截面的几何性质面积矩惯性矩惯性积平行移轴公式.ppt

合集下载

附录Ⅰ-常见截面的几何性质

附录Ⅰ-常见截面的几何性质

取微面积dA=dzdy,则:Izy 0;
例5-3 圆形截面对其形心轴的惯性矩。 解:取yoz坐标系。取微面积dA=2zdy,则:
由 Iz 对 A y 2 称 dIy A 性 R IR z2 y : 2 6D 44R ;2 由 y 几 2 d 何 y 关 R 4 4 系 2= : 6 D y24 ;4 z2,
当Sz=0或Sy=0时,必有yc=0或zc=0,可知截面对某轴的
静矩为零时,该轴必通过截面形心;反之,若某轴通过形心,
Байду номын сангаас
则截面对该轴的静矩为零。
返回 下一张 上一张 小结
二、形心公式:
yc

SAz ;zc

Sy A
.
三、组合截面的静矩:n个简单图形组成的截面,其静矩为:
n
Sz Ai yci; i1
z2dA;
A
圆形截面:Iy
Iz
D4 ;
64
几何关系: IP A2 d A A (y 2 z 2 ) d A I Z Iy .
四、惯性积:
Izy
zydA;
A
五、平行移轴公式:
Iz1za2A; y1 y b2A; Iz1y1 Izyab;A
特点:①两个形心主惯性矩是截面对过形心所有各轴的惯性矩 中的极大值和极小值;
②有一根对称轴的截面,形心主轴是对称轴和与之垂直 的形心轴;
③有两根对称轴的截面,形心主轴是两根对称轴; ④无对称轴的截面,由转轴公式求对形心的惯性积为零 的 o 角,即 形心主惯性轴。
第五节 组合截面惯性矩的计算 工程中常遇到组合截面。计算其形心主惯性矩时,应先确定形 心位置、形心主轴,再求形心主惯性矩。

材料力学 截面的几何性质

材料力学 截面的几何性质


附录Ⅰ
§Ⅰ-1 §Ⅰ-2 §Ⅰ-3 §Ⅰ-4
截面的几何性质
截面的静矩和形心位置 惯性矩、惯性积和惯性半径 平行移轴公式 转轴公式 主惯性矩
静矩与形心
一、静矩的定义(与力矩类似)(也称面积矩或一次矩) 截面对z轴的静矩: y 截面对y轴的静矩:
Sz Sy
dS
A A
z

ydA
A
3
z 100
I
C
CI
a1 a2
I y I yI I yII 443 10 768 10
4
4
y
1211 104 mm 4
由于z轴是对称轴 ,故图形对两轴的惯性积为
140 103.3
CII
II
y
I yz 0
20
I z y 2 dA 2h y 2 bdy
3


组合截面形心
组合截面:如果截面的图形是由几个简单图形(如矩形、圆形 等)组成的,这种截面称为组合截面。 组合截面对X、Y轴静矩的计算:
S x Ai yci Ayc
i
n
S y Ai xci Axc
i
n
Ai——任一简单图形的面积; xci,yci——任一简单图形的形心坐标; n——全部简单图形的个数。 确定组合截面形心位置的公式:
C H/2
X
1 h 1 h yc 1 y1 ( y1 ) ( y1 ) 2 2 2 2
h 1 h S x Ayc 1 b( y 1 ) ( y 1 ) 2 2 2
b
b 2 2 (h 4y1 ) 8
例2、图形对 x 轴的静矩为

材料力学截面法PPT

材料力学截面法PPT
第四章 截面的几何性质
概述: 讨论的问题:介绍与截面形状和尺寸有关的几何量
(静矩、惯性矩、惯性积)的定义及计算方法;平行移轴 公式,转轴公式等。
在实际工程中发现,同样的材料,同截面积,由于 横截面的形状不同,构件的强度、刚度有明显不同,如 一张纸(或作业本),两端放在铅笔上,明显弯曲,更 不能承载东西了.但把同一张纸折成波浪状(象石棉瓦 状) ,这时纸的两端再搁在铅笔上,不仅不弯曲,再放 上一支铅笔,也不弯曲.可见,材料截面的几何形状对强度、 刚度是有一定影响的,研究截面几何性质的目的就是解
y
ry
A
rz2 A I z
rz
Iz A
o
rz z
ry2 A I y
例4—3中的矩形截面:
ry
Iy A
rz
Iz A
bh3 12 h
h 0.289h
bh
12 2 3
h
y
oz b
• 补充例子:试计算圆弧右上方阴影部分面积的惯性积 I zy.
解:因为惯性矩与惯性积等于各微
y C
B
r
元面积的惯性矩或惯性积之和,
i
sz yci Ai y1 A1 y2 A2
i
15 300 30 270 30 270 50 23.625 105 (mm)2 ,
2
• 4-2 惯性矩和惯性积
一、惯性矩的定义
------面积对坐标轴的二次矩.
y
y
dA
o
z
z
设一平面图形,取一元面积 dA,坐 标为(z,y),距原点的距离为 ,方位
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文

