电缆故障点的四种实用测定方法
电缆故障点的四种实用测定方法!
一、 电缆故障的种类与判断 无论是高压电缆或低压电缆,在施工安装、运行过程中经常因短路、过负荷运行、绝缘老化或外力损坏等原因造成故障。电缆故障分为接地、短路、断线三类。三芯电缆故障类型主要有以下几方面:一芯或两芯接触;二相芯线间短路;三相芯线完全短路;一相芯线断线或多相断线。 对于直接短路或断线故障用万用表可直接测量判断,对于非直接短路和接池故障,用兆欧表遥测芯线间绝缘电阻或芯线对地绝缘电阻,根据其阻值可判定故障类型。 二、 电缆故障点的查找方法
4、零电位法 零电位法也就是电位比较法,它适应于长度较短的电缆芯线对地故障,应用此方法测量简便精确,不需要精密仪器和复杂计算,其接线如图5所示。测量原理如下:将电缆故障芯线与等长的比较导线并联,在两端加压E时,相当于在两个并联的均匀电阻丝两端接了电源。此时,一条电阻丝上的任何一点和另一条电阻丝上的对应点之间的电位差必然为零。反之,电位差为零的两点必然是对应点,因为微伏表的负极接地,与电缆故障点等电位,所以,当微伏表的正极在比较导电上移动至示值为零时的点与故障点等电位,即故障点的对应点。 图5中K为单相闸刀开关,E为6V蓄电池或4节1号干电池,G为直流微伏表,测量步骤测出每芯线的电容电流(应保持施加电压相等)Ia、Ib、Ic的数值。
(2)在电缆的末端再测量每相芯线的电容电流Ia’、Ib’、Ic’的数值,以核对完好芯线与断线芯线的比容之比,初步可判断出断线距离近似点。
(3)根据电容量计算公式C=1/2πfU可知,在电压U、频率f不变时C与I成正比;因为工频电压的f(频率)不变,测量时只要保证施加电压不变,电容电流之比即为电容量之比。设电缆全长L,芯线断线点距离为x,则Ia/Ic=L/x,x=(Ic/Ia)L。测量过程中,只要保证电压不变,电流表读数准确,电缆总长度测量精确,其测定误差比较小。
电缆故障查找的六种最新方式
时基电力:电缆故障查找常用的4种方法(一)电缆故障一下四种方法:1、声学方法:声学法是依靠电缆放电故障的声音,声学法对高压电缆芯对绝缘层的闪络放电更为有效。
2、电桥法:电桥法就是双臂电桥测出电缆芯线的直流电阻值,再准确测量电缆实际长度,按照电缆长度与电阻的正比例关系,计算的故障点;该方法对于电缆芯线间直接线路或线路点接触电阻小于1Ω的故障,判断误差一般不大于3m,对于故障点接触电阻大于1Ω的故障,可采用加高电压烧穿的方法使电阻降至1Ω以下,再按此方法测量。
3、电容电流测定法:电缆在运行中,芯线之间、芯线对地都存在电容,该电容是均匀分布的。
4、零电位法:零电位法是电位比较法。
适用于长导线电缆芯对地故障,这种方法测量简单,不需要精密的仪器和复杂的计算。
其测量原理为:电缆故障铁芯线与等长比较线并联,两端加电压e等于连接两条平行均匀电阻线两端的电源。
此时,一根电阻线上的任意一点与另一根电阻线上的相应点之间的电位的差值,必须为零,相反, 具有零电位差的两个点必须是对应的点,由于微电压表的负极接地,与电缆故障点等电位,当比较导体上微电压表的正极移到零位时,与故障点等电位,即故障点的对应点。
(二)电缆故障查找前的准备工作(1)盲目的进行电缆故障查找工作往往费时费力而且无法准确的进行故障定点判断,这不是因为电缆故障种类的复杂造成,而是因为电缆周边环境所造成的。
(2)我们目前采用的电缆故障查找方法离不开:故障诊断、粗测定点与精确定点三个步骤,但是往往在实际测试中能够确定故障类型,做到粗测定点,但是却无法真正精确定点进行开挖。
这种原因的形成是因为客观存在的我们听得到的因素(公路或施工处振动噪声过大等原因)和看不到的因素(电缆走向、电缆埋设深度过深、故障点在积水中、电缆施工时余留不规范等原因)所造成的。
因此在电缆故障查找前通过电缆施工、运行管理人员明确电缆长度、电缆走向、周边特殊情况、中间头位置、周边是否存在施工等要因是电缆故障查找前不可或缺的准备工作。
电缆故障点的查找方法
文档归纳不易,仅供学习参考电缆故障点的查找方法一旦电缆绝缘被破坏产生故障、造成供电中断后,测试人员一般需要选择适宜的测试方法和适宜的仪器,按照肯定的方法来寻找故障点,今天要讲的是故障定点方法。
1.声测法该方法是在对故障电缆施加高压脉冲使故障点放电时,通过听故障点放电的声音来找出故障点的方法。
该方法比较简单理解,但由于外界环境一般比较嘈杂,干扰很大,有时很难分辩出真正的故障点的声音。
2.声磁同步法这种方法也需对故障电缆施加高压脉冲使故障点放电。
