MATLAB遗传算法工具箱及应用
matlab遗传算法工具箱关于离散变量优化算例
matlab遗传算法工具箱关于离散变量优化算例离散优化问题在实际应用中具有重要意义,其中遗传算法是一种常用的解决离散优化问题的方法。
Matlab遗传算法工具箱提供了一系列强大的函数和工具来帮助开发者实现离散变量优化算法。
本文将介绍如何使用Matlab遗传算法工具箱解决离散变量优化问题,并给出一个算例来演示其应用。
1. 算法背景离散优化问题是指在一组有限离散值中寻找最优解的问题。
这些离散值可能代表不同的决策或选择,例如在某个集合中选取最佳的元素组合。
传统的优化算法无法直接应用于离散变量优化问题,而遗传算法则具有较好的适应性。
遗传算法是一种模拟生物进化过程的优化算法,通过模拟基因的交叉、变异和选择来搜索最优解。
2. Matlab遗传算法工具箱简介Matlab遗传算法工具箱是Matlab平台上用于遗传算法优化设计和问题求解的工具包。
它提供了一系列函数和工具,可以简便地实现离散变量优化算法。
其中常用的函数包括:- ga:用于定义遗传算法的参数和问题函数,进行优化计算。
- gamultiobj:用于多目标优化的遗传算法。
- customSelectionFcn:自定义选择函数,用于指定选择操作。
- customCrossoverFcn:自定义交叉函数,用于指定交叉操作。
- customMutationFcn:自定义变异函数,用于指定变异操作。
3. 算例演示假设我们有一个离散优化问题,要在集合{1, 2, 3, 4, 5}中找到一个长度为5的序列,使得序列中所有元素的和最大。
首先,我们需要定义问题函数和适应度函数。
问题函数用于定义问题的约束条件,适应度函数则计算每个个体的适应度值。
```matlabfunction f = problemFunction(x)f = sum(x);endfunction f = fitnessFunction(x)f = -problemFunction(x); % 求和最大化,所以需要取负值end```接下来,我们可以使用Matlab遗传算法工具箱中的`ga`函数进行优化计算。
利用MATLAB实现遗传算法和MATLAB神经网络工具箱的使用
实验一利用MATLAB实现遗传算法一、实验目的1、熟悉MATLAB语言编程环境2、掌握MATLAB语言命令3、学会利用MATLAB编程实现遗传算法二、实验原理MATLAB是美国Math Works公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,MATLAB可以进展矩阵运算、绘制函数和数据、实现算法、创立用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计等领域。
通过学习遗传算法原理,使用MATLAB编写程序,实现其求解策略。
三、实验内容通过MATLAB编程,利用遗传算法求解:xx=求[-2,2]f-)(f.x,max∈exp05xsin(),.0)(x)200(三、实验要求1、程序设计2、调试3、实验结果4、撰写实验报告实验二 MATLAB神经网络工具箱的使用一、实验目的1、掌握MATLAB语言命令2、提高MATLAB程序设计能力3、学会使用MATLAB神经网络工具箱二、实验原理MATLAB语言是Math Works公司推出的一套高性能计算机编程语言,集数学计算、图形显示、语言设计于一体,其强大的扩展功能为用户提供了广阔的应用空间。
它附带有30多个工具箱,神经网络工具箱就是其中之一。
利用该工具箱可以方便的构建神经网络的构造模型、设计、训练等,实现神经网络算法。
三、实验内容通过MATLAB编程,利用神经网络工具箱预测公路运量:公路运量主要包括公路客运量和公路货运量两个方面。
据研究,某地区的公路运量主要与该地区的人数、机动车数量和公路面积有关,上表给出了该地区20年的公路运量相关数据。
根据有关部门数据,该地区2021和2021年的人数分别为73.39和75.55万人,机动车数量分别为3.9635和4.0975万辆,公路面积分别为0.9880和1.0268万平方千米。
请利用BP网络预测该地区2021和2021年的公路客运量和公路货运量。
MATLAB遗传算法工具箱在函数优化中的应用
[x, fval] = ga(fun, 1,,,,,,,, options);
%输出结果
disp(['x = ', num2str(x)]);
disp(['f(x) = ', num2str(fval)]);
在上述代码中,我们首先定义了目标函数,然后设置了遗传算法的参数,包 括种群规模、最大迭代次数、交叉概率和变异概率。接下来,我们使用 optimoptions函数初始化遗传算法,并传入目标函数和参数设置。最后,我们使 用ga函数求解最小值点,并输出结果。
在使用遗传算法工具箱进行函数优化时,需要注意以下问题:
1、适应度函数的设计:适应度函数是评价个体优劣程度的指标,必须合理 设计以满足优化问题的需求。
2、种群规模和迭代次数的设定:种群规模和迭代次数是影响遗传算法性能 的关键参数,需要根据问题规模和复杂度进行合理设定。
3、交叉和变异操作的控制:交叉和变异操作是遗传算法的核心操作,需要 合理控制以保持算法的搜索能力和避免陷入局部最优解。
在定义了目标函数和约束条件之后,我们可以使用Matlab提供的ga函数来运 行遗传算法。ga函数将根据指定的目标函数和约束条件,使用遗传算法搜索最优 解。在运行过程中,我们可以使用Matlab提供的动画功能来实时查看遗传算法的 迭代过程。
除了使用Matlab遗传算法优化工具箱来解决常规的优化问题外,还可以将其 应用于其他领域。例如,在机器学习领域中,可以使用遗传算法来优化神经网络 的连接权值和结构;在控制系统领域中,可以使用遗传算法优化控制系统的参数 和结构;在图像处理领域中,可以使用遗传算法优化图像处理的算法和参数等。
通过本次演示的介绍,希望能使读者更好地理解和应用遗传算法工具箱解决 实际优化问题。
matlab遗传算法工具箱导出数据的方法 -回复
matlab遗传算法工具箱导出数据的方法-回复如何使用MATLAB遗传算法工具箱导出数据MATLAB是一种广泛使用的数值计算和数据可视化软件,其遗传算法工具箱(Genetic Algorithm Toolbox)是一款强大的用于解决优化问题的工具。
在使用遗传算法工具箱时,可能会遇到需要导出数据的情况。
本文将详细介绍如何使用MATLAB遗传算法工具箱导出数据,并提供一步一步的操作指南。
第一步:加载遗传算法工具箱首先,打开MATLAB软件并加载遗传算法工具箱。
在命令窗口输入"ga"命令,即可加载遗传算法工具箱。
第二步:定义适应度函数在使用遗传算法工具箱前,需要定义一个适应度函数。
适应度函数用于度量个体对问题的适应程度,其中最佳适应程度对应最优解。
在定义适应度函数时,可以根据特定问题的要求进行自定义。
第三步:设置遗传算法参数在使用遗传算法工具箱之前,还需要设置一些遗传算法的参数。
这些参数包括种群数量、迭代次数、交叉概率、变异概率等。
根据具体问题的要求,选择合适的参数值。
第四步:运行遗传算法在完成适应度函数和参数设置后,就可以运行遗传算法了。
在命令窗口输入"ga"命令,并将适应度函数和参数作为输入参数传递给该命令。
第五步:导出数据使用遗传算法工具箱进行优化后,可能需要将优化结果导出。
下面介绍几种常用的导出数据的方法。
方法一:使用内置函数MATLAB提供了一些内置函数用于导出数据,其中比较常用的是"save"和"xlswrite"函数。
