材料学习题
材料科学基础综合复习题

B、无扩散型相变 C、半扩散型相变 8、过冷奥氏体等温转变温度越低,所得组织的硬度() A、越高 B、越低 C、变化不大 9、过冷奥氏体连续冷却,当冷却速度≤Vc 时,冷速越快,冷却 后所得硬度 () A、越高 B、越低 C、有时高有时低 10、高分子链的几何形态可分为三种() A、结晶型部分结晶型无定型 B、线型支链型体型 C、线型无定型体型 选择题(3) 1、T10 钢中的含碳量是() A、0.1% B、1% C、10% 2、40CrNiMo 中,含碳量是()
选择题(1) 1、塑料的使用状态为() A、粘流态 B、玻璃态 C、高弹态 2、按用途分,40Cr 钢属于() A、渗碳钢 B、调质钢 C、弹簧钢 3、40Cr 钢中,合金元素 Cr 的主要作用是() A、提高淬透性,强化铁素体 B、提高淬透性和红硬性 C、提高硬度,耐磨性 4、按用途分,ZoCrMnTi 钢属于() A、渗碳钢 B、调质钢 C、弹簧钢 5、ZoCrMnTi 钢中,加入 Ti 的主要目的是() A、提高耐磨性 B、提高淬透性 C、细化晶粒 6、按用途分,60SiZMn 钢属于()
2、在过冷奥氏体三种转变产物中,硬度由高到低依次是() A、珠光体>贝氏体>马氏体 B、贝氏体> 马氏体>珠光体 C、马氏体>贝氏体>珠光体 3、片状珠光体的性能主要取决于片层间距,片层间距越小,() A、强度、硬度越低,塑性越好; B、强度、硬度越高,塑性越低; C、强度、硬度越高,塑性越好; 4、同种钢,片状珠光体与粒状珠光体比较,片状珠光体的()A、 强度、硬度高,塑性、韧性差;B、强度、硬度低,塑性、韧性 好; C、强度、硬度高,塑性、韧性好; 5、下贝氏体与上贝氏体比较,下贝氏体的() A、硬度高,强度高,韧性好; B、硬度高,强度高,韧性差; C、硬度低,强度低,韧性好; 6、马氏体具有高硬度、高强度的主要原因是() A、固溶强化相变强化时效强化 B、固溶强化细晶强化淬火应力大 C、细晶强化位错强化淬火应力大 7、按相变过程中,形核和长大特点分,马氏体转变属于() A、扩散型相变
材料科学基础_综合复习题