当向故障电缆中施加高压脉冲信号时,在电缆的周围就会产生一个脉冲磁场信号,同时因为故障点的放电又会产生一个放电的声音信号,由于脉冲磁场信号传播的速度比较快,声音信号传播的速度比较慢,它们传到地面时就会有一个时间差,用仪器的探头在地面上同时接收故障点放电产生的声音和磁场信号,测量出这个时间差,并通过在地面上移动探头的位置,找到这个时间差最小的地方,其探头所在位置的正下方就是故障点的位置。
用这种方法定点的最大优点就是:在故障点放电时,仪器有一个明确直观的指示,从而易于排出环境干扰;同时这种方法定点的精度较高〔<0.1m〕,信号易于理解、区分。
3.音频信号法此方法主要是用来探测电缆的路径走向。
在电缆两相间或者和金属护层之间〔在对端短路的情况下〕参加一个音频电流信号,用音频信号接收器接收这个音频电流产生的音频磁场信号,就能找出电缆的敷设路径;在电缆中间有金属性短路故障时,对端就不需短路,在发生金属性短路的两者之间参加音频电流信号后,音频信号接收器在故障点正上方接收到的信号会突然增强,过了故障点之后音频信号会明显减弱或者消逝,用这种方法可以找到故障点。
这种方法主要用于查找金属性短路故障或距离比较近的开路故障的故障点〔线路中的分布电容和故障点处电容的存在可以使这种较高频率的音频信号得到传输〕。
对于故障电阻大于几十欧姆以上的短路故障或距离比较远的开路故障,这种方法不再适用。
交联电力电缆故障点的测寻方法
交联电力电缆故障点的测寻方法
交联电力电缆故障点的测寻方法有以下几种:
1.轻微故障点测寻法:利用手持小型直流发生器进行测量,找出干线两端电压差最大的地点,即可推断出故障点的大致位置。
2.反向测量法:将故障段的另一端接受电源,并对故障段进行反向测量,通过比较反向测量值和正常测量值的不同,确定故障点的位置。
3.时间域反射法:利用高频信号在电缆中传输的时间差来确定故障点的位置,通过测量信号反射的时间和幅度变化,来推算出故障点的位置。
4.雷电位置测距法:利用雷电在电缆中短路时,产生的电磁脉冲传播速度比电缆中传播速度快的特性,来确定故障点的位置。
5.声波测距法:在电缆中注入射频信号,通过不同位置反射回来的信号延迟时间的计算,来确定故障点的位置。
该方法适用于深埋地下的电缆故障点测寻。
电缆故障点的四种实用测定方法
当电容器 C充 电到一定 电压值 时 , 间隙对 电缆 故障芯线 放 位 数 要 全 部 保 留 。 球
电, 故障处电缆芯线对绝缘层 放电产生 “ 、 的火花放 电声 , 2 3 电容 电 流 测 定 法 在 滋 滋” . 对于明敷设电缆凭 听觉可 直接查 找 , 为地埋 电缆 , 若 则首 先要 确
L
a
电桥法就是用双臂 电桥测 出电缆 芯线 的直流 电阻值 , 再准确 测量电缆实际长度 , 按照 电缆 长度 与电 阻的正 比例关 系 , 计算 出 故障点 。该方法对于 电缆芯线 间直 接 短路或 短路点 接触 电阻小 于 1Q的故 障 , 断误差一般不 大于 3m, 判 对于故 障点接触电阻大
比例公式 即可求 出故障点距 电缆端 头 的距 离 x或 ( L—x) X= :
( / , ( Rx Rf L,L—X) Re x/ ) 其 中 , 为 电缆 的 总长 度 。 ) =( )RfL, 卜 L
图 2 电 桥 法 测 量 电 路
x I L —X
1
1
1
故障点两侧 芯线 的电 阻值 可用下式 表示 : x=( —R) R Rl / 绝缘电阻 , 根据其 阻值可判定故 障类 型。故 障类型确定后 , 找故 因此 , 查 2 R( x =( 一R)2 x, x , , 卜 ) R2 / 。R R( )RL三个 数值确 定后 , 按 障点并不是一件容易的事情 , 下面介绍几种查找故 障点的方法。
电缆在运行 中 , 芯线之间 、 芯线对地 都存 在 电容 , 电容是均 该 定并标 明电缆走 向, 在杂 噪声音 最小 的时候 , 助耳 聋助 听器 匀分布 的 , 再 借 电容量与 电缆长 度呈线 性 比例关 系 , 电容 电流测 定法 或 医用 听诊器 等音频放 大设 备进行查找 。查 找时 , 将拾音器 贴近 就是根据这 一原理进 行测定的 , 对于 电缆芯线 断线故 障的测定非
想检测电线的故障断点在哪?这几种方法值得收藏
想检测电线的故障断点在哪?这几种方法值得收藏想检测电线电缆出现故障的断点在哪,小编在电气服务云平台上总结了一下几种方法,希望对您有帮助!(1)万用表检测法首先是把不通的整根线缆一端接到强电的火线上,另一端置空。
把万用表拨到AC2V档上,从线缆接电端开始,一边捏住黑色笔笔尖,一边将红色笔沿着导线的绝缘皮慢慢移动,此时显示屏显示的电压值大约为0.445V左右。
当红表笔移动到某处时,显示屏显示的电压突然下降到0.0几伏,大约是原来电压的十分之一,从该位置向前(火线接入端)的大约15cm处即是断点所在。