1. 使用"save"函数"save"函数用于保存变量和工作空间中的数据。
通过在命令窗口输入"save"命令,再将需要保存的变量名作为参数传递给该命令,即可将变量保存为.mat文件。
例如,要将名为"result"的变量保存为.mat文件,可以使用以下命令:save('result.mat', 'result')2. 使用"xlswrite"函数"xlswrite"函数用于将数据写入Excel文件。
MATLAB遗传算法工具箱及应用(第二版)图文 (1)
第一章 遗传算法概述
考虑两个二进制父代串:
A=10010110 和 B=10111000 I是随机地在1到串长L减1之间(即[1,
在决策变量域中的染色体表现型已被编码,可以估计种 群的个体成员的特性或适应度。通过特征目标函数来估计个 体在问题域中的特性。在自然世界中,这就是个体在现行环 境中的生存能力。因此,目标函数建立的基础是在整个繁殖 过程中选择成对的个体进行交配。
第一章 遗传算法概述
在再生(复制)期间,每个个体均被计算适应度值,它来 自没有加工的原始特性度量,由目标函数给出。这个值用来 在选择中偏向更加适合的个体。相对整个种群,适应度高的 个体具有高的选中参加交配的概率,而适应度低的个体具有 相对低的选中概率。
第一章 遗传算法概述
1.2 遗传算法的特点
遗传算法具有如下优点: (1)对可行解表示的广泛性。遗传算法的处理对象不是参 数本身,而是针对那些通过参数集进行编码得到的基因个体。 此编码操作使得遗传算法可以直接对结构对象进行操作。所谓 结构对象,泛指集合、序列、矩阵、树、图、链和表等各种一 维或二维甚至多维结构形式的对象。这一特点使得遗传算法具 有广泛的应用领域。比如: ①通过对连接矩阵的操作,遗传算法可用来对神经网络或 自动机的结构或参数加以优化。 ②通过对集合的操作,遗传算法可实现对规则集合和知识 库的精炼而达到高质量的机器学习目的。 ③通过对树结构的操作,用遗传算法可得到用于分类的最 佳决策树。 ④通过对任务序列的操作,遗传算法可用于任务规划,而 通过对操作序列的处理,可自动构造顺序控制系统。
使用MATLAB遗传算法工具实例详细
最新发布的MATLAB 7.0 Release 14已经包含了一个专门设计的遗传算法与直接搜索工具箱(Genetic Algorithm and Direct Search Toolbox,GADS)。
使用遗传算法与直接搜索工具箱,可以扩展MATLAB及其优化工具箱在处理优化问题方面的能力,可以处理传统的优化技术难以解决的问题,包括那些难以定义或不便于数学建模的问题,可以解决目标函数较复杂的问题,比如目标函数不连续、或具有高度非线性、随机性以及目标函数没有导数的情况。
本章8.1节首先介绍这个遗传算法与直接搜索工具箱,其余各节分别介绍该工具箱中的遗传算法工具及其使用方法。
8.1 遗传算法与直接搜索工具箱概述本节介绍MATLAB的GADS(遗传算法与直接搜索)工具箱的特点、图形用户界面及运行要求,解释如何编写待优化函数的M文件,且通过举例加以阐明。
8.1.1 工具箱的特点GADS工具箱是一系列函数的集合,它们扩展了优化工具箱和MATLAB数值计算环境的性能。
遗传算法与直接搜索工具箱包含了要使用遗传算法和直接搜索算法来求解优化问题的一些例程。
这些算法使我们能够求解那些标准优化工具箱范围之外的各种优化问题。
所有工具箱函数都是MATLAB的M文件,这些文件由实现特定优化算法的MATLAB语句所写成。
使用语句type function_name就可以看到这些函数的MATLAB代码。
我们也可以通过编写自己的M文件来实现来扩展遗传算法和直接搜索工具箱的性能,也可以将该工具箱与MATLAB的其他工具箱或Simulink结合使用,来求解优化问题。
工具箱函数可以通过图形界面或MATLAB命令行来访问,它们是用MATLAB语言编写的,对用户开放,因此可以查看算法、修改源代码或生成用户函数。
遗传算法与直接搜索工具箱可以帮助我们求解那些不易用传统方法解决的问题,譬如表查找问题等。
遗传算法与直接搜索工具箱有一个精心设计的图形用户界面,可以帮助我们直观、方便、快速地求解最优化问题。
MATLAB遗传算法工具箱及应用
《MATLAB 遗传算法工具箱及应用》作者:雷英杰张善文李续武周创明出版社:西安电子科技大学出版社本书系统介绍MATLAB遗传算法和直接搜索工具箱的功能特点、编程原理及使用方法。
全书共分为9章。
第一章至第四章介绍遗传算法的基础知识,包括遗传算法的基本原理,编码、选择、交叉、变异,适应度函数,控制参数选择,约束条件处理,模式定理,改进的遗传算法,早熟收敛问题及其防止等。
第五章至第七章介绍英国设菲尔德(Sheffield)大学的MATLAB 遗传算法工具箱及其使用方法,举例说明如何利用遗传算法工具箱函数编写求解实际优化问题的MATLAB程序。
第八章和第九章介绍MathWorks公司最新发布的MATLAB遗传算法与直接搜索工具箱及其使用方法。
本书取材新颖,内容丰富,逻辑严谨,语言通俗,理例结合,图文并茂,注重基础,面向应用。
书中包含大量的实例,便于自学和应用。
本书可作为高等院校计算机、自动化、信息、管理、控制与系统工程等专业本科生或研究生的教材或参考书,也可供其他相关专业的师生及科研和工程技术人员自学或参考。
第一章遗传算法概述 11.1 遗传算法的概念 11.2 遗传算法的特点 31.2.1 遗传算法的优点 31.2.2 遗传算法的不足之处 41.3 遗传算法与传统方法的比较 41.4 遗传算法的基本用语 61.5 遗传算法的研究方向 71.6 基于遗传算法的应用 8第二章基本遗传算法及改进 112.1 遗传算法的运行过程 112.1.1 完整的遗传算法运算流程 112.1.2 遗传算法的基本操作 132.2 基本遗传算法 142.2.1 基本遗传算法的数学模型 142.2.2 基本遗传算法的步骤 142.2.3 遗传算法的具体例证 162.3 改进的遗传算法 222.3.1 改进的遗传算法一 232.3.2 改进的遗传算法二 242.3.3 改进的遗传算法三 252.3.4 改进的遗传算法四 282.4 多目标优化中的遗传算法 302.4.1 多目标优化的概念 302.4.2 多目标优化问题的遗传算法 31第三章遗传算法的理论基础 343.1 模式定理 343.2 积木块假设 363.3 欺骗问题 373.4 遗传算法的未成熟收敛问题及其防止 39 3.4.1 遗传算法的未成熟收敛问题 393.4.2 未成熟收敛的防止 403.5 性能评估 413.6 小生境技术和共享函数 43第四章遗传算法的基本原理与方法 454.1 编码 454.1.1 编码方法 464.1.2 编码评估策略 484.2 选择 484.3 交叉 524.4 变异 554.5 适应度函数 574.5.1 适应度函数的作用 574.5.2 适应度函数的设计主要满足的条件 58 4.5.3 适应度函数的种类 584.5.4 适应度尺度的变换 594.6 控制参数选择 604.7 约束条件的处理 61第五章遗传算法工具箱函数 625.1 工具箱结构 625.1.1 种群表示和初始化 635.1.2 适应度计算 635.1.3 选择函数 635.1.4 交叉算子 645.1.5 变异算子 645.1.6 多子群支持 645.2 遗传算法中的通用函数 645.2.1 函数 bs2rv 645.2.2 函数 crtbase 665.2.3 函数 crtbp 665.2.4 函数 