材料科学基础复习题一、选择题1. 原子结合键包括物理键和化学键, 下述结合键中属于化学键的是.(A) 金属键(B) 离子键(C) 分子键(D) 共价键2. 原子结合键包括物理键和化学键, 下述结合键中属于物理键的是.(A) 氢键(B) 离子键(C) 分子键(D) 共价键3. 工业用硅酸盐属于.(A) 金属材料(B) 陶瓷材料(C) 复合材料(D) 高分子材料4. 布拉菲点阵共有中.(A) 8 (B) 10 (C) 12 (D) 145. BCC、FCC和HCP等三种典型晶体结构中, 单位晶胞的原子数分别为.(A) 2, 4, 6 (B) 4, 2, 6 (C) 3, 4, 5 (D) 6, 2, 46. 晶面间距表示相邻两个平行晶面之间的垂直距离, 其大小反映了晶面上原子排列的紧密程度, 一般规律是.(A) 在简单立方点阵中, 低指数的晶面间距较大(B) 在简单立方点阵中, 高指数的晶面间距较大(C) 晶面间距越大, 该晶面上原子排列越紧密(D) 晶面间距越大, 该晶面上原子排列越稀疏7. BCC、FCC和HCP等三种典型晶体结构中, 原子配位数依次为.(A) 8, 12, 8 (B) 8, 12, 10 (C) 12, 8, 6 (D) 8, 12, 128. 密堆积结构的致密度为.(A) 0.68 (B) 0.74 (C) 0.82 (D) 1.09. MgO陶瓷晶体具有NaCl型结构, 单位晶胞的离子数为.(A) 4 (B) 6 (C) 8 (D) 1010. SiC陶瓷晶体具有金刚石型结构, 该结构一般特征是.(A) 原子结合键为共价键(B) 原子配位数为4(C) 单位晶胞包含8个原子(D) 属于面心立方点阵, 为密堆积结构11. 下述晶体缺陷中属于点缺陷的是.(A) 空位(B) 位错(C) 相界面(D) 间隙原子12. 下述晶体缺陷中属于线缺陷的是.(A) 空位(B) 位错(C) 晶界(D) 间隙原子13. 下述晶体缺陷中属于面缺陷的是.(A) 表面(B) 位错(C) 相界面(D) 空位14. 下述界面中界面能最小的是.(A) 完全共格界面(B) 共格界面(C) 非共格界面(D) 半共格界面15. 下述界面中界面能最大的是.(A) 完全共格界面(B) 共格界面(C) 非共格界面(D) 半共格界面16. 理想密排六方金属的c/a为.(A) 1.6 (B)(C) (D) 117. 在晶体中形成空位的同时又产生间隙原子, 这样的缺陷称为.(A) 肖脱基空位(B) 弗兰克尔空位(C) 线缺陷(D) 面缺陷18. 面心立方晶体的挛晶面是.(A) {112} (B) {110} (C) {111} (D) {123}19. 体心立方晶体的挛晶面是.(A) {112} (B) {110} (C) {111} (D) {123}20. 铸铁与碳钢的区别在于有无.(A) 莱氏体(B) 珠光体(C) 铁素体(D) 渗碳体21. 在二元系合金相图中, 计算两相相对量的杠杆法则只能用于.(A) 单相区中(B) 两相区中(C) 三相平衡水平线上(D) 无限制22. Hume-Rothery提出有利于大量固熔的原子尺寸条件为两组元的原子半径差对熔剂原子半径的比不超过.(A) 10% (B) 14% (C) 15% (D) 20%23. 碳与钒结合形成金属化合物, 下述说法正确的是.(A) 该化合物属于简单间隙化合物(B) 该化合物属于复杂间隙化合物(C) 该化合物具有体心立方结构(D) 该化合物具有面心立方结构24. 以下关于渗碳体的描述中, 正确的是.(A) 渗碳体是钢中很重要的一种复杂间隙相(B) 渗碳体晶体结构非常复杂, 属于正交晶系(C) 渗碳体为铁与碳固熔形成的间隙固熔体(D) 渗碳体为铁与碳固熔形成的置换固熔体25. 下述关于Ni-Cu系二元合金的描述中, 正确的是.(A) 室温下组织为单相组织(B) 室温下组织为两相组织(C) 凝固时发生匀晶转变(D) 凝固时发生共晶转变26. 凝固后是否形成晶体, 主要由液态物质的决定.(A) 温度梯度(B) 粘度(C) 冷却速度(D) 压力27. 金属结晶形核时, 临界晶核半径r K与过冷度ΔT及表面自由能σ之间的关系为.(A) ΔT越大, r K越小(B) ΔT越大, r K越大(C) σ越大, r K越小(D) σ越大, r K越大28. 纯金属均匀形核, 形成临界晶核时体积自由能的减少只能补偿表面能的.(A) 13(B)23(C)34(D)4529. 原子扩散的驱动力是.(A) 组元的浓度梯度(B) 组元的化学势梯度(C) 温度梯度(D) 表面张力30. 菲克第一定律描述了稳态扩散的特征, 即浓度不随变化.(A) 距离(B) 时间(C) 温度(D) 压力31. 在置换固熔体中, 原子扩散的方式一般为.(A) 原子互换机制(B) 间隙机制(C) 空位机制(D) 填隙机制32. 在间隙固熔体中, 原子扩散的方式一般为.(A) 原子互换机制(B) 间隙机制(C) 空位机制(D) 填隙机制33. 在科肯道尔效应中, 惰性标记发生移动的主要原因是扩散偶中.(A) 两组元的原子尺寸不同(B) 仅存在一组元的扩散(C) 两组元的扩散速率不同(D) 两组元的温度不同34. 晶体的类型与结构是影响固体材料中原子扩散的重要因素, 基本规律是.(A) 与金属相比, 晶态化合物的扩散系数低(B) 与金属相比, 晶态化合物的扩散系数高(C) 非密堆结构的晶体比密堆结构的晶体具有更高的扩散系数(D) 密堆结构的晶体比非密堆结构的晶体具有更高的扩散系数35. D L, D B, D S分别表示晶内扩散、晶界扩散和表面扩散的扩散系数, 则在一般情况下, 三者的大小关系为.(A) D L > D B > D S(B) D S > D B > D L(C) D B > D L > D S(D) D S > D L > D B36. 合金凝固时极易得到树枝晶组织, 其主要原因是.(A) 固-液界面前沿液相中存在正温度梯度(B) 固-液界面前沿液相中存在负温度梯度(C) 固-液界面前沿液相中存在成分过冷区(D) 固-液界面前沿液相中存在难熔质点37. 下述关于交滑移的描述中, 正确的是.(A) 发生交滑移时会出现曲折或波纹状的滑移带(B) 体心立方金属最容易发生交滑移(C) 层错能低的金属易发生交滑移(D) 交滑移必须通过刃型位错实现38. 多晶体发生塑性变形时, 为了满足协调变形, 每个晶粒至少需要开动个独立的滑移系.(A) 3 (B) 4 (C) 5 (D) 639. 再结晶后的晶粒长大是通过方式进行的.(A) 大晶粒吞食小晶粒(B) 小晶粒蚕食大晶粒(C) 晶界向曲率中心移动(D) 晶界背向曲率中心移动40. w C低于0.014的碳钢发生马氏体转变时, 马氏体M与奥氏体A有K-S取向关系, 即.(A) {110}M // {111}A, <111>M // <110>A(B) {111}M // {110}A, <111>M // <110>A(C) {110}M // {111}A, <110>M // <111>A(D) {112}M // {111}A, <111>M // <110>A41. 含Ni约30% 的Fe-Ni合金发生马氏体相变时, 马氏体与奥氏体之间的位向关系为西山关系, 即.(A) {110}M // {111}A, <111>M // <110>A(B) {110}M // {111}A, <110>M // <112>A(C) {110}M // {111}A, <110>M // <111>A(D) {112}M // {111}A, <111>M // <110>A42. 以下关于马氏体相变的描述中, 正确的是.(A) 马氏体相变为无扩散性相变(B) 马氏体相变是通过形核-长大方式进行的(C) 马氏体相变速率极低(D) 马氏体相变速率极高43. 固态相变的阻力一般包括.(A) 新、旧相比体积差所增加的应变能(B) 新、旧相为维持共格/半共格关系所增加的应变能(C) 新、旧相界面增加的表面能(D) 新、旧相之间的体积自由能差44. 固态相变的驱动力是.(A) 新、旧相比体积差所增加的应变能(B) 新、旧相为维持共格/半共格关系所增加的应变能(C) 新、旧相界面增加的表面能(D) 新、旧相之间的体积自由能差45. 固态相变时空位处易于形核的主要原因是.(A) 空位促进熔质原子的扩散(B) 空位释放的能量可提供形核驱动力(C) 空位阻碍熔质原子的扩散(D) 空位群凝聚成位错, 促进形核46. 下述固态相变中属于扩散型相变的是.(A) 脱熔转变(B) 马氏体转变(C) 贝氏体转变(D) 共析转变47. 下述固态相变中属于无扩散型相变的是.(A) 脱熔转变(B) 马氏体转变(C) 贝氏体转变(D) 共析转变48. 下述固态相变中属于半扩散型相变的是.(A) 脱熔转变(B) 马氏体转变(C) 贝氏体转变(D) 共析转变49. 时效型合金发生脱熔转变期间容易产生过渡相, 其特征是.(A) 过渡相与母相之间形成共格或半共格界面(B) 过渡相与母相之间形成非共格界面(C) 过渡相一般呈盘片状(D) 过渡相一般呈球状50. 调幅分解的特点是.(A) 成分改变(B) 成分不变(C) 有核相变(D) 无核相变选择题参考答案1. ABD2. AC3. B4. D5. A6. AC7. D8. B9. C 10. ABC11. AD 12. B 13. AC 14. A 15. C16. B 17. B 18. C 19. A 20. A21. B 22. C 23. AD 24. AB 25. AC26. BC 27. AD 28. B 29. B 30. B31. C 32. B 33. C 34. AC 35. B36. C 37. ABC 38. C 39. AC 40. A41. B 42. ABD 43. ABC 44. D 45. ABD46. AD 47. B 48. C 49. AC 50. AD二、简答题1. 固态相变基本特点.答: 固态相变的特点是:(1) 相变阻力大. 固态相变时的阻力包括新、旧相之间的表面能以及新、旧相由于比体积差或新、旧相界面原子错配而额外增加的弹性应变能; 另外, 固相中原子扩散速率极低也是造成固态相变阻力大的一个重要原因.(2) 新相晶核与母相之间存在一定的晶体学位向关系. 固态相变时, 为了减少新、旧两相之间的界面能, 新相晶核与母相晶体之间往往存在一定的晶体学位向关系, 常以低指数、原子密度大且匹配较好的晶面和晶向互相平行; 并且, 新相往往在母相的某一特定晶面(惯习面)上形成.(3) 母相晶体缺陷对相变起促进作用. 由于母相晶体中存在的各种缺陷(如晶界、相界、位错、空位等)周围晶格有畸变, 自由能较高, 因此容易在这些区域优先形核.(4) 易于出现过渡相. 过渡相是为了克服相变阻力而形成的一种协调性中间转变产物. 通常首先在母相中形成成分与母相相近的过渡相, 然后在一定条件下由过渡相逐渐转变为稳定相.2. 位错促进固态相变形核的主要原因.答: 由于固态相变阻力大, 固相中的形核几乎总是非均匀的, 往往借助晶体中的结构缺陷(空位,位错,晶界等)形核.新相在位错处形核有三种情况: 一是新相在位错线上形核, 新相形成处, 位错消失, 释放的能量使形核功降低而促进形核; 二是位错不消失, 而且依附在新相界面上, 成为半共格界面中的位错部分, 补偿了失配, 因而降低了能量, 使生成晶核时所消耗的能量减少而促进形核; 三是当新相与母相成分不同时, 由于熔质原子在位错线附近偏聚(形成柯氏气团)有利于新相沉淀析出, 也对形核起促进作用.3. 非扩散型相变的基本特征.答: 无扩散型相变的基本特点是:(1) 存在由于均匀切变引起的形状改变, 使晶体发生形状改变.(2) 由于相变过程无扩散, 新相与母相的化学成分相同.(3) 新相与母相之间有一定的晶体学位向关系.(4) 相界面移动速度极快, 可接近声速.4. 说明Al-Cu等时效型合金脱熔过程出现过渡相的原因.答: 时效处理时脱熔的一般顺序为:偏聚区(或称G.P.区) →过渡相(亚稳相) →平衡相.脱熔时不直接析出平衡相的原因, 是由于平衡相一般与基体形成新的非共格界面, 界面能大, 而亚稳定的脱熔产物往往与基体完全或部分共格, 界面能小. 在相变初期, 界面能起决定性作用, 界面能小的相, 形核功小, 容易形成. 所以首先形成形核功最小的过渡结构, 再演变成平衡稳定相.5. 调幅分解的主要特征.答: (1) 调幅分解过程的成分变化是通过上坡扩散实现的. 首先出现微区的成分起伏, 随后通过熔质原子从低浓度区向高浓度区扩散, 使成分起伏不断增幅, 直至分解为成分不同的两平衡相为止.(2) 调幅分解不经历形核阶段, 新、旧相结构相同, 不存在明显的相界面. 由于无需形核, 所以分解速度很快.6. 脱熔相颗粒粗化机理.答: 参见教材P292-293的“8.4.3.2 颗粒粗化”一节. (需要画图!!)7. 零件热处理的作用.答: 零件热处理的作用如下:(1) 通过适当的热处理可以显著提高零件的力学性能, 延长机器零件的使用寿命.(2) 恰当的热处理工艺可以消除铸、锻、焊等热加工工艺造成的各种缺陷, 细化晶粒, 消除偏析, 降低内应力, 使零件的组织和性能更加均匀.(3) 热处理也是机器零件加工工艺过程中的重要工序.(4) 此外, 通过热处理还可使工件表面具有抗磨损、耐腐蚀等特殊物理化学性能.8. 过共析钢淬火时加热温度的选择依据.答: 过共析钢的淬火加热温度限定在Ac1以上30~50℃是为了得到细小的奥氏体晶粒和保留少量渗碳体质点, 淬火后得到隐晶马氏体和其上均匀分布的粒状碳化物, 从而不但可以使钢具有更高的强度、硬度和耐磨性, 而且也具有较好的韧性. 如果过共析钢淬火加热温度超过Ac cm, 碳化物将全部熔入奥氏体中, 使奥氏体中的含碳量增加, 降低钢的M s和M f 点, 淬火后残留奥氏体量增多, 会降低钢的硬度和耐磨性; 淬火温度过高, 奥氏体晶粒粗化、含碳量又高, 淬火后易得到含有显微裂纹的粗片状马氏体, 使钢的脆性增大; 此外, 高温加热淬火应力大、氧化脱碳严重, 也增大钢件变形和开裂倾向.9. 马氏体相变的基本特征.答: (1) 无扩散性. 马氏体转变的过冷度很大, 转变温度低, 原子扩散无法进行, 因此是非扩散型相变.(2) 切变共格性. 马氏体转变是新相在母相特定的晶面(惯习面)上形成, 并以母相的切变来保持共格关系的相变过程.(3) 变温形成. 马氏体转变有其开始转变温度(M s点)与转变终了温度(M f点). 当过冷奥氏体冷到M s点, 便发生马氏体转变, 转变量随温度的下降而不断增加, 一旦冷却中断, 转变便很快停止.(4) 高速长大. 马氏体转变没有孕育期, 形成速度很快, 瞬间形核, 瞬间长大.(5) 不完全性. 一般来说, 奥氏体向马氏体的转变是不完全的, 即使冷却到M f点, 也不能获得100%的马氏体, 即总有一部分残余奥氏体.10. 细晶强化/固熔强化/弥散强化/加工硬化机理.答: (关于弥散强化机理)由塑性相与硬脆相组成的(两相)合金, 倘若硬脆的第二相呈弥散粒子均匀地分布在塑性相基体上, 则可显著提高合金的强度, 此即弥散强化. 这种强化的主要原因是由于弥散细小的第二相粒子与位错的交互作用(位错绕过或切过第二相粒子), 阻碍了位错的运动, 从而提高了合金的塑性变形抗力.(关于加工硬化机理)在塑性变形过程中, 随着金属内部组织的变化, 金属的力学性能也将产生明显的变化, 即随着变形程度的增加, 金属的强度、硬度增加, 而塑性、韧性下降, 这一现象即为加工硬化或形变强化.关于加工硬化的原因, 目前普遍认为与位错的交互作用有关. 随着塑性变形的进行, 位错密度不断增加, 因此位错在运动时的相互交割加剧, 产生固定割阶、位错缠结等障碍, 使位错运动的阻力增大, 引起变形抗力的增加, 从而提高了金属的强度.11. 孪生变形特点.答: 孪生变形是金属塑性变形的基本方式之一, 是指在切应力的作用下, 晶体的一部分沿一定的晶面(孪生面)和一定的晶向(孪生方向)相对于另一部分晶体作均匀地切变, 在切变区域内, 与孪生面平行的每层原子的切变量与它距孪生面的距离成正比, 并且不是原子间距的整数倍. 其特点为:(1) 孪生变形引起的切变不会改变晶体的点阵类型, 但可使变形部分的位向发生变化, 并且与未变形部分的晶体以挛晶界为分界面构成了镜面对称的位向关系.(2) 一般说来, 孪生的临界分切应力要比滑移的临界分切应力大得多, 只有在滑移很难进行的条件下, 晶体才进行孪生变形.(3) 孪生对塑性变形的贡献比滑移小得多, 例如镉单纯依靠孪生变形只能获得7.4% 的伸长率. 但是, 由于孪生变形后晶体位向发生变化, 可能使原来取向不利的滑移系转变为新的有利取向, 从而引发晶体的进一步滑移, 提高金属的塑性变形能力.(4) 孪生变形的速度极快, 常引起冲击波, 发出音响.12. 根据阿累尼乌斯(Arrhenius)公式: D = D0exp(-Q/RT), 分析影响扩散的主要因素.答: 上述公式中, Q为原子扩散激活能, T为温度, 它们是影响扩散的主要因素. 很显然, Q 越小, 或扩散温度T 越高, 则D越大, 扩散越易进行. 而扩散激活能Q取决于材料的键能. 高熔点纯金属的键能高于低熔点的, 因此前者的激活能较高, 其自扩散系数较小; 通常致密度大的晶体结构中, 原子扩散激活能较高, 扩散系数较小; 不同类型的固熔体, 熔质原子的扩散激活能不同, 间隙原子的扩散激活能都比置换原子的小, 所以扩散速度比较大; 晶体缺陷处, 原子排列混乱, 能量较高, 激活能往往较低, 因此扩散容易. 对于一定的晶体结构来说, 表面扩散最快, 晶界次之, 亚晶界又次之, 晶内最慢; 在位错、.空位等缺陷处的原子比完整晶格处的原子扩散容易得多.13. (扩散的微观机理)间隙/空位机制.答: (1) 间隙机制: 晶体中存在的间隙原子通过晶格间隙之间的跃迁实现的扩散; 间隙固熔体中间隙原子(C,H,N,O等)的扩散就是这种机制; 为了实现这种扩散, 扩散原子必须具有越过能垒的自由能.(2) 空位机制: 晶体中扩散原子离开自己的点阵位置去填充空位, 而原先的点阵位置形成了新的空位, 如此反复, 实现原子的扩散; 置换固熔体(或纯金属)中原子的扩散即为空位扩散; 在空位扩散中, 扩散原子除具有越过能垒的自由能外, 还必须具有空位形成能.14. 简述Cu-Ni 扩散偶惰性标记移动规律及其原因.答: Cu-Ni 扩散偶惰性标记会向Ni 棒一侧移动. 由于Ni 的熔点(1452℃)比Cu 的熔点(1083℃)高, 表明Ni 原子的结合能高于Cu 原子的, 因此, 扩散偶中Ni 原子进入Cu 晶体点阵要比Cu 原子进入Ni 晶体点阵容易, 即Ni 原子在Cu 棒中的扩散速度要快于Cu 原子在Ni 棒中的扩散速度, Ni 原子向Cu 棒一侧发生了物质的净输送, 其结果就是惰性标记往Ni 棒一侧移动.15. 成分过冷条件及其影响因素.16. 包晶反应速度慢的原因.17. 正常凝固合金圆棒宏观偏析规律.18. 纯金属晶体长大形态与温度梯度的关系.19. 纯金属晶体长大机制.20. 润湿角对异质形核功的影响规律.21. 均匀形核率与过冷度的关系及其原因.答: 均匀形核时, 形核率方程为exp()exp()A Q N C kT kT=-- 式中, A 为临界晶核的形核功; Q 为原子越过液-固界面的扩散激活能; T 为温度.上式表明, 过冷度对形核率的影响受形核功和原子扩散激活能控制: 一方面, 当过冷度较小时, N 与exp(-A / kT ) 成正比, 故随着过冷度的增大, exp(-A / kT ) 数值也增大, 形核率就越大; 另一方面, 当过冷度足够大时, 随着过冷度的增大, 原子扩散速度要减慢, 此时, N 主要受exp(-Q / kT ) 数值影响, 而Q 值随温度改变很小, 故随着过冷度的增大, 形核率反而减小.22. 金属结晶的热力学、动力学、结构和能量条件.23. 间隙固熔体两组元不能无限互熔的原因.24. 分析γ-Fe 熔碳量高于α-Fe 的原因.三、作图/计算题类型1. 晶面/晶向绘制(应掌握三轴系统的).2. 典型结构金属滑移系表示及绘制.3. 典型二元合金相图绘制(共晶型/包晶型).4. 合金平衡凝固冷却曲线绘制.5. 合金平衡结晶金相组织图绘制.6. 根据点阵类型, 参数及原子量计算晶体材料的密度.12、已知Cu的原子量为63.5,原子半径是0.1278 nm。
材料科学基础课后习题及参考答案