(2)感应式电笔检测法感应试电笔,就是带着一个电子屏幕,可以检测电压和通断的设备。
首先排除断点电缆周围的电缆有电源,然后将有断点的电缆接在火线上,将电笔垂直于导线,按住“感应断点测试”按钮在导线上向前缓慢移动,等试电笔检测的交流信号出现突然消失时,即可判断断点在该检测点处,误差最多不超过10cm。
需要注意的是:断点电线周围的电缆不能带有电源。
另外要提醒的是,此法不是万能,短电缆效果明显,电缆越长效果越不好。
(3)使用音频探测仪音频探测仪是一种利用单频或复频信号,可测试线路的连续性,来识别线路故障的仪器。
能在连接任何交换机、路由器、PC终端的情况下直接找线。
在追踪电缆线路时,无需剥开线路外皮,简单、快捷,并可以判别线路断点的位置。
(4)电缆故障测试仪是一套综合性的电缆故障探测仪器,能对电缆的高阻闪络故障,高低阻性的接地,短路和电缆的断线,接触不良等故障进行测试,若配备声测法定点仪,可准确测定故障点的精确位置。
特别适用于测试各种型号、不同等级电压的电力电缆及通信电缆。
(5)折线检测法把有断点的电线一端接万用表的黑表笔,另一端接红表笔。
万用表打在电阻200Ω档。
在最有可能断线的地方(比如经常弯曲点)来回折弯。
如万用表显示忽通忽断时,此处即为断点。
还不能判断,则需从电缆的一端开始折弯,直到找到断点。
此法适用于较短的电缆。
电缆故障精确定点的四大方法
电缆故障精确定点的四大方法
电缆故障精确定点通常按以下4个步骤的顺序进行:
1、判断故障点类型
根据故障的性质,电缆故障可以分为低电阻接地或短路故障,高电阻接地或短路故障、断线故障、断线并接地故障和闪络性故障。
2、根据故障类型选择合适方法及相应的仪器
针对不同的故障类型采用不同的测试方法对其进行测试。
例如针对高阻故障可以使用冲闪法来定位故障位置。
3、粗测定位
粗测定位方法有电桥法、波反射法两种。
目前波反射法定位仪较普及。
但是有几种电缆故障很难用波反射法查找,比如高压电缆护套绝缘缺陷点、钢带铠装低压力缆、pvc电缆和短电缆都无法被定位。
另外,一些高阻击穿点在冲击电压下无法击穿,也难以定位。
4、精确定点。
电缆故障可以采用以下四大方法进行精确定点:
(1) 声测法:它是由高压脉冲发生器对故障电缆放电,故障点产生电弧,并产生放电声音,在电缆直埋情况下,产生地震波,定点仪的声测探头拣拾地震波信号并放大后通过耳机或表头输出。
(2) 跨步电压法:它主要针对对电缆外护套绝缘有要求的外护套接地故障定点,现在对部分直埋的无铠装的低压电缆、电线芯线接地故障、也可以采用跨步电压法定点。
(3) 电磁法及音频法:用电磁波定点或采用音频法定点,即是利
用电缆故障的前后点电磁波信号或音频信号的变化来确定故障点。
(4) 声磁同步法:是将声测法与电磁波法综合应用。
电缆故障检查方法
电缆故障检查方法
1. 外观检查:检查电缆外观是否有明显的物理损伤,如切割、磨损、挤压等。
还要检查是否有局部渗漏或电缆绝缘物质的腐蚀等问题。
2. 局部电压测试:使用电压测试仪器检测电缆的局部电压值,观察是否存在异常。
若存在异常电压,可能表明电缆存在故障。
3. 绝缘电阻测试:使用绝缘电阻测试仪器对电缆绝缘进行测试,观察绝缘电阻是否达到标准要求。
如果绝缘电阻过低,可能表示电缆有绝缘损坏。
4. 电阻测试:使用万用表等测试仪器对电缆的电阻进行测试,观察电阻值是否符合设定范围。
过高或过低的电阻值可能表示电缆存在问题。
5. 示波器测试:使用示波器检测电缆上的信号波形,观察波形是否正常。
如波形出现幅度变化、失真等情况,可能表明电缆存在故障。
6. 故障定位:使用电缆故障定位仪等设备,结合反射法或时域法等方法,对电缆故障进行精确定位,以便进行修复。
7. 热红外检测:使用红外热像仪对电缆进行红外热检测,观察电缆表面的温度分布情况,发现温度异常的部位,可能存在故障。
8. 声音检测:使用听诊器等工具对电缆进行声音检测,观察是否存在漏电声、放电声等异常的声音,以判断是否存在故障。
以上是常见的电缆故障检查方法,具体选用哪种方法需要根据实际情况和设备条件来决定。
在进行电缆故障检查时,应根据具体设备要求和安全规范进行操作,以确保安全可靠。
电力电缆故障探测
电力电缆故障查找方法与应用电力电缆具有供电安全可靠,受自然气象条件影响少,运行和维护成本相对较少等优点,但在实际的运行中由于城市的施工,电缆附件安装工艺不良,长期过负荷运行等因素致使电缆发生故障,影响供电安全。
如何快速查找故障点,恢复电缆正常供电,是运行维护人员面临的一个挑战。
笔者总结多年的工作经验,给出以下分享。
