仪征期中)对于两个不相等的实数a 、b ,我们规定{in }m h a b 、表示a 、b 中较小的数的一半,如min 2{}31h =、,那么方程22{i }m n h x x xx=-+、的解为________.14.(20仪征期中)定义运算“※”: , , aa b a ba b b a b b a⎧>⎪⎪-=⎨⎪<⎪-⎩※,若52x =※,则x 的值为________.15.(20仪征期中)若32248168224816321111111a x x x x x x x =+++++--+++++,则a 的值是________.16.(2021·扬州)为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天.问:原先每天生产多少万剂疫苗?17.(20邗江月考)疫情防控形势下,人们在外出时都应戴上口罩以保护自己免受新型冠状病毒感染.某药店用4000元购进若干包次性医用口罩,很快售完,该店又用7500元钱购进第二批这种口罩,所进的包数比第一批多50%,每包口罩的进价比第一批每包口罩的进价多0.5元,请解答下列问题: (1)求购进的第一批医用口罩有多少包?(2)政府采取措施,在这两批医用口罩的销售中,售价保持了一致,若售完这两批口罩的总利润不高于3500元钱,那么药店销售该口罩每包的最高售价是多少元?18.(21邗江期末)对于两个不等的非零实数a ,b ,若分式()()x a x b x--的值为0,则x a =或x b =.因为2()()()()x a x b x a b x ab abx a b x x x---++==+-+,所以关于x 的方程abx a b x+=+的两个解分别为1x a =,2x b =.利用上面建构的模型,解决下列问题: (1)若方程px q x+=的两个解分别为11x =-,24x =.则p =________,q =________;(2)已知关于x 的方程222221n n x n x +-+=+两个解分别为1x ,2x (12x x <).求12223x x -的值.19.(21高邮期末)八年级学生去距学校12km 的珠湖小镇游玩,一部分学生骑自行车先走,其余学生20min 后乘汽车出发,结果他们同时到达、已知汽车的速度是骑车学生速度的3倍.(1)求骑车学生的速度;(2)游玩中八(4)班班主任为增强班级凝聚力决定让全班学生在户外拓展区参加一次户外拓展活动,班主任根据该项目收费标准支付了1575元,请根据该项目收费信息确定全班人数.户外拓展收费标准:人数 收费 不超过30人 人均收费50元超过30人每增加1人,人均收费降低1元,但人均收费不低于40元20.(2020·扬州)如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染. 进货单:商品 进价(元/件)数量(件)总金额(元)甲7200 乙3200李阿姨:我记得甲商品进价比乙商品进价每件高50%. 王师傅:甲商品比乙商品的数量多40件. 请你求出乙商品的进价,并帮助他们补全进货单.。

