LAMMPS的语法中文解释
LAMMPS手册-中文版讲解
L A M M P S手册-中文版讲解work Information Technology Company.2020YEARLAMMPS手册-中文解析一、简介本部分大至介绍了LAMMPS的一些功能和缺陷。
1.什么是LAMMPS?2.LAMMPS是一个经典的分子动力学代码,他可以模拟液体中的粒子,固体和汽体的系综。
他可以采用不同的力场和边界条件来模拟全原子,聚合物,生物,金属,粒状和粗料化体系。
LAMMPS可以计算的体系小至几个粒子,大到上百万甚至是上亿个粒子。
LAMMPS可以在单个处理器的台式机和笔记本本上运行且有较高的计算效率,但是它是专门为并行计算机设计的。
他可以在任何一个按装了C++编译器和MPI的平台上运算,这其中当然包括分布式和共享式并行机和Beowulf型的集群机。
LAMMPS是一可以修改和扩展的计算程序,比如,可以加上一些新的力场,原子模型,边界条件和诊断功能等。
通常意义上来讲,LAMMPS是根据不同的边界条件和初始条件对通过短程和长程力相互作用的分子,原子和宏观粒子集合对它们的牛顿运动方程进行积分。
高效率计算的LAMMPS通过采用相邻清单来跟踪他们邻近的粒子。
这些清单是根据粒子间的短程互拆力的大小进行优化过的,目的是防止局部粒子密度过高。
在并行机上,LAMMPS采用的是空间分解技术来分配模拟的区域,把整个模拟空间分成较小的三维小空间,其中每一个小空间可以分配在一个处理器上。
各个处理器之间相互通信并且存储每一个小空间边界上的”ghost”原子的信息。
LAMMPS(并行情况)在模拟3维矩行盒子并且具有近均一密度的体系时效率最高。
3.L AMMPS的功能总体功能:可以串行和并行计算分布式MPI策略模拟空间的分解并行机制开源高移植性C++语言编写MPI和单处理器串行FFT的可选性(自定义)可以方便的为之扩展上新特征和功能只需一个输入脚本就可运行有定义和使用变量和方程完备语法规则在运行过程中循环的控制都有严格的规则只要一个输入脚本试就可以同时实现一个或多个模拟任务粒子和模拟的类型:(atom style命令)原子粗粒化粒子全原子聚合物,有机分子,蛋白质,DNA联合原子聚合物或有机分子金属粒子材料粗粒化介观模型延伸球形与椭圆形粒子点偶极粒子刚性粒子所有上面的杂化类型力场:(命令:pair style, bond style, angle style, dihedral style, improper style, kspace style)对相互作用势:L-J, Buckingham, Morse, Yukawa, soft, class2(COMPASS), tabulated.带点对相互作用势:Coulombic, point-dipole.多体作用势:EAM, Finnis/Sinclair EAM, modified EAM(MEAM), Stillinger-Weber, Tersoff, AIREBO, ReaxFF粗粒化作用势:DPD, GayBerne, Resquared, Colloidal, DLVO介观作用势:granular, Peridynamics键势能:harmonic, FENE, Morse, nonlinear, class2, quartic键角势能:harmonic, CHARMM, cosine, cosine/squared, class2(COMPASS)二面角势能:harmonic, CHARMM, multi-harmonic, helix, OPLS, class2(COMPASS)不合理势能:harmonic, CVFF, class2(COMPASS)聚合物势能:all-atom, united-atom, bead-spring, breakable水势能:TIP3P,TIP4P,SPC隐式溶剂势能:hydrodynamic lubrication, Debye长程库伦与分散:Ewald, PPPM, Ewald/N(针对长程L-J作用)可以有与普适化力场如CHARMM,AMBER,OPLS,GROMACS相兼容的力场可以采用GPU加速的成对类型杂化势能函数:multiple pair, bond, angle, dihedral, improper potentials(多对势能处于更高的优先级)原子创建:(命令:read_data, lattice, create-atoms, delete-atoms, displace-atoms, replicate)从文件中读入各个原子的坐标在一个或多个晶格中创建原子删除几何或逻辑原子基团复制已存在的原子多次替换原子系综,约束条件,边界条件:(命令:fix)二维和三维体系正角或非正角模拟空间常NVE,NVT,NPT,NPH积分器原子基团与几何区域可选择不同的温度控制器有Nose/Hoover和Berendsen压力控制器来控制体系的压力(任一维度上)模拟合子的变形(扭曲与剪切)简谐(unbrella)束缚力刚体约束摇摆键与键角约束各种边界环境非平行太分子动力学NEMD各种附加边界条件和约束积分器:Velocity-verlet积分器Brown积分器rRESPA继承时间延化积分器刚体积分器共轭梯度或最束下降算法能量最小化器输出:(命令:dump, restart)热力学信息日志原子坐标,速度和其它原子量信息的文本dump文件二进制重启文件各原子量包括:能量,压力,中心对称参数,CAN等用户自定义系统宽度或各原子的计算信息每个原子的时间与空间平均系统宽量的时间平均原子图像,XYZ,XTC,DCD,CFG格式数据的前处理与后处理:包里提供了一系列的前处理与后处理工具另外,可以使用独立发行的工具组pizza.py, 它可以进行LAMMPS模拟的设置,分析,作图和可视化工作。
LAMMPS手册-中文版讲解
LAMMPS手册-中文解析之袁州冬雪创作一、简介本部分大至先容了LAMMPS的一些功能和缺陷.1.什么是LAMMPS?LAMMPS是一个经典的分子动力学代码,他可以摹拟液体中的粒子,固体和汽体的系综.他可以采取分歧的力场和鸿沟条件来摹拟全原子,聚合物,生物,金属,粒状和粗料化体系.LAMMPS可以计算的体系小至几个粒子,大到上百万甚至是上亿个粒子.LAMMPS可以在单个处理器的台式机和笔记本本上运行且有较高的计算效率,但是它是专门为并行计算机设计的.他可以在任何一个按装了C++编译器和MPI的平台上运算,这其中当然包含分布式和共享式并行机和Beowulf型的集群机.LAMMPS是一可以修改和扩大的计算程序,比方,可以加上一些新的力场,原子模子,鸿沟条件和诊断功能等.通常意义上来讲,LAMMPS是根据分歧的鸿沟条件和初始条件对通过短程和长程力相互作用的分子,原子和宏观粒子集合对它们的牛顿运动方程停止积分.高效率计算的LAMMPS通过采取相邻清单来跟踪他们临近的粒子.这些清单是根据粒子间的短程互拆力的大小停止优化过的,目标是防止部分粒子密度过高.在并行机上,LAMMPS采取的是空间分解技术来分配摹拟的区域,把整个摹拟空间分成较小的三维小空间,其中每个小空间可以分配在一个处理器上.各个处理器之间相互通信而且存储每个小空间鸿沟上的”ghost”原子的信息.LAMMPS(并行情况)在摹拟3维矩行盒子而且具有近均一密度的体系时效率最高.2.LAMMPS的功能总体功能:可以串行和并行计算分布式MPI战略摹拟空间的分解并行机制开源高移植性C++语言编写MPI和单处理器串行FFT的可选性(自定义)可以方便的为之扩大上新特征和功能只需一个输入剧本便可运行有定义和使用变量和方程完备语法规则在运行过程中循环的节制都有严格的规则只要一个输入剧本试便可以同时实现一个或多个摹拟任务粒子和摹拟的类型:(atom style饬令)原子粗粒化粒子全原子聚合物,有机分子,蛋白质,DNA结合原子聚合物或有机分子金属粒子资料粗粒化介观模子延伸球形与椭圆形粒子点偶极粒子刚性粒子所有上面的杂化类型力场:(饬令:pair style, bond style, angle style, dihedral style, improper style, kspace style)对相互作用势:L-J, Buckingham, Morse, Yukawa, soft, class2(COMPASS), tabulated.带点对相互作用势:Coulombic, point-dipole.多体作用势:EAM, Finnis/Sinclair EAM, modified EAM(MEAM), Stillinger-Weber, Tersoff, AIREBO, ReaxFF 粗粒化作用势:DPD, GayBerne, Resquared, Colloidal, DLVO介观作用势:granular, Peridynamics键势能:harmonic, FENE, Morse, nonlinear, class2, quartic键角势能:harmonic, CHARMM, cosine, cosine/squared, class2(COMPASS)二面角势能:harmonic, CHARMM, multi-harmonic, helix,OPLS, class2(COMPASS)分歧理势能:harmonic, CVFF, class2(COMPASS)聚合物势能:all-atom, united-atom, bead-spring, breakable水势能:TIP3P,TIP4P,SPC隐式溶剂势能:hydrodynamic lubrication, Debye长程库伦与分散:Ewald, PPPM, Ewald/N(针对长程L-J作用)可以有与普适化力场如CHARMM,AMBER,OPLS,GROMACS相兼容的力场可以采取GPU加速的成对类型杂化势能函数:multiple pair, bond, angle, dihedral, improper potentials(多对势能处于更高的优先级)原子创建:(饬令:read_data, lattice, create-atoms, delete-atoms, displace-atoms, replicate)从文件中读入各个原子的坐标在一个或多个晶格中创建原子删除几何或逻辑原子基团复制已存在的原子多次替换原子系综,约束条件,鸿沟条件:(饬令:fix)二维和三维体系正角或非正角摹拟空间常NVE,NVT,NPT,NPH积分器原子基团与几何区域可选择分歧的温度节制器有Nose/Hoover和Berendsen压力节制器来节制体系的压力(任一维度上)摹拟合子的变形(歪曲与剪切)简谐(unbrella)束缚力刚体约束摇摆键与键角约束各种鸿沟环境非平行太分子动力学NEMD各种附加鸿沟条件和约束积分器:Velocity-verlet积分器Brown积分器rRESPA继承时间延化积分器刚体积分器共轭梯度或最束下降算法能量最小化器输出:(饬令:dump, restart)热力学信息日志原子坐标,速度和其它原子量信息的文本dump文件二进制重启文件各原子量包含:能量,压力,中心对称参数,CAN等用户自定义系统宽度或各原子的计算信息每个原子的时间与空间平均系统宽量的时间平均原子图像,XYZ,XTC,DCD,CFG格式数据的前处理与后处理:包里提供了一系列的前处理与后处理工具别的,可使用独立发行的工具组pizza.py, 它可以停止LAMMPS摹拟的设置,分析,作图和可视化工作.