电力电缆故障点查找一般分四步骤进行:1.故障类型判断2.故障点预定位3.路径确认4.精确定点一、故障类型判断故障判断:用万用表、兆欧表测量电缆的故障电阻,并根据故障电阻大小,判断电缆的故障性质;进一步了解该故障的原因、电缆敷设环境及运行情况等。
电缆故障类型可分为以下5种:1、开路(断线)故障:电缆有一芯或多芯导体断裂或者金属护层断裂。
断线故障一般都伴有经电阻接地的现象。
2、短路故障:电缆的一芯或多芯对地绝缘电阻或者线芯之间绝缘电阻低于10Ω,其中电缆的一芯或多芯对地绝缘电阻低于10Ω的故障也叫死接地故障。
3、低阻故障:电缆的一芯或多芯对地绝缘电阻或者线芯之间绝缘电阻大于10Ω,不高于200Ω(非标准值)。
4、高阻泄露性故障:电缆的一芯或多芯对地绝缘电阻或者线芯之间绝缘电阻大于200Ω。
5、高阻闪络性故障:电缆的一芯或多芯对地绝缘电阻或者线芯之间绝缘电阻非常高,但对电缆进行耐压试验时,当电压加到某一数值,突然出现绝缘击穿的现象。
二、故障点预定位上述故障类型分类的目的是为了选择合适的测试方法,目前电缆故障测距的常用方法主要有电桥法和波反射法(脉冲法)两种。
1、电桥法:测距方法是基于电缆沿线均匀,电缆长度与缆芯电阻成正比的特点。
并根据惠斯通电桥的原理,将电缆短路接地故障点两侧的环线电阻引入电桥回路,测量其比值。
由测得的比值和已知的电缆全长,计算出测量端到故障点的距离。
此方法需要一个截面相同长度相等的完好的相线作为测试辅助相。
适用于短路、低阻与高阻泄露性故障。
2、波反射法(脉冲法):又分为低压脉冲法、二次(多次)脉冲法、脉冲电流法。
电力电缆故障的检测方法
电力电缆故障的检测方法电缆故障的主要种类是并联故障和串联故障。
串联故障指的是电缆当中的多个或者是一个导体存在断开情况,通常的时候,串联当中断开一个导体之前,较难发现串联的故障,只有真正出现短路情况的时候才容易发现串联故障。
并联故障是因为电缆长期超负荷运行而导致外绝缘的老化现象,进而在局部发生放电情况,导致并联故障。
而结合电缆故障被击穿的长度差异和电阻不同,能够划分电缆故障为高阻故障、低阻故障、开路故障。
1.电桥法电桥法是一种传统的电缆故障检测方法,其可以实现非常理想的效果。
这种检测方法十分便捷,有着非常高的检测精度,属于一种经常应用的电缆故障检测方法。
可是,也存在一些缺陷,因为电桥电压差和检流计不够灵敏,所以仅仅适宜对电阻较低的电缆故障开展检测。
而对于电阻较高的设备和断路故障的电缆问题难以借助这样的方法来检测。
2.高压电桥法在电缆检测当中,高压电桥法属于一种经常应用的故障检测方法。
其检测原理是,对于高压电桥当中恒流电源刺穿造成的电缆故障的地方,从一定程度上确保流动比较大的电桥电流,进而在电桥整体线路的两边形成一定的电位差,在协调电桥平衡的根底上统计故障地方的差距。
对于应用高压恒流电源而言,可以有效拓展电桥高阻检测的区域,相对来讲,其可以对结果开展尤为便捷和准确检测。
并且,对于电桥法的研究理论来讲,即电缆中心线路电阻与整体线路根据比率开展分配的特点可以促进电桥检测体系的形成。
3.冲击高压闪络法在对电缆故障开展检测的一些方法当中,施工人员应用十分广泛的一种方法是冲击高压闪络法。
这种方法的检测原理是在故障电缆的开端地方施加冲击高压,从而对发生故障的地方开展十分迅速的击穿,以及记录下故障地方一刹那电压突跳的数据信息。
在仔细研究电缆故障地方与电缆始末数据信息消耗时间的根底上对时间距离开展测试,从而得到故障的地方,以及执行解决对策。
4,低压脉冲反射法在电缆故障检测中应用低压脉冲发射的方法应当在损坏的线路当中注入低压脉冲。
电缆故障点的测定方法
图 1 测 声 法 电路 接 线
当电容器 c充电到一定 电压值时 , 球间隙 Q对 电缆故障芯线 L 放 电, 在故障处电缆芯线对绝缘层
+ R , 式中 R f L _ ) 为a t 相或 b 相芯线 至故障点的一 相 电阻 值 。
甘
肃科Leabharlann 技 第2 9卷 测 得 R。 与R 后, 再 按 图 3所示 电路 将 b 与 C
R + R
由此可得出故障点的接触电阻值 : R
=
( R 1 +R 2 — 2 R L ) / 2 。
因此 , 故障点两侧芯线的电阻值可用下式表示 :
R = ( R 1一R) / 2 , R f L _ )= ( R 2一R) / 2 。当 R
R
R 3个数值 确 定 后 , 按 比例公 式 即可 求 出 故
线。
使用该方法须注意在试验设备端和电缆末端设
专 人监 护 。
2 . 2 电桥 法
芯线直接短路或断线故障用万用表可直接测量 判断 ; 而对于非直接短路 的和接地故障 , 则需用兆欧 表摇测芯线间绝缘电阻值或芯线对地绝缘状况判定 故障类型。