绪论1、仔细观察一下白炽灯泡,会发现有多少种不同的材料每种材料需要何种热学、电学性质2、为什么金属具有良好的导电性和导热性3、为什么陶瓷、聚合物通常是绝缘体4、铝原子的质量是多少若铝的密度为cm3,计算1mm3中有多少原子5、为了防止碰撞造成纽折,汽车的挡板可有装甲制造,但实际应用中为何不如此设计说出至少三种理由。
6、描述不同材料常用的加工方法。
7、叙述金属材料的类型及其分类依据。
8、试将下列材料按金属、陶瓷、聚合物或复合材料进行分类:黄铜钢筋混凝土橡胶氯化钠铅-锡焊料沥青环氧树脂镁合金碳化硅混凝土石墨玻璃钢9、Al2O3陶瓷既牢固又坚硬且耐磨,为什么不用Al2O3制造铁锤晶体结构1、解释下列概念晶系、晶胞、晶胞参数、空间点阵、米勒指数(晶面指数)、离子晶体的晶格能、原子半径与离子半径、配位数、离子极化、同质多晶与类质同晶、正尖晶石与反正尖晶石、反萤石结构、铁电效应、压电效应.2、(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求出该晶面的米勒指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的米勒指数。
3、在立方晶系的晶胞中画出下列米勒指数的晶面和晶向:(001)与[210],(111)与[112],(110)与[111],(322)与[236],(257)与[111],(123)与[121],(102),(112),(213),[110],[111],[120],[321]4、写出面心立方格子的单位平行六面体上所有结点的坐标。
5、已知Mg2+半径为,O2-半径为,计算MgO晶体结构的堆积系数与密度。
6、计算体心立方、面心立方、密排六方晶胞中的原子数、配位数、堆积系数。
7、从理论计算公式计算NaC1与MgO的晶格能。
MgO的熔点为2800℃,NaC1为80l℃, 请说明这种差别的原因。
8、根据最密堆积原理,空间利用率越高,结构越稳定,金钢石结构的空间利用率很低(只有%),为什么它也很稳定9、证明等径圆球面心立方最密堆积的空隙率为25.9%;10、金属镁原子作六方密堆积,测得它的密度为克/厘米3,求它的晶胞体积。
材料学复习题