第七章 截面的几何性质

第七章 截面的几何性质

A 120 ×10 × 60 + 70 ×10 × 5 = = 39.7mm 120 ×10 + 70 ×10
yc =
Sy
5
§7-2 惯性矩、惯性积与极惯性 惯性矩、
一、惯性矩
Iz = ∫ y dA
2 A
I y = ∫ z dA
2 A
工程中常把惯性矩表示为平面图形的面积与某一长度平方的乘积, 即
I y = A iy
主惯性轴和主惯性矩
一、主惯性轴和主惯性矩 (1)主惯性轴 主惯性轴 当平面图形对某一对正交坐标轴z0 、
y0的惯性积 Iz0y0=0时,则坐标轴 z0 、y0称为主惯性轴。 因此,具有一个或两个对称轴的正交坐标轴一定是 平面图形的主惯性轴。 (2)主惯性矩 平面图形对任一主惯性轴的惯性矩称为 主惯性矩 主惯性矩。
例 计算图所示阴影部分截面的形心主惯性矩Iz。
解:1)求形心位置 由于y 轴为对称轴,故形心必在 此轴上,建立yoz′坐标系,故zc′=0 。将阴影部分截面看成是矩形Ⅰ 减去圆形Ⅱ而得到,故其形心的yc 坐标为:
15
ΣAi y ci yc = =( A
600 × 1000 × 500 − 600 × 1000 −
2
I z = Aiz
2
6
i y 、i z
分别称为平面图形对y轴和z轴的惯性半径
二、惯性积
I zy = ∫ A zydA
若截面具有一根对称轴,则该 截面对于包括此对称轴在内的 二正交坐标轴的惯性积一定等 于零。
I zy = 0
7
三、极惯性矩
Ip =
2
∫A
ρ dA
2
2 2
Qρ = z + y

截面的几何性质面积矩惯性矩惯性积平行移轴

截面的几何性质面积矩惯性矩惯性积平行移轴

2
对于复杂形状,可以采用微元法或积分法计算其 惯性矩。
3
在工程实践中,常常使用软件或计算器进行惯性 矩的计算,以提高计算效率和精度。
04
CATALOGUE
惯性积
惯性积的定义
惯性积是截面的一种几何属性,用于描述截面的 形状和大小。
惯性积是一个标量,表示截面在某个方向上的投 影面积与该方向上单位长度的平方之比。
02
利用三维坐标系中的点坐标和 方向向量,通过向量的外积计 算得到截面的法向量和面积向 量,进而计算惯性积。
03
利用计算机图形学中的几何算 法,通过计算截面的顶点坐标 和法线向量,实现惯性积的精 确计算。
05
CATALOGUE
平行移轴
平行移轴的定义
一个方向上的直线,可以 是实线或虚线。
在三维空间中,与某一平 面相交的平面。
中性轴
通过截面形心并与形心轴垂直的轴线。
惯性矩的性质
01
惯性矩与截面的形状和大小有关,形状相同但尺寸不同的截面 具有不同的惯性矩。
02
惯性矩具有方向性,与中性轴的位置有关。
对于矩形、圆形、椭圆形等简单形状,其惯性矩可以通过公式
03
直接计算。
惯性矩的计算方法
1
对于简单形状,如矩形、圆形、椭圆形等,可以 直接使用公式计算其惯性矩。
截面的几何性质
目录
• 截面的定义与性质 • 面积矩 • 惯性矩 • 惯性积 • 平行移轴
01
CATALOGUE
截面的定义与性质
截面的定义
截面定义
截面是指通过一个平面与一个三维物 体相交,所形成的交线或交面。这个 平面可以是垂直的、倾斜的或与三维 物体表面平行。
截面的形状