电桥法 就是用 双臂 电桥 测量 电缆 芯线 的直流 电 阻值 , 再 准 确测量 出该 电缆 的实 际长度 , 依据 电阻 与
第2 9卷 第 1 1期 2 0 1 3年 6月
甘 肃科 技
Ga n s u S c i e n c e a n d Te c h no 1
Z . 2 9 N o . 1 1
J u n . 2 0 1 3
电缆 故 障 点 的测定 方法
刘 宁, 刘 菊梅
图 5 零 电位 法 测 量 电路
寻找电线电缆故障点的方法
扬州天帝线缆
寻找电线电缆故障点的方法
由于电缆故障的性质不同,只能对不同故障性质采用不同的探测方法,因此,在探测故障点前,首先确认故障的性质以及电缆的敷设的状态、位置和长度等必要的技术参考资料,这样有助于迅速准确地找出故障点位置。
1、确定故障性质:最常用方法是使用兆欧表(在井下使用本质安全型兆欧表)。
在另一端芯线完全开路的情况下,测量各芯线间及各芯线对地的绝缘电阻,如电缆芯线对地或相间短路,表针既指零。
而在电缆另一断芯线短接情况下,如有断线,兆欧表指针指向无限大。
2、故障检测方法:通常有电桥法、脉冲法、士波器法、感应法、声测法等等,对煤矿电缆,KDLZ-1型矿用电缆故障测试仪更为适合,它可使用于瓦斯尘爆炸危险的矿井之中。
能探测矿用电力电缆的短路、接地及断线的故障点位置,但对屏蔽橡套软电缆、带统包型编织结构监视导线的屏蔽橡套软电缆和铠装电缆的故障点很难探测,对高阻接地故障点无法探测,同时受到环境潮湿、矿井下杂散电流的影响,探测故障点的准确性受到一定的影响。
电缆故障的检测方法
电缆故障的探测方法本文综述了电缆故障的探测方法与仪器。
首先列举了电缆故障探测的传统方法并分析了传统方法的不足,然后介绍了电缆故障探测的新方法及其特点。
随着电缆用量在整个电力传输线路和因特网中所占的比例日益提高,电缆故障出现的几率越来越大。
电缆故障对生产造成的危害较大,轻者会造成单台电气设备不能运行,重者会导致整个变电所停电,所以电缆故障点的快速测定和精确定位问题变得非常重要。
一、电缆故障探测的传统方法(一)电缆故障测距的传统方法电缆故障测距的传统方法主要有以下四种:电桥法:这是电力电缆的测距的经典方法。
该方法比较简单,但需要事先知道电缆线长度等数据,且只适用于低阻及短路故障。
但是,在实际运行中,故障常常为高阻及闪络性故障,因故障电阻很高造成电桥电流很小,因此一般的灵敏度仪表很难探测。
脉冲回波法:针对低阻与断路类型的故障,利用低压脉冲反射方法来测电缆故障比起上面的电桥法简单直接,只需通过观察故障点反射与发射脉冲的时间差来测距。
测试时将一低压脉冲注入电缆,当脉冲传播到故障点时会发生反射,脉冲被反射送回到测量点。
利用仪器记录发射和反射脉冲的时间差,只需知道脉冲传播速度就可计算出故障发生点的距离。
该方法简单直观,不需知道电缆长度等原始数据,还可根据反射波形识别电缆接头与分支点的位置。
脉冲电压法。
该方法可用于测量高阻与闪络故障。
首先将电缆故障在直流或脉冲高压信号下击穿,然后通过记录放电脉冲在测量点与故障点往返一次所需的时间来测距。
脉冲电压法的一个重要优点是不必将高阻与闪络性故障烧穿,直接利用故障击穿产生的瞬时脉冲信号,测试速度快,测量过程也得到简化。
但缺点是:①仪器通过一个电容电阻分压器分压测量电压脉冲信号,仪器与高压回路有电耦合,很容易发生高压信号串人,造成仪器损坏,故安全性较差;②在利用闪测法测距时,高压电容对脉冲信号呈短路状态,需要串一个电阻或电感以产生电压信号,增加了接线复杂性,使故障点不容易击穿;③在故障放电时,特别在冲闪时,分压器耦合的电压波形变化不尖锐,难以分辨。
电缆故障查找方法
电缆故障查找方法
电缆故障的查找方法主要有以下几种:
1. 直观检查法:通过目视观察电缆外观、连接头、连接处等是否有损坏、老化、松动等情况,以及是否有明显的烧焦、破损的痕迹,从而初步排除可能存在的故障点。
2. 电阻测量法:使用电阻表或万用表对电缆的各个导线、连接头进行测量,判断其是否符合正常范围。
如果发现某个导线的电阻值异常高或异常低,就可以怀疑该导线存在断路、短路等故障。
3. 绝缘测量法:使用绝缘电阻表对电缆绝缘层进行测试,判断其是否符合正常的绝缘阻值。
如果测试结果较低,表示绝缘性能可能存在问题,需要进一步检查和修复。
4. 高频探测法:使用高频电流注入仪、高频电压法等设备对故障电缆进行高频信号注入,通过测量回路的电流和电压波形的变化,可以定位到故障的具体位置。
5. 热红外扫描法:使用热像仪对电缆进行扫描,通过检测电缆的热量分布情况,可以找到可能存在的局部过热故障点。