crtrp 675.2.5 函数 migrate 685.2.6 函数 mut 695.2.7 函数 mutate 715.2.8 函数 mutbga 725.2.9 函数 ranking 745.2.10 函数 recdis 765.2.11 函数 recint 775.2.12 函数 reclin 785.2.13 函数 recmut 795.2.14 函数 recombin 815.2.15 函数 reins 815.2.16 函数 rep 845.2.17 函数 rws 845.2.18 函数 scaling 855.2.19 函数 select 865.2.20 函数 sus 885.2.21 函数 xovdp 885.2.22 函数 xovdprs 895.2.23 函数 xovmp 905.2.24 函数 xovsh 915.2.25 函数 xovshrs 925.2.26 函数 xovsp 935.2.27 函数 xovsprs 94第六章遗传算法工具箱的应用 956.1 安装 956.2 种群的表示和初始化 956.3 目标函数和适应度函数 966.4 选择 976.5 交叉 996.6 变异 1016.7 重插入 1016.8 遗传算法的终止 1026.9 数据结构 1026.10 多种群支持 1046.11 示范脚本 105第七章遗传算法应用举例 1077.1 简单一元函数优化实例 1077.2 多元单峰函数的优化实例 1117.3 多元多峰函数的优化实例 1157.4 收获系统最优控制 1187.5 装载系统的最优问题 1227.6 离散二次线性系统最优控制问题 1257.7 目标分配问题 1287.8 双积分的优化问题 1307.9 雷达目标识别问题 1317.10 图像分割问题 1347.11 一些测试函数对应的优化问题 1367.11.1 轴并行超球体的最小值问题 1367.11.2 旋转超球体的最小值问题 1377.11.3 Rosenbrock’s Valley最小值问题 138 7.11.4 Rastrigin函数的最小值问题 1397.11.5 Schwefel函数的最小值问题 1407.11.6 Griewangk函数的最小值问题 1417.11.7 不同权的总和最小值问题 1427.12 多目标优化问题 142第八章使用MATLAB遗传算法工具 146 8.1 遗传算法与直接搜索工具箱概述 146 8.1.1 工具箱的特点 1468.1.2 编写待优化函数的M文件 1488.2 使用遗传算法工具初步 1498.2.1 遗传算法使用规则 1498.2.2 遗传算法使用方式 1508.2.3 举例:Rastrigin函数 1518.2.4 遗传算法的一些术语 1568.2.5 遗传算法如何工作 1578.3 使用遗传算法工具求解问题 1608.3.1 使用遗传算法工具GUI 1608.3.2 从命令行使用遗传算法 1728.3.3 遗传算法举例 1778.4 遗传算法参数和函数 1928.4.1 遗传算法参数 1928.4.2 遗传算法函数 2038.4.3 标准算法选项 207第九章使用MATLAB直接搜索工具 208 9.1 直接搜索工具概述 2089.2 直接搜索算法 2099.2.1 何谓直接搜索 2099.2.2 执行模式搜索 2099.2.3 寻找函数最小值 2109.2.4 模式搜索术语 2129.2.5 模式搜索如何工作 2149.3 使用直接搜索工具 2189.3.1 浏览模式搜索工具 2189.3.2 从命令行运行模式搜索 2269.3.3 模式搜索举例 2299.3.4 参数化函数 2439.4 模式搜索参数和函数 2459.4.1 模式搜索参数 2459.4.2 模式搜索函数 253参考文献 259。
Matlab遗传算法优化工具箱GAOT的研究与应用
M a tl ab遗传算法优化工具箱(GAO T)的研究与应用3周正武1,丁同梅1,2,田毅红2,3,王晓峰2,4(1.广东省技师学院,广东博罗 516100; 2.天津大学机械工程学院,天津 300072;3.承德技师学院,河北承德 067400;4.郑州职业技术学院,河南郑州 450121)摘 要:介绍遗传算法的基本原理和Matlab的遗传算法优化工具箱(G AOT),分析了优化工具函数。
探讨Matlab遗传算法工具箱在参数优化和非线性规划中的应用。
通过优化实例,说明遗传算法是一种具有良好的全局寻优性能的优化方法。
用Matlab语言及Matlab语言编制的优化工具箱进行优化设计具有语言简单、函数丰富、用法比较灵活、编程效率高等特点。
关键词:遗传算法;Matlab工具箱;优化中图分类号:T H164 文献标识码:A 文章编号:1007-4414(2006)06-0069-03The study and appli ca ti on of geneti c a lgor ith m opti m i za ti on toolbox i n M a tl abZhou Zheng-wu1,D ing T ong-mei1,2,Tian Yi-hong2,3,W ang Xiao-feng2,4(1.College of high-grade technician,B oluo Guangdong 516100,China;2.College of m echanical and engineering,Tianjin university,Tianjin 300072,China;3.Chengde college of high-grade technician,Chengde Hebei 067400,China;4.Zhengzhou vocational college of technology,Zhengzhou Henan 450121,China)Abstract:The paper intr oduces genetic algorith m(G A)and Matlab genetic algorith m op ti m izati on t oolbox and analyses the op ti m izati on t oolbox functi on.The functi on op ti m izati on p r oble m of para meter op ti m izati on and nonlinear has been given t o de monstrate that genetic algorith m is a better gl obal op ti m izati on method.The op ti m izati on design in M atlab and Matlab op ti m i2 zati on t oolbox have si m p le language、abundant functi ons、flexible method and high p r ogramm ing efficiency.Key words:genetic agolrith m;matlab t oolbox;op ti m izati on 遗传算法(G A)是一类借鉴生物界自然选择和遗传原理的随机优化搜索算法。
matlab工具箱遗传算法使用方法
简单的遗传算法可以使用Matlab自带的遗传算法工具箱,但是要从Matlab2010版本之后才会自带这个工具箱,且调用命令也有变化,分别是gatool和optimtool。