1.名词解释(15分)2.判断题(20)3.单项选择题(20)4.简答题(19)5.综合分析题(画图与相图分析)(26)空间点阵:阵点在空间呈周期性规则排列,并具有等同的周围环境的模型晶胞:在空间点阵中,能代表空间点阵结构特点的小平行六面体。
置换固溶体:溶质原子占据溶剂晶格中的结点位置而形成的固溶体间隙固溶体:溶质原子占据溶剂晶格中的间隙位置而形成的固溶体。
晶体缺陷:晶体缺陷就是指实际晶体中与理想的点阵结构发生偏差的区域。
肖特基缺陷:由于晶体表面附近的原子热运动到表面,在原来的原子位置留出空位,弗仑克尔缺陷:指晶体结构中由于原先占据一个格点的原子(或离子)离开格点位置,成为间隙原子(或离子),并在其原先占据的格点处留下一个空位空位形成能:在晶体内取出一个原子放在晶体表面上(但不改变晶体的表面能和表面积)所需要的能量。
伯氏矢量:反映位错周围点阵畸变总积累的重要物理量刃型位错:在金属晶体中,由于某种原因,晶体的一部分相对于另一部分出现一个多余的半原子面。
这个多余的半原子面又如切入晶体的刀片,刀片的刃口线即为位错线螺型位错“一个晶体的某一部分相对于其余部分发生滑移,原子平面沿着一根轴线盘旋上升,每绕轴线一周,原子面上升一个晶面间距。
在中央轴线处即为一螺型位错。
滑移:是指在切应力的作用下,晶体的一部分沿一定晶面和晶向,相对于另一部分发生相对移动的一种运动状态。
攀移:刃型位错在垂直与滑移面的方向上运动稳态扩散:是指在扩散系统中,任一体积元在任一时刻,流入的物质量与流出的物质量相等,即任一点的浓度不随时间变化。
非稳态扩散:即任一点的浓度随时间的变化而变化??扩散激活能:指杂质原子或者母体原子在固体(包括半导体)中扩散的激活能。
上坡扩散:是指物质从低浓度区向高浓度区扩散,扩散的结果提高了浓度梯度。
弹性形变:外力撤消后,物体能恢复原状的形变塑性形变:如果外力较大,当它的作用停止时,所引起的形变并不完全消失,而有剩余形变的形变软取向:晶体中有些滑移系与外力的取向接近45o角,处于易滑移的位向,具有较小的σs值硬取向:晶体中有些滑移系与外力取向偏离45o很远,需要较大的σs值才能滑移临界分切应力:把滑移系开动所需要的最小分切应力滑移系:一个滑移面和此面上的一个滑移方向组成回复:冷变形金属在退火时发生组织性能变化的早起阶段,在此阶段内物理或力学性能的回复程度是随温度和时间而变化的。
材料科学基础习题及参考答案

材料科学基础参考答案材料科学基础第一次作业1.举例说明各种结合键的特点。
⑴金属键:电子共有化,无饱和性,无方向性,趋于形成低能量的密堆结构,金属受力变形时不会破坏金属键,良好的延展性,一般具有良好的导电和导热性。
⑵离子键:大多数盐类、碱类和金属氧化物主要以离子键的方式结合,以离子为结合单元,无方向性,无饱和性,正负离子静电引力强,熔点和硬度均较高。
常温时良好的绝缘性,高温熔融状态时,呈现离子导电性。
⑶共价键:有方向性和饱和性,原子共用电子对,配位数比较小,结合牢固,具有结构稳定、熔点高、质硬脆等特点,导电能力差。
⑷范德瓦耳斯力:无方向性,无饱和性,包括静电力、诱导力和色散力。
结合较弱。
⑸氢键:极性分子键,存在于HF,H2O,NF3有方向性和饱和性,键能介于化学键和范德瓦尔斯力之间。
2.在立方晶体系的晶胞图中画出以下晶面和晶向:(1 0 2)、(1 1 -2)、(-2 1 -3),[1 1 0],[1 1 -1],[1 -2 0]和[-3 2 1]。
(213)3. 写出六方晶系的{1 1 -20},{1 0 -1 2}晶面族和<2 -1 -1 0>,<-1 0 1 1>晶向族中各等价晶面及等价晶向的具体指数。
{1120}的等价晶面:(1120)(2110)(1210)(1120)(2110)(1210){1012}的等价晶面:(1012)(1102)(0112)(1012)(1102)(0112) (1012)(1102)(0112)(1012)(1102)(0112)2110<>的等价晶向:[2110][1210][1120][2110][1210][1120]1011<>的等价晶向:[1011][1101][0111][0111][1101][1011][1011][1101][0111][0111][1101][1011]4立方点阵的某一晶面(hkl )的面间距为M /,其中M 为一正整数,为晶格常数。
材料科学基础习题

1、弹性变形的特点和虎克定律;2、弹性的不完整性和粘弹性;3、比较塑性变形的两种基本形式:滑移和孪生的异同点:4、滑移的临界分切应力;5、滑移的位错机制;6、多晶体塑性变形的特点;7、细晶强化与Hall-Petch公式;8、屈服现象与应变时效(解释);9、弥散强化;10、加工硬化;11、形变织构与残余应力;12、回复动力学与回复机制;13、再结晶形核机制;14、再结晶动力学;15、再结晶温度及其影响因素;16、影响再结晶晶粒大小的因素;17、晶粒的正常长大及其影响因素;18、静态、动态回复和再结晶。
重要公式拓展:辨析:Fcc、bcc、hcp的塑性与滑移系数量的关系,从位错角度考虑:如何强化?1.判断题1)采用适当的再结晶退火可以细化金属铸件的晶粒;2)动态再结晶仅发生在热变形状态,因此室温下变形金属不会发生动态再结晶;3)多边形化使分散分布的位错集中在一起形成位错墙,因此位错应力场增加,点阵畸变能升高;4)凡经冷变形后再结晶退火的金属,晶粒都可以细化;5)某铝合金再结晶温度为320°C,说明此合金在小于320°C只回复,大于320°一定再结晶;6)20钢熔点小于纯铁,故其再结晶温度也小于纯铁;7)回复、再结晶及晶粒长大均为形核+长大,驱动力都是储存能;8)金属变形量越大,越易出现晶界弓出形核;9)晶粒正常长大是大晶粒吞食小晶粒,反常长大是小晶粒吞食大晶粒;10)合金中第二相粒子一般可阻碍再结晶,但促进晶粒长大;11)再结晶织构是再结晶过程中被保留下来的变形织构;12) 再结晶是形核长大过程,所以也是一个相变过程。
1.判断题(cont.)2.概念题:名词辨析:(1)再结晶与结晶、重结晶(2)滑移与孪生(3)冷变形加工与热变形加工(4)去应力退火与再结晶退火例1.已知Ag的临界分切应力为6MPa,外力沿方向,在产生滑移的外力大小?3:计算题例2:已知平均晶粒直径为1mm和0.0625mm的a-Fe的屈服强度分别为112.7MPa和196MPa,问平均晶粒直径为0.0196mm的纯铁的屈服强度为多少?例3:如图为Al-Cu(4wt%)合金在淬火并经150°C时效时屈服强度随时间的变化。
材料科学基础 复习题