分式方程的解法及应用讲解

分式方程的解法及应用讲解

分式方程的解法及应用【学习目标】1. 了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程.2. 会列出分式方程解简单的应用问题.【要点梳理】要点一、分式方程的概念分母中含有未知数的方程叫分式方程.要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.(3)分式方程和整式方程的联系:分式方程可以转化为整式方程.类型一、判别分式方程1、下列方程中,是分式方程的是( ). A .3214312x x +--= B .124111x x x x x -+-=+-- C .21305x x += D .x a x a b +=,(a ,b 为非零常数)要点二、分式方程的解法解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根. 解分式方程的一般步骤:(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);(2)解这个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解. 类型二、解分式方程2、 解分式方程(1)10522112x x +=--;(2)225103x x x x -=+-.【变式】解方程:21233x x x-=---.要点三、解分式方程产生增根的原因方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根.产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根.要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方程不是同解方程,这时求得的根就是原方程的增根.(2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中没有错误的前提下进行的.类型三、分式方程的增根3、m 为何值时,关于x 的方程223242mx x x x +=--+会产生增根?【变式】如果方程11322x x x-+=--有增根,那么增根是________. 要点四、分式方程的应用分式方程的应用主要就是列方程解应用题.列分式方程解应用题按下列步骤进行:(1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系;(2)设未知数;(3)找出能够表示题中全部含义的相等关系,列出分式方程;(4)解这个分式方程;(5)验根,检验是否是增根;(6)写出答案.【典型例题】类型四、分式方程的应用4、甲、乙两班参加绿化校园植树活动,已知乙班每小时比甲班多种2棵树,甲班种60棵树所用的时间与乙班种66棵树所用的时间相等.求甲、乙两班每小时各种多少棵树?【变式】两个工程队共同参与一个建筑工程,甲队单独施工1个月完成总工程的13,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工速度快?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式方程的解法及应用(提高)
一、目标与策略
明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!
学习目标:
●了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程.
●会列出分式方程解简单的应用问题.
学习策略:
●解分式方程去分母是关键;
●解分式方程的应用注意找等量关系,最后要验根.
二、学习与应用
1.一艘轮船在静水中的速度是20km/h,水流速度为v km/h,则轮船顺流航行的速度为,逆流航行的速度为
,顺流航行100km所用的时间为,逆流航行60km所用的时间为 .
2. 解方程
21101
1
36
x x
++
-=时,去分母,去括号后为 .
3.将方程
11111
24396
x x x x
+++=去分母后得到方程________.
要点一、分式方程的概念
分母中含有的方程叫分式方程.
要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含
有未知数.
(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一
般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有
未知数的方程是整式方程.
(3)分式方程和整式方程的联系:分式方程可以转化为整式方程.
要点二、分式方程的解法
“凡事预则立,不预则废”.科学地预习才能使我们上课听讲更有目的性和针对
要点梳理——预习和课堂学习
认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习.课堂笔记或者其它补充填在右栏.预习和课堂学习更多知识点解析请学习网校资源
ID:#45981#405285
知识回顾——复习
学习新知识之前,看看你的知识贮备过关了吗?
解分式的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根
叫做原方程的 .因为解分式方程时可能产生增根,所以解分式方程时必须 .
解分式方程的一般步骤:
(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多
项式时,先分解因式,再找出最简公分母);
(2)解这个整式方程,求出整式方程的解;
(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原
分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程
无解.
要点三、解分式方程产生增根的原因
方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根.
产生增根的原因:去分母时,方程两边同乘最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根.
要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方程的
同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方程不是同解方程,这时求得的根就是原方程的增根.
(2)解分式方程一定要,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中没有错误的前提下进行的.
要点四、分式方程的应用
分式方程的应用主要就是列方程解应用题.
列分式方程解应用题按下列步骤进行:
(1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系;
(2)设未知数;
(3)找出能够表示题中全部含义的相等关系,列出分式方程;
(4)解这个分式方程;
(5)验根,检验是否是增根;
(6)写出答案.
典型例题——自主学习
认真分析、解答下列例题,尝试总结提升各类型题目的规律和技巧,然后完成举一反三.课堂笔记或者其它补充填在右栏.更多精彩内容请学习网校资源ID:#45986#405285
类型一、判别分式方程
例1、(2014春•北湖区校级月考)下列关于x的方程,是分式方程的是()A. B.
C.D.=1﹣
【总结升华】
类型二、解复杂分式方程的技巧
例2、解方程:
1310414351x x x x -=-----
【总结升华】
举一反三:
【变式】解方程
11114756x x x x +=+++++.
类型三、分式方程的增根
例3、(1)若分式方程22324
2mx x x x +=--+有增根,求m 值; (2)若分式方程2221151k k x x x x x
---=---有增根1x =-,求k 的值.
【总结升华】
举一反三:
【变式】(2015•校级一模)是否存在实数x ,使得代数式﹣与代数式
1+
的值相等.
类型四、分式方程的应用
例4、某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工
程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设
350米所用的天数与乙工程队铺设250米所用的天数相同.
(1)甲、乙工程队每天各能铺设多少米?
(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以
百米为单位)的方案有几种?请你帮助设计出来.
【总结升华】
举一反三:
【变式】一慢车和一快车同时从A 地到B 地,A ,B 两地相距276公里,慢车
的速度是快车速度的三分之二,结果快车比慢车早到达2小时,求快车,
慢车的速度.
三、测评与总结
要想学习成绩好,总结测评少不了!课后复习是学习不可或缺的环节,它可以帮助我们巩固学习效果,弥补知识缺漏,提高学习能力.
成果测评
现在来检测一下学习的成果吧!请到网校测评系统和模拟考试系统进行相关知识点的
测试.
知识点:分式方程的解法及应用(提高)
测评系统分数:模拟考试系统分数:
如果你的分数在85分以下,请进入网校资源ID:#45979#405284进行巩固练习,如果你的分数在85分以上,请进入网校资源ID:#45998#405285 进行能力提升.

自我反馈
学完本节知识,你有哪些新收获?总结本节的有关习题,将其中的好题及错题分类整
理.如有问题,请到北京四中网校的“名师答疑”或“互帮互学”交流.
我的收获
习题整理
题目或题目出处所属类型或知识点分析及注意问题
好题
注:本表格为建议样式,请同学们单独建立错题本,或者使用四中网校错题本进行记录.
○网○校○重○要○资○源
知识导学:分式方程的解法及应用(提高)(#405285)
高清课堂:分式方程的解法及应用(#405788)
对本知识的学案导学的使用率:
□ 好(基本按照学案导学的资源、例题进行复习、预习和进行课堂笔记等,使用率达到80%以上) □ 中(使用本学案导学提供的资源、例题和笔记,使用率在50%-80%左右)
□ 弱(仅作一般参考,使用率在50%以下)
学生:_______________ 家长:______________ 指导教师:_________________
请联系四中网校当地分校以获得更多知识点学案导学.。

相关文档
最新文档