GUI界面如下图所示:1、problem setup and results设置与结果(1)Solver:求解程序,选择要用的求解程序(遗传算法,遗传算法多目标等)(2)problem:1)fitness function适应度函数,求最小,这里的使用度函数要自己编写,书写格式是“@函数名”。
2)number of variable变量数,必须是整数,即,使用这个GUI界面的适应度函数的变量必须是[1*n]的向量,而不能是[m*n]的矩阵。
3)constraints约束4)linear inequalities线性不等式,A*x<=b形式,其中A是矩阵,b是向量5)linear equalities线性等式,A*x=b形式,其中A是矩阵,b是向量6)bounds定义域,lower下限,upper上限,列向量形式,每一个位置对应一个变量7)nonlinear constraint function非线性约束,用户定义,非线性等式必须写成c=0形式,不等式必须写成c<=0形式8)integer variable indices整型变量标记约束,使用该项时Aeq和beq必须为空,所有非线性约束函数必须返回一个空值,种群类型必须是实数编码举例,若是想让第一个、第三个、第五个变量保持是整数的话,则直接在此处填写[1 3 5] 9)run solver and view results求解use random states from previous run使用前次的状态运行,完全重复前次运行的过程和结果2、population(1)population type编码类型1)double vector实数编码,采用双精度。
整数规划的种群类型必须是实数编码。
Matlab遗传算法工具箱函数及应用实例
!"#$"%遗传算法工具箱函数及应用实例于玲!!贾春强""!#沈阳化工学院机械工程学院!辽宁沈阳!!$!%"#"&大连理工大学机械工程学院!辽宁大连!!’$"($摘要%基于!"#$"%语言的遗传算法工具箱支持二进制和浮点数编码方式!并且提供了多种选择&交叉&变异的方法’通过具体实例对!"#$"%的遗传算法工具箱的用法进行了说明介绍(关键词%)*+,*-#遗传算法#工具箱#优化中图分类号%./(0!&12文献标识码%3文章编号%!$$"4"(((""$$%)!!4$$"14$"&’()#*+(,"(-./"01$2,*(!"#$"%345++$%+/678*(9:!;<4=>’(?@*"(9A5!#67899,9:);78*<=7*,><?=<;;@=<?A68;<B*<?C<D+=+E+;9:F8;G=7*,.;78<9,9?BH68;<B*<?!!I!%"H F8=<*J"#67899,9:);78*<=7*,><?=<;;@=<?H K*,=*<L<=M;@D=+B9:.;78<9,9?BH K*,=*<!!’I"(H F8=<*N 4%,#B")#C.8;O;<;+=73,?9@=+8G.99,-9P-*D;Q9<)*+,*-DERR9@+D+8;-=<*@B*<Q:,9*+H*<Q+8;@;*@;+8;;P7;,,;<+ 9R;@*+9@D9:D;,;7+=9<H7@9DD9M;@*<Q GE+*+=9<=<+8;.99,-9PH+S9;P*GR,;D*-9E+89S+9ED;+8;.99,-9P*@;=<+@9QE7;Q =<+8=D R*R;@#C+=D+98;,R@;*Q;@D=GR@9M;+8;*-=,=+B+9*<*,BT;+8;UE;D+=9<*<Q D9,M;R@9-,;G ED=<?+8;.99,-9P# D2E F+B-,C G*+,*-J?;<;+=7*,?9@=+8GJ+99,-9PJ9R+=G=T*+=9<:遗传算法与!"#$"%语言!"#$"%是一种开放式软件!经过一定的程序可以将开发的优秀的应用程序集加入到!"#$"%工具的行列(这样!许多领域前沿的研究者和科学家都可以将自己的成果集成到!"#$"%之中!被全人类继承和利用(因此!!"#$"%中含有诸多的面向不同应用领域的工具箱!例如%信号处理工具箱&图像处理工具箱&通信工具箱&系统辨识工具箱&优化工具箱&鲁棒控制工具箱&非线性控制工具箱等!而且工具箱还在不断地扩展之中(A遗传算法工具箱的函数及其功能目前!国内图书市场上有关!"#$"%方面的书籍要么侧重于!"#$"%语言编程介绍!要么侧重于各种工具箱函数的解说!而对怎样用工具箱函数来解决实际问题鲜有涉及(本文将对遗传算法工具箱函数进行说明介绍(遗传算法工具箱&’()包括了许多实用的函数!这些函数按照功能可以分为以下几类%!"#主界面函数主程序*"+,提供了遗传算法工具箱与外部的接口(它的函数格式如下%-./012345/%345/#6"708194:;*"<%4=12>!0?"$@A!0?"$(5>!>#"6#345!45#>!#06,@A!#06,(5>!>0$07#@A!>0$07#(5>!.(?06@A>!.(?06(5>!,=#@A>!,=#(5>B输出参数输入参数!"!核心函数及其它函数具体见表C(G遗传算法工具箱应用实例$%&无约束优化问题利用遗传算法计算函数’<(B;(DEF*>G1<H(BDI*74><J(B/的最大值!其中(!-F!K:选择二进制编码!种群中的个体数目为EF!二进制编. 012345 %345#6"708194求得的最优解!包括染色体和适配度最终得到的种群最优种群的搜索轨迹每一代的最好适应度和平均适应度%4=12>0?"$@A0?"$(5>>#"6#34545#>#06,@A#06,(5>>0$07#@A>0$07#(5>.(?06@A.(?06(5>,=#@A,=#(5>变量上下界矩阵!矩阵的行数确定变量个数适应度函数传递给适应度函数的参数!默认值为+ALMM,初始种群选项(一个向量+05>G$41/564%N45>/2G>5$"O,!这里05>G$41表示两代之间的差距#564%N45>取F表示二进制编码!取E表示浮点数编码#2G>5$"O控制运行中是否输出当前群体和最好结果!取F表示运行中不输出!取E表示运行中输出(默认值为+E0P Q/E/F,终止函数的名称!默认值为+R,".&01)06,R,传递给终止函数的参数!默认值为+REFFR,选择函数的名称!默认值为+R146,&04,S0$07#R,传递给选择函数的参数!默认值为+RF+FTR,交叉函数名称表!以空格分开!浮点数编码默认值为+R/"6G#UV4?06/U0=6G>#G7V4?06/>G,5$0V4?06R,!二进制编码默认值为+R>G,5$0V4?06R,传递给交叉函数的参数表!浮点数编码默认值为+RW/F#W/C#W/FR,!二进制编码默认值为+F+Q,变异函数名称表!以空格分开!浮点数编码默认值为+R%4=12"6O!=#"#G41/,=$#GA41L1G9!=#"#G41141/L1G9!=#"#G41=P1G9!=#"#G41R,!二进制编码默认值为+R%G1"6O!=#"#G41R,传递给变异函数的参数表!浮点数编码默认值为+J/F#Q/EFF/C#J/EFF/C#J/F/F,!二进制编码默认值为+F+FH,表:表A码长度为!"!交叉概率为"#$%!变异概率为"#"&"采用’()*的程序清单如下#+编写目标函数文件,-.#/!文件存放在工作目录下"0123.4,256,7!89:7;<,-.=6,7!,-.4,26>?@<6,7=A>$89:7<@BA"C642=%C@>BDC 3,6=EC @>$F 生成初始种群!大小为A"?"424.G,-<424.4:74H8I:=A"!5"?