材料科学基础复习题材料科学基础复习题介绍一、填空题1.材料科学的核心问题是结构和性能之间的关系。
材料的结构是理解和控制性能的中心环节,结构的最微细水平是原子结构,第二个水平是原子排列方式,第三个水平是显微组织。
2.根据材料的性能特点和用途,材料分为结构材料和功能材料。
根据原子间的键合特性,材料可分为四类:金属、陶瓷、聚合物和复合材料。
第一章材料的原子结构一、填空1.金属材料中原子结合以金属键为主,陶瓷材料(无机非金属材料)以共价键和离子键是主要的键,而高分子材料主要是共价键、氢键和范德华键。
第二章材料的结构一、填空1、晶体是基元(原子团)以周期性重复方式在三维空间作有规则的排列的固体。
2、晶体与非晶体的最根本区别是晶体原子排布长程有序,而非晶体是长程无序短程有序。
3.晶胞是晶体结构中最小的单元。
4、根据晶体的对称性,晶系有三大晶族,七大晶系,十四种布拉菲bravais点阵,三十二种点群,230种空间群。
5.常见的金属晶格类型有体心立方、面心立方和紧密排列的六边形。
6.FCC晶体最紧密排列的方向是<110>,最紧密排列的表面是{111},最紧密排列的表面的堆叠顺序是ABCABC。
7、fcc晶体的致密度为0.74,配位数为12,原子在(111)面上的原子配位数为6。
8.BCC晶体最紧密排列的方向为<111>,最紧密排列的表面为{110},密度为0.68,配位数为8。
9、晶体的宏观对称要素有对称点、对称轴、对称面。
10.CSCL型结构属于简单立方晶格,NaCl型结构属于面心立方晶格,CaF2型结构属于面心立方格子。
11.MgO晶体为NaCl型结构,对称型为3l44l36l29pc,晶系为高级晶系,晶系为立方晶系,晶体键型为离子键。
12、硅酸盐晶体结构中的基本结构单元是硅氧四面体[sio4]。
13.几种硅酸盐晶体的复合阴离子为[Si2O7]6-,[si2o6]4-,[si4o10]4-,[alsi3o8]1-。
材料科学基础经典习题及答案考试试题

2020届材料科学基础经典习题(后附详细答案)1. 在Al-Mg 合金中,x Mg =0.05,计算该合金中Mg 的质量分数(w Mg )(已知Mg 的相对原子质量为24.31,Al 为26.98)。
2. 已知Al-Cu 相图中,K =0.16,m =3.2。
若铸件的凝固速率R =3×10-4 cm/s ,温度梯度G =30℃/cm ,扩散系数D =3×10-5cm 2/s ,求能保持平面状界面生长的合金中W Cu 的极值。
3.证明固溶体合金凝固时,因成分过冷而产生的最大过冷度为:⎥⎦⎤⎢⎣⎡-+--=∆GK R K mw R GD K K mw T Cu C Cu C )1(ln 1)1(00max最大过冷度离液—固界面的距离为:⎥⎦⎤⎢⎣⎡-=GDK R K mw R D x Cu C )1(ln 0式中m —— 液相线斜率;w C0Cu —— 合金成分;K —— 平衡分配系数;G —— 温度梯度;D —— 扩散系数;R —— 凝固速率。
说明:液体中熔质分布曲线可表示为:⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--+=x D R K K w C Cu C L exp 1104.Mg-Ni 系的一个共晶反应为:546.02)Mg (570235.0Ni Mg ==+⇔w w L NiNi 纯℃α设w 1Ni =C 1为亚共晶合金,w 2Ni =C 2为过共晶合金,这两种合金中的先共晶相的质量分数相等,但C 1合金中的α总量为C 2合金中α总量的2.5倍,试计算C 1和C 2的成分。
5.在图4—30所示相图中,请指出: (1) 水平线上反应的性质; (2) 各区域的组织组成物; (3)分析合金I ,II 的冷却过程;(4) 合金工,II 室温时组织组成物的相对量表达式。
6.根据下列条件画出一个二元系相图,A 和B 的熔点分别是1000℃和700℃,含w B =0.25的合金正好在500℃完全凝固,它的平衡组织由73.3%的先共晶。
《材料科学基础》习题及参考答案

答案
2.试从晶体结构的角度,说明间隙固溶体、间隙相及
间隙化合物之间的区别。
答案
返回
3. 何谓玻璃?从内部原子排列和性能上看,
非晶态和晶态物质主要区别何在?
答案
4.有序合金的原子排列有何特点?这种排列
和结合键有什么关系?为什么许多有序合金
在高温下变成无序?
答案
5. 试分析H、N、C、B在Fe和Fe中形成固熔
6.离异共晶
答案
7.伪共晶
答案
8.杠杆定理
答案
返回
二、综合题
1.在图4—30所示相图中,请指出: (1) 水平线上反应的性质; (2) 各区域的组织组成物; (3) 分析合金I,II的冷却过程; (4) 合金工,II室温时组织组成物的相对量表达式。
答案
返回
2.固溶体合金的相图如下图所示,试根据相图确定: ①成分为ω(B)=40%的合金首
答案
返回
7. 根据图7-9所示的A1-Si共晶相图,试分析图中(a),(b),(c)3个金相组 织属什么成分并说明理由。指出细化此合金铸态组织的途径。
答案
返回
8. 青铜( Cu-Sn)和黄铜C Cu--fin)相图如图7-15(a),(b)所示:
①叙述Cu-10% Sn合金的不平衡冷却过程,并指出室温时的 金相组织。
化时是否会出现过热,为什么?
答案
3.欲获得金属玻璃,为什么一般选用液相线很陡,
从而有较低共晶温度的二元系?
答案
4.比较说明过冷度、临界过冷度、动态过冷度等
概念的区别。
答案
5.分析纯金属生长形态与温度梯度的关系。 答案
返回
6.简述纯金属晶体长大的机制。
材料科学基础复习题及答案

一、填空题1. 每个面心立方晶胞中的原子数为 4 ,其配位数为12 。
3a, 配2。
晶格常数为a的体心立方晶胞,其原子数为 2 ,原子半径为4/位数为 8 ,致密度为 0。
68 。
3。
刃型位错的柏氏矢量与位错线互相垂直 , 螺型位错的柏氏矢量与位错线互相平行 .4. 螺型位错的位错线平行于滑移方向,位错线的运动方向垂直于位错线。
5. 在过冷液体中,晶胚尺寸小于临界尺寸时不能自发长大。
6. 均匀形核既需要结构起伏,又需要能量起伏。
7。
纯金属结晶时,固液界面按微观结构分为光滑界面和粗糙界面. 8.纯金属的实际开始结晶温度总是低于理论结晶温度,这种现象称为过冷,理论结晶温度与实际开始结晶温度之差称为过冷度。
9.合金中的基本相结构,有固溶体和金属化合物两类,其中前者具有较高的综合机械性能,适宜做基体相;后者具有较高的熔点和硬度,适宜做强化相。
10. 间隙相和间隙化合物主要受组元的原子尺寸因素控制.11.相律是分析相图的重要工具,当系统的压力为常数时,相律的表达式为f=c-p+1。
12.根据相律,二元合金结晶时,最多可有 3 个相平衡共存,这时自由度为0 。
13.根据相区接触法则可以推定,两个单相区之间必定有一个两相区,两个两相区之间必须以单相区或三相共存水平线隔开。
二元相图的三相区是一条水平线,该区必定与两相区以点接触,与单相区以线接触。
14.铸锭的宏观组织是由表层细晶区、柱状晶区、中心等轴晶区三个区组成。
15.莱氏体是共晶转变所形成的奥氏体和渗碳体组成的混合物。
16。
相变反应式L(液)→α ⎥+β ⎥表示共晶反应;γ(固)→α ⎥+β ⎥表示共析反应。
17。
固溶体合金结晶时,其平衡分配系数K o 表示固液两平衡相中的 溶质浓度之比。
18. 铁碳合金中,一次渗碳体由 液相 产生,二次渗碳体由 奥氏体 产生,三次渗碳体由 铁素体 产生。
19。
一个滑移系是由 滑移面 和 滑移方向 组成。
20。
面心立方晶格的滑移系有 12 个,体心立方晶格的滑移系有 12 个。
材料科学基础习题1