6. 变电站设备检测法:通过对变电站设备如断路器、隔离开关等的检测,判断
是否存在与电缆有关的故障。
例如,通过断路器的热重载测试、测量隔离开关的接触电阻等,可以判断电缆接线是否正确、电缆夹是否过紧等。
以上方法可以根据具体情况和设备的可用性选择适合的方式进行故障查找。
在使用上述方法时,应注意安全问题,避免触电或其他意外事故发生。
此外,如果遇到复杂或难以排查的故障,建议请专业的电气工程师或电缆维护人员进行故障排查和维修。
电缆断点的六种判定方法
当电缆或电缆的内部出现断点故障时,由于外部绝缘皮的包裹,很难直观的判断出断点的确定位置。
下面就给大家介绍几种如速判断电线电缆的断点的方法无损伤电缆的方法1、数字万用表法首先把具有断点的电缆的一端接在220V火线,另一端使之悬空。
调动万用表的档位使之打到交流2V电压挡。
然后从故障电缆的火线接入端开始,一只手紧握黑表笔,红表笔沿着故障电缆的绝缘层缓慢滑动。
电缆无断点处的电压值大约为0.445V左右。
当红表笔移动到某处时,万用表显示的电压值骤降为正常电压的1/10即0.04V时。
此时基本可以断定断点处在该位置向前(火线接入端)15cm处。
如果屏蔽线的屏蔽层没有损坏,那么该方法不能使用。
2、感应电笔方法首先排除断点电缆周围的电缆有电源,然后将有断点的电缆接在火线上,然后用感应电笔垂直于电缆缓慢移动,当感应电笔的交流信号消失时,即可判断断点在该检测点处,误差最多不超过10cm。
3、折线法对于较短的电缆测试断点可以采用折弯的方法,将电缆两端分别接在万用表的红黑表笔两端。
从电缆的一端开始来回折弯,如果万用表此时时通时断,那么断点处就在此处。
按照此法一直排查到断点为止。
有损伤电缆的方法1、针刺判别法这种方法是利用电缆的通断来排查电缆的断点所在。
将断点电缆上分段插入钢针,然后依次使用万用表测量通断状况。
不同处即为断点所在处。
但是该方法会破坏绝缘层,很容易在后期的电缆使用中,造成其他的问题。
专业仪表检测的方法1、另外对于地下电缆故障点的判断,可以通过音频探测仪来判断故障点。
2、对于电缆全长以及短路、断路点的判断,可以使用电缆故障遥测仪。
3、根据实际情况的不同使用不同的方法来判断断点所在,上述几种方法基本可以确定电缆断点所在。
电缆故障精确定位方法总结
电缆故障精确定位方法总结
电力部门经常对电缆进行大修,遇到电缆故障时如何正确处理?电缆故障精确定位方法的总结通常分四步进行,包括判断故障点的类型、选择合适的方法和相应的仪器、粗略定位和精确定位。
其中,粗定位方法有两种:桥法和波反射法。
目前,波反射定位仪比较流行。
但波反射法难以发现的电缆故障有高压电缆护套绝缘缺陷点、钢带铠装低压电缆、聚氯乙烯电缆、短电缆等。
另外,一些高阻击穿点在冲击电压下不能被击穿,难以定位。
一、步进电压法:采用步进电压法,主要针对电缆外护套绝缘所需的外护套接地故障点。
目前,对于一些没有铠装的直埋低压电缆,铁芯线的接地故障主要是针对外护套的接地故障。
也可以使用阶跃电压法。
二、声磁同步法:是声测量法和电磁波法的综合应用,如DTC系列磁同步固定点仪,它采用声测量法、声磁同步定点法和声磁同步定点法相结合的原理。
三、电缆故障点精确不动点法的声学测量方法:利用声测法点的方法是以往至今的电缆故障点测量法。
声测方法点由高压脉冲发生器放电到故障电缆上,故障点产生电弧和放电声。
对于直埋电缆,会产生地震波。
定点仪器的声学探头接收并放大地信号,然后通过耳机或表头输出。
四、电磁法和音频法:理论上可以用电磁波定点或音频法确定故障点,即利用电缆故障前后电磁波信号或音频信号的变化。
电力电缆的故障分析及检测方法
电力电缆的故障分析及检测方法电力电缆是输送电能的重要设备,但在运行中难免会出现故障。
电力电缆的故障一般分为三类:绝缘故障、电缆接头故障和电缆外包层故障。
处理故障需要实施合适的检测方法,据此本文将就电力电缆故障的检测方法进行探讨。
一、绝缘故障检测方法1、绝缘电阻测试法绝缘电阻测试法是比较常用的一种绝缘故障检测法。
它主要是利用高压直流放电器将试验电缆的一端接地,另一端接通500V或1000V直流电压(也可以根据实际情况对电压进行调整),并记录电流与电压。
如果读书在在50MΩ以上,说明绝缘没有问题。
此法的优点是简单易行,缺点在于只能检测到大面积的绝缘故障,不能检测到局部绝缘故障。
2、局部放电检测法局部放电检测法是一种常用的局部绝缘故障检测方法。
它的原理是利用放电电流产生信号,通过放大和滤波等处理得到故障信号,然后再通过分析断层发生的时间、位置、大小等综合条件来定位故障。