$;!J,-.K>$L 调用遗传算法函数"5@?82MG ,-?NG ,-O.P:38;<I :=5"?$;!K,-.K !5;!424.G ,-!5A8Q R?A?A;!K/:@’82*8P/K !!%!K2,P/’8,/S 8783.K !5"#"&;!5K:P4.TU,98PK;!5!;!K2,2V240W1.:.4,2K !5!?!%?X;>?$经过!%次遗传迭代!运算结果为#!<D#&%RR "=!><!E#&%%E $即当!为D#&%RR 时!"=!>取最大值!E#&%%E "遗传算法一般用来取得近似最优解!另外!遗传算法的收敛性跟其初始值有关!大家运行上面的命令所得到的结果可能跟我的结果不同或是差别很大!但多执行几次上面的命令%随机取不同的初始群体&一定可以得到近似最优解"#$%有约束优化问题考虑如下问题#/42"=!><=!A Q !>!B=!!Q A>!6#.#&A =!><!A Q !!!BA !"&!=!><!!A EQ !!!BA !"本例中存在两个不等式约束!因此我们需要把有约束问题转换成无约束问题来求解"近年来提出了多种用遗传算法满足约束的技术!工程中常用的策略是惩罚策略!通过惩罚不可行解!将约束问题转换为无约束问题"惩罚项的适值函数一般有加法和乘法两种构造方式!本例采用加法形式的适值函数!惩罚函数由两部分构成!可变乘法因子和违反约束乘法"种群中的个体数目为A""!实数编码!交叉概率为"#$%!变异概率为"#"&"遗传算法求的是函数的极大值!因此在求极小值问题时!需将极大值问题转换为极小值问题求解"采用’()*的程序清单如下#Y 编写目标函数文件04.#/!文件存放在工作目录下"0123.4,256,7!89:7;<04.=6,7!,-.4,26>?@A<6,7=A>$@!<6,7=!>$PA<"#A $P!<"#&$Z 约束条件IA<@AQ !C @!BA $I!<@A#[!\EQ @!#[!BA $Z 加惩罚项的适值40?=IA]<">^=I!]<">89:7<=@AQ !>#[!B=@!Q A>#[!$876889:7<=@AQ !>#[!B=@!Q A>#[!BPAC I ABP!CI!$89:7<Q 89:7$82M_设置参数边界!本例边界为!O "N,12M6<,286%!!A &C5Q A !A;$‘调用遗传算法函数"5@O82MG,-ONG,-O.P:38;<I:=N,12M6!KW42K>O $a 性能跟踪"-7,.=.P:38=b !A>!.P:38=b !X>!KPQ K>$T,7MO,2-7,.=.P:38=b !A>!.P:38=b !!>!KNC K>$@7:N87=K’828P:.4,2K>cOd7:N87=Ke4..2866K>$f8I82M=K 解的变化K !K 种群平均值的变化K>$经过A""次遗传迭代!运算结果为#!<O5AOA;$此时极小值89:7=!><A $I A =!><"$I !!!><"#!%!显然最优解满足约束条件"!结论遗传算法工具箱功能强大!包括了大量的算子函数!提供各种类型的选择策略!交叉’变异的方式!适用于各类不同的实际问题"由于大多数实际问题都是有约束条件的!所以!用遗传算法处理约束条件的方法仍属于难点问题!需要进一步的研究和探讨"(参考文献)(")高尚#基于$%&’%(遗传算法优化工具箱的优化计算())*微型电脑应用!+,,+!"-.-/#0+102*(+)姜阳!孔峰*基于$%&’%(遗传算法工具箱的控制系统设计仿真())*广西工学院学报!+,,"!"+.23#41-*(5)飞思科技产品研发中心*$%&’%(4*0辅助优化计算与设计($)*北京#电子工业出版社!+,,5*%编辑阳光&作者简介#于玲%A$D$Q &!女!硕士!主要从事机电液一体化的教学及科研工作"收稿日期#!""EQ "DQ "R!!!!!!!!!!初始化函数424.4:74H8,I :#/P,178..8#/2,P/’8,/S 8783.#/.,1P2S 8783.#/64/-78U,98P#/3d3743U,98P#/7428PU,98P#/7428P,PM8PU,98P#/N,12M:PdW1.:.4,2#/2,2V240W1.:.4,2#//:@’82*8P/#/,-.W:@’82*8P/#/0!N#/N!0#/变异交叉二进制格式和浮点数格式的初始化函数有序数据的初始化函数常用的轮盘赌法基于归一化的优先选择法竞争选择法二进制格式或浮点数格式的交叉函数有序数据的交叉函数!可以将演化函数组合使用浮点数格式的变异函数主程序I :#/用来判断是否满足终止条件用来计算遗传算法满足精度要求时!染色体所需要的二进制位数用来完成二进制数和浮点数之间的相互转换选择函数终止函数二进制表示函数演化函数3:73N4.6#/424.4:74H8I :#/表"。
matlab遗传算法工具箱关于离散变量优化算例
1. 引言遗传算法是一种模拟自然选择与遗传机制的优化算法,被广泛应用于离散变量优化问题的求解。
在Matlab软件中,有专门的工具箱可以支持遗传算法的实现与应用,极大地方便了工程技术人员进行离散变量优化问题的研究与应用。
本文将介绍Matlab遗传算法工具箱在离散变量优化算例中的应用,并通过具体案例来展示其实际求解效果。
2. Matlab遗传算法工具箱介绍Matlab遗传算法工具箱是Matlab软件的一个重要工具箱,它提供了丰富的遗传算法函数和工具,方便用户进行遗传算法的实现和应用。
在离散变量优化问题的求解中,用户可以利用工具箱提供的函数对问题进行建模、参数设置、运行算法等操作,从而快速高效地求解问题。
3. 离散变量优化算例为了更好地展示Matlab遗传算法工具箱在离散变量优化中的应用效果,我们选取了一个经典的离散变量优化问题作为算例,具体问题描述如下:设有一组零件需要进行装配,零件的形状和尺寸有多种选择。
每种零件的装配工艺和成本不同,需要选择最佳的零件组合方案来满足装配要求并使总成本最低。
假设可供选择的零件种类有n种,每种零件有m个备选方案,且装配每种零件的成本已知。
问应选择哪些零件及其具体方案才能使得总装配成本最低?4. Matlab遗传算法工具箱的应用为了利用Matlab遗传算法工具箱求解上述离散变量优化问题,我们可以按照以下步骤进行操作:1) 利用Matlab的数据处理工具,将零件的备选方案数据以矩阵的形式导入Matlab环境;2) 利用工具箱提供的函数对遗传算法的参数进行设置,例如选择交叉方式、变异方式、群体大小、迭代次数等;3) 利用工具箱提供的函数对离散变量优化问题进行编码和解码,以便算法能够对离散变量进行操作;4) 利用工具箱提供的函数编写适应度函数,用于评价每个个体的适应度;5) 利用工具箱提供的主函数运行遗传算法,获取最优解及其对应的总装配成本。
5. 案例求解结果分析通过上述步骤,我们在Matlab环境中成功应用遗传算法工具箱求解了离散变量优化问题。
使用MATLAB遗传算法工具实例
使用MATLAB遗传算法工具实例MATLAB中提供了一种用于优化问题的遗传算法工具箱,可以帮助用户通过遗传算法来寻找最优解。
下面是一个示例,展示了如何使用MATLAB遗传算法工具箱解决一个简单的优化问题。
假设我们要求解以下函数的最大值:f(x)=x^2,其中x的取值范围在[-10,10]之间。
首先,我们需要定义适应度函数,即用来评估个体适应度的函数。
在本例中,适应度函数可以直接使用目标函数,即f(x)=x^2、在MATLAB中,我们可以使用函数句柄来定义适应度函数:```matlabfunction fitness = fitnessFunction(x)fitness = x^2;end```接下来,我们需要配置遗传算法的参数。
