数字信号处理实验报告

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

语音信号的数字滤波

一、实验目的:

1、掌握使用FFT进行信号谱分析的方法

2、设计数字滤波器对指定的语音信号进行滤波处理

二、实验内容

设计数字滤波器滤除语音信号中的干扰(4 学时)

1、使用Matlab的fft函数对语音信号进行频谱分析,找出干扰信号的频谱;

2、设计数字滤波器滤除语音信号中的干扰分量,并进行播放对比。

三、实验原理

通过观察原语音信号的频谱,幅值特别大的地方即为噪声频谱分量,根据对称性,发现有四个频率的正弦波干扰,将它们分别滤掉即可。采用梳状滤波器,经过计算可知,梳状滤波器h[n]={1,A,1}的频响|H(w)|=|A+2cos(w)|,由需要滤掉的频率分量的频响w,即可得到A,进而得到滤波器的系统函数h[n]。而由于是在离散频域内进行滤波,所以令w=(2k*pi/N)即可。

对原信号和四次滤波后的信号分别进行FFT变换,可以得到它们的幅度相应。最后,将四次滤波后的声音信号输出。

四、matlab代码

clc;clear;close all;

[audio_data,fs]=wavread('SunshineSquare.wav'); %读取未处理声音

sound(audio_data,fs);

N = length(audio_data);

K = 0:2/N:2*(N-1)/N; %K为频率采样点

%sound(audio_data,fs);

%进行一次FFT变换

FFT_audio_data=fft(audio_data);

mag_FFT_audio_data = abs(FFT_audio_data);

%画图

figure(1)

%原信号时域

subplot(2,1,1);plot(audio_data);grid;

title('未滤波时原信号时域');xlabel('以1/fs为单位的时间');ylabel('采样值');

%FFT幅度相位

subplot(2,1,2);plot(K,mag_FFT_audio_data);grid;

title('原信号幅度');xlabel('以pi为单位的频率');ylabel('幅度');

%构造h[n]={1,A,1}的梳状滤波器,计算A=2cosW,妻子W为要滤掉的频率%由原信号频谱可知要分四次滤波,滤掉频响中幅度大的频率分量

%第一次滤波

a = [1,0,0,0];%y[n]的系数

[temp,k]=max(FFT_audio_data);

A1=-2*cos(2*pi*k/N);

h1=[1,A1,1];

audio_data_h1 = filter(h1,a,audio_data);

FFT_audio_data_h1=fft(audio_data_h1);

%第二次滤波

[temp1,k]=max(FFT_audio_data_h1);

A2=-2*cos(2*pi*k/N);

h2=[1,A2,1];

audio_data_h2 = filter(h2,a,audio_data_h1);

FFT_audio_data_h2=fft(audio_data_h2);

%第三次滤波

[temp2,k]=max(FFT_audio_data_h2);

A3=-2*cos(2*pi*k/N);

h3=[1,A3,1];

audio_data_h3 = filter(h3,a,audio_data_h2);

FFT_audio_data_h3=fft(audio_data_h3);

%第四次滤波

[temp3,k]=max(FFT_audio_data_h3);

A4=-2*cos(2*pi*k/N);

h4=[1,A4,1];

audio_data_h4 = filter(h4,a,audio_data_h3);

FFT_audio_data_h4=fft(audio_data_h4);

mag_FFT_audio_data_h1 = abs(FFT_audio_data_h1); mag_FFT_audio_data_h2 =abs(FFT_audio_data_h2); mag_FFT_audio_data_h3 =abs(FFT_audio_data_h3);

mag_FFT_audio_data_h4 =abs(FFT_audio_data_h4);

figure(2)

%每次滤波后的时域结果

subplot(2,2,1);plot(audio_data_h1);grid;

title('第一次滤波后');xlabel('以1/fs为单位的时间');ylabel('时域采样值');

subplot(2,2,2);plot(audio_data_h2);grid;

title('第二次滤波后');xlabel('以1/fs为单位的时间');ylabel('时域采样值');

subplot(2,2,3);plot(audio_data_h3);grid;

title('第三次滤波后');xlabel('以1/fs为单位的时间');ylabel('时域采样值'); subplot(2,2,4);plot(audio_data_h4);grid;

title('第四次滤波后');xlabel('以1/fs为单位的时间');ylabel('时域采样值');

%每次滤波后的频域结果

figure(3)

subplot(2,2,1);plot(K,mag_FFT_audio_data_h1);grid;

title('第一次滤波幅度');xlabel('以pi为单位的频率');ylabel('幅度'); subplot(2,2,2);plot(K,mag_FFT_audio_data_h2);grid;

title('第二次滤波幅度');xlabel('以pi为单位的频率');ylabel('幅度'); subplot(2,2,3);plot(K,mag_FFT_audio_data_h3);grid;

title('第三次滤波幅度');xlabel('以pi为单位的频率');ylabel('幅度'); subplot(2,2,4);plot(K,mag_FFT_audio_data_h4);grid;

相关文档
最新文档