七年级下册平面直角坐标系教案
《平面直角坐标系》优秀教案(精选12篇)
《平面直角坐标系》优秀教案《平面直角坐标系》优秀教案(精选12篇)教案是教师为顺利而有效地开展教学活动, 根据课程标准, 教学大纲和教科书要求及学生的实际情况, 以课时或课题为单位, 对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
下面是小编为大家整理的《平面直角坐标系》优秀教案, 仅供参考, 欢迎大家阅读。
《平面直角坐标系》优秀教案篇1教材分析1、教材的地位与作用本节课的教学内容是义务教育课程标准实验教科书, 七年级下册第6.1.2节平面直角坐标系又称笛卡儿坐标。
平面直角坐标系是图形与数量之间的桥梁, 有了它我们便可以把几何问题转化为代数问题, 也可以把代数问题转化为几何问题。
本章内容从数的角度刻画了第五章有关平移的内容, 对学生以后的学习起到铺垫作用, 6.1.2节平面坐标系主要是介绍如何建立平面坐标系, 如何确定点的坐标和由点的坐标寻找点的位置, 以及平面坐标系中特殊部位点的坐标特征, 根据学生的接受能力, 我把本内容分为2课时, 这是第一课时, 主要介绍如何建立坐标系和在给定的坐标系中确定点的坐标。
2、教学目标根据新课标要求, 数学的教学不仅要传授知识, 更要注重学生在学习中所表现出来的情感态度, 帮助学生认识自我、建立信心。
知识能力:①认识平面直角坐标系, 了解点与坐标的对应系;②在给定的直角坐标系中, 能由点的位置写出点坐标。
数学思考:①通过寻找确定位置, 发展初步的空间观念;②通过学习用坐标的位置, 渗透数形结合思想解决问题:通过运用确定点坐标, 发展学生的应用意识。
情感态度:①通过建立平面直角坐标系和确定坐标系中点的坐标, 培养学生合作交流与探索精神;②通过介绍数学家的故事, 渗透理想和情感的教育。
3、重难点根据本章知识内容以及学生对坐标横纵坐标书写易出错误, 确定本节重难点为:重点: 认识平面坐标系难点: 根据点的位置写出点的坐标一、教法分析针对学初一学生的年龄特点和心理特征, 以及他们现有知识水平, 通过科学家发现点的坐标形成的经过启迪学生思维, 通过小组合作与交流及尝试练习, 促进学生共同进步, 并用肯定和激励的言语鼓舞、激励学生。
平面直角坐标教案5篇
平面直角坐标教案5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如工作总结、工作计划、作文大全、心得体会、申请书、演讲稿、教案大全、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as work summaries, work plans, essays, experiences, application forms, speeches, lesson plans, and other sample articles. If you want to learn about different data formats and writing methods, please pay attention!平面直角坐标教案5篇一个教案使教师更好地在教学中应对学生的学习差异和特殊需求,老师在编写教案时需要充分考虑学生的学习需求和兴趣点,以下是本店铺精心为您推荐的平面直角坐标教案5篇,供大家参考。
人教版七年级下册第七章平面直角坐标系7.1.1有序数对优秀教学案例
(三)小组合作
1.将学生分成若干小组,鼓励他们相互讨论、交流,共同解决问题。
2.设计小组合作任务,让学生通过合作完成任务,培养他们的团队合作意识。
3.在小组合作过程中,教师要关注每个学生的参与程度,及时给予指导和鼓励。
4.鼓励学生分享自己的解题思路和方法,培养他们的表达能力和倾听能力。
5.多元化的教学评价:本节课注重对学生的全面评价,不仅关注他们的学习成果,还注重他们的学习过程和团队合作能力。教师通过观察、提问、作业批改等方式,及时给予学生反馈和指导,帮助他们纠正错误和提高解题能力。同时,鼓励学生自主学习和思考,培养他们的创新能力和实践能力。
本节课的教学目标是让学生理解有序数对的含义,掌握用有序数对表示点的方法,并能够利用坐标轴来表示和理解实际问题中的点。在教学过程中,我将以实际问题为导入,引导学生通过观察和分析来发现有序数对与坐标系之间的关系,通过小组合作和讨论来加深对知识的理解,培养学生的合作意识和解决问题的能力。在教学方法上,我将采用问题驱动的教学模式,让学生在解决问题的过程中自主探索和学习,提高学生的主动学习和思考的能力。同时,我还将注重对学生的个别辅导,帮助他们在学习过程中解决遇到的问题,提高他们的学习效果。
5.创设丰富的教学情境,引导学生运用所学知识解决实际问题,培养学生的创新能力和实践能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热情,使他们愿意主动参与到数学学习中。
2.培养学生克服困难的勇气和信心,使他们能够面对挑战,积极解决问题。
3.培养学生良好的学习习惯,使他们能够独立思考,自主学习。
3.设计有趣的数学游戏,让学生在游戏中自然而然地接触到有序数对和平面直角坐标系。
七年级数学下册《建立适合的平面直角坐标系确定点的坐标》教案、教学设计
-设计一张教室座位图,用坐标系表示出你所在位置及几位同学的位置。
-选择一个日常生活中的场景,如商场、公园等,建立坐标系,并标注出其中几个感兴趣点的坐标。
3.提高拓展题:
-在坐标系中绘制一个正方形,然后通过平移、旋转等变换,用坐标表示出变换后的正方形。
-研究坐标的对称性,找出一些关于原点、坐标轴对称的点,并说明它们之间的关系。
注意事项:
-请同学们认真完成作业,注意书写规范,保持解答过程的简洁。
-对于应用实践题和提高拓展题,鼓励同学们发挥想象力和创造力,将所学知识应用到实际情境中。
-家长在监督孩子完成作业时,注意引导孩子思考,激发他们的学习兴趣,而不是直接给出答案。
4.反馈指导:教师针对学生的练习情况进行反馈,针对共性问题进行讲解,对个别问题进行指导。
(五)总结归纳
1.学生总结:让学生回顾本节课所学内容,分享自己的收获和理解。
2.教师点评:教师对学生的总结进行点评,强调坐标系和坐标的重要性,以及它们在解决实际问题中的应用。
3.知识拓展:介绍坐标系在数学和其他学科领域的拓展应用,激发学生的学习兴趣。
三、教学重难点和教学设想
(一)教学重难点
1.建立正确的平面直角坐标系概念,理解坐标轴、原点、网格的含义。
-对于坐标系的理解是本章节的核心,学生需要能够不仅在视觉上识别坐标系,还要在抽象层面理解其构成和作用。
-教学中应重点关注学生对坐标轴上正负方向的判断,以及如何从坐标系中读取和确定点的坐标。
2.掌握坐标的确定方法,能够将实际问题转化为坐标系中的点。
4.操作说明:介绍如何使用直尺、圆规等工具在纸上建立平面直角坐标系,并确定点的坐标。
(三)学生小组讨论
1.分组讨论:将学生分成小组,讨论以下问题:
河北省平泉四海中学七年级数学下册:第七章平面直角坐标系(教案)
-在实际问题中运用坐标系,包括从实际问题中抽象出坐标系模型。
举例解释:
-难点1:学生往往难以理解不同象限内点的坐标符号规律,需要通过直观图示和实际操作来加强理解。
-难点2:对称点坐标的确定需要学生具备一定的空间想象能力,教师需提供多个示例,帮助学生建立直观感受。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平面直角坐标系》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要确定位置的情况?”(例如:在地图上找到某个地方的位置)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平面直角坐标系的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调坐标系的基本性质和坐标运算这两个重点。对于难点部分,如对称点的坐标确定,我会通过图示和实际操作来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平面直角坐标系相关的实际问题,如如何在坐标系中表示物体的移动。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用坐标系来测量教室中物体的位置。
-难点3:教师需要引导学生如何将实际问题转化为坐标系中的数学问题,例如在地图上标定地点时,如何确定坐标。
在教学过程中,教师应针对上述重点和难点内容,采用多样化的教学手段和方法,如实物演示、互动讨论、动态软件模拟等,以确保学生能够深刻理解并掌握平面直角坐标系的相关知识。同时,通过分层设计的练习题,逐步引导学生从基础概念学习到复杂问题解决的能力提升。
五、教学反思
在今天的教学中,我尝试了多种方法来帮助学生理解平面直角坐标系的概念和应用。我发现,通过生活中的实际例子引入,确实能够激发学生的兴趣,让他们意识到数学知识在现实世界的实用性。然而,我也注意到,对于坐标系的理解,尤其是坐标符号和对称点的问题,学生们的掌握程度并不均衡。
七年级数学《平面直角坐标系》教案
“三部五环”教学模式设计《6.1.2平面直角坐标系》教学设计问题4、如图是旬阳各学校示意图。
(1)你是如何确定各个学校的位置的?(2)如果以“中心广场”为原点作两条相互垂直的数轴,分别取向右和向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,那么你能表示“旬阳中学”的位置吗?“旬阳一中”的位置呢?(3)平面直角坐标系如何建立,怎样确定点的坐标,在坐标系中怎样描点,象限如何划分?(1)根据学生活动进程出示问题4。
(2)根据学生口述,板书问题结果,重点关注全体学生是否能用有序数对表示。
(3)发动学生评价矫正问题4过程,引导学生将结论用文字语言表述出来,并加以板书。
(4)强调平面直角坐标系的概念,如何建立平面直角坐标系,并详细介绍平面直角坐标系中点的坐标如何确定。
(5)细讲平面直角坐标系中象限的划分,强调坐标轴上的点不属于任何象限。
【学生活动】(1)思考问题4的解答过程。
(2)3名学生回答问题4。
(3)讨论问题4结论,其余学生参与纠正补充。
(4)认真听教师讲解平面直角坐标系的建立方法,点的坐标的确定以及象限的划分。
(5)学生思考四个象限内的点的坐(1)出示幻灯片旬阳各学校示意图。
(2)出示幻灯片“平面直角坐标系”。
【设计意图】1、从学生比较熟悉的例子引入,容易引起学生的注意,简单的几个问题,唤起学生的共鸣,使他们能很快地投入到学习的情境中。
2、通过一个实际问题的分析,使学生更加明确在现实生活中有序数对的作用,为后面建立平面直角坐标系做铺垫。
3、平面直角坐标系的建立以及象限的划分采用教师讲解的方法,学生更容易理解。
4、通过学生自己探究,既有利于对四个象限概念的理解,又有利于对点的坐标的理解,特别是横坐标、纵坐标的符号规律。
标的符号有什么规律。
活动三变式练习,巩固新知问题1、如图,写出图中A,B,C,D,E,F各点的坐标。
2、在如图的直角坐标系中描出下列各组点A(2,1),B(0,2),C(0,0),D(4,0)并将各点用线段依次连接起来。