我们可以使用`gaoptimset`函数来创建一个参数结构体,并设置算法的各个参数:```matlaboptions = gaoptimset('PopulationSize', 50, 'Generations', 100, 'FitnessLimit', 1e-6, 'StallGenLimit', 10);```上述代码将设置种群大小为50,迭代次数为100,适应度极限为1e-6(即当适应度较小时停止迭代),最大迭代代数为10(即如果连续10代迭代没有改进,则停止迭代)。
接下来,我们需要调用`ga`函数来运行遗传算法并求解最优解。
我们可以使用以下代码来实现:```matlab```最后,我们可以打印出最优解及其目标函数值:```matlabdisp(['Optimal solution: x = ' num2str(x) ', f(x) = 'num2str(fval)]);```上述代码中,`num2str`函数用于将数字转换为字符串,然后使用`disp`函数打印出最优解和目标函数值。
MATLAB中的遗传算法优化方法介绍与应用
MATLAB中的遗传算法优化方法介绍与应用引言遗传算法是一种模拟自然进化和基因遗传规律的优化方法,通过模拟生物进化过程中的选择、交叉和变异等操作,逐步搜索并优化问题的解。
在MATLAB中,遗传算法是一种强大的优化工具,被广泛应用于各个领域的问题求解。
本文将介绍遗传算法的基本原理、MATLAB中的实现方法以及一些应用示例。
一、遗传算法的基本原理1.1 遗传算法的基本原理遗传算法基于达尔文的进化论和遗传学原理,通过模拟自然界生物种群的遗传和进化过程,以求得问题的最优解。
遗传算法的基本原理包括以下几个步骤:(1)初始化种群:随机生成一组个体,每个个体都代表问题的一个解。
(2)适应度评价:根据问题的要求,对每个个体进行适应度评价,评估其解的优劣程度。
(3)选择操作:根据适应度评价结果,选择一些个体作为父代,用于产生下一代个体。
(4)交叉操作:将选中的父代个体进行交叉,生成新的子代个体。
(5)变异操作:对部分子代个体进行变异操作,引入一定的随机扰动,增加搜索范围。
(6)更新种群:将子代和部分父代个体合并,形成新的种群。
(7)终止条件判断:判断是否达到终止条件,如果满足,则输出最优解;否则,返回第(2)步。
1.2 MATLAB中的遗传算法工具箱MATLAB提供了遗传算法工具箱,用于实现遗传算法的各个步骤。
通过利用该工具箱提供的函数和操作,用户可以方便地构建自己的优化问题,并应用遗传算法进行求解。
下面是一些常用的MATLAB函数:(1)gamultiobj:多目标遗传算法函数,用于多目标优化问题求解。
(2)ga:单目标遗传算法函数,用于单目标优化问题求解。
(3)GADefaults:遗传算法的默认参数设置。
(4)fitnessfcn:适应度函数,用于评估个体的适应度。
(5)crossoverfcn:交叉函数,用于实现个体的交叉操作。
(6)mutationfcn:变异函数,用于实现个体的变异操作。
(7)selectionfcn:选择函数,用于实现个体的选择操作。
matlab-遗传算法工具箱函数及实例讲解
matlab-遗传算法工具箱函数及实例讲解最近研究了一下遗传算法,因为要用遗传算法来求解多元非线性模型。
还好用遗传算法的工具箱予以实现了,期间也遇到了许多问题。
首先,我们要熟悉遗传算法的基本原理与运算流程。
基本原理:遗传算法是一种典型的启发式算法,属于非数值算法范畴。
它是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。
它是采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。
遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染色体都对应问题的一个解。
从初始种群出发,采用基于适应度函数的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。
如此模仿生命的进化进行不断演化,直到满足期望的终止条件。
运算流程:Step1:对遗传算法的运行参数进行赋值。
参数包括种群规模、变量个数、交叉概率、变异概率以及遗传运算的终止进化代数。
Step2:建立区域描述器。
根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设置变量的取值范围。
Step3:在Step2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。
Step4:执行比例选择算子进行选择操作。
Step5:按交叉概率对交叉算子执行交叉操作。
Step6:按变异概率执行离散变异操作。
Step7:计算Step6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。
Step8:判断是否满足遗传运算的终止进化代数,不满足则返回Step4,满足则输出运算结果。
其次,运用遗传算法工具箱。
运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算法工具箱GATB某、GAOT以及MathWork公司推出的GADS。
实际上,GADS就是大家所看到的Matlab中自带的工具箱。
matlab遗传算法工具箱及其应用
5
函数crtbase
BaseVec = crtbase(Lind, Base) % This function creates a vector containing the base of the loci crtbase产生向量的元 素对应染色体结构的基因座 BaseVec = crtbase([4,6],[8,5]) %创建一有4个基数为8的基 本字符{0,1,2,3,4,5,6,7}和6个基数为5的基本字符 {0,1,2,3,4}的基本字符向量
6
函数crtbp
crtbp % 创建二进制串染色体 ① [Chrom,Lind,BaseV] = crtbp(Nind,Lind) %创建一大小为 Nind× Lind的随机二元矩阵,这里Nind指定种群中个体的数 量,Lind指定个体的长度。此格式习惯于指定染色体的尺寸 (维度)。 ② [Chrom,Lind,BaseV] = crtbp(Nind,BaseV) %返回长度为 Lind 的染色体结构,染色体基因位的基本字符由向量BaseV 决定 ③ [Chrom,Lind,BaseV] = crtbp(Nind,Lind,Base) %用于产生 基本字符为Base的染色体矩阵。如果Base是向量,Base的 元素值指定了染色体的基因位的基本字符。在这种情况下, 右边的第二个变元可省略,即为格式②。
ranking 常用的基于秩的适应度计算 scaling 比率适应度计算
11
函数 ranking
功能:基于排序的适应度分配。 格式:① FitnV = ranking(ObjV) ② FitnV = ranking(ObjV,RFun) ③ FitnV = ranking(ObjV,RFun,SUBPOP) ranking按照个体的目标值ObjV由小到大的顺序对它们进行 排序,并返回一包含对应个体适应度值FitnV的列向量。这 个函数是从最小化方向对个体进行排序的. RFun是一任选向量,有1、2或length(ObjV)个参数。 (1)如果省略RFun或为NaN,则采用线性排序,选择压差 假设为2。