1. 固溶体合金的相图如图所示,试根据相图确定:(a) 成分为40%B的合金首先凝固出来的固体成分;(b) 若首先凝固出来的固体成分含60%B,合金的成分为多少?(c) 成分为70%B的合金最后凝固的液体成分;(d) 合金成分为50%B,凝固到某温度时液相含有40%B,固体含有80%B,此时液体和固体各占多少分数?答案2.指出下列相图中的错误,并加以改正。
答案3. Mg-Ni系的一个共晶反应为507℃L(23.5Wt.%Ni) α(纯镁)+Mg2Ni(54.6Wt.%Ni)设C1为亚共晶合金,C2为过共晶合金,这两种合金中的先共晶相的重量分数相等,但C1合金中的α总量为C2合金中的α总量的2.5倍,试计算C1和C2的成分。
答案4.组元A和B在液态完全互溶,但在固态互不溶解,且形成一个与A、B不同晶体结构的中间化合物,由热分析测得下列数据:子量A=28,B=24)。
(b)100kg的含20wt.%B的合金在800℃平衡冷却到室温,最多能分离出多少纯A。
答案5. Mg-Ni系的一个共晶反应为507℃L(23.5Wt.%Ni) α(纯镁)+Mg2Ni(54.6Wt.%Ni)设C1为亚共晶合金,C2为过共晶合金,这两种合金中的先共晶相的重量分数相等,但C1合金中的α总量为C2合金中的α总量的2.5倍,试计算C1和C2的成分。
答案6. 假定我们在SiO2中加入10at%的Na2O,请计算氧与硅之比值。
如果O:Si≤2.5是玻璃化趋势的判据,则形成玻璃化的最大Na2O是多少?答案7. 一种由SiO2-45%Al2O3(wt%)构成的耐高温材料被用来盛装熔融态的钢(1600℃)。
(a)在此情况下有多少百分率的耐热材料会熔化?(共晶成分10wt%Al2O3)(b)选用该耐高温材料是否正确?(实际使用,液相不能超过20%)答案8.根据所示的CaO-ZrO2相图,做下列工作:(a)写出所有的三相恒温转变(b)计算4wt%CaO-ZrO2陶瓷在室温时为单斜ZrO2固溶体(Monoclinic ZrO2 SS)和立方ZrO2固溶体(Cubic ZrO2 SS)的相对量(用mol%表示)。
材料科学基础习题及答案

第一章材料的结构一、解释以下基本概念空间点阵、晶格、晶胞、配位数、致密度、共价键、离子键、金属键、组元、合金、相、固溶体、中间相、间隙固溶体、置换固溶体、固溶强化、第二相强化。
二、填空题1、材料的键合方式有四类,分别是(),(),(),()。
2、金属原子的特点是最外层电子数(),且与原子核引力(),因此这些电子极容易脱离原子核的束缚而变成()。
3、我们把原子在物质内部呈()排列的固体物质称为晶体,晶体物质具有以下三个特点,分别是(),(),()。
4、三种常见的金属晶格分别为(),()和()。
5、体心立方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),晶胞中八面体间隙个数为(),四面体间隙个数为(),具有体心立方晶格的常见金属有()。
6、面心立方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),晶胞中八面体间隙个数为(),四面体间隙个数为(),具有面心立方晶格的常见金属有()。
7、密排六方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),具有密排六方晶格的常见金属有()。
8、合金的相结构分为两大类,分别是()和()。
9、固溶体按照溶质原子在晶格中所占的位置分为()和(),按照固溶度分为()和(),按照溶质原子与溶剂原子相对分布分为()和()。
10、影响固溶体结构形式和溶解度的因素主要有()、()、()、()。
11、金属化合物(中间相)分为以下四类,分别是(),(),(),()。
12、金属化合物(中间相)的性能特点是:熔点()、硬度()、脆性(),因此在合金中不作为()相,而是少量存在起到第二相()作用。
13、CuZn、Cu5Zn8、Cu3Sn的电子浓度分别为(),(),()。
14、如果用M表示金属,用X表示非金属,间隙相的分子式可以写成如下四种形式,分别是(),(),(),()。
材料科学基础经典习题及答案

第一章材料科学基础1.作图表示立方晶体的()()()421,210,123晶面及[][][]346,112,021晶向。
2.在六方晶体中,绘出以下常见晶向[][][][][]0121,0211,0110,0112,0001等。
3.写出立方晶体中晶面族{100},{110},{111},{112}等所包括的等价晶面。
4.镁的原子堆积密度和所有hcp 金属一样,为0.74。
试求镁单位晶胞的体积。
已知Mg 的密度3Mg/m 74.1=m g ρ,相对原子质量为24.31,原子半径r=0.161nm 。
5.当=6时+Na 离子半径为0.097nm ,试问:1) 当=4时,其半径为多少?2) 当=8时,其半径为多少?6. 试问:在铜(fcc,a=0.361nm )的<100>方向及铁(bcc,a=0.286nm)的<100>方向,原子的线密度为多少?7.镍为面心立方结构,其原子半径为nm 1246.0=Ni r 。
试确定在镍的(100),(110)及(111)平面上12mm 中各有多少个原子。
8. 石英()2SiO 的密度为2.653Mg/m 。
试问: 1) 13m 中有多少个硅原子(与氧原子)?2) 当硅与氧的半径分别为0.038nm 与0.114nm 时,其堆积密度为多少(假设原子是球形的)?9.在800℃时1010个原子中有一个原子具有足够能量可在固体移动,而在900℃时910个原子中则只有一个原子,试求其激活能(J/原子)。
10.若将一块铁加热至850℃,然后快速冷却到20℃。
试计算处理前后空位数应增加多少倍(设铁中形成一摩尔空位所需要的能量为104600J )。
11.设图1-18所示的立方晶体的滑移面ABCD 平行于晶体的上、下底面。
若该滑移面上有一正方形位错环,如果位错环的各段分别与滑移面各边平行,其柏氏矢量b ∥AB 。
1) 有人认为“此位错环运动移出晶体后,滑移面上产生的滑移台阶应为4个b ,试问这种看法是否正确?为什么?2)指出位错环上各段位错线的类型,并画出位错运动出晶体后,滑移方向及滑移量。
工程材料学习题(answer)

绪论、第一章一.填空题1.纳米材料是指尺寸在0.1-100nm 之间的超细微粒,与传统固体材料具有一些特殊的效应,例如表面与界面效应、尺寸效应和量子尺寸效应。
(体积效应、宏观量子隧道效应)2.固体物质按其原子(离子、分子)聚集的组态来讲,可以分为晶体和非晶体两大类。
3.工程材料上常用的硬度表示有布氏硬度(HB)、洛氏硬度(HR)、维氏硬度(HV)、肖氏硬度(HS)以及显微硬度等。
4.在工程材料上按照材料的化学成分、结合键的特点将工程材料分为金属材料、高分子材料、陶瓷材料以及复合材料等几大类。
5.结合键是指在晶体中使原子稳定结合在一起的力及其结合方式 .6.材料的性能主要包括力学性能、物理化学性能和工艺性能三个方面。
7.金属晶体比离子晶体具有较强的导电能力。
8.低碳钢拉伸试验的过程可以分为弹性变形、弹塑性变形和断裂三个阶段。
9.金属塑性的指标主要有伸长率和断面收缩率两种。
二.选择题1.金属键的特点是 B:A.具有饱和性 B. 没有饱和性 C. 具有各向异性 D. 具有方向性2.共价晶体具有 A :A. 高强度B. 低熔点C. 不稳定结构D. 高导电性3.决定晶体结构和性能最本质的因素是 A :A. 原子间的结合力B. 原子间的距离C. 原子的大小D. 原子的电负性4.在原子的聚合体中,若原子间距为平衡距离时,作规则排列,并处于稳定状态,则其对应的能量分布为:BA. 最高B. 最低C. 居中D. 不确定5.稀土金属属于 B :A. 黑色金属B. 有色金属C. 易熔金属D. 难熔金属6.洛氏硬度的符号是 B :A.HB B. HR C. HV D.HS7. 表示金属材料屈服强度的符号是 B 。
A. σeB. σsC. σB.D. σ-18.下列不属于材料的物理性能的是 D :A. 热膨胀性B. 电性能C. 磁性能D. 抗氧化性三.判断题1. 物质的状态反映了原子或分子之间的相互作用和他们的热运动。
√2. 用布氏硬度测量硬度时,压头为钢球,用符号HBS表示。
材料科学考试试题