惯性矩、抵抗矩、面积矩.ppt

惯性矩、抵抗矩、面积矩.ppt

tg2 0
2I xcyc I xc I yc
主惯性矩:I x0 I x I y
I y0
2
(
Ix
2
Iy
)2
I
2 xy
2、形心主轴和形心主惯性矩:主轴过形心时,称其为形心主轴。 平面图形对形心主轴之惯性矩,称为形心主惯性矩
2I
tg 2
xcyc
0
I I
xc yc
形心主惯性矩:
I
x
c0
I xc
C2
C1(0,0) 图(a) C2(-35,60)
C1
x
x
xi Ai
x 1
A1
x 2
A2
A
A1 A2
3510110 20.3 10110 8010
图(a)
y 6010110 34.7 10110 8010
y
2、用负面积法求解,图形分割及坐标
如图(b)
负面积
CC11 C2
x
C1(0,0) C2(5,5)
须 为


y
例6-3-1 求图示圆对其切线AB的惯性矩.
解 :求解此题有两种方法:一是安
定义直接积分;二是用平行移轴
d
x定理等知识求。O来自建立形心坐标如图,求图形对形心轴
的惯性矩。
B
I
d
4
I
I
圆 2 I
P 32
xy
x
Ix
Iy
IP 2
d 4
64
I AB
Ix
d2A
d 4
64
d 4
4
5d 4
64
x
xi Ai

截面的几何性质面积矩惯性矩惯性积平行移轴公式

截面的几何性质面积矩惯性矩惯性积平行移轴公式
HOHAI UNIVERSITY
1
HOHAI UNIVERSITY
2
HOHAI UNIVERSITY
例1 求如图矩形Sz和Sy
解:Sz
ydA
A
ah
ybdy
a
bh(a h) 2
A yC
同样地
Sy
bh(d
b) 2
A
zC
z b/2 b/2 a
y h/2
h/2
dy
y
d
3
HOHAI UNIVERSITY
解: A1 15050mm 2 A2 18050mm 2
150
A3 250 50mm 2
50
C1
yC1 255mm yC2 140mm
5c0
C2
yC3 25mm zC1 zC2 zC3 0
50
C3
z
yC
A1
yC1 A2 yC2 A1 A2 A3
A3
yC 3
250
y
15050 255 18050140 25050 25 mm 15050 18050 25050
i=1
同理
n
Iz =∑ Izi
i=1
n
Iyz =∑ Iyzi
i=1
12
HOHAI UNIVERSITY
例5 图示矩形中,挖去两个直径为d 的圆形,求余下 图形对z轴的惯性矩。
b/2 b/2
z
Iz
1 bh3 12
5 d 4
32y13HOHAI UNIVERSITY
14
HOHAI UNIVERSITY
作业题 求图示工字形截面对z轴的惯性矩。
b d
z
15

《截面的几何性质》PPT课件

《截面的几何性质》PPT课件
0

IP

πd 4 32
Iy Iz
另法:
dρ ρ
y
Iy Iz IP
所以
Iy

Iz

πd 4 64
(Properties of Plane Areas)
§10-3 平行移轴公式 (Parallel-axis theorem)
一、平行移轴公式(Parallel-Axis theorem for moment of
Char 10 Properties of Plane Areas
(Properties of Plane Areas)
第10章 截面的几何性质 (Char 10 Properties of plane areas)
§10-1 截面的静矩和形心(The first moments of the area & centroid of an area)
IyC , IzC , IyCzC ̄ 截面对形心轴 yC , zC的惯性矩 和惯性积.
矩形 2
A2 10 80 800mm2
y2

10

80 2

50mm
z2 5mm
所以 y A1 y1 A2 y2 23mm A1 A2
z A1z1 A2z2 38mm A1 A2
z 10
1
y1
z1
2 z2
10
O y2
y
90
(Properties of Plane Areas)
重合
n
y
Ai yi
i 1 n
Ai