Matlab技术在遗传算法优化中的应用指南
Matlab技术在遗传算法优化中的应用指南遗传算法是一种模拟生物进化的优化算法,它通过模拟进化的过程来寻找问题的最优解。
近年来,随着计算机技术的不断发展和Matlab软件的广泛应用,遗传算法在工程和科学领域的应用越来越广泛。
本文将介绍如何利用Matlab技术在遗传算法优化中取得更好的效果。
一、遗传算法概述遗传算法是一种模拟自然界进化过程的优化算法。
其基本思想是通过模拟生物遗传、突变和选择等过程,不断改进解的质量,逐步逼近最优解。
在遗传算法中,解被表示为染色体,染色体由若干个基因组成。
每个基因代表问题的一个自变量或参数。
遗传算法通过种群中个体间的交叉、突变和选择等操作,模拟出基因在自然界中的交换和变异,最终得到能够适应环境的个体。
二、Matlab中的遗传算法工具箱Matlab提供了全面的遗传算法工具箱,包含了丰富的函数和算法,使得用户能够方便地使用和实现遗传算法。
下面将介绍Matlab中一些常用的遗传算法函数和工具。
1. ga函数ga函数是Matlab中最基本的遗传算法函数,它实现了标准的遗传算法框架。
用户可以通过设置参数,如目标函数、变量范围、种群大小、迭代次数等来调用ga函数进行优化。
2. Genome类Genome类是Matlab中用于描述染色体的一个重要类。
通过设置基因和适应度函数等属性,可以方便地定义问题的解空间和优化目标。
3. 优化工具Matlab的优化工具箱中提供了多种遗传算法优化函数,如gamultiobj、paretosearch等。
这些函数用于多目标优化问题,能够得到问题的各种最优解。
三、遗传算法的应用遗传算法在各个领域的应用越来越广泛,包括机器学习、控制算法设计、电力系统优化等。
下面将举几个具体的例子来说明遗传算法在工程领域的应用。
1. 机器学习遗传算法可以用于优化神经网络的结构和权重。
通过调整网络的连接和节点数,以及不同的激活函数和损失函数,可以得到更好的机器学习模型。
2. 控制算法设计在控制系统设计中,遗传算法可以用于调整控制器的参数,使得系统的性能指标达到最优。
(实例)matlab遗传算法工具箱函数及实例讲解
(实例)matlab遗传算法工具箱函数及实例讲解matlab遗传算法工具箱函数及实例讲解核心函数:(1)function[pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数【输出参数】pop--生成的初始种群【输入参数】num--种群中的个体数目bounds--代表变量的上下界的矩阵eevalFN--适应度函数eevalOps--传递给适应度函数的参数options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B],如precision--变量进行二进制编码时指定的精度F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度)(2)function [x,endPop,bPop,traceInfo] =ga(bounds,evalFN,evalOps,startPop,opts,...termFN,termOps,selectFN,selectOps,xOverFNs,xOverO ps,mutFNs,mutOps)--遗传算法函数【输出参数】x--求得的最优解endPop--最终得到的种群bPop--最优种群的一个搜索轨迹【输入参数】bounds--代表变量上下界的矩阵evalFN--适应度函数evalOps--传递给适应度函数的参数startPop-初始种群opts[epsilon prob_ops display]--opts(1:2)等同于initializega 的options参数,第三个参数控制是否输出,一般为0。
如[1e-6 1 0] termFN--终止函数的名称,如['maxGenTerm']termOps--传递个终止函数的参数,如[100]selectFN--选择函数的名称,如['normGeomSelect']selectOps--传递个选择函数的参数,如[0.08]xOverFNs--交叉函数名称表,以空格分开,如['arithXover heuristicXover simpleXover']xOverOps--传递给交叉函数的参数表,如[2 0;2 3;2 0]mutFNs--变异函数表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation'] mutOps--传递给交叉函数的参数表,如[4 0 0;6 100 3;4 100 3;4 0 0]matlab遗传算法工具箱附件【注意】matlab工具箱函数必须放在工作目录下【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08【程序清单】%编写目标函数function[sol,eval]=fitness(sol,options)x=sol(1);eval=x+10*sin(5*x)+7*cos(4*x);%把上述函数存储为fitness.m文件并放在工作目录下initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代运算结果为:x =7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)注:遗传算法一般用来取得近似最优解,而不是最优解。
matlab工具箱遗传算法使用方法
matlab工具箱遗传算法使用方法简单的遗传算法可以使用Matlab自带的遗传算法工具箱,但是要从Matlab2021版本之后才会自带这个工具箱,且调用命令也有变化,分别是gatool和optimtool。
GUI界面如下图所示:1、problem setup and results设置与结果(1)Solver:求解程序,选择要用的求解程序(遗传算法,遗传算法多目标等)(2)problem:1)fitness function适应度函数,求最小,这里的使用度函数要自己编写,书写格式是“@函数名”。
2)number of variable变量数,必须是整数,即,使用这个GUI界面的适应度函数的变量必须是[1*n]的向量,而不能是[m*n]的矩阵。
3)constraints约束4)linear inequalities线性不等式,A*x<=b形式,其中A是矩阵,b是向量 5)linear equalities线性等式,A*x=b形式,其中A是矩阵,b是向量6)bounds定义域,lower下限,upper上限,列向量形式,每一个位置对应一个变量7)nonlinear constraint function非线性约束,用户定义,非线性等式必须写成c=0形式,不等式必须写成c<=0形式8)integer variable indices整型变量标记约束,使用该项时Aeq和beq必须为空,所有非线性约束函数必须返回一个空值,种群类型必须是实数编码举例,若是想让第一个、第三个、第五个变量保持是整数的话,则直接在此处填写[1 3 5] 9)run solver and view results求解use random states from previous run使用前次的状态运行,完全重复前次运行的过程和结果2、population(1)population type编码类型1)double vector实数编码,采用双精度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2 遗传算法的特点 3