最新人教版七年级数学下册第7章平面直角坐标系复习教学设计
平面直角坐标系复习教学目标:1.能准确画出平面直角坐标系,由点的位置写出坐标,由点的坐标确定点的位置.掌握特殊位置点的坐标特征,并能用坐标表示平移变换.2.会建立适当的平面直角坐标系,用坐标表示地理位置.3.通过观察、尝试、交流,提高学生数形结合思想,培养学生归纳,整理所学知识和应用数学的意识.教学重点:1.准确确定平面内点的位置和坐标,并能进行综合应用.2.根据实际问题建立适当的平面直角坐标系,并解决实际问题教学难点:1.正确运用坐标特征解决实际问题.2.平面直角坐标系的实际应用.教学方法:启发、讨论、交流.教具准备:多媒体课件.教学过程:一、创设情景,导入新课这是一张某市旅游景点示意图,我们以中心广场所在水平线为横轴,以中心广场所在铅垂线为纵轴建立平面直角坐标系,你们能说出各景点的坐标吗?平面直角坐标系是确定平面内点的坐标的重要工具,用它可以解决很多实际问题,本节课我们大家一起来复习“平面直角坐标系”这一章.(由一个具体实例引出课题,可激发学生的兴趣,创造积极的求知氛围)二、师生互动,构建知识框架1.有序数对:有序数对是指______的两个数组成的数对,它的表示形式是(a,b).2.平面直角坐标系的意义:在平面内,两条具有、并且______的数轴所构成的图形叫做平面直角坐标系,其中水平的数轴叫做______或_______,取向______方向为正方向,竖直的数轴叫做______或_______,取向______方向为正方向,横轴与纵轴的交点叫做平面直角坐标系的______,平面直角坐标系的两条数轴把坐标平面分成四个象限,这两条数轴的正方向的所夹的象限叫做第______象限,其它三个象限按逆时针方向依次叫做第______、______、______象限,坐标轴不属于任何象限.注意:(1)组成平面直角坐标系的四个要素:①在同一平面内;②两条数轴;③互相垂直;④有公共原点.(2)两个规定:①正方向的规定:横轴取向右为正方向,纵轴取向上为正方向;②两条数轴单位长度规定:一般情况下,横轴与纵轴单位长度相同,为了实际需要有时横轴与纵轴单位长度可以不同.3.坐标平面内点的坐标的符号特征(填“+”或“-”):4.特殊点的坐标性质:(1)平行于坐标轴直线上的点的坐标:平行于x轴的直线上的各点的________相同,_______不同;平行于y轴的直线上的各点的_________相同,__________不同;(2)点P(x,y)在第一、三象限的角平分线上,则,P(x,y)在第二、四象限的角平分线上,则;(3)对称点的坐标:点P(a,b)关于x轴对称的点为_________,点P(a,b)关于y轴对称的点为__________;(4)点到两轴的距离的意义:点P(x,y)到x轴的距离为_____,到y轴的距离为____;(5)点的坐标与图形平移的关系:一个图形在平面直角坐标系中进行平移,其坐标就要发生相应的变化,可以简单地理解为:左、右平移纵坐标,横坐标,变化规律是,上下平移横坐标,纵坐标,变化规律是.5.用坐标表示地理位置的一般过程:(1);(2);(3).(学生独立思考后与同伴交流各自的答案,学生代表发言,教师纠正学生出现的问题.)评析:复习时以点的坐标特征为主线,把全章知识系统化,条理化,全面化,以便于应用,同时也培养了学生的归纳概括能力.三、运用知识,进行基础训练例1在已给的平面直角坐标系中描出下列各点,并指出各点所在的象限或坐标轴.A(2,3),B(-2,-3),C(4,-3),D(1.5,0),E(-1,5),F(0,-2),G(0,0).练习1:1.点A(-3,4)在第象限,点B(2,-5)在第象限;2.如果点A( a,b)在第四象限,那么点B(b,-a)在第象限;若C(x,y)满足xy=0,则点C一定在;(根据点的坐标特征确定点的位置)(学生通过描点,加深了对平面直角坐标系和坐标的认识,为解决后面的问题作好铺垫)3.已知点P(1+2a,3-a)在x轴上,则点P的坐标为;4.已知线段AB∥y 轴,且A(-2,3),AB =5,那么点B的坐标是;5.若点P( 2a+5,4a-3)在第一、三象限的角平分线上,则点P的坐标为;6.已知点P( a-4,2-3a)在二、四象限的角平分线上,则点P的坐标为;(根据特殊位置点的坐标特征确定点的坐标)7.在平面直角坐标系中,若点P在第二象限,点P到x轴的距离是3,到y轴的距离是2,则点P的坐标是;(根据点的坐标的几何意义确定点的坐标)8.已知点P(2,-3)先向左平移3个单位长度,再向上平移5个单位长度得到点P′,则点P′坐标为;(根据点的平移变换与坐标变化规律确定点的坐标)9.点P(3,-2)关于y 轴对称点的坐标是.(根据对称点坐标的规律确定点的坐标)评析:这些题型不仅对所学知识能进一步理解和应用,而且也提高了学生用数学知识解决问题的能力.例2如图是某市部分平面简图(图中小正方形的边长代表100 m长),请建立适当的平面直角坐标系,并写出各地的坐标.(学生在自己设计的活动中体验怎样建立平面直角坐标系,训练学生数学表达能力,也给学生极大的创造空间,有利于学生个性发展)四、拓宽知识,实现知识迁移师:平面直角坐标系是建立图形和数量关系的桥梁,反映了数学中重要的思想方法——数形结合,下面我们以图形面积为例说明怎样用数形结合思想、转化思想解决有关问题.例3在平面直角坐标系中,△ABC的顶点都在网格点上.(1)平移△ABC,使得点C与坐标原点O重合,请画出平移后的△A′B′C′;(2)写出A、B两点对应点A′、B′的坐标;(3)求△A′B′C′的面积.(学生自己动手画图,作适当的辅助线,将所求图形的面积转化为规则图形的面积差来求,然后同伴相互交流)评析:学生在做数学的过程中掌握了一些数学思想方法,积累了数学解题经验,感受到了数学的应用价值.练习21.在平面直角坐标系中,点P(m2+1,-4)在象限.2.已知点A(a,-5),B(8,b),根据下列要求,确定a,b的值:(1)A,B两点关于y轴对称;(2)A,B两点关于原点对称;(3)AB∥x轴;(4)A,B两点在第一,三象限的平分线上.3.在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为.4.如图,方格纸中每个小方格都是长为1个单位的正方形,若学校位置坐标为A(2,1),图书馆位置坐标为B(﹣1,﹣2),解答以下问题:(1)在图中试找出坐标系的原点,并建立直角坐标系;(2)若体育馆位置坐标为C(1,﹣3),请在坐标系中标出体育馆的位置;(3)顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.五、师生小结,概括本章内容通过本节复习课,你对本章知识是否有了更深的认识呢?谈谈你的体会.(通过学生自己总结,加强学生对复习课的认识和学习方法的掌握)六、布置作业,拓展思维空间1.书本P84第1,2,4题;2.请你绘制一幅学校平面分布图,并用坐标表示.(强化用坐标表示地理位置的实际应用).。
新人教版七年级下册第七章《平面直角坐标系》全章教案(共6份)
7.1.1有序数对问题与情境游戏“找朋友”问题:(1)只给一个数据如“第3列”你能确定好朋友的位置吗?(2)给两个数据如“第3列第2排”你能确定好朋友的位置吗?为什么?(3)你认为需要几个数据能确定一个位置?1. 【提出问题】请在教室找到如下表用数对表示的同学位置:发现:在教室里排数与列数的先后顺序没有约定的情况下,不能确定参加数学问题讨论的同学假设约定“列数在前,排数在后”,你能找到参加数学问题讨论的同学的座位吗?情景引入合作探究二次备课思考:(1) ( 2, 4)和(4, 2)在同一个位置吗?(2) 如果约定“排数在前,列数在后”,刚才那些同学对应的有序 数对会变化吗?2. 【师生归纳】有序数对:我们把有顺序的两个数 a 与b 组成的数对,叫做有序数对。
记作(a ,b )思考:在生活中还有用有序数对表示一个位置的例子吗?3. 【例题讲解】例1:如图,甲处表示 2街与5巷的十字路口,乙处表示5街5巷的十字路口,如果用(2,5 )表示甲处的位置,那么(2,5 ) T (3,5 ) 7( 4,5 )T ( 5,5 )T ( 5,4 )T ( 5,3 )T ( 5,2 )表示从甲处到乙 处的一种路线,请你用有序数对写出几种从甲处到乙处的路线。
例2 :请同学们说出以下各个地点所表示的有序数对。
—1 逼 族(6 T 8 11____d斟9-------d呻(&5)办___ 1 服(:学忙(:挣閒]7^I 23 弓5£ T &? I U例3: 图中五角星五个顶点的位置如何表示?已知 A (0,0 ) B(2,1 )合 作 探 究甲乙5 4 3 21街例5:右图:若黑马的位置用(3, 7)表示,请你用有序数对表示 黑马可以走到的哪几个位置。
例6:如右图,方块中有 25个汉字,用(C,3)表示“天”那么按下 列要求排列会组成一句什么话,把它读出来。
(1) (A,5 ) (A,3) (C,4 ) (E,5 ) (B,1) (C,2) (B,4)(2) (B,4) (C,2) (D,4) (C,5) (A,1) (D,3) (E,1)例7:台风“麦莎” 2005年7月31日生成,8月6日凌晨3点40 分在玉环干江登陆即:东经 121.8度,北纬28.6度,你能找到具体 登落点吗?合 作探 究例4:“怪兽吃豆豆”是一种计算机游戏,图中的•标志表示“怪 兽”先后经过的几个位置,如果用 (1,2)表示“怪兽”经过的第 2个 位置,那么你能用同样的方式表示出图中“怪兽”经过的其他几个5 可 明 个 万 女 4 中 我 的 -一- 学 3 爱 英 天 帅 活 2 球 里 是 生 大 1小孩打习哥AB C D E7.1.2平面直角坐标系(第一课时)II1.在平面直角坐标系内,下列各点在第四象限的是 A.(2,1) B.(-2,1) C.(-3,-5) D.(3,-5)2.已知坐标平面内点 A(m,n)在第四象限,那么点B(n,m)在(3.设点M( a , b )为平面直角坐标系中的点当a>0,b<0时点M 位于第几象限? 当ab>0时,点M 位于第几象限?当a 为任意数时,且b<0时,点M 直角坐标系中的位置是什么?象限;点(-1.5,-1)1•点(3,-2 )在第C.第三象限D.第四象限0 --A.第一象限B.第二象限点的位胃在第PM 彖阳在正半轴上 衣r 轴匕金员拿抽上/ 纽在亟丰粧上 ' 住力半眦上7.1.2平面直角坐标系(第二课时)教学过程设计问题与情境二次备课【复习旧知】1•什么是平面直角坐标系?什么是横轴,纵轴,坐标原点?坐标平面被两条坐标轴分成了哪些象限?2. 平面直角坐标系内点与坐标之间有什么关系?3. 象限内的点和坐标轴上的点有什么特征?入■~~【提出问题】合作探探究一究如图,正方形ABCD勺边长6.(1 )如果以点A为原点,AB所在的直线为x轴建立平面直角坐标系,那么y轴在什么位置?写出正方形的顶点A B, C, D的坐标.(2)另建立一个平面直角坐标系,此时正方形的顶点A, B, C, D 的坐标又分别是什么?(3)以点A为原点,AB所在的直线为x轴建立平面直角坐标系中,点C到x轴、y轴的距离是多少?(4 )观察:点E和点C坐标之间有什么联系?点E和点D坐标之间呢?【师生归纳】设P点坐标为(a,b ),则点P到x轴的距离是____________________ ;点P到y平行于横轴的直线上的点的纵坐标相同;平行于纵轴的直线上的点的横坐标相同探究二:分别写出图中点A、B、C的坐标.观察图形,回答下列问题:合作探究7.2.1用坐标表示地理位置(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称教师继续出示问题:你认为利用平面直角坐标系描述地理位置时应注意哪些问题?(1)注意选择适当的位置为坐标原点,这里所说的适当,通常是比较明显的地点或是所要绘制的区域内较居中的位置.(2 )坐标轴的方向通常是以正北为纵轴的正方向,这样可以使东西南北的方向与地理位置的方向一致.(3 )要注意标明适当的单位长度.(4)有时,由于地点比较集中,坐标平面又较小,各地点的名称在图上可以用代号标出,在图外另附名称. (同学可举例说明)尝试应用施的位置如何表示?1、如图,一艘船在A处遇险后向相距35 n mile 位于B处的救生船报警.补充提高(1)如何用方向和距离描述救生船相对于遇险船的位置?(2)救生船接到报警后准备前往救援,如何用方向和距离描述遇险船相对于救生船的位置?722用坐标表示平移第六章小结与复习3. 平面直角坐标系的有关概念。