A1 y1 A1
A2 y2 A2
i 1

4-截面惯性矩材料力学

4-截面惯性矩材料力学
A
x S yC A xC SxC A yC 3
Sy AxC Ai xCi xdA
A
2.形心公式
Sx AyC Ai yCi ydA
A
xC
Ai xi A
yC
Ai yi A
ydA
yC A A
3.结论
xdA
xC A A
当坐标轴过形心时,图形对自身形心轴的面积矩等于 零;反之,若图形对某轴的面矩为零时,此轴必过图形 的形心。
2
IZ
sin 2a
I yz
c os 2a
3.主轴及主惯性矩:
1)主轴:图形若对坐标轴的惯矩为零时,这对坐标轴就称为
主轴.且当主轴为形心轴时,就称为形心主轴.用α0来表示 主轴的方向.
2)主惯性矩:相对主轴的惯性矩就称为主惯性矩.
15
杆件的拉压变形及强度计算
16
杆件的拉压变形及强度计算
一、概述 二 、杆件的轴向拉压变形分析 三、材料在拉伸和压缩时的力学性质 四、拉(压)杆的强度计算
教学难点:应力-应变曲线分析。 小 结: 塑性材料与脆性材料拉伸时的应力-应变曲线分析。 作 业: 复习教材相关内容。
47
1、材料拉伸时的试件
力学性质:在外力作用下材料在变形和破坏方面所 表现出的力学性能
试 件 和 实 验 条 件
§2-4
常 温 、 静 载
48
2、材料拉伸时的设备
49
3、材料拉伸时的应力-应变曲线
求出内力即轴力的值 36
由于外力的作用线与
m
杆件的轴线重合,内力的
F
F 作用线也与杆件的轴线重
m
合。所以称为轴力。
F FN
FN
3、轴力正负号:拉为正、

《工程力学》课件第6章 截面图形的几何性质

《工程力学》课件第6章 截面图形的几何性质

Ip
r2dA A
D 2
r2
2
rdr
D4
0
32
Ip Iy Iz
Iy
பைடு நூலகம்
Iz
Ip 2
D4
64
四、组合截面的惯性矩与惯性积
z
I
例如工字型截面 A AI AII AIII
II
y
III
Iy
z 2 dA
A
z2dA z2dA z2dA
AI
AII
AIII
m
I yI I yII I yIII I yi
包括:形心、静矩、极惯性矩、惯性矩、惯性半径、惯 性积、主轴和形心主轴、主矩和形心主矩等
6.1 静矩和形心
一、静矩
截面对z轴的静矩
z
Sz
ydA
A
截面对y轴的静矩
y
dA
A
z
Sy
zdA
A
o
单位: m3
y
静矩的数值可大于零、等于零或小于零。
二、形心
如图所示均质薄板,重心与形心C重合,
由静力学可知形心坐标在yoz:
何关系, y R sin , dy R cosd ,
dA 2R cosdy 2R2 cos2 d
Sz
A
(2)形心
ydA yC
2 0
Sz A
R sin 2R2 cos2 d
2 R3 3
4R
1 R2 3
zC
2 3
0
R3
2
三、组合截面的静矩和形心 z
D d
y
整个图形对某一轴的静矩等于各个分图形对同一轴的静矩之和。
z1
y1 z

材料力学惯性矩ppt课件

材料力学惯性矩ppt课件

取微面积dA=dzdy,则:I zy 0;
例5-3 圆形截面对其形心轴的惯性矩。 解:取yoz坐标系。取微面积dA=2zdy,则:
2 R 2 2 2
I z y dA 2 y R y dy ; A R 4 64 D 4 由对称性:I y I z ; 由几何关系: 2=y 2 z 2 , 64
返回 下一张 上一张 小结
3
第二节 惯性矩和惯性积
一、极惯性矩: 定义:平面图形中任一微面积dA与它到坐 标原点O的距离ρ平方的乘积ρ2dA,称为该面积 dA对于坐标原点o的极惯性矩。
截面对坐标原点o的极惯性矩为:
I P 2 dA;
A
简单图形的极惯性矩可由定义式积分计算。
实心圆截面: I P 2dA 32 ; D 4 d 空心圆截面: I P (1 4 ); ( )
5
例5-2 求矩形截面对其对称轴的惯性矩和惯性积。 解:取yoz坐标系。取微面积dA=bdy,则:
bh3 I z y dA y bdy ; A h / 2 12
2 h/2 2
取微面积dA=hdz,则:
2 b/2 2
hb3 I y z dA z hdz ; A b / 2 12

2 I z1 z a 2 A; y1 y b A;
I z1 y1 I zy abA ;
注意:y、z轴必须是形心轴。 二、转轴公式:
2
I z1 y1 dA ( y cos z sin ) 2 dA;
I z1
I y1
Iz Iy
R 4
D 4
I P 2 dA ( y 2 z 2 )dA I Z I y .