特别功能:实时的可视化与交互式MD摹拟与有限元方法连系停止原子-持续体摹拟在POEMS库中提供了刚体积分工具并行裉火并行复制动力学对低密度液体直接使用MC摹拟Peridynamic介观建模方针型与无方针型分子动力学双温度电子模子LAMMPS不具有的功能:由于LAMMPS是对牛顿运动方程积分的工具,所以很多需要的数据前处理与后处理功能是LAMMPS核心不具有的.其原因为:包管LAMMPS的小巧性前处理与后处理不克不及停止并行运算这些功能可以有其它工具来完成原代码开辟的局限性特别地,LAMMPS不克不及:通过图形用户界面来工作创建分子体系自动的加上力场系数为MD摹拟提供智能化的数据分析MD的可视化为输出数据作图我们需要为LAMMPS输入一系列的原子类型,原子坐标,分子拓朴信息和所有原子与键的力场参数.LAMMPS不会自动的为我们创建分子体系与力场参数.对与原子体系,LAMMPS提供了creat-atoms饬令来为固态晶格加上原子.可以能过pair coeff,bond coeff, angle coeff等命来加上小数目标力场参数.对于分子体系或更复杂的摹拟体系,我们通常会用其它工具来创建或者是转换LAMMPS输出文件来做到这些事情.有的还会写一些自已的代码来完成这项任务.对于一个复杂的分子体系(如,蛋白质),我们需要为之提供上面个拓朴信息与力场参数.所以我们建议用CHARMM或AMBER 或其它的分子建模器来完成这些任务,并把之输到一个文件中去.然后,改变其格式以达到LAMMPS所允许的输入格式.同样,LAMMPS的输出文件是一种简单的文本格式,我们也可以通过其它的工具来换专这些格式.我们可以用以下几个软件来完成高质量的可视工作:VMDAtomEyePymolRaster3dRasMol最后要说一下的是,以下这些也是自由分子动力学包,它们大多数是并行的,能够也适合来完成你的研究工作,当然也可以与LAMMPS结合起来使用以完成摹拟工作.CHARMMAMBERNAMDNWCHEMDL_POLYTinkerCHARMM,AMBER,NAMD,NWCHEM,Tinker是专们用于摹拟生物分子的.二、开端本部分主要描绘如何创建和运行LAMMPS.1.在LAMMPS发行包理含有:READMELICENSEBench:测式任务Doc:文本Examples:简单的测试任务Potentials:嵌入原子方法与力场文件Src:源代码Tools: 前处理与后处理工具假如你下载的是windows可执行文件的话,你外面只有一个文件(并行与非并行两种)L2. 编译LAMMPS之前的工作:编译LAMMPS不是一个繁琐的工作.首先你能够要写一个makefile 文件,外面要选择编译器,附加的一些将要用到的库等.事先装上MPI或FFT等库.编译出一个可执行LAMMPS:在SRC目次外头含有C++源文件和头文件.当然也包含一个高水平的Makefile,在MAKE目次外头有几个低水平的Makefile.*files分别适有分歧的平台.进入SRC目次,输入make或gmake,你将会看到一列的可选项.假如其中有一种符合你的机器,你可以输入像下面一样的饬令:Make linuxGmake mac注意,在一个多处理器或多核处理器的平台上你可以停止平行编译,在make饬令中使用“-j”选项便可以,这样编译起来会更快一些.在此过程中不发生错误的话,你可以得到一个近似于lmp-linux 的可执行文件.在编译过程当中将会发生的罕见错误:(1)如果编译过程当中发生错误,并提示不克不及找到一个含有通配符*为名的文件的话,说明你机器上的make器允许makefile中使用通配符.那就偿式使用gmake.如还不成的话,就试试加入-f选项,用Makefile.list作为make对像.如:Make makelistMake –f makefile.list linuxGmake –f makefile.lst mac(2)当你使用低水平的makefile时,能够由于对机器的设置不正确,会导致一些错误.假如你的平台叫“foo”,的话,你将要在MAKE目次中创建一个Makefile.foo.使用任何一个与你机器相近的文件作为开端总是一个不错的选择.(3)如你在链接的时候出现库丢失或少了依赖关系的话,能够是由于:你编译的包需要一个附加的库,但却没有事先编译需要的package libaray.你要链接的库在你的系统中不存在.没有毗连到需要的系统库后两种问题出现,你就需要修改你的低水平makefile.foo.编辑一个新的低水平makefile.foo:(1)在#后的句子中,替换foo,不管你写成什么,这一行将会出现在屏幕上,如果你只输入make饬令的话.(2)在“complier/linker settings”部分为你的C++编译器列出编译器与链接器的设置,包含优化符号.你可以在任何UNIX系统中使用G++编译器.当然你也可以用MPICC,如果你的系统中装置了MPI的话.如过在编译过程当中需要符加的库的话,你必须在LIB变量中列出来.DEPFLAGS设置可让C++编译器创建一个源文件的依赖关系列表,当源文件或头文件改变的时候可以加快编译速度.有些编译器不克不及创建依赖关系列表,或者你可以用选项—D来实现.G++可使用-D.如果你的编译器不克不及创建依赖关系文件的话,那末你就需要创建一个Makefile.foo来与Makefile.storm(它用一系列的不需要依赖文件的规划)相对应.(3)“system-specific settings”部分有四个小部分:A LMP—INC变量,包含一些与系统相关的条件选项.B 3个MPI变量用于指定MPI库.如你要停止并行计算的话,那末你必须在你的平台上安上MPI 库.如你想用MPI内置C++编译器的话,你可让这三个变量空着,如你不必MPICC的话,那末,你要指定MPI.h(MPI_INC)文件在哪,MPI(MPI_PATH)库在哪,还有库名(MPI_LIB).如果你想自已装置MPI的话,我们建议用MPICH1.2或M MPI也可以.如果我的是大平始的话,你的供应商已经为你装上了MPI,其能够比MPICH或LAM更快,你可以把找出来并与之链接.如你用LAM或MPICH,你必须要设置他并编译他使之适合你的平台.如果你想在单处理器的机器上运行的话,你可以用STIBS库,这样你便可以不必在你的系统中装置MPI库.防照makefile.serial,看是如果设置这三个变量的.当然你在编译LAMMPS之前你必须创建STUBS库.在STUBS目次中,输入make,不出错的话你将会得到一个libmpi.a文件可供链接到LAMMPS.当出错,你则要修改STUBS下的MAKEFILE.STUBS/MPI.CPP有一个CPU计时器MPI_Wtime()可以调用gettimeofday(). 如你的系统不支持gettimeofday(),则你就要拔出一句代码来调用另外一个计时器,要注意的是,clock()函数在一个小时之后会归0,所以对于一个长时间的LAMMPS摹拟来讲这是不敷用的.C FTT变量用于指定FFT库,当要用到kspace-style饬令来计算长程库伦作用时使用PPPM选项时要用到.要使用此选项,你必须要在你的机器上装置一个一维的FFT库.可以能过开关—DFFT—XXX来指定,其中XXX=INTEL,DEC,SGI,SCSL,或FFTW.没有法子的情况下可以用供应商提供的库.FFTW是一个疾速的,可移植性的库,它可以在任何一个平台上运行.最好 2.1.X本.编译FFTW库时只要用./configure;make便可以.不任你是用哪种FFT库,你都要在makefile.foo中正确的设置咱们的FFT_INC,FFT_PATH,FFT_LIB.当然,你如果不必PPPM的话,你将没有需要装置FFT库.这种情况下,你可以把FFT_INC设成-DFFT-NONE并让其它几个变量空着.你也可以在编译LAMMPS时把KSPACE包剔除.D 几个SYSLIB和SYSPATH变量你可以忽略,除非你在编译LAMMPS时其中有一个或几个包要用到附加的系统库.所有这些包都的的称号都将会是SYSLIB和SYSPATH变量的前辍.SYSLIB 变量将列出系统库.SYSPATH则是途径,只有当这些库为非默许途径时才有设定.最后,当你正确的写好了makefile.foo和预编译好了所有的其它库(MPI,FFT,包库等)之后,你只要在SRC目次下输入下面其中一个饬令便可以了Make fooGmake foo不出意外,你将会得到lmp_foo的可执行文件.附加建义(1)为多平台编译LAMMPS你可以在同一个SRC目次下为多平台编译LAMMPS.每个方针都有他自已的方针途径,Obj_name 用于存贮指定系统的方针文件.(2)清理输入make clear-all或make clean-foo将会清理LAMMPS在编译时创建的方针文件.(3)为windows编译LAMMPS在LAMMPS下载页面上可以下载已经编译好了的windows可执行文件.如已经编译好了的windows可执行文件不克不及知足你的要求的时候,你可以在windows平台上从源文件编译LAMMPS.但是不建义这么做.见./src/MAKE/Windows.3 如何有选择性的编译LAMMPS加入/剔除包在LAMMPS编译之前可以加入或剔除所有或部分包.只有两种况下是列外,GPU和OPT包.这此包中相互关联的包必须包含在一起.如果不是这样,那末在GPU和OPT子目次下的所有包都不克不及装置.要装置GPU包里的全部文件,asphere包须装置.要装置OPT下的所有文件,那末kspace与manybody包须首先装置.当然,由于某些摹拟用不到其中的某些包,那末你想把这些包剔除这是可以的.这样你便可以不必编译一些额外的库,当然你的可执行文件也将会更小,运行起来也会更快.默许情况下,LAMMPS只包含kspace,manybody,molecule这三个包.可以通过如make yes-name, make no-name来加入和剔除一些包,当然你也可以用make yes-standard, make no-standard,make yes –user, make no-user, make yes-all, make no-all加入或剔除各种包.Make package可以看到多个选项.3 运行LAMMPS。
LAMMPS手册-中文版讲解
L A M M P S手册-中文版讲解(总7页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除LAMMPS手册-中文解析一、简介本部分大至介绍了LAMMPS的一些功能和缺陷。
1.什么是LAMMPS?2.LAMMPS是一个经典的分子动力学代码,他可以模拟液体中的粒子,固体和汽体的系综。
他可以采用不同的力场和边界条件来模拟全原子,聚合物,生物,金属,粒状和粗料化体系。
LAMMPS 可以计算的体系小至几个粒子,大到上百万甚至是上亿个粒子。
LAMMPS可以在单个处理器的台式机和笔记本本上运行且有较高的计算效率,但是它是专门为并行计算机设计的。
他可以在任何一个按装了C++编译器和MPI的平台上运算,这其中当然包括分布式和共享式并行机和Beowulf型的集群机。
LAMMPS是一可以修改和扩展的计算程序,比如,可以加上一些新的力场,原子模型,边界条件和诊断功能等。
通常意义上来讲,LAMMPS是根据不同的边界条件和初始条件对通过短程和长程力相互作用的分子,原子和宏观粒子集合对它们的牛顿运动方程进行积分。
高效率计算的LAMMPS通过采用相邻清单来跟踪他们邻近的粒子。
这些清单是根据粒子间的短程互拆力的大小进行优化过的,目的是防止局部粒子密度过高。