第七章_平面直角坐标系_教案_七年级数学下册
张明:“我这里的坐标是(300,300)”. 王丽:“我这里的坐标是(200,300)”. 李华:“我在你们东北方向约420米处”. 实际上,他们所说的位置都是正确的.你知道张明和王丽同学是如何 在景区示意图上建立的坐标系吗?你理解李华同学所说的“东北方向约 420米处”吗? 用他们的方法,你能描述公园内其他景点的位置吗? 让学生分别画出直角坐标系,标出其他景点的位置. 三、小结 1、让学生归纳说出如何利用坐标表示地理位置. 2、建立恰当的坐标系 四、课后作业 教材第78页习题7.2 第1,8,10题
难点:理解坐标平面内的点与有序实数对的一一对应关系. 三、教学过程 (一)复习导入 数轴上的点可以用什么来表示? 可以用一个数来表示,我们把这个数叫做这个点的坐标。 如图,点A的坐标是2,点B的坐标是-3.
C
坐标为-4的点在数轴上的什么位置? 在点C处. 这就是说,知道了数轴上一个点的坐标,这个点的位置就确定了。 (二)平面直角坐标系 思考:平面内的点又怎样表示呢? 这就是我们这节课所学的——平面直角坐标系(并板出课题) 什么是平面直角坐标系? 带着这个问题阅读课本P66页,并完成平面直角坐标系概念:
第二象限 ( -,+ ) 第一象限 ( +,+ ) 第二象限 ( -,- ) 第二象限 ( +,- )
各象限上的点有何特点?
学生交流后得到共识,各象限坐标的符号: 第一象限上的点,横坐标为正数,纵坐标为正数, 即(+,+) 第二象限上的点,横坐标为负数,纵坐标为正数, 即(-,+) 第三象限上的点,横坐标为负数,纵坐标为负数, 即(-,-) 第四象限上的点,横坐标为正数,纵坐标为负数, 即(+,-) 练习:点A(4,5)在第 象限; 点B(-2,3)在第____象限.; 点C(-4,-1)在第____象限; 点D(2.5,-2)在第____象 限; 点E(0,-4).在 ; 点F (0,5)在 。 (六)例题讲解 P67 例 在平面直角坐标系中描出下列各点: A(4,5), B(-2,3), C(-4,-1), D(2.5,-2), E(0,-4). 分析:根据点的坐标的意义,经过A点作x轴的垂线,垂足的坐标 是A点横坐标,作y轴的垂线,垂足的坐标是A点的纵坐标。你认为应该 怎样描出点A的坐标? 先在x轴上找出表示4的点,再在y轴上找出表示5的点, 过这两个 点分别作x轴和y轴的垂线,垂线的交点就是A. 类似地,我们可以描出点B、C、D、E. 因此,我们可以得出:对于坐标平面内任意一点M,都有唯一的 一对有序实数对(x,y) (即点M的坐标)和它对应;反过来,对于任意一对有序实数对(x, y),在坐标平面内都有 唯一的一点M (即坐标为(x,y)的点)和它对应。也就是说,坐 标平面内的点与有序实 数对是一一对应的。 (七)建立平面直角坐标系 P68 探究:如图,正方形ABCD的边长为6.
人教版七年级数学下册7.1.2《平面直角坐标系》教学设计
人教版七年级数学下册7.1.2《平面直角坐标系》教学设计一. 教材分析《平面直角坐标系》是人教版七年级数学下册第七章第一节的内容,主要介绍了平面直角坐标系的定义、各象限内点的坐标特征及坐标轴上的点的坐标特征。
这部分内容是学生学习函数、几何等知识的基础,对于培养学生的空间想象能力和抽象思维能力具有重要意义。
二. 学情分析七年级的学生已具备一定的数学基础,但对于平面直角坐标系的理解和应用还需要通过实例来加强。
学生在学习过程中应能够借助图形直观地理解坐标系,掌握各象限内点的坐标特征,并能够运用坐标系解决实际问题。
三. 教学目标1.知识与技能:理解平面直角坐标系的定义,掌握各象限内点的坐标特征及坐标轴上的点的坐标特征。
2.过程与方法:通过实例分析,培养学生的空间想象能力和抽象思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和探究精神。
四. 教学重难点1.重点:平面直角坐标系的定义,各象限内点的坐标特征及坐标轴上的点的坐标特征。
2.难点:坐标系在实际问题中的应用。
五. 教学方法1.情境教学法:通过实例引入坐标系的概念,让学生在实际情境中理解坐标系的含义。
2.合作学习法:引导学生分组讨论,共同探究坐标系的性质,培养学生的合作意识。
3.问题驱动法:提出问题,引导学生思考,激发学生的探究精神。
六. 教学准备1.教学素材:准备相关实例,如图形、图片等,用于导入和巩固环节。
2.教学工具:准备黑板、粉笔、投影仪等教学工具。
七. 教学过程1.导入(5分钟)利用多媒体展示生活中的实例,如商场地图、停车场示意图等,引导学生思考如何用数学工具表示这些实例中的点。
通过讨论,引入平面直角坐标系的概念。
2.呈现(10分钟)用投影仪展示平面直角坐标系的图形,引导学生观察并总结各象限内点的坐标特征及坐标轴上的点的坐标特征。
教师在黑板上板书各象限内点的坐标特征及坐标轴上的点的坐标特征。
3.操练(10分钟)学生分组讨论,每组选取一个实例,运用坐标系表示实例中的点,并总结坐标系的性质。
人教版数学七年级下册7.1《平面直角坐标系》教学设计
人教版数学七年级下册7.1《平面直角坐标系》教学设计一. 教材分析《平面直角坐标系》是初中数学的重要内容,对于学生理解数学的抽象概念,培养空间想象能力有着至关重要的作用。
人教版数学七年级下册7.1节的内容,主要介绍了平面直角坐标系的定义、各象限内点的坐标特征、坐标轴的性质等。
这部分内容是学生学习函数、几何等后续知识的基础,因此,掌握本节课的内容对于学生来说至关重要。
二. 学情分析学生在七年级上学期已经学习了有理数,对数的概念有了一定的理解,但空间想象能力还不够强。
因此,在教学过程中,需要引导学生将已有的数学知识与新的知识相结合,通过实际操作,提高空间想象能力,理解并掌握平面直角坐标系的相关概念。
三. 教学目标1.了解平面直角坐标系的定义,掌握各象限内点的坐标特征。
2.能正确画出简单的平面直角坐标系,并确定给定点在坐标系中的位置。
3.理解坐标轴的性质,能运用坐标系解决实际问题。
四. 教学重难点1.重点:平面直角坐标系的定义,各象限内点的坐标特征。
2.难点:坐标轴的性质,坐标系在实际问题中的应用。
五. 教学方法1.采用问题驱动法,引导学生主动探索,发现问题,解决问题。
2.利用数形结合的思想,让学生在实际操作中感受坐标系的作用。
3.采用小组合作学习,培养学生的团队协作能力。
六. 教学准备1.准备平面直角坐标系的教具,如PPT、黑板等。
2.准备一些实际问题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如地图上的两点距离、体育比赛中运动员的位置等,引导学生思考如何用数学工具来表示这些位置。
从而引出平面直角坐标系的概念。
2.呈现(10分钟)通过PPT或黑板,呈现平面直角坐标系的定义、各象限内点的坐标特征、坐标轴的性质等。
在呈现过程中,引导学生主动参与,发现问题,解决问题。
3.操练(10分钟)让学生分组进行实际操作,如在坐标系中确定给定点的位置,画出简单的函数图象等。
教师巡回指导,解答学生疑问。
人教版七年级下册7.1《平面直角坐标系》教案
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果,分享他们在坐标系中的应用发现。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平面直角坐标系在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
人教版七年级下册7.1《平面直角坐标系》教案
一、教学内容
人教版七年级下册7.1《平面直角坐标系》教案:
1.章节内容:平面直角坐标系的概念、坐标的表示方法、坐标平面的四个象限及其特点。
a.平面直角坐标系的定义及其作用;
b.坐标点的表示方法,横坐标与纵坐标的含义;
c.各象限内点的坐标特征,如第一象限(+,+)、第二象限(-, +)等;
在讲授新课的过程中,我发现用具体的案例来解释理论知识是非常有效的。同学们能够通过案例看到坐标系在解决实际问题中的应用,这有助于他们理解抽象的数学概念。同时,我也尝试让同学们参与到实践活动中,通过分组讨论和实验操作,他们能够更直观地感受坐标平面的构成和点的定位。
然而,我也意识到在小组讨论环节,有些小组的讨论并没有深入到我希望的层面。可能是我给出的引导性问题还不够开放,或者是同学们对问题的理解还不够深入。在未来的教学中,我需要更加注意问题的设计,确保能够激发同学们的思考和探究。
c.象限内点的坐标特征:学生应理解并记忆四个象限内点的坐标符号特点,如第一象限为(+,+),第二象限为(-,+)等。
d.坐标轴上点的坐标:学生应明白坐标轴上的点具有特殊的坐标值,原点为(0,0),x轴上的点纵坐标为0,y轴上的点横坐标为0。
人教版数学七年级下册平面直角坐标系(第二课时)教学设计
1.作业量适中,难度分层,确保每个学生都能完成基础作业,同时满足学有余力的学生。
2.作业布置要有针对性,关注学生的薄弱环节,提高作业的实效性。
3.鼓励学生自主完成作业,培养独立思考和解决问题的能力。
4.教师应及时批改作业,给予学生反馈,指导学生改正错误,巩固所学知识。
7.课后巩固:布置适量的课后作业,巩固所学知识,提高学生的实际应用能力。
教学活动:设计具有层次性的课后作业,让学生在完成作业的过程中,进一步巩固平面直角坐标系的知识。
四、教学内容与过程
(一)导入新课
1.教学活动设计:以生活实例引入新课,激发学生兴趣。
教师通过展示地图上的定位、电影院座位分布等生活场景,让学生感受到坐标系在生活中的应用,从而引出本节课的主题——平面直角坐标系。
2.提问方式:教师提出引导性问题,引导学生思考。
问题如:“我们在生活中是如何确定一个点的位置的?”“你能用自己的方法表示出教室内某个同学的位置吗?”