惯性矩和平行移轴公式.ppt

惯性矩和平行移轴公式.ppt

xC1
a1 57.5 xC
a2 57.5 xC2
I x I xC a2 A
同理
I y I yC b2 A I xy I xC yC abA
——惯性矩和惯性积的平行轴定理
显然:
I x I xC
I y I yC
性质4:在平面图形对所有相互平行的坐标轴的惯性矩
中,以对形心轴的惯性矩为最小。
二、应用
解: 例 求 I和xC I yC
200 y
A
h y2 bdy bh3
0
3
y dy
_h_
2
dA y
C
yx
_h_
2
O
_b_ _b_
x1
22
常用图形的惯性矩:
2.圆形截面
D4
I x I y Ip 32
由对称性
y
O
x
Ix
Iy
1 2
Ip
D4
64
d
D
3.环形截面
Ix
Iy
1 2
Ip
(D4 64
d
4
)
D4 (1 4 )
64
特别指出: 惯 性 矩——对某一轴而言 极 惯 性 矩——对某一点而言
三、惯性半径
在力学计算中,有时把惯性矩写成
即:
Ix
A
i
2 x
Iy
A
i
2 y
ix
I x ——图形对 x 轴的惯性半径 A
iy
I y ——图形对 y 轴的惯性半径 A
单位:m
三、惯性半径
试问: 即: 注意:
I x
A
y 2dA
A
i
2 x

截面图形的几何性质-材料力学

截面图形的几何性质-材料力学

yC
Sz A
558000 9000
62
Sz Sz1 Sz2 120 40 20 140 30110 558000
A A1 A2 120 40 140 30 9000
120
I
CI
C
CII
II
y 30
参考轴
z 40
yC
zC 140
注意
① 由两块组成组合图形,其复合图形形心一定位于两个子图的形心连线上。 ② 组合图形形心计算公式也适用于负面积情况, 但要记住面积为负号。
z
I
C1 C
s
C2
II
b
y1 h
y
y2
t
典型例题
例3 已知组合截面尺寸t=20mm,h=140mm,b=100mm。试求截面图
形对形心轴 y 的惯性矩。
t
解: 由平行移轴定理
矩形1对y轴的惯性矩:
I (1) y
I y1
b12 A1
矩形2对y轴的惯性矩:
I (2) y
I y2
b22 A2
整个截面的惯性矩:
Iz
y 2 dA
A
h y2bdy 0
b
y3 3
/
h 0
bh3 3
y
h b
dy y
z
典型例题
例2 试求图示截面对形心轴zC轴的惯性矩。
IzC
y 2 dA
A
h
2 h
y2bdy
2
b
y3 3
h
/
2
h
2
bh3
12
I yC
z 2dA
A
y
yC
hb3 =