局部放电检测法主要适用于高压交流电缆及其附件的检测,检测结果更为可靠,但仪器昂贵,操作比较麻烦。
二、电缆接头故障检测方法电缆接头故障比较常见,如果及时发现故障,不仅可以延长电缆的使用寿命,而且可以提高电缆系统的可靠性。
电缆接头故障的检测方法包括如下:1、分接箱可视检查法通过检查分接箱外观,连接方式、接线端子、连接盘上的引线及连接板上的引线等情况来判断电缆接头的质量。
2、分接箱绝缘电阻测试法通过对接头进行高压试验,测量其绝缘阻值,从而判断接头质量。
3、分接箱局部放电检测法通过检测接头所产生的局部放电信号,来定位接头故障位置。
三、电缆外包层故障检测方法电缆外包层故障往往不易发现,如果长期不修复,很容易引起电缆系统故障。
这类故障的检测方法有以下几种:1、有线检测法通过检测电极间导通状态的变化来定位电缆外包层故障点的位置。
该方法精度高,定位准确,但是在大功率电缆上的实用性不足。
2、雷电冲击测试法利用冲击波法产生的电磁场,通过定位电缆故障处反射回来的信号来寻找故障点。
电缆线路电缆故障的精确定点的四种方法
电缆线路电缆故障的精确定点的四种方法电缆故障的精确定点是故障探测的关键。
目前,比较常用的方法是冲击放电声测法及主要用于低阻故障定点的音频感应法。
实际应用中,往往因电缆故障点环境困素复杂,如振动噪声过大、电缆埋设深度过深等,造成定点困难,成为快速找到故障点的主要矛盾。
1、声测法直接通过听故障点放点的声音信号或看故障点放电的声音信号所转换的其他可视信号来找到故障点的方法称为声测定点法。
声测法是目前电缆故障测试中应用最广泛而又最简便的一种方法,95%以上的电缆故障都用此法进行定点,很少发生判断错误。
声测定点主要是利用故障点的放电声音定点,使用可调压的高压设备,使故障点击穿放电,故障间隙放电时产生的机械振动,传到地面,便听到“啪、啪”的声音,利用这种现象可以十分准确地对电缆故障进行定点。
对于电缆护层已被烧穿的故障,往往可在地面上用人耳直接听到故障点放电声。
对于护层未烧穿的电缆故障或电缆埋设较深时,地面上能听到的放电声太小,则要使用耳机来监听判断进行定点。
声测法是利用直流高压试验设备向电容器充电、储能,当电压达到某一数值时,经过放电间隙向故障线芯放电。
由于故障点具有一定的故障电阻,在电容器放电过程中,此故障电阻相当于一个放电间隙,在放电时将产生机械振动。
根据粗测时所确定的位置,用拾音器在故障点附近反复听测,找到地面振动最大、声音最大处,即为实际电缆故障点位置。
声测法放电电压的大小,由放电间隙来控制,一般在试验时,将放电间隙调至一定位置,将放电电压控制在20~25KV之间,每隔3~4s放电一次即可。
声测试验中如果采用电容量较大的电容器,则应考虑试验设备的容量问题。
一般以采用2KV·A的试验变压器和2-3KV·A的调压器较好。
硅堆也应采用容量较大的硅堆(如2DL—75KV/1A),以防止烧坏。
声测法的优点是容易理解,便于掌握,可信性较高;缺点就是受外界环境影响较大,受人的经验和测试心态的影响较大。
电缆故障检测的原理和方法
电缆故障检测的原理和方法
电缆故障检测的原理和方法可以分为以下几种:
1. 绝缘电阻测量法:通过测量电缆绝缘电阻的大小来判断绝缘的健康状况。
原理是在绝缘电阻正常的情况下,电流只能通过绝缘层进行闭合,而当出现故障时,电流会通过绝缘层以外的通路,导致绝缘电阻减小。
2. 波形分析法:通过分析电缆上的电压或电流波形,来检测故障的位置和性质。
例如,可以通过观察电缆的波形变化来判断是否存在短路或接地故障。
3. 时间域反射法:利用脉冲反射原理,在电缆两端施加电信号并观察反射信号,通过测量反射信号的延时和幅度来判断电缆故障的位置和性质。
4. 频域反射法:利用频域特性来检测电缆故障。
当电缆出现故障时,会导致信号的频谱发生变化,通过对比坏缆和好缆的频谱分布,可以确定故障的位置和性质。
5. 火花频率法:通过在维持火花频率恒定的条件下,改变火花的位置和时间,用以判断绝缘故障发生的位置。
6. 红外热像法:利用红外热像仪来检测电缆故障。
当电缆出现局部过热时,会产生明显的热辐射,通过热像仪可以直观地观测到这种热辐射,从而定位故障点。
这些方法可以单独或结合使用,根据不同的故障情况和要求选择相应的检测方法。
需要注意的是,电缆故障检测需要专用的仪器设备和专业的操作技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电缆故障点的四种实用测定方法
一、电缆故障的种类与判断无论是高压电缆或低压电缆,在施工安装、运行过程中经常因短路、过负荷运行、绝缘老化或外力损坏等原因造成故障。
电缆故障分为接地、短路、断线三类。