在并行机上,LAMMPS采用的是空间分解技术来分配模拟的区域,把整个模拟空间分成较小的三维小空间,其中每一个小空间可以分配在一个处理器上。
各个处理器之间相互通信并且存储每一个小空间边界上的”ghost”原子的信息。
LAMMPS(并行情况)在模拟3维矩行盒子并且具有近均一密度的体系时效率最高。
3.L AMMPS的功能总体功能:可以串行和并行计算分布式MPI策略模拟空间的分解并行机制开源高移植性C++语言编写MPI和单处理器串行FFT的可选性(自定义)可以方便的为之扩展上新特征和功能只需一个输入脚本就可运行有定义和使用变量和方程完备语法规则在运行过程中循环的控制都有严格的规则只要一个输入脚本试就可以同时实现一个或多个模拟任务粒子和模拟的类型:(atom style命令)原子粗粒化粒子全原子聚合物,有机分子,蛋白质,DNA联合原子聚合物或有机分子金属粒子材料粗粒化介观模型延伸球形与椭圆形粒子点偶极粒子刚性粒子所有上面的杂化类型力场:(命令:pair style, bond style, angle style, dihedral style, improper style, kspace style)对相互作用势:L-J, Buckingham, Morse, Yukawa, soft, class2(COMPASS), tabulated.带点对相互作用势:Coulombic, point-dipole.多体作用势:EAM, Finnis/Sinclair EAM, modified EAM(MEAM), Stillinger-Weber, Tersoff, AIREBO, ReaxFF粗粒化作用势:DPD, GayBerne, Resquared, Colloidal, DLVO介观作用势:granular, Peridynamics键势能:harmonic, FENE, Morse, nonlinear, class2, quartic键角势能:harmonic, CHARMM, cosine, cosine/squared, class2(COMPASS)二面角势能:harmonic, CHARMM, multi-harmonic, helix, OPLS, class2(COMPASS)不合理势能:harmonic, CVFF, class2(COMPASS)聚合物势能:all-atom, united-atom, bead-spring, breakable水势能:TIP3P,TIP4P,SPC隐式溶剂势能:hydrodynamic lubrication, Debye长程库伦与分散:Ewald, PPPM, Ewald/N(针对长程L-J作用)可以有与普适化力场如CHARMM,AMBER,OPLS,GROMACS相兼容的力场可以采用GPU加速的成对类型杂化势能函数:multiple pair, bond, angle, dihedral, improper potentials(多对势能处于更高的优先级)原子创建:(命令:read_data, lattice, create-atoms, delete-atoms, displace-atoms, replicate)从文件中读入各个原子的坐标在一个或多个晶格中创建原子删除几何或逻辑原子基团复制已存在的原子多次替换原子系综,约束条件,边界条件:(命令:fix)二维和三维体系正角或非正角模拟空间常NVE,NVT,NPT,NPH积分器原子基团与几何区域可选择不同的温度控制器有Nose/Hoover和Berendsen压力控制器来控制体系的压力(任一维度上)模拟合子的变形(扭曲与剪切)简谐(unbrella)束缚力刚体约束摇摆键与键角约束各种边界环境非平行太分子动力学NEMD各种附加边界条件和约束积分器:Velocity-verlet积分器Brown积分器rRESPA继承时间延化积分器刚体积分器共轭梯度或最束下降算法能量最小化器输出:(命令:dump, restart)热力学信息日志原子坐标,速度和其它原子量信息的文本dump文件二进制重启文件各原子量包括:能量,压力,中心对称参数,CAN等用户自定义系统宽度或各原子的计算信息每个原子的时间与空间平均系统宽量的时间平均原子图像,XYZ,XTC,DCD,CFG格式数据的前处理与后处理:包里提供了一系列的前处理与后处理工具另外,可以使用独立发行的工具组pizza.py, 它可以进行LAMMPS模拟的设置,分析,作图和可视化工作。
LAMMPS手册-中文版讲解
LAMMPS手册-中文解析一、简介本部分大至介绍了LAMMPS的一些功能和缺陷。
1.什么是LAMM PS?LAMMPS是一个经典的分子动力学代码,他可以模拟液体中的粒子,固体和汽体的系综。
他可以采用不同的力场和边界条件来模拟全原子,聚合物,生物,金属,粒状和粗料化体系。
LAMMPS可以计算的体系小至几个粒子,大到上百万甚至是上亿个粒子。
LAMMPS可以在单个处理器的台式机和笔记本本上运行且有较高的计算效率,但是它是专门为并行计算机设计的。
他可以在任何一个按装了C++编译器和MPI的平台上运算,这其中当然包括分布式和共享式并行机和B e owulf型的集群机。
LAMMPS是一可以修改和扩展的计算程序,比如,可以加上一些新的力场,原子模型,边界条件和诊断功能等。
通常意义上来讲,LAMMPS是根据不同的边界条件和初始条件对通过短程和长程力相互作用的分子,原子和宏观粒子集合对它们的牛顿运动方程进行积分。
高效率计算的LAMMPS通过采用相邻清单来跟踪他们邻近的粒子。
这些清单是根据粒子间的短程互拆力的大小进行优化过的,目的是防止局部粒子密度过高。
在并行机上,LAMMPS采用的是空间分解技术来分配模拟的区域,把整个模拟空间分成较小的三维小空间,其中每一个小空间可以分配在一个处理器上。
各个处理器之间相互通信并且存储每一个小空间边界上的”ghost”原子的信息。
LAMMPS(并行情况)在模拟3维矩行盒子并且具有近均一密度的体系时效率最高。
2.LAMMPS的功能总体功能:可以串行和并行计算分布式MPI策略模拟空间的分解并行机制开源高移植性C++语言编写MPI和单处理器串行FFT的可选性(自定义)可以方便的为之扩展上新特征和功能只需一个输入脚本就可运行有定义和使用变量和方程完备语法规则在运行过程中循环的控制都有严格的规则只要一个输入脚本试就可以同时实现一个或多个模拟任务粒子和模拟的类型:(atom style命令)原子粗粒化粒子全原子聚合物,有机分子,蛋白质,DNA联合原子聚合物或有机分子金属粒子材料粗粒化介观模型延伸球形与椭圆形粒子点偶极粒子刚性粒子所有上面的杂化类型力场:(命令:pair style, bond style, angle style, dihedral style, improper style, kspacestyle)对相互作用势:L-J, Bucking ham, Morse, Yukawa, soft, class2(COMPASS), tabulat ed.带点对相互作用势:Coulombi c, point-dipole.多体作用势:EAM, Finnis/Sinclai r EAM, modifie d EAM(MEAM), Stillin g er-Weber, Tersoff, AIREBO, ReaxFF粗粒化作用势:D PD, GayBern e, Resquar ed, Colloid al, DLVO介观作用势:granula r, Peridyn amics键势能:harmoni c, FENE, Morse, nonlinear, class2, quartic键角势能:harmoni c, CHARMM, cosine, cosine/squared, class2(COMPASS)二面角势能:harmoni c, CHARMM, multi-harmoni c, helix, OPLS, class2(COMPASS)不合理势能:harmoni c, CVFF, class2(COMPASS)聚合物势能:all-atom, united-atom, bead-spring, breakabl e水势能:TIP3P,TIP4P,SPC隐式溶剂势能:h y drody n amiclubrication, Debye长程库伦与分散:Ewald, PPPM, Ewald/N(针对长程L-J作用)可以有与普适化力场如CHARMM,AMBER,OPLS,GROMACS相兼容的力场可以采用GPU加速的成对类型杂化势能函数:m ultipl e pair, bond, angle, dihedral, imprope r potenti als(多对势能处于更高的优先级)原子创建:(命令:read_da ta, lattice, create-atoms, delete-atoms, displac e-atoms, replica te)从文件中读入各个原子的坐标在一个或多个晶格中创建原子删除几何或逻辑原子基团复制已存在的原子多次替换原子系综,约束条件,边界条件:(命令:fix)二维和三维体系正角或非正角模拟空间常NVE,NVT,NPT,NPH积分器原子基团与几何区域可选择不同的温度控制器有Nose/Hoover和Berend sen压力控制器来控制体系的压力(任一维度上)模拟合子的变形(扭曲与剪切)简谐(unbrell a)束缚力刚体约束摇摆键与键角约束各种边界环境非平行太分子动力学NEMD各种附加边界条件和约束积分器:Velocit y-verlet积分器Brown积分器rRESPA继承时间延化积分器刚体积分器共轭梯度或最束下降算法能量最小化器输出:(命令:dump, restart)热力学信息日志原子坐标,速度和其它原子量信息的文本dump文件二进制重启文件各原子量包括:能量,压力,中心对称参数,CAN等用户自定义系统宽度或各原子的计算信息每个原子的时间与空间平均系统宽量的时间平均原子图像,XYZ,XTC,DCD,CFG格式数据的前处理与后处理:包里提供了一系列的前处理与后处理工具另外,可以使用独立发行的工具组p i zza.py, 它可以进行LAMMPS模拟的设置,分析,作图和可视化工作。
lammps
后面的两个部分可以按照需要多次重复
(1) Initialization 在模拟体系定义之前, 一些参数必须要被设置. 相关的命令 有:units, dimension, newton, processors, boundary, atom_style, atom_modify. units: 选择单位系统, lammps提供了lj、real、metal三种单位系 统 dimension: 2d模拟还是3d模拟, 默认是3d boundary: 边界条件:周期性边界or自由边界 atom_style: 定义模拟体系中的原子属性, 注意这个style要区分 后面设置力场参数时命令里提到的atom type
Lammps是一个经典分子动力学代码 能够模拟三种状态中的全部颗粒,通 过使用各种力场和边界条件也能模拟 原子的、聚合的、生物的、金属的、 颗粒的和粗精度系统。
Lammps软件目前的特点
从势场角度看:建模软物质(生物分子,聚合物),固态 材料(金属,半导体),以及粗粒子和介观材料。更一般的 说是lammps程序是用来建模原子/介观/连续尺度物质以及其 在热、力学、化学条件下的性质的模拟软件,因此是系统化 方法。 Lammps程序运行环境:单CPU和多CPU,采用的是消息响 应和模拟域的空间分解并行机制。
③ 已经设置好的原子可以用replicate命令复制以生成一个更大 规模的模拟体系.