3.过渡语:通过学生的回答,自然过渡到本节课的学习内容。
教师总结:“今天我们要学习一种新的表示位置的方法——平面直角坐标系。通过这个工具,我们可以更准确地描述和解决实际问题。”
学生需要将探究过程和结果以书面形式提交,以提高学生的合作能力和探究精神。
5.创新题:鼓励学生发挥想象力,设计一道与坐标系相关的题目,并给出解题过程和答案。此题旨在培养学生的创新意识和数学思维能力。
6.家长评价:请家长协助学生完成作业,关注学生的学习过程,对孩子的进步给予肯定和鼓励,共同培养学生的数学兴趣。
本章节教学设计旨在帮助学生掌握平面直角坐标系的知识,提高学生的数学素养,培养学生解决问题的能力和团队协作精神,使学生能够更好地应对生活中的数学问题。在教学过程中,教师应注重启发式教学,关注学生的个体差异,充分调动学生的积极性,使学生在轻松愉快的氛围中学习数学。
《平面直角坐标系》教学设计方案
《平面直角坐标系》教学设计方案教学内容:人教版数学七年级下册第六章平面直角坐标系6.12平面直角坐标系(1课时)教学目标:1、知识与技能:认识并能画出平面直角坐标系;在给定的的直角坐标系中,会根据坐标描出点的位置、由点的位置写出它的坐标。
2、过程与方法:渗透对应关系,提高学生的数感。
3、情感、态度与价值观:体验数、符号是描述现实世界的重要手段。
教学重点:平面直角坐标系和点的坐标。
教学难点:根据点的位置写出它的坐标,根据点的坐标描出点的位置。
教学思路:复习有序数对,引入点的坐标,提示利用数轴表示直线上点的位置,引起思考表示平面内点的位置需要借助两条数轴,建立平面直角坐标系。
学习用有序数对(点的坐标)来表示坐标平面的点,已知点的坐标在坐标平面描出点。
归纳总结出象限内的点、坐标轴上的点、平行于x轴(y轴)直线上的点、两坐标轴夹角平分线上的点的坐标特征和点到坐标轴的距离。
教学方法:讲授法、谈论法、演示法、练习法相结合教学手段:多媒体和几何画板教学组织形式:班级授课制教学步骤:一、创设情境1、教师出示投影出示下题,由学生口答,复习有序数对的表示方法。
2、观察课件上的数轴及其上的各点,师生共同分析引出点的坐标的概念,体会数与点的一一对应的关系。
3、怎样确定平面内一个点的位置?设计理念:用一道实际生活但又富有挑战的例题来引入新课。
激发学生的学习兴趣,经历并体验解决问题的过程。
进一步提出问题,引发学生思考,带着问题进入下一环节。
二、探究新知1、平面直角坐标系学生讨论,师生借助几何画板演示,共同分析必须要两条数轴才能表示平面内一个点的位置,已知数轴都有原点,要在同一平面内两条数轴的原点必须重合。
明确概念:①平面直角坐标系:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y 轴或纵轴,习惯上取向上为正方向。
两坐标轴的交点为平面直角坐标系的原点。
七年级数学下册第7章平面直角坐标系复习教案1(新版)新人教版
三、练习升华
夯实基础
1、在电影票上,如果将“8排4号”记作(8,4),那么(10,15)表示_______________。
2、课间操时,小华、小军、小刚的位置如图,小华对小刚说:“如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()
A.(0,-2)B.(2,0)C.(4,0)D.(0,-4)
6、已知点A(-1,b+2)在坐标轴上,则b=________.
7、如图,写出八边形各顶点的坐标。(图见课本59面第2题)
8、在同一平面坐标系中描出下列各组点,并将各组内的点有线段连接起来:
(1)(2,0)、(4,0)、(2,2);(2)(0,2)、(0,4)、(-2,2);(3)(-4,0)、(-2,-2)、(-2,0);(4)(0,-2)、(2,-2)、(0,-4).
4、建立直角坐标糸
〔4〕如图所示,若在象棋盘上建立直角坐标系,使“将”位于点(1,-2),“象”位于点(3,-2),则“炮”位于点.
二、例题导引
例1如果点M(a+b,ab)在第二象限,那么点N(a,b)在第________象限;若a=0,则M点在.
例2已知长方形ABCD中,AB=5,BC=3,并且AB∥x轴,若点A的坐标为(-2,4),求点C的坐标.
教学
重点
与
难点
重点
描出点的位置和建立坐标系
难点
适当地建立坐标系
媒体教具
课时
1课时
教学过程
修改栏
教学内容
师生互动
一、双基回顾
1、点的坐标:过平面内任意一点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的坐标a、b分别叫做点P的,有序数对(a,b)叫做P点的。
新人教版七年级下册数学《平面直角坐标系》教学设计
过 培养学生操作、观察、分析、猜测和概括等能力,同时渗透数形结
程 合的思想
方
法
情 养成学生积极主动的学习态度和自主学习的方式
感
态
度
重 理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念; 点
难 能在给定的直角坐标系中,由点的位置写出它的坐标
点
【教学流程】
环节
导学问题Βιβλιοθήκη 师生活 动二次备课【问题 1】如何确定直线上的
, ).
让两生板书画出 A、 B、C、D。利用投影展示 部分好的和错的例子, 有针对性的讲解。
自
主
探
究
合 作 交 流
4. 动动手,画出平面直角坐 标 系 并 标 出 下 列 各 点 A(-2 ,
3
-1) 、B(3 ,-1) 、C(4,2) 、 D(-1 ,2).
问题:把各点连接起来会得到什
么图形?
1
情 点?
境 如图,点 A、B 的坐标分别是什 教师提出问题,引导学
引 么?坐标为 5 的点在数轴上的什 生思考,教师提示点拨,
入 么位置?
导入本节课题 学生思考讨论 .
(阅读课本 66-67 页,完成下面 题目) 【问题 2】类似于利用数轴确定
直线上点的位置 , 能不能找到一
教师提出要求 . 学生自学课本,并且思 考. 教师点拨引导:能否用 有序数对来表示 .
4
成 欣赏自我:本节课你学会了什 么?
果 完善自我:对本课的内容,你还 有哪些疑惑?
展
教师引导学生归纳 总结、 反思、梳理知识, 帮助 学生 形成 知识体 系.