三芯电缆故障类型主要有以下几方面:一芯或两芯接触;二相芯线间短路;三相芯线完全短路;一相芯线断线或多相断线。
对于直接短路或断线故障用万用表可直接测量判断,对于非直接短路和接池故障,用兆欧表遥测芯线间绝缘电阻或芯线对地绝缘电阻,根据其阻值可判定故障类型。
二、电缆故障点的查找方法
1、测声法所谓测声法就是根据故障电缆放电的声音进行查找,该方法对于高压电缆芯线对绝缘层闪络放电较为有效。
此方法所用设备为直流耐压试验机。
电路接线如图1所示,其中SYB为高压试验变压器,C为高压电容器,ZL为高压整流硅堆,R为限流电阻,Q为放电球间隙,L为电缆芯线。
当电容器C充电到一定电压值时,球间隙对电缆故障芯线放电,在故障处电缆芯线对绝缘层放电产生"滋、滋"的火花放电声,再在杂噪声音最小的时候,借助耳聋助听器或医用听诊器等音频放大设备进行查找。
查找时,将拾音器贴近地面,沿电缆走向慢慢移动,当听到"滋、滋"放电声最大时,该处即为故障点。
使用该方法一定要注意安全,在试验设备端和电缆末端应设专人监视。
2、电桥法电桥法就是双臂电桥测出电缆芯线的直流电阻值,再准确测量电缆实际长度,按照电缆长度与电阻的正比例关系,计算的故障点。
该方法对于电缆芯线间直接短路或短路点接触电阻小于1Ω的故障,判断误差一般不大于3m,对于故障点接触电阻大于1Ω的故障,可采用加高电压烧穿的方法使电阻降至1Ω以下,再按此方法测量。
测量电路如图2所示,首先测出芯线a与b之间的电阻R1,则R1=2RX+R,其中R为a相或b相至故障点的一相电阻值,R为短接点的接触电阻。
再就电缆的另一端测出a'和b'芯线间的直流电阻值R2,则R2=2R(L-X)+R,式中R(L-X)为a'相和b'相芯线至故障点的一相电阻值。
测完R1与R2后,再按图3所示电路将b'与C'短接,测出b、c两相芯线间的直流电阻值,则该阻值的1/2为每相芯线的电阻值,用RL表示。
RL=RX+R(L-X),由此可得出故障点的接触电阻值:R=R1+R2-2RL。
因此,故障点两侧芯线的电阻值可用下式表示:RX=(R1-R)/2,R(L-X)=(R2-R)/2。
RX、R(L-X)、RL三个数值确定后,按比例公式即可求出故障点距电缆端头的距离X或(L-X):X=(RX/RL)L,(L-X)=(R(L-X)/RL)L,式中L为电缆的总长度。
采用电桥法时应保证测量精度,电桥连接线要尽量短,经径要足够大,与电缆芯线连接要采用压接或焊搂,计算过程中小数位要全部保留。
3、电容电流测定法电缆在运行中,芯线之间、芯线对地都存在电容,该电容是均匀分布的,电容量与电缆长度呈线性比例关系,电容电流测定法就是根据这一原理进行测定的,对于电缆芯线断线故障的测定非常准确。
测量电路如图4所示,使用设备为1~2kV A单相调压器一台,0~30V、0.5级交流电压表一只,0~100mA、0.5级交流毫安表一只。
测量步骤:(1)首先在电缆首端分别测出每芯线的电容电流(应保持施加电压相等)Ia、Ib、Ic的数值。
(2)在电缆的末端再测量每相芯线的电容电流Ia'、Ib'、Ic'的数值,以核对完好芯线与断线芯线的比容之比,初步可判断出断线距离近似点。
(3)根据电容量计算公式C=1/2πfU可知,在电压U、频率f不变时C与I成正比;因为工频电压的f(频率)不变,测量时只要保证施加电压不变,电容电流之比即为电容量之比。
设电缆全长L,芯线断线点距离为x,则Ia/Ic =L/x,x=(Ic/Ia)L。
测量过程中,只要保证电压不变,电流表读数准确,电缆总长度测量精确,其测定误差比较小。
4、零电位法零电位法也就是电位比较法,它适应于长度较短的电缆芯线对地故障,应用此
方法测量简便精确,不需要精密仪器和复杂计算,其接线如图5所示。
测量原理如下:将电缆故障芯线与等长的比较导线并联,在两端加压E时,相当于在两个并联的均匀电阻丝两端接了电源。
此时,一条电阻丝上的任何一点和另一条电阻丝上的对应点之间的电位差必然为零。
反之,电位差为零的两点必然是对应点,因为微伏表的负极接地,与电缆故障点等电位,所以,当微伏表的正极在比较导电上移动至示值为零时的点与故障点等电位,即故障点的对应点。
图5中K为单相闸刀开关,E为6V蓄电池或4节1号干电池,G为直流微伏表,测量步骤如下:(1)先在b和c相芯线上接上电池E,再在地面上敷设一根与故障电缆长度相等的比较导线S,该导线要用裸铜线或裸铝线,其截面应相等,不能有中间接头。
(2)将微伏表的负极接地,正极接一根较长的软导线,导线另一端要求在敷设的比较导线上滑动时能充分接触。
(3)合上闸刀开关K,将软导线的断头在比较导线上滑动,当微伏表指示为零时的位置即为电缆故障点的位置。