(3)Settings 原子和分子的拓扑信息定义好后, 要制定一系列的设置: 力场系 数、模拟参数、输出选项 等等. 力场系数可以通过这些命令定义: pair_coeff, bond_coeff, angle_coeff, dihedral_coeff, improper_coeff, kspace_style, dielectric, special_bonds. 其实力场系数也可以在data文件中制定. 各种模拟参数由这些命令设置: neighbor, neigh_modify, group, timestep, reset_timestep, run_style, min_style, min_modify. fix命令是lammps中很重要的一个命令, 它包括很多子命令, 可以 施加一系列的边界条件、时间积分、诊断选项等等. 模拟过程中通过下面的命令制定lammps进行各种计算: compute, compute_modify, variable. 输出选项由thermo, dump, restart命令设置.
LAMMPS手册-中文版讲解
LAMMPS手册-中文解析【2 】一、简介本部分大至介绍了LAMMPS的一些功效和缺点.1.什么是LAMMPS?LAMMPS是一个经典的分子动力学代码,他可以模仿液体中的粒子,固体和汽体的系综.他可以采用不同的力场和边界前提来模仿全原子,聚合物,生物,金属,粒状和粗料化体系.LAMMPS可以盘算的体系小至几个粒子,大到上百万甚至是上亿个粒子.LAMMPS可以在单个处理器的台式机和笔记本本上运行且有较高的盘算效力,但是它是专门为并行盘算机设计的.他可以在任何一个按装了C++编译器和MPI的平台上运算,这个中当然包括散布式和共享式并行机和Beowulf型的集群机.LAMMPS是一可以修正和扩大的盘算程序,比如,可以加上一些新的力场,原子模子,边界前提和诊断功效等.平日意义上来讲,LAMMPS是依据不同的边界前提和初始前提对经由过程短程和长程力互相感化的分子,原子和宏不雅粒子聚集对它们的牛顿活动方程进行积分.高效力盘算的LAMMPS经由过程采用相邻清单来跟踪他们临近的粒子.这些清单是依据粒子间的短程互拆力的大小进行优化过的,目标是防止局部粒子密渡过高.在并行机上,LAMMPS采用的是空间分化技巧来分派模仿的区域,把全部模仿空间分成较小的三维小空间,个中每一个小空间可以分派在一个处理器上.各个处理器之间互相通讯并且存储每一个小空间边界上的”ghost”原子的信息.LAMMPS(并行情形)在模仿3维矩行盒子并且具有近均一密度的体系时效力最高.2.L AMMPS的功效总体功效:可以串行和并行盘算散布式MPI策略模仿空间的分化并行机制开源高移植性C++说话编写MPI和单处理器串行FFT的可选性(自界说)可以便利的为之扩大上新特点和功效只需一个输入剧本就可运行有界说和应用变量和方程完整语律例则在运行进程中轮回的掌握都有严厉的规矩只要一个输入剧本试就可以同时实现一个或多个模仿义务粒子和模仿的类型:(atom style敕令)原子粗粒化粒子全原子聚合物,有机分子,蛋白质,DNA结合原子聚合物或有机分子金属粒子材料粗粒化介不雅模子延长球形与卵形粒子点偶极粒子刚性粒子所有上面的杂化类型力场:(敕令:pair style, bond style, angle style, dihedral style, improper style, kspace style)对互相感化势:L-J, Buckingham, Morse, Yukawa, soft, class2(COMPASS), tabulated.带点对互相感化势:Coulombic, point-dipole.多体感化势:EAM, Finnis/Sinclair EAM, modified EAM(MEAM), Stillinger-Weber, Tersoff, AIREBO, ReaxFF粗粒化感化势:DPD, GayBerne, Resquared, Colloidal, DLVO介不雅感化势:granular, Peridynamics键势能:harmonic, FENE, Morse, nonlinear, class2, quartic键角势能:harmonic, CHARMM, cosine, cosine/squared, class2(COMPASS)二面角势能:harmonic, CHARMM, multi-harmonic, helix, OPLS, class2(COMPASS) 不合理势能:harmonic, CVFF, class2(COMPASS)聚合物势能:all-atom, united-atom, bead-spring, breakable水势能:TIP3P,TIP4P,SPC隐式溶剂势能:hydrodynamic lubrication, Debye长程库伦与疏散:Ewald, PPPM, Ewald/N(针对长程L-J感化)可以有与普适化力场如CHARMM,AMBER,OPLS,GROMACS相兼容的力场可以采用GPU加快的成对类型杂化势能函数:multiple pair, bond, angle, dihedral, improper potentials(多对势能处于更高的优先级)原子创建:(敕令:read_data, lattice, create-atoms, delete-atoms, displace-atoms, replicate)从文件中读入各个原子的坐标在一个或多个晶格中创建原子删除几何或逻辑原子基团复制已消失的原子多次调换原子系综,束缚前提,边界前提:(敕令:fix)二维和三维体系正角或非正角模仿空间常NVE,NVT,NPT,NPH积分器原子基团与几何区域可选择不同的温度掌握器有Nose/Hoover和Berendsen压力掌握器来掌握体系的压力(任一维度上)模仿合子的变形(扭曲与剪切)简谐(unbrella)束缚力刚体束缚扭捏键与键角束缚各类边界情形非平行太分子动力学NEMD各类附加边界前提和束缚积分器:Velocity-verlet积分器Brown积分器rRESPA继续时光延化积分器刚体积分器共轭梯度或最束降低算法能量最小化器输出:(敕令:dump, restart)热力学信息日记原子坐标,速度和其它原子量信息的文本dump文件二进制重启文件各原子量包括:能量,压力,中间对称参数,CAN等用户自界说体系宽度或各原子的盘算信息每个原子的时光与空间平均体系宽量的时光平均原子图像,XYZ,XTC,DCD,CFG格局数据的前处理与后处理:包里供给了一系列的前处理与后处理对象别的,可以应用自力刊行的对象组pizza.py,它可以进行LAMMPS模仿的设置,剖析,作图和可视化工作.特殊功效:及时的可视化与交互式MD模仿与有限元方法结合进行原子-持续体模仿在POEMS库中供给了刚体积分对象并行裉火并行复制动力学对低密度液体直接应用MC模仿Peridynamic介不雅建模目标型与无目标型分子动力学双温度电子模子LAMMPS不具备的功效:因为LAMMPS是对牛顿活动方程积分的对象,所以许多必要的数据前处理与后处理功效是LAMMPS焦点不具备的.其原因为:保证LAMMPS的小巧性前处理与后处理不能进行并交运算这些功效可以有其它对象来完成原代码开辟的局限性特殊地,LAMMPS不能:经由过程图形用户界面来工作创建分子体系主动的加上力场系数为MD模仿供给智能化的数据剖析MD的可视化为输出数据作图我们须要为LAMMPS输入一系列的原子类型,原子坐标,分子拓朴信息和所有原子与键的力场参数.LAMMPS不会主动的为我们创建分子体系与力场参数.对与原子体系,LAMMPS供给了creat-atoms敕令来为固态晶格加上原子.可以能过pair coeff,bond coeff, angle coeff等命来加上小数量标力场参数.对于分子体系或更庞杂的模仿体系,我们平日会用其它对象来创建或者是转换LAMMPS输出文件来做到这些工作.有的还会写一些自已的代码来完成这项义务.对于一个庞杂的分子体系(如,蛋白质),我们须要为之供给上面个拓朴信息与力场参数.所以我们建议用CHARMM或AMBER或其它的分子建模器来完成这些义务,并把之输到一个文件中去.然后,转变其格局以达到LAMMPS所许可的输入格局.同样,LAMMPS的输出文件是一种简略的文本格局,我们也可以经由过程其它的对象来换专这些格局.我们可以用以下几个软件来完成高质量的可视工作:VMDAtomEyePymolRaster3dRasMol最后要说一下的是,以下这些也是自由分子动力学包,它们大多半是并行的,可能也合适来完成你的研讨工作,当然也可以与LAMMPS结合起来应用以完成模仿工作.CHARMMAMBERNAMDNWCHEMDL_POLYTinkerCHARMM,AMBER,NAMD,NWCHEM,Tinker是专们用于模仿生物分子的.二、开端本部分重要描写若何创建和运行LAMMPS.1.在LAMMPS刊行包理含有:READMELICENSEBench:测式义务Doc:文本Examples:简略的测试义务Potentials:嵌入原子方法与力场文件Src:源代码Tools: 前处理与后处理对象假如你下载的是windows可履行文件的话,你里面只有一个文件(并行与非并行两种)Lmp-windows.exe2. 编译LAMMPS之前的工作:编译LAMMPS不是一个繁琐的工作.起首你可能要写一个makefile文件,里面要选择编译器,附加的一些将要用到的库等.事先装上MPI或FFT等库.编译出一个可履行LAMMPS:在SRC目次里头含有C++源文件和头文件.当然也包括一个高程度的Makefile,在MAKE目次里头有几个低程度的Makefile.*files分离适有不同的平台.进入SRC目次,输入make或gmake,你将会看到一列的可选项.假如个中有一种相符你的机械,你可以输入像下面一样的敕令:Make linuxGmake mac留意,在一个多处理器或多核处理器的平台上你可以进行平行编译,在make敕令中应用“-j”选项就可以,如许编译起来会更快一些.在此进程中不产生错误的话,你可以得到一个相似于lmp-linux的可履行文件.在编译进程当中将会产生的常见错误:(1)假如编译进程当中产生错误,并提醒不能找到一个含有通配符*为名的文件的话,解释你机械上的make器许可makefile中应用通配符.那就偿式应用gmake.如还不行的话,就尝尝参加-f选项,用Makefile.list作为make对像.如:Make makelistMake –f makefile.list linuxGmake –f makefile.lst mac(2)当你应用低程度的makefile时,可能因为对机械的设置不准确,会导致一些错误.假如你的平台叫“foo”,的话,你将要在MAKE目次中创建一个Makefile.foo.应用任何一个与你机械邻近的文件作为开端老是一个不错的选择.(3)如你在链接的时刻消失库丧掉或少了依附关系的话,可能是因为:你编译的包须要一个附加的库,但却没有事先编译须要的package libaray.你要链接的库在你的体系中不消失.没有衔接到必要的体系库后两种问题消失,你就须要修正你的低程度makefile.foo.编辑一个新的低程度makefile.foo:(1)在#后的句子中,调换foo,不论你写成什么,这一行将会出如今屏幕上,假如你只输入make敕令的话.(2)在“complier/linkersettings”部分为你的C++编译器列出编译器与链接器的设置,包括优化符号.你可以在任何UNIX体系中应用G++编译器.当然你也可以用MPICC,假如你的体系中安装了MPI的话. 如过在编译进程当中须要符加的库的话,你必需在LIB变量中列出来.DEPFLAGS设置可以让C++编译器创建一个源文件的依附关系列表,当源文件或头文件转变的时刻可以加快编译速度.有些编译器不能创建依附关系列表,或者你可以用选项—D来实现.G++可以应用-D.