材料科学考试试题
1. 问答题
1.1 介绍金属晶体的晶体系和点阵结构。
1.2 什么是晶体缺陷?列举并简要描述几种常见的晶体缺陷。
1.3 什么是金属材料的弹性变形?它的原理是什么?
2. 简答题
2.1 请解释热处理对金属的影响以及其应用。
2.2 介绍金属材料的断裂方式及其相关理论。
2.3 什么是塑性变形?请说明金属材料的塑性变形机制。
3. 计算题
3.1 某一种金属的密度为7.87 g/cm³,原子量为63.55。
计算该金属的晶格常数。
3.2 一个长度为2 cm,宽度为1 cm,高度为0.5 cm的金属样品,
质量为10 g。
以该金属的密度和弹性模量,计算其Young氏弹性模量。
3.3 一个拉伸试验样品的长度为200 mm,直径为10 mm,抗拉强
度为400 MPa。
计算其屈服强度。
4. 综合题
4.1 请以金属焊接为例,说明材料科学在工程应用中的重要性。
4.2 分析金属材料的导热性能和导电性能与其晶体结构的关系。
4.3 以金属腐蚀为例,探讨材料科学在延长金属材料使用寿命中的应用。
以上为材料科学考试试题,希望能够全面展示学生对材料科学基础知识的掌握和应用能力。
祝考生取得优异的成绩!。
(完整版)材料科学基础习题库第一章-晶体结构