1.2.1 遗传算法的优点 3
1.2.2 遗传算法的不足之处 4
1.3 遗传算法与传统方法的比较 4
1.4 遗传算法的基本用语 6
1.5 遗传算法的研究方向 7
1.6 基于遗传算法的应用 8
第二章 基本遗传算法及改进 11
作 者:雷英杰 张善文 李续武 周创明
出版社:西安电子科技大学出版社
本书系统介绍MATLAB遗传算法和直接搜索工具箱的功能特点、编程原理及使用方法。全书共分为9章。第一章至第四章介绍遗传算法的基础知识,包括遗传算法的基本原理,编码、选择、交叉、变异,适应度函数,控制参数选择,约束条件处理,模式定理,改进的遗传算法,早熟收敛问题及其防止等。第五章至第七章介绍英国设菲尔德(Sheffield)大学的MATLAB遗传算法工具箱及其使用方法,举例说明如何利用遗传算法工具箱函数编写求解实际优化问题的MATLAB程序。第八章和第九章介绍MathWorks公司最新发布的MATLAB遗传算法与直接搜索工具箱及其使用方法。
9.3 使用直接搜索工具 218
9.3.1 浏览模式搜索工具 218
9.3.2 从命令行运行模式搜索 226
9.3.3 模式搜索举例 229
9.3.4 参数化函数 243
9.4 模式搜索参数和函数 245
9.4.1 模式搜索参数 245
9.4.2 模式搜索函数 253
第九章 使用MATLAB直接搜索工具 208
9.1 直接搜索工具概述 208
9.2 直接搜索算法 209
9.2.1 何谓直接搜索 209
9.2.2 执行模式搜索 209
9.2.3 寻找函数最小值 210
9.2.4 模式搜索术语 212
9.2.5 模式搜索如何工作 214
6.3 目标函数和适应度函数 96
6.4 选择 97
6.5 交叉 99
6.6 变异 101
6.7 重插入 101
6.8 遗传算法的终止 102
6.9 数据结构 102
6.10 多种群支持 104
6.11 示范脚本 105
第七章 遗传算法应用举例 107
7.1 简单一元函数优化实例 107
4.1 编码 45
4.1.1 编码方法 46
4.1.2 编码评估策略 48
4.2 选择 48
4.3 交叉 52
4.4 变异 55
4.5 适应度函数 57
4.5.1 适应度函数的作用 57
4.5.2 适应度函数的设计主要满足的条件 58
4.5.3 适应度函数的种类 58
参考文献 259
8.1.2 编写待优化函数的M文件 148
8.2 使用遗传算法工具初步 149
8.2.1 遗传算法使用规则 149
8.2.2 遗传算法使用方式 150
8.2.3 举例:Rastrigin函数 151
8.2.4 遗传算法的一些术语 156
8.2.5 遗传算法如何工作 157
7.10 图像分割问题 134
7.11 一些测试函数对应的优化问题 136
7.11.1 轴并行超球体的最小值问题 136
7.11.2 旋转超球体的最小值问题 137
7.11.3 Rosenbrock’s Valley最小值问题 138
7.11.4 Rastrigin函数的最小值问题 139
5.1.6 多子群支持 64
5.2 遗传算法中的通用函数 64
5.2.1 函数 bs2rv 64
5.2.2 函数 crtbase 66
5.2.3 函数 crtbp 66
5.2.4 函数 crtrp 67
5.2.5 函数 migrate 68
5.2.6 函数 mut 69
5.2.7 函数 mutate 71
5.2.8
5.2.10 函数 recdis 76
5.2.11 函数 recint 77
5.2.12 函数 reclin 78
5.2.13 函数 recmut 79
5.2.14 函数 recombin 81
3.1 模式定理 34
3.2 积木块假设 36
3.3 欺骗问题 37
3.4 遗传算法的未成熟收敛问题及其防止 39
3.4.1 遗传算法的未成熟收敛问题 39
3.4.2 未成熟收敛的防止 40
3.5 性能评估 41
3.6 小生境技术和共享函数 43
第四章 遗传算法的基本原理与方法 45
本书取材新颖,内容丰富,逻辑严谨,语言通俗,理例结合,图文并茂,注重基础,面向应用。书中包含大量的实例,便于自学和应用。
本书可作为高等院校计算机、自动化、信息、管理、控制与系统工程等专业本科生或研究生的教材或参考书,也可供其他相关专业的师生及科研和工程技术人员自学或参考。
第一章 遗传算法概述 1
8.3 使用遗传算法工具求解问题 160
8.3.1 使用遗传算法工具GUI 160
8.3.2 从命令行使用遗传算法 172
8.3.3 遗传算法举例 177
8.4 遗传算法参数和函数 192
8.4.1 遗传算法参数 192
8.4.2 遗传算法函数 203
8.4.3 标准算法选项 207
7.11.5 Schwefel函数的最小值问题 140
7.11.6 Griewangk函数的最小值问题 141
7.11.7 不同权的总和最小值问题 142
7.12 多目标优化问题 142
第八章 使用MATLAB遗传算法工具 146
8.1 遗传算法与直接搜索工具箱概述 146
8.1.1 工具箱的特点 146
2.1 遗传算法的运行过程 11
2.1.1 完整的遗传算法运算流程 11
2.1.2 遗传算法的基本操作 13
2.2 基本遗传算法 14
2.2.1 基本遗传算法的数学模型 14
2.2.2 基本遗传算法的步骤 14
2.2.3 遗传算法的具体例证 16
2.3 改进的遗传算法 22
4.5.4 适应度尺度的变换 59
4.6 控制参数选择 60
4.7 约束条件的处理 61
第五章 遗传算法工具箱函数 62
5.1 工具箱结构 62
5.1.1 种群表示和初始化 63
5.1.2 适应度计算 63
5.1.3 选择函数 63
5.1.4 交叉算子 64
5.1.5 变异算子 64
2.3.1 改进的遗传算法一 23
2.3.2 改进的遗传算法二 24
2.3.3 改进的遗传算法三 25
2.3.4 改进的遗传算法四 28
2.4 多目标优化中的遗传算法 30
2.4.1 多目标优化的概念 30
2.4.2 多目标优化问题的遗传算法 31
第三章 遗传算法的理论基础 34
5.2.23 函数 xovmp 90
5.2.24 函数 xovsh 91
5.2.25 函数 xovshrs 92
5.2.26 函数 xovsp 93
5.2.27 函数 xovsprs 94
第六章 遗传算法工具箱的应用 95
6.1 安装 95
6.2 种群的表示和初始化 95
7.2 多元单峰函数的优化实例 111
7.3 多元多峰函数的优化实例 115
7.4 收获系统最优控制 118
7.5 装载系统的最优问题 122
7.6 离散二次线性系统最优控制问题 125
7.7 目标分配问题 128
7.8 双积分的优化问题 130
7.9 雷达目标识别问题 131
5.2.15 函数 reins 81
5.2.16 函数 rep 84
5.2.17 函数 rws 84
5.2.18 函数 scaling 85
5.2.19 函数 select 86
5.2.20 函数 sus 88
5.2.21 函数 xovdp 88
5.2.22 函数 xovdprs 89