示
1. 点( 0,3)在 ____轴上;若 点( a+1, -5 )在 y 轴上,则 a=______. 2. 指出下列各点的坐标
人教版初中数学七年级下册第七章:平面直角坐标系(全章教案)
教材简析本章内容包括平面直角坐标系及有关概念,点的坐标,用坐标表示地理位置和平移等.实际生活中常用有序实数对表示位置,由此引出平面直角坐标系,建立点与有序实数对的对应关系,从而把数和形结合起来.用坐标表示地理位置,可以通过建立直角坐标系,绘制出一个区域内地点分布的平面示意图来完成,体现了直角坐标系在实际生活中的应用.用坐标表示平移,从数的角度刻画了第五章有关平移的内容,主要研究了两方面的问题,一方面探讨点或图形的平移引起的点或图形顶点坐标的变化规律,另一方面探讨点或图形顶点坐标的有规律变化引起的点或图形的平移.本章在中考中,平面直角坐标系是必考内容,主要考查平面直角坐标系的特点.教学指导【本章重点】1.建立适当的直角坐标系描述物体的位置,知道在坐标系中点的位置与它的坐标之间的关系.2.探索图形上点的坐标的平移规律.【本章难点】图形平移时点的坐标变化规律.【本章思想方法】1.体会数形结合思想,如在有关图形变换的问题中,通过对图形的观察找出坐标变化的规律,体现了数形结合思想.2.体会转化思想,如计算平面直角坐标系中图形的面积时,往往要利用转化的数学思想将图形的面积转化为常见图形面积的和或差.课时计划7.1平面直角坐标系2课时7.2坐标方法的简单应用2课时7.1.1 有序数对(第1课时)教学目标一、基本目标【知识与技能】1.了解有序数对的概念,并能用有序数对确定平面内点的位置.2.理解在平面内确定一个物体的位置一般需要两个数据.【过程与方法】通过有序数对确定位置,让学生感受二维空间观,发展符号感及抽象思维能力,让学生体会“具体——抽象——具体”的数学学习过程.【情感态度与价值观】培养学生的合作交流意识、探索精神和创造性思维,体会数学来源于生活并应用于生活,更好的激发学习兴趣.二、重难点目标【教学重点】有序数对的概念及平面内确定点的方法.【教学难点】对有序数对中的有序的理解,利用有序数对表示平面内的点.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P64~P65的内容,完成下面练习.【3 min反馈】1.在平面内,确定一个物体的位置一般需要两个数据.2.有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).3.阅读教材P64~P65内容,并思考:(1)怎样确定教室里座位的位置?(2)排数和列数的先后顺序对位置有影响吗?(3)假设约定“列数在前,排数在后”,请在教材P64图7.1-1上标出被邀请参加讨论的同学的座位.略4.电影院的第3排第6座表示为(3,6),如果某人的座位号为(4,2),那么此人所坐的位置是(B)A.第2排第4座B.第4排第2座C.第4排第4座D.第2排第2座环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图,棋子B在(2,1)处,用有序数对表示出图中另外六枚棋子的位置.【互动探索】(引发学生思考)根据棋子B在(2,1)处,如何确定B所在行与列的顺序?由此怎样表示出其他棋子的位置?【解答】A(0,0)、C(3,3)、D(1,2)、E(4,1)、F(2,4)、G(5,4).【互动总结】(学生总结,老师点评)利用有序数对表示点的位置的“三步法”:(1)明确有序数对中行与列的表示顺序;(2)由已知点确定起始行与列;(3)用有序数对表示所求各点的位置.活动2巩固练习(学生独学)1.下列数据中,不能确定物体位置的是(D)A.某市新华书店位于人民路18号B.吴刚家位于某小区6号楼603号C.某渔船位于东经116.2°,北纬31.5°D.电影票的座位号是15排2.如图所示是某市区的部分简图,文化宫在D2区,体育场在C4区,据此说明医院在A3区,阳光中学在D5区.3.板桥中学举办“校园文化”建设,主题鲜明新颖:“国学引领,孝老敬亲,家校一体,爱满乡村”.如图所示,若用“C4”表示“孝”,则“A5-B4-C3-C5”表示(D)5板国学引领4亲桥孝老敬3一体中家校A.爱满乡村 C .国学引领D .板桥中学活动3 拓展延伸(学生对学)【例2】如下图,把一组数据进行蛇形排列.1 32 4 5 6 10 9 8 7…观察并回答:若第4行第3个数记作(4,3),则(4,3)表示的数是8,那么(10,3)表示的数是________________________________________________________________________.【互动探索】先找到数的排列规律,求出第(n -1)行结束的时候一共出现的数的个数,进一步根据偶数行是从大到小排列,即可求得答案.【分析】由排列的规律,得第(n -1)行结束的时候排了1+2+3+…+n -1=n (n -1)2(个)数.因为10是偶数,所以第10行的第1个数是12×10×(10-1)=45,所以(10,3)表示的数是45-3+1=43. 【答案】43【互动总结】(学生总结,老师点评)解决探索规律的问题应从简单或特殊情形着手,通过观察、比较和归纳找出其中蕴含的规律,并将此规律进行合理的推广和应用.对于数的规律的探索,关键是找到“突破口”,从而找出各数之间的联系.环节3 课堂小结,当堂达标 (学生总结,老师点评) 有序数对→确定位置 练习设计请完成本课时对应练习!7.1.2 平面直角坐标系(第2课时) 教学目标一、基本目标【知识与技能】1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念.2.能在给定的直角坐标系中,由点的位置写出它的坐标.【过程与方法】经历坐标概念的形成,培养学生的观察、归纳能力,领会数形结合的思想.【情感态度与价值观】通过介绍数学家的故事,渗透理想和情感的教育.二、重难点目标【教学重点】平面直角坐标系和点的坐标;描出点的位置和建立坐标系.【教学难点】根据点的坐标在平面直角坐标系中找出点的位置.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P65~P68的内容,完成下面练习.【3 min反馈】1.在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系.水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点.2.在平面直角坐标系中,两条坐标轴将坐标平面分成四部分,每个部分称为象限,右上方的部分叫做第一象限,其他三部分按逆时针方向依次叫做第二象限、第三象限、第四象限,坐标轴上的点不属于任何象限.3.在平面直角坐标系中,对于平面上的任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上唯一的点与它对应.4.各象限内点的坐标的符号特征:(+,+)表示第一象限内的点;(-,+)表示第二象限内的点;(-,-)表示第三象限内的点;(+,-)表示第四象限内的点.5.如图,直角坐标系中的五角星在(B)A.第一象限B.第二象限C.第三象限D.第四象限6.小明建立了如图的直角坐标系,则点A的坐标是(1,2).环节2合作探究,解决问题活动1小组讨论(师生互学)(一)平面直角坐标系的有关概念给出严格的平面直角坐标系的概念、画法以及象限的规定.强调由点的位置如何确定点的坐标以及坐标的表示形式.教师提出问题:①点在各个象限的坐标有什么特点?②坐标轴上的点有什么特点?③坐标轴上的点属于第几象限?【教师点拨】“平面直角坐标系,两条数轴来唱戏.一个点,两个数,先横后纵再括号,最后隔开用逗号.”将任意点A放入直角坐标系,由其所处位置让学生确定点A的坐标.在此过程中,学生将对由点确定坐标的方法不断深化,逐渐接受并掌握点的坐标是一对有序的实数.同时,通过观察,学生能够比较容易地发现,点在各个象限内以及点在坐标轴上的坐标特点.(二)探究各象限点的特征写出下列各点的坐标,并观察它们的特点.【教师点拨】观察各点横、纵坐标的符号.点在坐标系中的象限点的横、纵坐标的符号特征第一象限(+,+)第二象限(-,+)第三象限(-,-)第四象限(+,-)(1)x轴上的点的纵坐标为0;(2)y轴上的点的横坐标为0【例1】写出图中的多边形ABCDEF各顶点的坐标.【互动探索】(引发学生思考)平面直角坐标系中点的坐标如何用有序数对确定?【解答】A(-4,3)、B(-4,0)、C(0,-2)、D(5,0)、E(5,3)、F(0,5).【互动总结】(学生总结,老师点评)在平面直角坐标系中,一般用有序数对(a,b)表示点的坐标,其中a、b分别叫做点的横坐标、纵坐标.活动2巩固练习(学生独学)1.如图所示,点A、点B所在的位置是(D)A.第二象限,y轴上B.第四象限,y轴上C.第二象限,x轴上D.第四象限,x轴上2.在平面直角坐标系中,点(-3,2)所在的象限是(B)A.第一象限B.第二象限C.第三象限D.第四象限3.如图,写出点A、B、C、D、E、F、H的坐标.解:A(2,1)、B(-4,3)、C(-2,-3)、D(3,-3)、E(-3,0)、F(0,2)、H(0,0).活动3拓展延伸(学生对学)【例2】如图所示的直角坐标系中,四边形ABCD各顶点的坐标分别是A(0,0)、B(9,0)、C(7,5)、D(2,7).试确定这个四边形的面积.【互动探索】四边形ABCD不是规则图形,可以考虑把它分成三角形或规则的四边形来解决.【解答】分别过点D、C向x轴作垂线,垂足分别为点E、F,则四边形ABCD被分割为△AED、△BCF及梯形CDEF.由各点的坐标,得AE=2,DE=7,EF=5,FB=2,CF=5,∴S四边形ABCD=S△AED+S梯形CDEF+S△BCF=12×2×7+12×(7+5)×5+12×5×2=7+30+5=42.【互动总结】(学生总结,老师点评)在直角坐标系中求不规则多边形的面积,一般采用割补法,将其割补为规则图形,进而求出面积.环节3课堂小结,当堂达标(学生总结,老师点评)平面直角坐标系⎩⎪⎨⎪⎧定义:原点、坐标轴、象限点的坐标⎩⎪⎨⎪⎧定义与符号特征点的坐标的确定描点练习设计请完成本课时对应练习!7.2 坐标方法的简单应用7.2.1 用坐标表示地理位置(第1课时) 教学目标一、基本目标【知识与技能】1.掌握建立适当的坐标系描述地理位置的方法.2.了解用方向和距离表示地理位置的方法.【过程与方法】1.通过观察、探索用坐标表示地理位置的方法,发展学生数形结合的意识.2.通过利用平面直角坐标系绘制区域内一些地点的分布情况,使学生进一步体会数学的应用价值.【情感态度与价值观】通过用坐标确定学生们的家与学校的位置,让学生认识数学与生活的密切联系,提高学生学习数学的兴趣.二、重难点目标【教学重点】用坐标表示地理位置的方法.【教学难点】根据已知条件建立适当的坐标系.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P73~P75的内容,完成下面练习.【3 min反馈】1.建立直角坐标系的一般步骤:(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题,确定恰当的比例尺,在坐标轴上标出单位长度.2.在航海和测绘中,经常用方向和距离来刻画平面内两个物体的相对位置.通常以北偏东(西),或南偏东(西)确定方向.用“方向+距离”的方法表示物体的位置要有两个数据:一是方向,二是距离.在表述时,一般是方向在前,距离在后.3.