假如你的编译器不能创建依附关系文件的话,那么你就须要创建一个Makefile.foo来与Makefile. storm(它用一系列的不须要依附文件的计划)相对应.(3)“system-specific settings”部分有四个小部分:A LMP—INC变量,包括一些与体系相干的前提选项.B 3个MPI变量用于指定MPI库.如你要进行并行盘算的话,那么你必须在你的平台上安上MPI库.如你想用MPI内置C++编译器的话,你可以让这三个变量空着,如你不用MPICC的话,那么,你要指定MPI.h(MPI_INC)文件在哪,MPI (MPI_PATH)库在哪,还有库名(MPI_LIB).假如你想自已安装MPI的话,我们建议用MPICH1.2或MMPI也可以.假如我的是大平始的话,你的供给商已经为你装上了MPI,其可能比MPICH或LAM更快,你可以把找出来并与之链接.如你用LAM或MPICH,你必须要设置他并编译他使之合适你的平台.假如你想在单处理器的机械上运行的话,你可以用STIBS库,如许你就可以不用在你的体系中安装MPI库.防照makefile.serial,看是假如设置这三个变量的.当然你在编译LAMMPS之前你必需创建S TUBS库.在STUBS目次中,输入make,不出错的话你将会得到一个libmpi.a文件可供链接到LAMM PS.当出错,你则要修正STUBS下的MAKEFILE.STUBS/MPI.CPP有一个CPU计时器MPI_Wtime()可以挪用gettimeofday().如你的体系不支撑gettimeofday(),则你就要插入一句代码来挪用另一个计时器,要留意的是,clock( )函数在一个小时之后会归0,所以对于一个长时光的LAMMPS模仿来说这是不够用的.C FTT变量用于指定FFT库,当要用到kspace-style敕令来盘算长程库伦感化时应用PPPM选项时要用到.要应用此选项,你必须要在你的机械上安装一个一维的FFT库.可以能过开关—DFFT—XXX来指定,个中XXX=INTEL,DEC,SGI,SCSL,或FFTW.没有方法的情形下可以用供给商供给的库.FFTW是一个快速的,可移植性的库,它可以在任何一个平台上运行.最好2.1.X本.编译FFTW库时只要用./configure;make就可以.不任你是用哪一种FFT库,你都要在makefile.foo中准确的设置咱们的FFT_INC,FFT_PATH,FFT_LIB.当然,你假如不用PPPM的话,你将没有必要安装FFT库.这种情形下,你可以把FFT_INC设成-DFFT-NONE并让其它几个变量空着.你也可以在编译LAMMPS时把KSPACE包剔除.D几个SYSLIB和SYSPATH变量你可以疏忽,除非你在编译LAMMPS时个中有一个或几个包要用到附加的体系库.所有这些包都的的名称都将会是SYSLIB和SYSPATH变量的前辍.SYSLIB变量将列出体系库.SYSPATH则是路径,只有当这些库为非默认路径时才有设定.最后,当你准确的写好了makefile.foo和预编译好了所有的其它库(MPI,FFT,包库等)之后,你只要在SRC目次下输入下面个中一个敕令就可以了Make fooGmake foo不出不测,你将会得到lmp_foo的可履行文件.附加建义(1)为多平台编译LAMMPS你可以在统一个SRC目次下为多平台编译LAMMPS.每一个目标都有他自已的目标路径,Obj_nam e 用于存贮指定体系的目标文件.(2)清算输入make clear-all或make clean-foo将会清算LAMMPS在编译时创建的目标文件.(3)为windows编译LAMMPS在LAMMPS下载页面上可以下载已经编译好了的windows可履行文件.如已经编译好了的windows可履行文件不能知足你的请求的时刻,你可以在windows平台上从源文件编译LAMMPS.但是不建义这么做.见./src/MAKE/Windows.3 若何有选择性的编译LAMMPS参加/剔除包在LAMMPS编译之前可以参加或剔除所有或部分包.只有两种况下是列外,GPU和OPT包.这此包中互相联系关系的包必须包括在一路.假如不是如许,那么在GPU和OPT子目次下的所有包都不能安装.要安装GPU包里的全体文件,asphere包须安装.要安装OPT下的所有文件,那么kspace与manybody包须起首安装.当然,因为某些模仿用不到个中的某些包,那么你想把这些包剔除这是可以的.如许你就可以不用编译一些额外的库,当然你的可履行文件也将会更小,运行起来也会更快.默认情形下,LAMMPS只包含kspace,manybody,molecule这三个包.可以经由过程如make yes-name, make no-name来参加和剔除一些包,当然你也可以用make yes-standard, make no-standard,make yes –user, make no-user, make yes-all, make no-all参加或剔除各类包.Make package可以看到多个选项.3 运行LAMMPS。
LAMMPS介绍资料中文版讲解
LAMMPS手册-中文解析一、简介本部分大至介绍了LAMMPS的一些功能和缺陷。
1.什么是LAMMPS?LAMMPS是一个经典的分子动力学代码,他可以模拟液体中的粒子,固体和汽体的系综。
他可以采用不同的力场和边界条件来模拟全原子,聚合物,生物,金属,粒状和粗料化体系。
LAMMPS可以计算的体系小至几个粒子,大到上百万甚至是上亿个粒子。
LAMMPS可以在单个处理器的台式机和笔记本本上运行且有较高的计算效率,但是它是专门为并行计算机设计的。
他可以在任何一个按装了C++编译器和MPI的平台上运算,这其中当然包括分布式和共享式并行机和Beowulf型的集群机。
LAMMPS是一可以修改和扩展的计算程序,比如,可以加上一些新的力场,原子模型,边界条件和诊断功能等。
通常意义上来讲,LAMMPS是根据不同的边界条件和初始条件对通过短程和长程力相互作用的分子,原子和宏观粒子集合对它们的牛顿运动方程进行积分。
高效率计算的LAMMPS通过采用相邻清单来跟踪他们邻近的粒子。
这些清单是根据粒子间的短程互拆力的大小进行优化过的,目的是防止局部粒子密度过高。
在并行机上,LAMMPS采用的是空间分解技术来分配模拟的区域,把整个模拟空间分成较小的三维小空间,其中每一个小空间可以分配在一个处理器上。
各个处理器之间相互通信并且存储每一个小空间边界上的”ghost”原子的信息。
LAMMPS(并行情况)在模拟3维矩行盒子并且具有近均一密度的体系时效率最高。
2.LAMMPS的功能总体功能:可以串行和并行计算分布式MPI策略模拟空间的分解并行机制开源高移植性C++语言编写MPI和单处理器串行FFT的可选性(自定义)可以方便的为之扩展上新特征和功能只需一个输入脚本就可运行有定义和使用变量和方程完备语法规则在运行过程中循环的控制都有严格的规则只要一个输入脚本试就可以同时实现一个或多个模拟任务粒子和模拟的类型:(atom style命令)原子粗粒化粒子全原子聚合物,有机分子,蛋白质,DNA联合原子聚合物或有机分子金属粒子材料粗粒化介观模型延伸球形与椭圆形粒子点偶极粒子刚性粒子所有上面的杂化类型力场:(命令:pair style, bond style, angle style, dihedral style, improper style, kspace style)对相互作用势:L-J, Buckingham, Morse, Yukawa, soft, class2(COMPASS), tabulated.带点对相互作用势:Coulombic, point-dipole.多体作用势:EAM, Finnis/Sinclair EAM, modified EAM(MEAM), Stillinger-Weber, Tersoff, AIREBO, ReaxFF粗粒化作用势:DPD, GayBerne, Resquared, Colloidal, DLVO介观作用势:granular, Peridynamics键势能:harmonic, FENE, Morse, nonlinear, class2, quartic键角势能:harmonic, CHARMM, cosine, cosine/squared, class2(COMPASS)二面角势能:harmonic, CHARMM, multi-harmonic, helix, OPLS, class2(COMPASS) 不合理势能:harmonic, CVFF, class2(COMPASS)聚合物势能:all-atom, united-atom, bead-spring, breakable水势能:TIP3P,TIP4P,SPC隐式溶剂势能:hydrodynamic lubrication, Debye长程库伦与分散:Ewald, PPPM, Ewald/N(针对长程L-J作用)可以有与普适化力场如CHARMM,AMBER,OPLS,GROMACS相兼容的力场可以采用GPU加速的成对类型杂化势能函数:multiple pair, bond, angle, dihedral, improper potentials(多对势能处于更高的优先级)原子创建:(命令:read_data, lattice, create-atoms, delete-atoms, displace-atoms, replicate)从文件中读入各个原子的坐标在一个或多个晶格中创建原子删除几何或逻辑原子基团复制已存在的原子多次替换原子系综,约束条件,边界条件:(命令:fix)二维和三维体系正角或非正角模拟空间常NVE,NVT,NPT,NPH积分器原子基团与几何区域可选择不同的温度控制器有Nose/Hoover和Berendsen压力控制器来控制体系的压力(任一维度上)模拟合子的变形(扭曲与剪切)简谐(unbrella)束缚力刚体约束摇摆键与键角约束各种边界环境非平行太分子动力学NEMD各种附加边界条件和约束积分器:Velocity-verlet积分器Brown积分器rRESPA继承时间延化积分器刚体积分器共轭梯度或最束下降算法能量最小化器输出:(命令:dump, restart)热力学信息日志原子坐标,速度和其它原子量信息的文本dump文件二进制重启文件各原子量包括:能量,压力,中心对称参数,CAN等用户自定义系统宽度或各原子的计算信息每个原子的时间与空间平均系统宽量的时间平均原子图像,XYZ,XTC,DCD,CFG格式数据的前处理与后处理:包里提供了一系列的前处理与后处理工具另外,可以使用独立发行的工具组pizza.py, 它可以进行LAMMPS模拟的设置,分析,作图和可视化工作。
lammps输入文件命令中文详解