材料力学-截面的几何性质

材料力学-截面的几何性质

1 2
(
I
y
Iz)
1 2
(
I
y
Iz )cos 2
I yz sin
2
I z1
1 2
(
I
y
Iz)
1 2
(
I
y
Iz )cos 2
I yz sin
2
(a)
I y1z1
1 2
(
I
y
Iz )sin
2
I yz sin
2
4.2 主惯性轴和主惯性矩(principal moment of inertia)
A
y2dA
A
z2dA
A
Iz Iy
此式说明了极惯性矩与轴惯性矩之间的关系。
z y
o
A dA
z y
惯性积
定义
I yz
yzdA
A
z A
y
dA
为图形对y、z轴的惯性积 。
z
o
y
惯性积的数值可正,可负,也可为零。惯性积的量纲是[长 度]4 ,常用单位为m4和mm4。
定理:若有一个轴是图形的对称轴,则图形对这对轴 的惯性积必然为零。
例题 试求图示图形对形心轴的惯性矩和 惯性积。
解:将图形看作是两个矩形的结合。 形心坐标为
yc 0
zc
A1z1 A1
A2 z2 A2
103.3mm
z 100
20
I CI
C
140
CII
103.3
II
a1 a2 y
y
20
求图形对y、z轴的惯性矩
z 100
I z I zI I zII
201003 140 203
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Izc=1780.4×104mm4 ,z0=20.1mm
14
作业题 求图示工字形截面对z轴的惯性矩。
b d
z
15
附录A 截面的几何性质
§A-1 截面的面积矩和形心位置
一、面积矩的定义
Sy=∫ zdA A
Sz=∫ ydA A
面积矩可为正、负或为零。
o
z
y z dA
y
1
二、截面形心的位置
∫ yc =
ydA
A
= A
Sz A
zc
∫ =
zdA
A
A
=
Sy A
故 Sz = A yc Sy = A zc
z
o zc
z
yc
y
C
y yc
故 Iz=∫ A a2dA + IzC
同理
Iy=∫ A b2dA + IyC Iyz=∫ A abdA + IyCz1C1
二、组合截面惯性矩的计算式
Iy=∫ A z2dA
=∫ A1z2dA +… +∫ Anz2dA
n
=∑ Iyi
i=1
同理
n
Iz =∑ Izi
i=1
n
Iyz =∑ Iyzi
i=1
yC1 255mm yC2 140mm
5c0
C2
yC3 25mm zC1 zC2 zC3 0
50
C3
z
yC
A1
yC1 A2 yC2 A1 A2 A3A3 来自yC 3250
y
15050 255 18050140 25050 25 mm 15050 18050 25050
120mm
b/2 b/2
形心主轴: 过截面形心的主轴。 h/2
z'
形心主惯性矩:截面对形心主轴的
z
惯性矩。
h/2
y
7
例3 计算图示矩形对y轴和z轴的惯性矩和惯性积。
解: Iz y2dA
A
h/2 y2 bdy h / 2
bh3 12
同样地
hb3 I y 12
I yz 0
y、z为形心主轴
Iy、Iz为形心主惯性矩
bb/2/2 bb/2/2
hh/2/2
zz
y
hh/2/2
dy
yy
8
例4 计算图示圆形截面对其直径轴y和z的惯性矩。
d
d
z y
z
y
dy
zz y
Iy
Iz
64
d4
若为空心截面呢?(d/D)求Iy与Iz
(作业题)
9
四、惯性半径的定义
√iy =
Iy A
√iz =
Iz A
故 Iy = A iy2 Iz = A iz 2
i=1
n
Sz = ∑Ai yci
i=1
n
形心位置: yc
=
Sz A
∑Ai yci
=
i=1 n
∑Ai
i=1
n
zc
=
Sy A
=
∑Ai zci
i=1 n
∑Ai
i=1
4
15.5
例2 求图示截面的形心的位置。
解: A1 15050mm 2 A2 18050mm 2
150
A3 250 50mm 2
50
C1
zC 0
5
§A-2 截面的惯性矩和惯性积
一、惯性矩的定义
Iy=∫ A z2dA Iz=∫ A y2dA
惯性矩恒为正
二、惯性积的定义 Iyz=∫ A yzdA
惯性积可正、可负或为零
若y为对称轴,则 Iyz= 0
o
z
y z dA
y
y dA dA z
zz
y
6
三、形心主轴和形心主惯性轴
主轴: 惯性积为零的一对坐标轴。 主惯性矩: 截面对主轴的惯性矩。
注意平方问题
第十六次课结束处
10
§A-3 惯性矩和惯性积的平行移轴公式
一、平行移轴公式
O
z
Iz=∫ A y2dA =∫ A (a+yC)2dA =∫ A a2dA + 2a∫ A yCdA +∫ A yC2dA
y
C
dA
a zc
yc
∫ A yCdA 对形心轴的面积矩=0
b zc z
∫ A yC2dA 对形心轴的惯性矩
dA
y
形心轴:过平面图形形心的轴
截面对形心轴的面积矩为零。
2
例1 求如图矩形Sz和Sy
解:Sz
ydA
A
ah
ybdy
a
bh(a h) 2
A yC
同样地
Sy
bh(d
b) 2
A
zC
z b/2 b/2 a
y h/2
h/2
dy
y
d
3
三、组合截面的面积矩和形心位置的确定
面积矩:
n
Sy = ∑Ai zci
12
例5 图示矩形中,挖去两个直径为d 的圆形,求余下 图形对z轴的惯性矩。
b/2 b/2
z
Iz
1 bh3 12
5 d 4
32
y
13
例6 由两个20a号槽钢截面图形组成的组合平面图形,设a =100mm,设求此组合平面图形对y,z两根对称轴的惯性矩。
a
z0
z
zC
y
yC
A=28.83×102mm2, Iyc=128×104mm4
相关文档
最新文档