如图,雷达探测器测得六个目标A、B、C、D、E、F,目标E、F的位置表示为E(3,300°)、F(5,210°),按照此方法在表示目标A、B、C、D的位置时,其中不正确的是(D)A.A(4,30°)B.B(2,90°)C.C(6,120°)D.D(3,240°)4.某市区的几个旅游景点在平面直角坐标系中的位置如图所示,已知图中每个小正方形的边长均为1个单位长度,且山陕会馆的坐标是(4,-1),则其他各景点的坐标分别为:光岳楼(1,0);金凤广场(-2,-1.5);动物园(6,3);湖心岛(-1.5,1).环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】(教材P73“探究”)根据以下条件画一幅示意图,指出学校和小刚家、小强家、小敏家的位置.小刚家:出校门向东走1500 m,再向北走2000 m.小强家:出校门向西走2000 m,再向北走3500 m,最后向东走500 m.小敏家:出校门向南走1000 m,再向东走3000 m,最后向南走750 m.【互动探索】(引发学生思考)如何建立平面直角坐标系呢?以何参照点为原点?如何确定x轴、y轴?如何选比例尺来绘制区域内地点分布情况平面图?【解答】小刚家、小强家、小敏家的位置均是以学校为参照点来描述的,故选学校位置为原点.根据描述,可以以正东方向为x轴,以正北方向为y轴建立平面直角坐标系,并取比例尺1∶10 000(即图中1 cm相当于实际中10 000 cm,即100米).画出平面直角坐标系,标出学校的位置,即(0,0).引导学生一同完成示意图.【思考】选取学校所在位置为原点,并以正东、正北方向为x轴、y轴的正方向有什么优点?可以很容易地表示出三位同学家的位置.【互动总结】(学生总结,老师点评)利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.【注意】用坐标表示地理位置时,一要注意选择适当的位置为坐标原点,这里所说的适当,通常要么是比较有名的地点,要么是所要绘制的区域内较居中的位置;二要注意坐标轴的方向通常是以正北为纵轴的正方向,这样可以使东、西、南、北的方向与地理位置的方向一致;三要注意标明比例尺和坐标轴上的单位长度.另外,当地点比较集中,坐标平面又较小时,各地点的名称在图上可以用代号标出,并在图外另附名称.【例2】在某城市中,体育馆在火车站以西4000 m再往北2000 m处,华侨宾馆在火车站以西3000 m再往南2000 m处,百佳超市在火车站以南3000 m再往东2000 m处,请建立适当的平面直角坐标系,分别写出各地的坐标.【互动探索】(引发学生思考)根据题中叙述,体育馆、华侨宾馆、百佳超市都是以火车站为中心描述位置的,于是可以以火车站为原点,正东方向为x轴正方向,正北方向为y轴正方向建立平面直角坐标系.【解答】如图,以火车站为原点,以正东方向为x轴正方向,以正北方向为y轴正方向,建立平面直角坐标系.各地的坐标分别为:火车站(0,0)、体育馆(-4000,2000)、华侨宾馆(-3000,-2000)、百佳超市(2000,-3000).【互动总结】(学生总结,老师点评)选择一个适当的参照点为原点及x轴和y轴的正方向的确定,直接影响着计算的繁简程度,所以建立平面直角坐标系时,要以能简捷地确定平面内点的坐标为原则.【例3】如图,三个圆的半径分别为10 km、20 km、30 km,OA在北偏东30°方向处,OB与正北方向夹角为35°,C在正南处,A、B、C分别是位于三环、二环、一环上的三所学校,请用方向和距离表示这三所学校的位置.【互动探索】(引发学生思考)如何用“方向+距离”的方法表示物体的位置?要注意什么?【解答】A在点O北偏东30°方向,到点O的距离为30 km.B在点O北偏西35°方向,到点O的距离为20 km.C在点O正南方向,到点O的距离为10 km.【互动总结】(学生总结,老师点评)用“方向+距离”的方法表示物体的位置要有两个数据:一是方向,二是距离.在表述时,一般是方向在前,距离在后.活动2巩固练习(学生独学)1.点A的位置如图所示,则关于点A的位置下列说法中正确的是(D)A.距点O 4 km处B.北偏东40°方向上4 km处C.在点O北偏东50°方向上4 km处D.在点O北偏东40°方向上4 km处2.如图所示,四边形ABCD是边长为6的正方形,请建立一个适当的平面直角坐标系,并分别写出A、B、C、D的坐标.解:答案不唯一,如:以AB所在的直线为x轴,AD所在的直线为y轴,并以点A为坐标原点,建立平面直角坐标系,则点A、B、C、D的坐标分别是(0,0),(6,0),(6,6),(0,6).3.如图是某市旅游景点的示意图,试建立适当的平面直角坐标系,并用坐标表示出各景点的位置.解:答案不唯一,如:建立如图所示的平面直角坐标系,则各景点位置的坐标分别为:科技大学(0,0),大成殿(2,3),钟楼(1,6),雁塔(3,8),中心广场(5,4),映月湖(9,1),碑林(9,8).环节3课堂小结,当堂达标(学生总结,老师点评)1.用坐标表示地理位置.2.用“方向+距离”表示地理位置.练习设计请完成本课时对应练习!7.2.2 用坐标表示平移(第2课时) 教学目标一、基本目标【知识与技能】1.掌握坐标变化与图形平移的关系.2.利用点的平移规律将平面图形进行平移.3.根据图形上点的坐标的变化,判定图形的移动过程.【过程与方法】通过探索坐标变化与图形平移的关系,发展学生数形结合的意识和形象思维能力.【情感态度与价值观】培养学生探究的兴趣和归纳概括的能力,体会使复杂问题简单化.二、重难点目标【教学重点】掌握坐标变化与图形平移的关系.【教学难点】利用坐标变化与图形平移的关系解决实际问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P75~P77的内容,完成下面练习.【3 min反馈】1.一般地,在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).2.一般地,在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.3.将点A(-1,2)向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是(C)A.(3,1)B.(-3,-1)C.(3,-1)D.(-3,1)4.如图,在边长为1的正方形网格中,将△ABC向右平移四个单位长度得到△A′B′C′,则点A′的坐标是(B)A.(1,-3)B.(1,3)C.(-1,-3)D.(-1,3)环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图1,△ABC三个顶点的坐标分别是A(4,3)、B(3,1)、C(1,2).(1)将三角形ABC三个顶点的横坐标都减去6,纵坐标不变,分别得到点A1、B1、C1,依次连结A1、B1、C1各点,得到三角形A1B1C1.(2)在上面的三角形中如果将△ABC三个顶点的纵坐标都减去5,横坐标不变,情况又会如何呢?【互动探索】(引发学生思考)(联系前面所学知识可知,平面直角坐标系中图形的平移也可先通过平移图形上某些特殊点,再依次连结这些平移后的特殊点得到)因为图形的平移是以点的平移为基础的,因此所得三角形A1B1C1与三角形ABC的大小、形状完全相同,可以看作将三角形ABC向左平移6个单位长度得到.【解答】如图所示:【互动总结】(学生总结,老师点评)根据在平面直角坐标系内,图形的平移方向和距离解答.【例2】如图,把△ABC经过一定的平移变换得到△A′B′C′,如果△ABC边上一点P的坐标为(a,b),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(a+6,b-2)B.(a+6,b+2)C.(-a+6,-b)D.(-a+6,b+2)【互动探索】(引发学生思考)根据已知三对对应点的坐标,得出变换规律→让点P的坐标也作相应变化.【分析】∵A(-3,-2)、B(-2,0)、C(-1,-3)、A′(3,0)、B′(4,2)、C′(5,-1),∴△ABC向右平移6个单位,向上平移2个单位得到△A′B′C′.∵△ABC边上一点P的坐标为(a,b),∴点P变换后的对应点P′的坐标为(a+6,b+2).【答案】B【互动总结】(学生总结,老师点评)坐标系中图形上所有点的平移变化规律是一致的,解此类问题的关键是根据已知对应点找到各对应点之间的平移变化规律.活动2巩固练习(学生独学)1.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(-2,1),则点B的对应点的坐标为(C)A.(5,3)B.(-1,-2)C.(-1,-1)D.(0,-1)2.点A(m,4)向右平移2个单位后得到B(3,n),则m-n=-3.3.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是(2,-1).4.如图,三架飞机P、Q、R保持编队飞行,30秒后飞机P飞到P1的位置,飞机Q、R 飞到了新位置Q1、R1.在直角坐标系中标出Q1、R1,并写出坐标.解:由题意可知P (-1,1)、Q (-3,1)、R (-1,-1). ∵30秒后P 1的坐标为(4,3),∴飞机P 向右平移了5个单位,向上平移了2个单位,∴Q 1的坐标为(2,3),R 1的坐标为(4,1).在直角坐标系中的位置如题图. 活动3 拓展延伸(学生对学)【例3】如图,在平面直角坐标系中,P (a ,b )是△ABC 的边AC 上一点,△ABC 经平移后点P 的对应点为P 1(a +6,b +2).(1)请画出上述平移后的△A 1B 1C 1,并写出点A 、C 、A 1、C 1的坐标; (2)求出以A 、C 、A 1、C 1为顶点的四边形的面积.【互动探索】(1)由经平移后点P (a ,b )的对应点为P 1(a +6,b +2)可知,图形向右平移了6个单位,向上平移了2个单位;(2)以A 、C 、A 1、C 1为顶点的四边形的面积可分割为以AC 1为底的两个三角形的面积.【解答】(1)△A 1B 1C 1如图所示,各点的坐标分别为A (-3,2)、C (-2,0)、A 1(3,4)、C 1(4,2). (2)如图,连结AA 1、CC 1.∵S △AC 1A 1=12×7×2=7,S △AC 1C =12×7×2=7,∴S 四边形ACC 1A 1=S △AC 1A 1+S △AC 1C =7+7=14.【互动总结】(学生总结,老师点评)(1)坐标系中图形平移的坐标变化规律为:左右移动改变点的横坐标,且左减右加;上下移动改变点的纵坐标,且上加下减.(2)求四边形的面积通常转化为求几个三角形的面积的和.环节3 课堂小结,当堂达标 (学生总结,老师点评)用坐标表示平移:横坐标右移加,左移减;纵坐标上移加,下移减.练习设计请完成本课时对应练习!。
人教版七年级数学下册教案 7-1-2 平面直角坐标系