作者: 御剑江湖收录日期: 2011-03-31 发布日期: 2011-03-24 Commands描述了lammps输入文件的格式和在定义lammps模拟所需要的命令.1.1 LAMMPS input script我们用lammps做分子动力学模拟, 需要一个输入文件. lammps在执行计算的时候, 从这个文本文件中逐行读入命令. 大多数情况, lammps输入文件中各个命令的顺序并不是很重要. 但是你要注意以下几点:(1) lammps并不是将你的输入文件全部读入之后才开始进行计算的, 或者说, 每条命令在它被读入之后就会起作用了. 注意, 下面两组命令的执行效果是不相同的.timestep 0.5run 100run 100和run 100timestep 0.5run 100(2) 有些命令只有在另一些命令已经被定义的情况下才有效. 例如如果你要设定一组原子的温度, 那么用group命令定义哪些原子属于这个组才行.(3) 还有一种情况就是: 命令B要用到命A设置的一些数值, 这样你也不能颠倒这两个命令的顺序.每个命令的详细介绍中的Restrictions部分会说明要使用该命令定义的时候哪些命令必须要被预先定义.如果你的输入文件书写的格式有问题, lammps在执行的时候会提示ERROR或者WARNING , 出现类似信息时, 你可以到手册的第九章中查询原因.1.2 Parsing rules输入文件中的每一非空行都被认为是一条命令. lammps中命令的书写是对大小写敏感的, 不过一般的命令和参数都是小写的, 大写字母用于极少数的情况.(1) 命令行后的& 表示这一行跟下一行是同一条命令. 这一点跟FORTRAN很像.(2) 命令行最开始的# 表示这一行在执行过程中被忽略, 你可以用它来写注释.(3) $ 是跟声明变量有关系的, 我暂时还没用到过, 具体请参阅variable命令的详细介绍.(4) 命令行被tabs, spaces间隔成各个“words”, 注意这里的“words”可以包含字母、数字、下划线、或标点符号.(5) 一行中第一个词是命令名, 后续的词是相关的参数.(6) 双引号内的文字空格被整体地当作一个参数, 其中的# 或$ 就没有前面说的作用了.1.3 Input script structurelammps的输入文件一般分为4个部分Initialization, Atom definition, Settings, Run a simulation后面的两个部分可以按照需要多次重复. Remember that almost all the commands need only be used if a non-default value is desired.(1) Initialization在你的模拟体系定义之前, 一些参数必须要被设置. 相关的命令有:units, dimension, newton, processors, boundary, atom_style, atom_modify.units: 选择单位系统, lammps提供了lj、real、metal三种单位系统dimension: 2d模拟还是3d模拟, 默认是3dboundary: 边界条件:周期性边界or自由边界atom_style: 定义你的模拟体系中的原子属性, 注意这个style要区分后面设置力场参数时命令里提到的atom type还有, 这些命令告诉lammps在你的模拟中使用何种力场: pair_style, bond_style, angle_style, dihedral_style, improper_style.(2) Atom definitionlammps提供3种方式定义原子:①通过read_data或read_restart命令从data或restart文件读入, 这些文件可以包含分子拓扑结构信息.②按照晶格的方式创建原子(不包含分子拓扑信息), 你会用到这几个命令: lattice, region, create_box, create_atoms.③已经设置好的原子可以用replicate命令复制以生成一个更大规模的模拟体系.(3)Settings原子和分子的拓扑信息定义好后, 你要制定一系列的设置: 力场系数、模拟参数、输出选项等等.力场系数可以通过这些命令定义: pair_coeff, bond_coeff, angle_coeff, dihedral_coeff, improper_coeff, kspace_style, dielectric, special_bonds. 注意, 其实力场系数也可以在data文件中制定, 详见read_data命令介绍.各种模拟参数由这些命令设置: neighbor, neigh_modify, group, timestep, reset_timestep, run_style, min_style, min_modify.我觉得fix命令是lammps中很重要的一个命令, 它包括很多子命令, 可以施加一系列的边界条件、时间积分、诊断选项等等.模拟过程中通过下面的命令制定lammps进行各种计算: compute, compute_modify, variable.输出选项由thermo, dump, restart命令设置.(4)Run a simulation使用run命令开始一个分子动力学模拟, 用minimize命令来实施能量最小化(molecular statics), 使用temper命令来进行parallel tempering(replica-exchange) simulation.1.4 Commands listed by category这一节分门别类地列出了lammps的所有命令. 注意有些命令的有些选项是特定的lammps package的一部分, 也就是说只有在编译lammps的时候包括了这些packages, 这些命令才能被使用. 默认情况下编译lammps并不包括所有的packages. 这些依赖关系在相关命令的详细介绍中Restrictions部分中列出了.Initialization: atom_modify, atom_style, boundary, dimension, newton, processors, unitsAtom definition: create_atoms, create_box, lattice, read_data, read_restart, region, replicateForce fields: angle_coeff, angle_style, bond_coeff, bond_style, dielectric, dihedral_coeff, dihedral_style, improper_coeff, improper_style, kspace_modify, kspace_style, pair_coeff, pair_modify, pair_style, pair_write, special_bondsSettings: communicate, dipole, group, mass, min_modify, min_style, neigh_modify, neighbor, reset_timestep, run_style, set, shape, timestep, velocityFixes: fix, fix_modify, unfixComputes: compute, compute_modify, uncomputeOutput: dump, dump_modify, restart, thermo, thermo_modify, thermo_style, undump, write_restartActions: delete_atoms, delete_bonds, displace_atoms, displace_box, minimize, run, temperMiscellaneous: clear, echo, if, include, jump, label, log, next, print, shell, variable作者:御剑江湖一、各种文件的介绍:1 in file:建立该文件以便程序的写入2 log file:写入状态信息(if the switch is used?)3 screen file 决定结果的是否进行屏幕输出4 var name file 定义一个变量,name指变量名,可为字母也可为字符串,形式$x / $ {abc}二、屏幕输出:结果显示在屏幕上,同时在log file 中。
LAMMPS手册中文讲解
LAMMPS手册-中文解析一、简介本部分大至介绍了LAMMPS的一些功能和缺陷。
1.什么是LAMMPS?LAMMPS是一个经典的分子动力学代码,他可以模拟液体中的粒子,固体和汽体的系综。
他可以采用不同的力场和边界条件来模拟全原子,聚合物,生物,金属,粒状和粗料化体系。
LAMMPS可以计算的体系小至几个粒子,大到上百万甚至是上亿个粒子。
LAMMPS可以在单个处理器的台式机和笔记本本上运行且有较高的计算效率,但是它是专门为并行计算机设计的。
他可以在任何一个按装了C++编译器和MPI的平台上运算,这其中当然包括分布式和共享式并行机和Beowulf型的集群机。
LAMMPS是一可以修改和扩展的计算程序,比如,可以加上一些新的力场,原子模型,边界条件和诊断功能等。
通常意义上来讲,LAMMPS是根据不同的边界条件和初始条件对通过短程和长程力相互作用的分子,原子和宏观粒子集合对它们的牛顿运动方程进行积分。
高效率计算的LAMMPS通过采用相邻清单来跟踪他们邻近的粒子。
这些清单是根据粒子间的短程互拆力的大小进行优化过的,目的是防止局部粒子密度过高。
在并行机上,LAMMPS采用的是空间分解技术来分配模拟的区域,把整个模拟空间分成较小的三维小空间,其中每一个小空间可以分配在一个处理器上。
各个处理器之间相互通信并且存储每一个小空间边界上的”ghost”原子的信息。
LAMMPS(并行情况)在模拟3维矩行盒子并且具有近均一密度的体系时效率最高。
2.LAMMPS的功能总体功能:可以串行和并行计算分布式MPI策略模拟空间的分解并行机制开源高移植性C++语言编写MPI和单处理器串行FFT的可选性(自定义)可以方便的为之扩展上新特征和功能只需一个输入脚本就可运行有定义和使用变量和方程完备语法规则在运行过程中循环的控制都有严格的规则只要一个输入脚本试就可以同时实现一个或多个模拟任务粒子和模拟的类型:(atom style命令)原子粗粒化粒子全原子聚合物,有机分子,蛋白质,DNA联合原子聚合物或有机分子金属粒子材料粗粒化介观模型延伸球形与椭圆形粒子点偶极粒子所有上面的杂化类型力场:(命令:pair style, bond style, angle style, dihedral style, improper style, kspace style)对相互作用势:L-J, Buckingham, Morse, Yukawa, soft, class2(COMPASS), tabulated.带点对相互作用势:Coulombic, point-dipole.多体作用势:EAM, Finnis/Sinclair EAM, modified EAM(MEAM), Stillinger-Weber, Tersoff, AIREBO, ReaxFF粗粒化作用势:DPD, GayBerne, Resquared, Colloidal, DLVO介观作用势:granular, Peridynamics键势能:harmonic, FENE, Morse, nonlinear, class2, quartic键角势能:harmonic, CHARMM, cosine, cosine/squared, class2(COMPASS)二面角势能:harmonic, CHARMM, multi-harmonic, helix, OPLS, class2(COMPASS)不合理势能:harmonic, CVFF, class2(COMPASS)聚合物势能:all-atom, united-atom, bead-spring, breakable水势能:TIP3P,TIP4P,SPC隐式溶剂势能:hydrodynamic lubrication, Debye长程库伦与分散:Ewald, PPPM, Ewald/N(针对长程L-J作用)可以有与普适化力场如CHARMM,AMBER,OPLS,GROMACS相兼容的力场可以采用GPU加速的成对类型杂化势能函数:multiple pair, bond, angle, dihedral, improper potentials(多对势能处于更高的优先级)(命令:read_data, lattice, create-atoms, delete-atoms, displace-atoms, replicate)从文件中读入各个原子的坐标在一个或多个晶格中创建原子删除几何或逻辑原子基团复制已存在的原子多次替换原子系综,约束条件,边界条件:(命令:fix)二维和三维体系正角或非正角模拟空间常NVE,NVT,NPT,NPH积分器原子基团与几何区域可选择不同的温度控制器有Nose/Hoover和Berendsen压力控制器来控制体系的压力(任一维度上)模拟合子的变形(扭曲与剪切)简谐(unbrella)束缚力刚体约束摇摆键与键角约束各种边界环境非平行太分子动力学NEMD各种附加边界条件和约束积分器:Velocity-verlet积分器Brown积分器rRESPA继承时间延化积分器刚体积分器共轭梯度或最束下降算法能量最小化器输出:(命令:dump, restart)热力学信息日志原子坐标,速度和其它原子量信息的文本dump文件二进制重启文件各原子量包括:能量,压力,中心对称参数,CAN等用户自定义系统宽度或各原子的计算信息每个原子的时间与空间平均系统宽量的时间平均原子图像,XYZ,XTC,DCD,CFG格式数据的前处理与后处理:包里提供了一系列的前处理与后处理工具另外,可以使用独立发行的工具组pizza.py, 它可以进行LAMMPS模拟的设置,分析,作图和可视化工作。