(一).填空题1.同非金属相比,金属的主要特性是__________2.晶体与非晶体的最根本区别是__________3.金属晶体中常见的点缺陷是__________ ,最主要的面缺陷是__________ 。
4.位错密度是指__________ ,其数学表达式为__________ 。
5.表示晶体中原子排列形式的空间格子叫做__________ ,而晶胞是指__________ 。
6.在常见金属晶格中,原子排列最密的晶向,体心立方晶格是__________ ,而面心立方晶格是__________ 。
7.晶体在不同晶向上的性能是__________,这就是单晶体的__________现象。
一般结构用金属为__________ 晶体,在各个方向上性能__________ ,这就是实际金属的__________现象。
8.实际金属存在有__________ 、__________ 和__________ 三种缺陷。
位错是__________ 缺陷。
实际晶体的强度比理想晶体的强度__________ 得多。
9.常温下使用的金属材料以__________ 晶粒为好。
而高温下使用的金属材料在一定范围内以__________ 晶粒为好。
‘10.金属常见的晶格类型是__________、__________ 、__________ 。
11.在立方晶格中,各点坐标为:A (1,0,1),B (0,1,1),C (1,1,1/2),D(1/2,1,1/2),那么AB晶向指数为__________ ,OC晶向指数为__________ ,OD晶向指数为__________ 。
12.铜是__________ 结构的金属,它的最密排面是__________ ,若铜的晶格常数a=0.36nm,那么最密排面上原子间距为__________ 。
13 α-Fe、γ-Fe、Al、Cu、Ni、Pb、Cr、V、Mg、Zn中属于体心立方晶格的有__________ ,属于面心立方晶格的有__________ ,属于密排六方晶格的有__________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、合金元素:为保证获得所要求的组织结构,物理、化学性能而特别添加到钢中的化学元素。
2、合金钢:在化学成分上特别添加合金元素用以保证一定的生产和加工工艺以及所要求的组织与性能的铁基合金。
3、奥氏体形成元素:使A3点↓,A4点↑,在较宽的成分范围内,促使奥氏体形成,即扩大了γ相区元素或γ稳定化元素。
4、铁素体形成元素:使A3点↑,A4点↓,在较宽的成分范围内,促进铁素体形成,即缩小γ相区元素或α稳定化元素。
5、二次淬火:已淬火的高合金钢中的残余奥氏体在回火冷却中转变为马氏体的现象。
6、二次硬化:钢在回火时出现的硬度回升现象。
原因:特殊碳化物的弥散硬化+ 二次淬火。
7、调质钢:经过调质处理后,能获得良好的综合力学性能的钢种。
8、热稳定钢(抗氧化钢):在高温下长期工作不致因介质腐蚀而破坏钢。
9、热强钢:在高温下仍具有足够的强度不会大量变形或破断的钢。
10、铸铁的石墨化:铸铁中碳原子析出和形成石墨的过程11、球墨铸铁:石墨呈球状分布的灰口铸铁。
12、铸铁的热生长:铸铁在反复加热、冷却时,发生的体积膨胀现象。
13、耐酸钢:能够抵抗强腐蚀介质腐蚀的钢。
14、晶间腐蚀:沿晶粒边缘进行的腐蚀。
15、应力腐蚀:在腐蚀介质及拉应力作用下,金属发生的破裂现象。
16、固溶体的n/8规律:Cr加入钢中时,当Cr含量达到1/8、2/8、3/8……原子比时,Fe的电极电位跳跃式的增高,腐蚀亦跳跃式的显著减弱。
17、定比碳规律:合金元素及碳含量满足合金碳化物分子式中定比关系时,二次硬化效应最好。
18、红硬性:钢在高温下保持高硬度,切削性能的能力。
20、基体钢:成分与高速钢淬火组织中基体的化学成分相同的钢种。
21、高速钢:是一种含碳且含有大量碳化物形成元素的高合金钢。
22、硅铝明:Al-Si系铸造铝合金。
,23、白铜:含Ni低于50%的铜镍合金。
24、合金元素在钢中有哪几种存在形式?这些存在形式对钢的性能有那些影响?元素在钢中的存在形态:1)以溶质形式溶入固溶体,如:溶入铁素体,奥氏体和马氏体中。
(有利)(2)形成强化相,形成碳化物或金属间化合物。
(有利)(3)形成非金属夹杂物,如氧化物(Al2O3、SiO2等),氮化物和硫化物(MnS、FeS等)(有害、尽量减少)(4)以游离态存在,如C以石墨状态存在(一般也有害);元素以哪种形式存在,取决于元素的种类、含量、冶炼方法及热处理工艺等。
影响:元素一固溶体的溶质形式和强化相的形式存在,对钢的性能将产生有利的作用。
而元素一非金属夹杂物的形式存在,则对钢的性能产生有害的作用,应在冶炼时尽量减少钢中的非金属夹杂物。
元素一游离态存在,一般也有害,应尽量避免。
25、合金二次硬化现象的本质是什么?对钢的性能有什么影响?本质是:弥散强化。
二次硬化:钢在回火时出现的硬度回升现象。
原因:特殊碳化物的弥散硬化+ 二次淬火。
影响:(1)合金的硬度提高。
(2)弥散质点的数量愈多,二次硬化效应愈大,即合金元素的含量越高,二次硬化效应越显著。
(3)二次硬化峰也与回火时残余奥氏体→马氏体(二次淬火)相联系,如高速钢回火时。
(4)V,Nb,Ti,Mo,W和高Cr钢中均显示二次硬化效应。
26、低合金高强度钢的主加合金元素Mn 对钢的性能有哪些影响?为什么会产生这样的影响?影响:(1)锰使钢固溶强化效果较强,因为锰属于复杂立方点阵,其点阵类型及原子尺寸与α-Fe相差较大。
(2)提高钢的强度和硬度,因为锰是A形成元素,能降低A→P转变的温度Ar1,并减缓其转变速度,可细化P。
(3) 使强度不断升高,因为锰的加入可使Fe-C状态图中“S”点左移,使基体中P数量增多,可使钢在相同含碳量下,P量增多。
(4)锰还能降低钢的韧脆转变温度。
(5)锰的含量要控制在2%以内,若过高将会有贝氏体出现,且使焊接性能变坏,容易产生裂纹。
27、机械零件用钢主加合金元素有哪些?他们的主要作用是什么?主加合金元素:Si、Mn、Cr、Ni、B,作用:分别加入或复合加入钢中,对↑钢的淬透性、↑钢的综合力学性能起主导作用。
辅加合金元素:Mo、W、V、Ti等,作用:它们加入到含有主加元素的钢中,起着↓过热敏感性与回火脆性,进一步↑淬透性,改善钢材性能的作用。
28、弹簧钢的成分特点是什么?这样的成分对钢的性能有哪些影响?(1)中、高碳:碳素弹簧钢的含碳量在0.6%~0.9%之间,合金弹簧钢的含碳量一般在0.40%~0.70%之间,以保证高的弹性极限、屈服强度和疲劳强度。
(2)加入提高淬透性的元素:主加合金元素:Si、Mn;目的:提高淬透性、强化铁素体基体和提高回火稳定性,同时也提高屈强比;硅对提高钢的弹性极限有明显的效果,但高硅量的钢有石墨化倾向,并在加热时易于脱碳。
锰在钢中易使钢产生过热敏感性。
辅加合金元素:碳化物形成元素Cr、Mo、W、V等;目的:进一步提高淬透性和强度,防止钢在加热时晶粒长大和脱碳,增加回火稳定性及耐热性。
29、调质钢的成分特点是什么?主加合金元素与辅加元素的主要作用是什么?(1)、中碳:ωc :(0. 25%~0. 50%)C。
含碳量过低,不易淬硬,回火后强度不够;含碳量过高,材料的塑性、韧性变差。
(2)、主要加入提高淬透性的元素:如Cr、Ni、Mn、Si、B等,提高淬透性,强化F。
Cr、Mn、B可单独加入,Ni、Si在我国不单独加入,而是复合加入。
(3)、加入提高回火稳定性和防止第二类回火脆性的元素:V、Ti、Mo、W等,能细化晶粒,提高回火稳定性。
Mo、W可以减轻和防止第二类回火脆性,其合适的质量分数约为ωMo=0.15%~0.30%或ωw=0.8%~1.2%。
30、GCr15的每个工序名称和目的?(1)扩散退火(1150--1200°),目的:①消除这两种碳化物的不均匀缺陷。
②消除成分偏析;组织:均匀A;(2)球化退火(770--810°),目的:①降低钢的硬度,以便切削加工。
②获得更细小的P球+均匀分布的粒状碳化物。
③为最终热处理做准备;组织:P球+碳化物(3)回火(830--860°)①提高表面硬度,耐磨性②高的塑性和疲劳强度。
组织;隐M+A'+均匀碳化物(4)回火(160+-5°)①降低应力,提高韧性。
组织:M回+细粒状碳化物+A'(5)冷处理(-60°)①避免工件表面变形,稳定尺寸②减少A',组织:M+碳化物+A'30、分析低碳M型结构钢的性能特点及应用范围?性能特点:1)良好的韧性低碳钢含碳量少,固溶强化后F晶格畸变小,脆性低,韧性好;位错亚结构有良好的韧性;相互排列的M 条在冲击力作用下,无相互撞击,还可吸收一部分冲击能量;较高的Ms温度,有自回火现象,消除了部分淬火应力。
(2)高的抗拉强度和低的脆性转化温度:低碳M的抗拉强度可达1200~1300MPa,其脆性转化温度<- 60℃,具有良好的低温冲击性能。
低碳M与中碳调质钢钢相比,其冷脆性倾向较小,低碳M的冷脆转化温度≤-60~- 70℃,而40Cr钢调质态为- 50℃,因此,适用于在严寒地带室外工作的机件及低温下要求高强度和韧性的机件。
(3)缺口敏感性和疲劳缺口敏感度低:低碳M钢不但在静载荷下具有低的缺口敏感性,而且还具有低的疲劳缺口敏感度。
(4)良好的工艺性能:如良好的冷加工性、可焊性,较低的热处理脱碳倾向和变形和开裂倾向小。
应用:(1)低碳马氏体强化工艺并不十分复杂,它可以取代调质、渗碳、淬火、回火等复杂工艺,使构件重量成倍减轻,但却提高了强度水平和使用寿命。
2)低碳马氏体还具有很高的耐磨性能,可用来制造某些要求耐磨性好的零件(如拖拉机履带板等)。
(3)据估算,我国的低碳钢和低碳合金钢约占钢产量的60%,如果将其中15%用来淬火强化,每年就可节省数百万吨钢材和大量的合金资源,价值数百亿元。
(4)因此,普及推广低碳马氏体强化钢在石油、煤炭、铁道、汽车、拖拉机等部门的广泛应用具有重大的现实意义。
31、普通灰铸铁有哪些性能特点及主要用途?性能特点:(1)力学性能:抗拉强度较钢低,塑、韧性几乎为零,硬度与同样基体的正火钢接近;但灰铸铁的抗压强度较高。
(2)其他性能:有优良的减震性,高的耐磨、减摩性,良好的切削加工性能;灰铸铁流动性好,收缩率小,具有优良的铸造性。
(3)用途:可作机床床身、底座等耐压零部件;宜于铸造结构复杂或薄壁铸件。
32、球墨铸铁可以进行哪几种类型的淬火回火处理?说明处理后的组织与性能特点?(1)淬火高温回火:性能:调质后具有比正火高的综合力学性能,可代替部分钢件制造重要的结构零件,如连杆、曲轴以及内燃机车万向轴等。
组织:回火S+G球。
(2)淬火低温回火:性能:获得很高的硬度(55~61) HRC和很好的耐磨性,但塑、韧性较差,用于要求高耐磨性的零件,如滚动轴承套圈、高压油泵中的精密偶件等。
组织:回火M+少量残余A +G球。
(3)淬火中温回火:性能:获得较高的弹性、韧性及良好的耐磨性,用于要求具有一定弹性、耐磨性及热稳定性的零件,如废气涡轮的密封环。
组织:回火T + G球。
(4)等温淬火:性能:发挥球墨铸铁材料潜力最有效的一种热处理方法,可以获得高强度或超高强度,同时具有较高的塑性、韧性,因而具备良好的综合力学性能和耐磨性。
此外,还具有热处理变形小的特点。
低温回火:使残余A→B下,同时使淬火M→回火M,并消除内应力。
组织:B下+少量M+残余A+G球。
33、可断铸铁可以锻造?为什么?它的生产工艺与其它的铸铁相比有什么特点?(1)可锻铸铁并不能锻造。
(2)因为:①团絮状石墨对铸铁金属基体的割裂和引起应力集中作用比灰铸铁小得多,因此,可锻铸铁具有较高的强度,特别是塑性比灰铸铁高得多,有一定的塑性变形能力,因而得名可锻铸铁。
②如果进行锻造,容易使其中的石墨变形。
从而使铸铁产生裂纹,从而是铸铁的性能变坏,硬度降低等。
(3)特点:①团絮状石墨对铸铁金属基体的割裂和引起应力集中作用比灰铸铁小得多,因此,可锻铸铁具有较高的强度,②特别是塑性比灰铸铁高得多,有一定的塑性变形能力。
34、石墨形态对铸铁性能有什么影响?在生产中如何控制石墨形态?影响:石墨的结构为层片状,强度、塑性和韧性很低,几乎为零,硬度3HBS,在金属基体中相当于“微裂纹”和“微孔洞”。
这导致铸铁的主要缺点:抗拉强度低,塑性、韧性远不如钢。
优点:铸造性能优良,减震性和切削加工性能较好,也有较好的耐磨性和减摩性如何控制:(1)化学成分的影响:C、Si含量愈↑,石墨化愈易充分进行。
P:促进石墨化;S:强烈阻碍石墨化,有害元素,S含量应控制在<0.15%。
Mn:增加Fe与C的结合力,阻碍石墨化,但能与S形成MnS,减轻S的有害作用,允许含量0.5~1.4%。