7.1.2 平面直角坐标系一、教学目标【知识与技能】1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念,认识并能画出平面直角坐标系.2.理解各象限内及坐标轴上点的坐标特征.3.用象限或坐标轴说明直角坐标系内点的位置,能根据横、纵坐标的符号确定点的位置.【过程与方法】1.经历建立直角坐标系的过程,进而理解平面直角坐标系的意义.2.通过分析具体特例得到特殊位置点的坐标特征以及有特殊位置关系的点的坐标的特征.3.通过小组学习等活动经历建立坐标系的过程,进一步提高学生应用已有知识与技能的基础上形成新的知识,获得新的技能,以提高解决数学问题的能力.【情感态度与价值观】1.让学生体会到x轴、y轴的关系,进而明白事物之间是相互联系的这一辩证思想,培养耐心细致的良好学习作风.2通过师生的共同活动,促使学生在学习活动中培养良好的情感、合作交流、主动参与的意识,在独立思考的同时能够认同他人.二、课型新授课三、课时1课时四、教学重难点【教学重点】平面直角坐标系的意义,由坐标找点,由点找坐标.【教学难点】平面直角坐标系内的点与有序数对一一对应的关系.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2)神舟九号、七号、六号和五号等卫星发射成功,圆了几代中国人的梦想,让全中国人为之骄傲和自豪!但是你们知道我们的科学家是怎样迅速地找到返回舱着陆的位置的吗?这就要依赖于GPS——卫星全球定位系统”.大家一定觉得很神奇吧!学习了今天的内容,你就会明白其中的奥妙.(二)探索新知1.出示课件4-9,探究平面直角坐标系的有关概念教师问:如何确定直线上点的位置?学生答:在直线上规定了原点、正方向、单位长度就构成了数轴.数轴上的点可以用一个数来表示,这个数叫做这个点在数轴上的坐标.例如点A在数轴上的坐标为-3,点B在数轴上的坐标为2.教师问:知道数轴上一点的坐标,能确定这个点的位置吗?学生答:知道数轴上一个点的坐标,这个点在数轴上的位置也就确定了.例如在数轴上,坐标为2的点是B.教师问:如何确定平面上点的位置?如下图:小强、小红、小明家的位置?师生一起解答:利用两个数轴,使这两条数轴互相垂直,可以确定位置,如下图所示:教师问:周末小明和小丽约好一起去图书馆学习.小明告诉小丽,图书馆在中山北路西边50米,人民西路北边30米的位置.小丽能根据小明的提示从左图中找出图书馆的位置吗?学生答:小丽能根据小明的提示从左图中找出图书馆的位置.教师问:小明是怎样描述图书馆的位置的?学生答:利用方向和距离具体确定图书馆的位置.教师问:小明可以省去“西边”和“北边”这几个字吗?学生答:不能,省去“西边”和“北边”这几个字就不能准确找到图书馆了.教师问:如果小明说图书馆在“中山北路西边、人民西路北边”,你能找到吗?学生答:不能找到.教师问:如果小明只说在“中山北路西边50米”,或只说在“人民西路北边30米”,你能找到吗?学生答:不能.学生问:若将中山路与人民路看成两条互相垂直的数轴,十字路口为它们的公共原点,能得到什么呢?教师答:若将中山路与人民路看成两条互相垂直的数轴,十字路口为它们的公共原点,这样就形成了一个平面直角坐标系.总结点拨:(出示课件10)教师问:在平面直角坐标系中,能用有序数对来表示图中点A的位置吗?学生答:由点A分别向 x轴,y轴作垂线,垂足M在 x轴上的坐标是3,垂足N在 y 轴上的坐标是4,有序数对(3,4)就叫做点A的坐标,其中3是横坐标,4是纵坐标.学生问:写有序数对要注意什么呢?在平面内画两条互相垂直的数轴,构成平面直角坐标系.竖直的叫y轴或纵轴;y轴取向上为正方向教师答:注意:表示点的坐标时,必须横坐标在前,纵坐标在后,中间用逗号隔开.教师问:如图所示,在平面直角坐标系中,点B,C,D的坐标分别是什么?教师依次展示学生答案:学生1答:B(-2,3).学生2答:C(4,-3).学生3答:D(-1,-4).教师总结如下:B(-2,3),C(4,-3),D(-1,-4).教师问:如图,在平面直角坐标系中,你能分别写出点A,B,C,D的坐标吗?教师依次展示学生答案:学生1答:A(4,0).学生2答:B(-2,0).学生3答:C(0,5).学生4答:D(0,-3).教师总结如下:A(4,0),B(-2,0),C(0,5),D(0,-3).教师问:观察上面点的坐标,你发现x轴和y轴上的点的坐标有什么特点?一般如何记录呢?教师依次展示学生答案:学生1答:x轴上的点的纵坐标为0,一般记为(x,0).学生2答:y轴上的点的横坐标为0,一般记为(0,y).教师总结如下:① x轴上的点的纵坐标为0,一般记为(x,0);② y轴上的点的横坐标为0,一般记为(0,y);教师问:观察上面点的平面直角坐标系,你发现原点的坐标有什么特点?一般如何记录呢?学生答:原点O的坐标是(0,0).一般记为(0,0).考点1:确定平面直角坐标系内点的坐标写出下图中的多边形ABCDEF各个顶点的坐标.(出示课件15)师生共同讨论后学生解答:教师依次展示学生答案:学生1答:A(-2,0).学生2答:B(0,-3).学生3答:C(3,-3).学生4答:D(4,0).学生5答:E(3,3).学生6答:F(0,3).教师总结如下:解:A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3)出示课件16,学生自主练习后口答,教师订正.3.出示课件17-20,探究平面直角坐标系内点的坐标性质教师问:平面直角坐标系把平面分为了四部分,我们该如何正确识记每一部分呢?学生思考后,师生一同作答:在平面直角坐标系中,两条坐标轴(即横轴和纵轴)把平面分成如图所示的Ⅰ,Ⅱ,Ⅲ,Ⅳ四个区域.分别称为第一,二,三,四象限.如下图所示.(出示课件17)学生问:那么x轴和y轴上的点属于哪个象限呢?教师答:坐标轴上的点不属于任何一个象限.教师问:观察坐标系,填写各象限内的点的坐标的特征:教师依次展示学生答案:学生1答:如下图所示:学生2答:如下图所示:学生3答:如下图所示:学生4答:如下图所示:教师总结如下:如下图所示:教师问:不看平面直角坐标系,你能迅速说出A(4,5),B(-2,3),C(-4,-1)D(2.5,-2),E(0,-4)所在的象限吗?教师依次展示学生答案:学生1答:A(4,5)所在的象限是第一象限.学生2答:B(-2,3)所在的象限是第二象限.学生3答:C(-4,-1)所在的象限是第三象限.学生4答:D(2.5,-2)所在的象限是第四象限.学生5答:E(0,-4)在y轴上.教师总结如下:A(4,5)所在的象限是第一象限;B(-2,3)所在的象限是第二象限;C(-4,-1)所在的象限是第三象限; D(2.5,-2)所在的象限是第四象限;E(0,-4)在y轴上.教师问:你的方法又是什么?学生答:根据点的坐标的符号确定点所在的象限.教师问:观察坐标系,填写坐标轴上的点的坐标的特征:学生答:如下表所示:教师问:不看平面直角坐标系,你能迅速说出A(4,0),B(0,3), C(-4,0),E(0,-4),O(0,0)所在的位置吗?教师依次展示学生答案:学生1答:A(4,0)在x轴的正半轴.学生2答:B(0,3)在y轴的正半轴.学生3答:C(-4,0)在x轴的负半轴.学生4答:E(0,-4)在y轴的负半轴.学生5答:O(0,0)在原点.教师总结如下:A(4,0)在x轴的正半轴; B(0,3)在y轴的正半轴;C(-4,0)在x轴的负半轴;E(0,-4)在y轴的负半轴;O(0,0)在原点.教师问:你的确定点的方法又是什么?学生答:根据点的坐标值和符号,在x轴上y的值为0,在y轴上x的值为0,在原点x、y的值都为0.教师问:想一想:坐标平面内的点与有序数对(坐标)是什么关系?教师依次展示学生答案:学生1答:对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y) (即点M的坐标)和它对应.学生2答:对于任意一对有序实数(x,y),在坐标平面内都有唯一的一点M(即坐标为(x,y)的点)和它对应.教师总结如下:类似数轴上的点与实数是一一对应的.我们可以得出:①对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y) (即点M的坐标)和它对应;②反过来,对于任意一对有序实数(x,y),在坐标平面内都有唯一的一点M(即坐标为(x,y)的点)和它对应.也就是说,坐标平面内的点与有序实数对是一一对应的.考点2:在平面直角坐标系内确定已知点在平面直角坐标系中,描出下列各点,并指出它们分别在哪个象限. A(5,4),B(-3,4),C (-4 ,-1),D(2,-4).(出示课件21)学生独立思考后,师生共同解答.解:如图,先在x 轴上找到表示5的点,再在y 轴上找出表示4 的点,过这两个点分别作x 轴,y 轴的垂线,垂线的交点就是点A. 类似地,其他各点的位置如图所示.点A 在第一象限,点B 在第二象限,点C在第三象限,点D在第四象限.总结点拨:熟记各象限内点的坐标的符号特征:(+,+)表示第一象限内的点;(-,+)表示第二象限内的点;(-,-)表示第三象限内的点;(+,-)表示第四象限内的点.出示课件22,学生自主练习后口答,教师订正.考点3:利用平面直角坐标系内点的坐标确定字母的值已知在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是________.(出示课件23)师生共同分析:根据第一象限内点的坐标的符号特征,横坐标为正,纵坐标为正,可得关于m的一元一次不等式组{m>0,m−2>0.解得m>2.答案:m>2.师生共同归纳:求点的坐标中字母的取值范围的方法:根据各个象限内点的坐标的符号特征,列出关于字母的不等式或不等式组,解不等式或不等式组即可求出相应字母的取值范围.出示课件24,学生自主练习,教师给出答案。
七年级下册平面直角坐标系教案
七年级下册平面直角坐标系教案The document was prepared on January 2, 2021平面直角坐标系(一)预习提示:1、什么是数轴什么是平面直角坐标系2、两条坐标轴如何称呼,方向如何确定3、坐标轴分平面为四个部分,分别叫做什4、什么是点的坐标平面内点的坐标有几部分组成5、各个象限内的点的坐标有何特点坐标轴上的点的坐标有何特点6、坐标轴上的点属于什么象限教学目标:知识目标1、理解平面直角坐标系以及横轴、纵轴、原点、坐标等的概念.2、认识并能画出平面直角坐标系.3、能在给定的直角坐标系中,由点的位置写出它的坐标.能力目标1、通过画坐标系,由点找坐标等过程,发展学生的数形结合意识,合作交流意识.2、通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识和能力.情感目标由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心.教学重点:1、理解平面直角坐标系的有关知识.2、在给定的平面直角坐标系中,会根据点的位置写出它的坐标.3、由点的坐标观察,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,说明坐标轴上点的坐标有什么特点.教学难点:1、横或纵坐标相同的点的连线与坐标轴的关系的探究.2、坐标轴上点的坐标有什么特点的总结.教学方法:讨论式学习法教学过程设计:一、导入新课『师』:同学们,你们喜欢旅游吗假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢下面给出一张某市旅游景点的示意图,根据示意图,回答以下问题:图5-6(1)你是怎样确定各个景点位置的(2)“大成殿”在“中心广场”南、西各多少个格“碑林”在“中心广场”北、东各多少个格(3)如果以“中心广场”为原点作两条互相垂直的数轴、分别取向右、向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,那么你能表示“碑林”的位置吗“大成殿”的位置呢在上一节课,我们已经学习了许多确定位置的方法,主要学习用反映极坐标思想的定位方式,和用反映直角坐标思想的定位方式.在这个问题中大家看用哪种方法比较合适『生』 :用反映直角坐标思想的定位方式.『师』 :在上一节课中我们已经做过这方面的练习,现在应怎样表示呢这就是本节课的任务.二、新课学习1、平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限的划分.『师』 :看书,倒数第二段P130 ~P131第一段.