LAMMPS手册-中文版讲解
LAMMPS手册-中文解析一、简介本部分大至介绍了LAMMPS的一些功能和缺陷。
1.什么是LAMMPS?LAMMPS是一个经典的分子动力学代码,他可以模拟液体中的粒子,固体和汽体的系综。
他可以采用不同的力场和边界条件来模拟全原子,聚合物,生物,金属,粒状和粗料化体系。
LAMMPS可以计算的体系小至几个粒子,大到上百万甚至是上亿个粒子。
LAMMPS可以在单个处理器的台式机和笔记本本上运行且有较高的计算效率,但是它是专门为并行计算机设计的.他可以在任何一个按装了C++编译器和MPI的平台上运算,这其中当然包括分布式和共享式并行机和Beowulf型的集群机。
LAMMPS是一可以修改和扩展的计算程序,比如,可以加上一些新的力场,原子模型,边界条件和诊断功能等。
通常意义上来讲,LAMMPS是根据不同的边界条件和初始条件对通过短程和长程力相互作用的分子,原子和宏观粒子集合对它们的牛顿运动方程进行积分.高效率计算的LAMMPS通过采用相邻清单来跟踪他们邻近的粒子.这些清单是根据粒子间的短程互拆力的大小进行优化过的,目的是防止局部粒子密度过高。
在并行机上,LAMMPS采用的是空间分解技术来分配模拟的区域,把整个模拟空间分成较小的三维小空间,其中每一个小空间可以分配在一个处理器上。
各个处理器之间相互通信并且存储每一个小空间边界上的”ghost”原子的信息.LAMMPS(并行情况)在模拟3维矩行盒子并且具有近均一密度的体系时效率最高。
2.LAMMPS的功能总体功能:可以串行和并行计算分布式MPI策略模拟空间的分解并行机制开源高移植性C++语言编写MPI和单处理器串行FFT的可选性(自定义)可以方便的为之扩展上新特征和功能只需一个输入脚本就可运行有定义和使用变量和方程完备语法规则在运行过程中循环的控制都有严格的规则只要一个输入脚本试就可以同时实现一个或多个模拟任务粒子和模拟的类型:(atom style命令)原子粗粒化粒子全原子聚合物,有机分子,蛋白质,DNA联合原子聚合物或有机分子金属粒子材料粗粒化介观模型延伸球形与椭圆形粒子点偶极粒子刚性粒子所有上面的杂化类型力场:(命令:pair style,bond style,angle style,dihedral style,improper style,kspace style)对相互作用势:L—J,Buckingham, Morse,Yukawa,soft,class2(COMPASS), tabulated.带点对相互作用势:Coulombic,point-dipole。
LMMPS手册中文版讲解
LAMMPS手册-中文解析一、简介本部分大至介绍了LAMMPS的一些功能和缺陷。
1.什么是LAMMPSLAMMPS是一个经典的分子动力学代码,他可以模拟液体中的粒子,固体和汽体的系综。
他可以采用不同的力场和边界条件来模拟全原子,聚合物,生物,金属,粒状和粗料化体系。
LAMMPS可以计算的体系小至几个粒子,大到上百万甚至是上亿个粒子。
LAMMPS可以在单个处理器的台式机和笔记本本上运行且有较高的计算效率,但是它是专门为并行计算机设计的。
他可以在任何一个按装了C++编译器和MPI的平台上运算,这其中当然包括分布式和共享式并行机和Beowulf型的集群机。
LAMMPS是一可以修改和扩展的计算程序,比如,可以加上一些新的力场,原子模型,边界条件和诊断功能等。
通常意义上来讲,LAMMPS是根据不同的边界条件和初始条件对通过短程和长程力相互作用的分子,原子和宏观粒子集合对它们的牛顿运动方程进行积分。
高效率计算的LAMMPS通过采用相邻清单来跟踪他们邻近的粒子。
这些清单是根据粒子间的短程互拆力的大小进行优化过的,目的是防止局部粒子密度过高。
在并行机上,LAMMPS采用的是空间分解技术来分配模拟的区域,把整个模拟空间分成较小的三维小空间,其中每一个小空间可以分配在一个处理器上。
各个处理器之间相互通信并且存储每一个小空间边界上的”ghost”原子的信息。
LAMMPS(并行情况)在模拟3维矩行盒子并且具有近均一密度的体系时效率最高。
2.LAMMPS的功能总体功能:可以串行和并行计算分布式MPI策略模拟空间的分解并行机制开源高移植性C++语言编写MPI和单处理器串行FFT的可选性(自定义)可以方便的为之扩展上新特征和功能只需一个输入脚本就可运行有定义和使用变量和方程完备语法规则在运行过程中循环的控制都有严格的规则只要一个输入脚本试就可以同时实现一个或多个模拟任务粒子和模拟的类型:(atom style命令)原子粗粒化粒子全原子聚合物,有机分子,蛋白质,DNA联合原子聚合物或有机分子金属粒子材料粗粒化介观模型延伸球形与椭圆形粒子点偶极粒子刚性粒子所有上面的杂化类型力场:(命令:pair style, bond style, angle style, dihedral style, improper style, kspace style)对相互作用势:L-J, Buckingham, Morse, Yukawa, soft, class2(COMPASS), tabulated.带点对相互作用势:Coulombic, point-dipole.多体作用势:EAM, Finnis/Sinclair EAM, modified EAM(MEAM), Stillinger-Weber, Tersoff, AIREBO, ReaxFF粗粒化作用势:DPD, GayBerne, Resquared, Colloidal, DLVO介观作用势:granular, Peridynamics键势能:harmonic, FENE, Morse, nonlinear, class2, quartic键角势能:harmonic, CHARMM, cosine, cosine/squared, class2(COMPASS)二面角势能:harmonic, CHARMM, multi-harmonic, helix, OPLS, class2(COMPASS) 不合理势能:harmonic, CVFF, class2(COMPASS)聚合物势能:all-atom, united-atom, bead-spring, breakable水势能:TIP3P,TIP4P,SPC隐式溶剂势能:hydrodynamic lubrication, Debye长程库伦与分散:Ewald, PPPM, Ewald/N(针对长程L-J作用)可以有与普适化力场如CHARMM,AMBER,OPLS,GROMACS相兼容的力场可以采用GPU加速的成对类型杂化势能函数:multiple pair, bond, angle, dihedral, improper potentials(多对势能处于更高的优先级)原子创建:(命令:read_data, lattice, create-atoms, delete-atoms, displace-atoms, replicate)从文件中读入各个原子的坐标在一个或多个晶格中创建原子删除几何或逻辑原子基团复制已存在的原子多次替换原子系综,约束条件,边界条件:(命令:fix)二维和三维体系正角或非正角模拟空间常NVE,NVT,NPT,NPH积分器原子基团与几何区域可选择不同的温度控制器有Nose/Hoover和Berendsen压力控制器来控制体系的压力(任一维度上)模拟合子的变形(扭曲与剪切)简谐(unbrella)束缚力刚体约束摇摆键与键角约束各种边界环境非平行太分子动力学NEMD各种附加边界条件和约束积分器:Velocity-verlet积分器Brown积分器rRESPA继承时间延化积分器刚体积分器共轭梯度或最束下降算法能量最小化器输出:(命令:dump, restart)热力学信息日志原子坐标,速度和其它原子量信息的文本dump文件二进制重启文件各原子量包括:能量,压力,中心对称参数,CAN等用户自定义系统宽度或各原子的计算信息每个原子的时间与空间平均系统宽量的时间平均原子图像,XYZ,XTC,DCD,CFG格式数据的前处理与后处理:包里提供了一系列的前处理与后处理工具另外,可以使用独立发行的工具组pizza.py, 它可以进行LAMMPS模拟的设置,分析,作图和可视化工作。
LAMMPS手册-中文版讲解
LAMMPS手册-中文解析一、简介本部分大至介绍了LAMMPS的一些功能和缺陷。
1.什么是LAMMPS?LAMMPS是一个经典的分子动力学代码,他可以模拟液体中的粒子,固体和汽体的系综。
他可以采用不同的力场和边界条件来模拟全原子,聚合物,生物,金属,粒状和粗料化体系。
LAMMPS可以计算的体系小至几个粒子,大到上百万甚至是上亿个粒子。
LAMMPS可以在单个处理器的台式机和笔记本本上运行且有较高的计算效率,但是它是专门为并行计算机设计的。
他可以在任何一个按装了C++编译器和MPI的平台上运算,这其中当然包括分布式和共享式并行机和Beowulf型的集群机。
LAMMPS是一可以修改和扩展的计算程序,比如,可以加上一些新的力场,原子模型,边界条件和诊断功能等。
通常意义上来讲,LAMMPS是根据不同的边界条件和初始条件对通过短程和长程力相互作用的分子,原子和宏观粒子集合对它们的牛顿运动方程进行积分。
高效率计算的LAMMPS通过采用相邻清单来跟踪他们邻近的粒子。
这些清单是根据粒子间的短程互拆力的大小进行优化过的,目的是防止局部粒子密度过高。
在并行机上,LAMMPS采用的是空间分解技术来分配模拟的区域,把整个模拟空间分成较小的三维小空间,其中每一个小空间可以分配在一个处理器上。
各个处理器之间相互通信并且存储每一个小空间边界上的”ghost”原子的信息。
LAMMPS(并行情况)在模拟3维矩行盒子并且具有近均一密度的体系时效率最高。