三分钟后请一位同学加以叙述.『生』 :在平面内,两条互相垂直用公共原点的数轴组成平面直角坐标系.通常,……有序实数对a,b 叫做点P 的坐标.『师』 :在了解有关直角坐标系的知识后,我们再返回刚才讨论的问题中,请大家思考后回答.『生』 :2“大成殿”在“中心广场”南两格,西两格.“碑林”在“中心广场”北一格,东三格.3如果以“中心广场”为原点作两条互相垂直的数轴、分别取向右、向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,则 “碑林”的位置是3,1.“大成殿”的位置是-2,-2.『师』 :很好,在3的条件下,你能把其他景点的位置表示出来吗『生』 :能,钟楼的位置是-2,1,雁塔的位置是0,3,影月湖的位置是0,-5,科技大学的位置是-5,-7.2、例题讲解 出示投影例1 书P131. 例1 写出图中的多边形ABCDEF 各各顶点的坐标. 让学生回答. 『师』 :上图中各顶点的坐标是否永远不变 『生甲』 :是. 『生乙』 :不是.当坐标轴的位置发生变动时,各点的坐标相应地变化. 『师』 :你能举个例子吗『生』 :可以,若以线段BC 所在的直线为x 轴,纵轴y 轴位置不变,则六个顶点的坐标分别为:A -2,3,B0,-:那大家再思考这位同学的结论是否是永恒的呢:不是.还能再改变坐标轴的位置,得出不同的坐标.:请大家在课后继续进行坐标轴的变换,总结以一下.、想一想在例1中,A B C D E FO 11x yA B C DE F 1y x1点B 与点C 的纵坐标相同,线段BC 的位置有什么特点2线段测定位置有什么特点3坐标轴上点的坐标有什么特点『师』 :由B0,-3,C3,-3可以看出它们的纵坐标相同,即B 、C 两点到X 轴的距离相等,所以线段BC 平行于横轴x 轴,垂直于纵轴y 轴.请大家讨论第2题.『生』 :由C3,-3,E3,3可知,他们的横坐标相同,即C 、E 两点到y 轴的距离相等,所以线段CE 平行于纵轴y 轴,垂直于横轴x 轴『师』 :请大家找出坐标轴上的点.『生』 :B0,-3,A -2,0,D4,0,F0,3『师』 :这些点的坐标中由什么特点呢『生』 :坐标中都有一个数字是0.『师』 :从刚才的分析中可知,在坐标中只要有一个数字为0,则这个点一定在坐标轴上.当两个数字为0时,这个点是否在坐标轴上『生』 :当两个数字都为0时,就是坐标原点0,0,原点既在x 轴上,又在y 轴上. 『师』 :那如何确定在哪个坐标轴上呢『生 』 :A -2,0,D4,0在x 轴上,可以看出这两个点的纵坐标为0,横坐标不为0;B0,-3,F0,3在y 轴上,可知它们的横坐标为0,纵坐标不为0.『师』 :经过大家的共同探讨,我们可以总结出:坐标轴上的点的坐标中至少又一个是0;横轴上的点的纵坐标为0,纵轴上的点的横坐标为0.『师』 :刚才已知x 轴、y 轴把坐标平面分成四个象限,但是坐标轴上的点不属于任何一个象限.各个象限内的点的坐标特征是怎样的『生』 :第一象限+,+, 第二象限-,+,第三象限-,-, 第四象限+,-.4、做一做出示投影 书P131『师』 :请大家先独立思考,然后再进行交流.『生』 :A -3,4,B -6,-2,C6,-2,D9,4A 与D 两点的纵坐标,B 与C 两点的纵坐标相同,因为AD 、BC 分别平行于横轴,A 与B,C 与D 的横坐标不同,因为AB 与CD 是与x 轴斜交,他们向横轴作垂线,垂足不同.三、课堂检测补充:1、在下图中,确定A 、B 、C 、D 、E 、F 、G 的坐标.xy 1F E D C B A第1题 第2题2、如右图,求出A、B、C、D、E、F的坐标.四、本课小结1、认识并能画出平面直角坐标系.2、在给定的直角坐标系中,由点的位置写出它的坐标.3、能适当建立直角坐标系,写出直角坐标系中有关点的坐标.4、横纵坐标相同的点的直线平行于y轴,垂直于x轴;连接纵坐标相同的点的直线平行于x轴,垂直于y轴.5、坐标轴上点的纵坐标为0;纵坐标轴上点的坐标为0.6、各个象限内的点的坐标特征是:第一象限+,+, 第二象限-,+,第三象限-,-, 第四象限+,-.撰稿人:灵宝市第一初级中学许引丽李永平审验人:灵宝市第一初级中学何康锋。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.2平面直角坐标系
(一)预习提示:
1、什么是数轴?什么是平面直角坐标系?
2、两条坐标轴如何称呼,方向如何确定?
3、坐标轴分平面为四个部分,分别叫做什?
4、什么是点的坐标?平面内点的坐标有几部分组成?
5、各个象限内的点的坐标有何特点?坐标轴上的点的坐标有何特点?
6、坐标轴上的点属于什么象限?
教学目标:
【知识目标】1、理解平面直角坐标系以及横轴、纵轴、原点、坐标等的概念。
2、认识并能画出平面直角坐标系。
3、能在给定的直角坐标系中,由点的位置写出它的坐标。
【能力目标】1、通过画坐标系,由点找坐标等过程,发展学生的数形结合意识,合作交流意识。
2、通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识和能力。
【情感目标】由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。
教学重点:
1、理解平面直角坐标系的有关知识。
2、在给定的平面直角坐标系中,会根据点的位置写出它的坐标。
3、由点的坐标观察,
纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,说明坐标轴上点的坐标有什么特点。
教学难点:
1、横(或纵)坐标相同的点的连线与坐标轴的关系的探究。
2、坐标轴上点的坐标有什么特点的总结。
教学方法:讨论式学习法
教学过程设计:
一、导入新课
『师』:同学们,你们喜欢旅游吗?
假如你到了某一个城市旅游,那么你应怎
样确定旅游景点的位置呢?下面给出一张某市
旅游景点的示意图,根据示意图,回答以下问
题:(图5-6)
(1)你是怎样确定各个景点位置的?
(2)“大成殿”在“中心广场”南、西各多
少个格?“碑林”在“中心广场”北、
东各多少个格?
(3)如果以“中心广场”为原点作两条互相
垂直的数轴、分别取向右、向上的方向为数轴的正方向,一个方格的边长看做一个
单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?
在上一节课,我们已经学习了许多确定位置的方法,主要学习用反映极坐标思想的定位
方式,和用反映直角坐标思想的定位方式。
在这个问题中大家看用哪种方法比较合适?
『生』 :用反映直角坐标思想的定位方式。
『师』 :在上一节课中我们已经做过这方面的练习,现在应怎样表示呢?这就是本节课
的任务。
二、新课学习
1、平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限的划分。
『师』 :看书,倒数第二段P130 ~P131第一段。
(三分钟后)请一位同学加以叙述。
『生』 :在平面内,两条互相垂直用公共原点的数轴组成平面直角坐标系。
通常,……
有序实数对(a,b )叫做点P 的坐标。
『师』 :在了解有关直角坐标系的知识后,我们再返回刚才讨论的问题中,请大家思
考后回答。
『生』 :(2)“大成殿”在“中心广场”南两格,西两格。
“碑林”在“中心广场”北
一格,东三格。
(3)如果以“中心广场”为原点作两条互相垂直的数轴、分别取向右、向上的方向为
数轴的正方向,一个方格的边长看做一个单位长度,则 “碑林”的位置是(3,1)。
“大成
殿”的位置是(-2,-2)。
『师』 :很好,在(3)的条件下,你能把其他景点的位置表示出来吗?
『生』 :能,钟楼的位置是(-2,1),雁塔的位置是(0,3),影月湖的位置是(0,
-5),科技大学的位置是(-5,-7)。
2、
例题讲解 (出示投影)例1 书P131。
例1 写出图中的多边形ABCDEF 各各顶点的坐标。
让学生回答。
『师』 :上图中各顶点的坐标是否永远不变? 『生甲』 :是。
『生乙』 :不是。
当坐标轴的位置发生变动时,各点的坐标相应地变化。
『师』 :你能举个例子吗?
『生』 :可以,若以线段BC 所在的直线为x 轴,纵轴(y 轴位置不变,则六个顶点的坐标分别为:A (-2,3),B (0,3),C (3,0),D (4,3),E (3,6),F (0,6)
:那大家再思考这位同学的结论是否是永恒的呢?
:不是。
还能再改变坐标轴的位置,得出不同的坐标。
:请大家在课后继续进行坐标轴的变换,总结以一下
、想一想
在例1中,
A B C D E F
O 11
x y
A B C D
E F 1y x
(1)点B 与点C 的纵坐标相同,线段BC 的位置有什么特点?
(2)线段测定位置有什么特点?
(3)坐标轴上点的坐标有什么特点?
『师』 :由B (0,-3),C (3,-3)可以看出它们的纵坐标相同,即B 、C 两点到X 轴的距离相等,所以线段BC 平行于横轴(x 轴),垂直于纵轴(y 轴)。
请大家讨论第(2)题。
『生』 :由C (3,-3),E (3,3)可知,他们的横坐标相同,即C 、E 两点到y 轴的距离相等,所以线段CE 平行于纵轴(y 轴),垂直于横轴(x 轴)
『师』 :请大家找出坐标轴上的点。
『生』 :B (0,-3),A (-2,0),D (4,0),F (0,3)
『师』 :这些点的坐标中由什么特点呢?
『生』 :坐标中都有一个数字是0。
『师』 :从刚才的分析中可知,在坐标中只要有一个数字为0,则这个点一定在坐标轴上。
当两个数字为0时,这个点是否在坐标轴上?
『生』 :当两个数字都为0时,就是坐标原点(0,0),原点既在x 轴上,又在y 轴上。
『师』 :那如何确定在哪个坐标轴上呢?
『生 』 :A (-2,0),D (4,0)在x 轴上,可以看出这两个点的纵坐标为0,横坐标不为0;B (0,-3),F (0,3)在y 轴上,可知它们的横坐标为0,纵坐标不为0。
『师』 :经过大家的共同探讨,我们可以总结出:坐标轴上的点的坐标中至少又一个是0;横轴上的点的纵坐标为0,纵轴上的点的横坐标为0。
『师』 :刚才已知x 轴、y 轴把坐标平面分成四个象限,但是坐标轴上的点不属于任何一个象限。
各个象限内的点的坐标特征是怎样的?
『生』 :第一象限(+,+), 第二象限(-,+),
第三象限(-,-), 第四象限(+,-)。
4、做一做
(出示投影) 书P131
『师』 :请大家先独立思考,然后再进行交流。
『生』 :A (-3,4),B (-6,-2),C (6,-2),D (9,4)
A 与D 两点的纵坐标,
B 与
C 两点的纵坐标相同,因为A
D 、BC 分别平行于横轴,A 与B ,C 与D 的横坐标不同,因为AB 与CD 是与x 轴斜交,他们向横轴作垂线,垂足不同。
三、课堂检测
补充:1、在下图中,确定A 、B 、C 、D 、E 、F 、G 的坐标。
x
y 1F E D C B A
(第1题)(第2题)
2、如右图,求出A、B、C、D、E、F的坐标。
四、本课小结
1、认识并能画出平面直角坐标系。
2、在给定的直角坐标系中,由点的位置写出它的坐标。
3、能适当建立直角坐标系,写出直角坐标系中有关点的坐标。
4、横(纵)坐标相同的点的直线平行于y轴,垂直于x轴;连接纵坐标相同的点的直
线平行于x轴,垂直于y轴。
5、坐标轴上点的纵坐标为0;纵坐标轴上点的坐标为0。
6、各个象限内的点的坐标特征是:第一象限(+,+),第二象限(-,+),
第三象限(-,-),第四象限(+,-)。
撰稿人:灵宝市第一初级中学许引丽李永平
审验人:灵宝市第一初级中学何康锋。