2.LAMMPS的功能总体功能:可以串行和并行计算分布式MPI策略模拟空间的分解并行机制开源高移植性C++语言编写MPI和单处理器串行FFT的可选性(自定义)可以方便的为之扩展上新特征和功能只需一个输入脚本就可运行有定义和使用变量和方程完备语法规则在运行过程中循环的控制都有严格的规则只要一个输入脚本试就可以同时实现一个或多个模拟任务粒子和模拟的类型:(atom style命令)原子粗粒化粒子全原子聚合物,有机分子,蛋白质,DNA联合原子聚合物或有机分子金属粒子材料粗粒化介观模型延伸球形与椭圆形粒子点偶极粒子刚性粒子所有上面的杂化类型力场:(命令:pair style, bond style, angle style, dihedral style, improper style, kspace style)对相互作用势:L-J, Buckingham, Morse, Yukawa, soft, class2(COMPASS), tabulated.带点对相互作用势:Coulombic, point-dipole.多体作用势:EAM, Finnis/Sinclair EAM, modified EAM(MEAM), Stillinger-Weber, Tersoff, AIREBO, ReaxFF粗粒化作用势:DPD, GayBerne, Resquared, Colloidal, DLVO介观作用势:granular, Peridynamics键势能:harmonic, FENE, Morse, nonlinear, class2, quartic键角势能:harmonic, CHARMM, cosine, cosine/squared, class2(COMPASS)二面角势能:harmonic, CHARMM, multi-harmonic, helix, OPLS, class2(COMPASS) 不合理势能:harmonic, CVFF, class2(COMPASS)聚合物势能:all-atom, united-atom, bead-spring, breakable水势能:TIP3P,TIP4P,SPC隐式溶剂势能:hydrodynamic lubrication, Debye长程库伦与分散:Ewald, PPPM, Ewald/N(针对长程L-J作用)可以有与普适化力场如CHARMM,AMBER,OPLS,GROMACS相兼容的力场可以采用GPU加速的成对类型杂化势能函数:multiple pair, bond, angle, dihedral, improper potentials(多对势能处于更高的优先级)原子创建:(命令:read_data, lattice, create-atoms, delete-atoms, displace-atoms, replicate)从文件中读入各个原子的坐标在一个或多个晶格中创建原子删除几何或逻辑原子基团复制已存在的原子多次替换原子系综,约束条件,边界条件:(命令:fix)二维和三维体系正角或非正角模拟空间常NVE,NVT,NPT,NPH积分器原子基团与几何区域可选择不同的温度控制器有Nose/Hoover和Berendsen压力控制器来控制体系的压力(任一维度上)模拟合子的变形(扭曲与剪切)简谐(unbrella)束缚力刚体约束摇摆键与键角约束各种边界环境非平行太分子动力学NEMD各种附加边界条件和约束积分器:Velocity-verlet积分器Brown积分器rRESPA继承时间延化积分器刚体积分器共轭梯度或最束下降算法能量最小化器输出:(命令:dump, restart)热力学信息日志原子坐标,速度和其它原子量信息的文本dump文件二进制重启文件各原子量包括:能量,压力,中心对称参数,CAN等用户自定义系统宽度或各原子的计算信息每个原子的时间与空间平均系统宽量的时间平均原子图像,XYZ,XTC,DCD,CFG格式数据的前处理与后处理:包里提供了一系列的前处理与后处理工具另外,可以使用独立发行的工具组pizza.py, 它可以进行LAMMPS模拟的设置,分析,作图和可视化工作。
lammps各种命令讲解
作者: 御剑江湖收录日期: 2011-03-31 发布日期: 2011-03-24 Commands描述了lammps输入文件的格式和在定义lammps模拟所需要的命令.1.1 LAMMPS input script我们用lammps做分子动力学模拟, 需要一个输入文件. lammps在执行计算的时候, 从这个文本文件中逐行读入命令. 大多数情况, lammps输入文件中各个命令的顺序并不是很重要. 但是你要注意以下几点:(1) lammps并不是将你的输入文件全部读入之后才开始进行计算的, 或者说, 每条命令在它被读入之后就会起作用了. 注意, 下面两组命令的执行效果是不相同的.timestep 0.5run 100run 100和run 100timestep 0.5run 100(2) 有些命令只有在另一些命令已经被定义的情况下才有效. 例如如果你要设定一组原子的温度, 那么用group命令定义哪些原子属于这个组才行.(3) 还有一种情况就是: 命令B要用到命A设置的一些数值, 这样你也不能颠倒这两个命令的顺序.每个命令的详细介绍中的Restrictions部分会说明要使用该命令定义的时候哪些命令必须要被预先定义.如果你的输入文件书写的格式有问题, lammps在执行的时候会提示ERROR或者WARNING , 出现类似信息时, 你可以到手册的第九章中查询原因.1.2 Parsing rules输入文件中的每一非空行都被认为是一条命令. lammps中命令的书写是对大小写敏感的, 不过一般的命令和参数都是小写的, 大写字母用于极少数的情况.(1) 命令行后的& 表示这一行跟下一行是同一条命令. 这一点跟FORTRAN很像.(2) 命令行最开始的# 表示这一行在执行过程中被忽略, 你可以用它来写注释.(3) $ 是跟声明变量有关系的, 我暂时还没用到过, 具体请参阅variable命令的详细介绍.(4) 命令行被tabs, spaces间隔成各个“words”, 注意这里的“words”可以包含字母、数字、下划线、或标点符号.(5) 一行中第一个词是命令名, 后续的词是相关的参数.(6) 双引号内的文字空格被整体地当作一个参数, 其中的# 或$ 就没有前面说的作用了.1.3 Input script structurelammps的输入文件一般分为4个部分Initialization, Atom definition, Settings, Run a simulation后面的两个部分可以按照需要多次重复. Remember that almost all the commands need only be used if a non-default value is desired.(1) Initialization在你的模拟体系定义之前, 一些参数必须要被设置. 相关的命令有:units, dimension, newton, processors, boundary, atom_style, atom_modify.units: 选择单位系统, lammps提供了lj、real、metal三种单位系统dimension: 2d模拟还是3d模拟, 默认是3dboundary: 边界条件:周期性边界or自由边界atom_style: 定义你的模拟体系中的原子属性, 注意这个style要区分后面设置力场参数时命令里提到的atom type还有, 这些命令告诉lammps在你的模拟中使用何种力场: pair_style, bond_style, angle_style, dihedral_style, improper_style.(2) Atom definitionlammps提供3种方式定义原子:①通过read_data或read_restart命令从data或restart文件读入, 这些文件可以包含分子拓扑结构信息.②按照晶格的方式创建原子(不包含分子拓扑信息), 你会用到这几个命令: lattice, region, create_box, create_atoms.③已经设置好的原子可以用replicate命令复制以生成一个更大规模的模拟体系.(3)Settings原子和分子的拓扑信息定义好后, 你要制定一系列的设置: 力场系数、模拟参数、输出选项等等.力场系数可以通过这些命令定义: pair_coeff, bond_coeff, angle_coeff, dihedral_coeff, improper_coeff, kspace_style, dielectric, special_bonds. 注意, 其实力场系数也可以在data文件中制定, 详见read_data命令介绍.各种模拟参数由这些命令设置: neighbor, neigh_modify, group, timestep, reset_timestep, run_style, min_style, min_modify.我觉得fix命令是lammps中很重要的一个命令, 它包括很多子命令, 可以施加一系列的边界条件、时间积分、诊断选项等等.模拟过程中通过下面的命令制定lammps进行各种计算: compute, compute_modify, variable.输出选项由thermo, dump, restart命令设置.(4)Run a simulation使用run命令开始一个分子动力学模拟, 用minimize命令来实施能量最小化(molecular statics), 使用temper命令来进行parallel tempering(replica-exchange) simulation.1.4 Commands listed by category这一节分门别类地列出了lammps的所有命令. 注意有些命令的有些选项是特定的lammps package的一部分, 也就是说只有在编译lammps的时候包括了这些packages, 这些命令才能被使用. 默认情况下编译lammps并不包括所有的packages. 这些依赖关系在相关命令的详细介绍中Restrictions部分中列出了.Initialization: atom_modify, atom_style, boundary, dimension, newton, processors, unitsAtom definition: create_atoms, create_box, lattice, read_data, read_restart, region, replicateForce fields: angle_coeff, angle_style, bond_coeff, bond_style, dielectric, dihedral_coeff, dihedral_style, improper_coeff, improper_style, kspace_modify, kspace_style, pair_coeff, pair_modify, pair_style, pair_write, special_bondsSettings: communicate, dipole, group, mass, min_modify, min_style, neigh_modify, neighbor, reset_timestep, run_style, set, shape, timestep, velocityFixes: fix, fix_modify, unfixComputes: compute, compute_modify, uncomputeOutput: dump, dump_modify, restart, thermo, thermo_modify, thermo_style, undump, write_restartActions: delete_atoms, delete_bonds, displace_atoms, displace_box, minimize, run, temperMiscellaneous: clear, echo, if, include, jump, label, log, next, print, shell, variable作者:御剑江湖一、各种文件的介绍:1 in file:建立该文件以便程序的写入2 log file:写入状态信息(if the switch is used?)3 screen file 决定结果的是否进行屏幕输出4 var name file 定义一个变量,name指变量名,可为字母也可为字符串,形式$x / $ {abc}二、屏幕输出:结果显示在屏幕上,同时在log file 中。
LAMMPS手册-中文版讲解
LAMMPS手册-中文解析一、简介本部分大至介绍了LAMMPS的一些功能和缺陷。
1.什么是LAMMPS?LAMMPS是一个经典的分子动力学代码,他可以模拟液体中的粒子,固体和汽体的系综。
他可以采用不同的力场和边界条件来模拟全原子,聚合物,生物,金属,粒状和粗料化体系。
LAMMPS可以计算的体系小至几个粒子,大到上百万甚至是上亿个粒子。
LAMMPS可以在单个处理器的台式机和笔记本本上运行且有较高的计算效率,但是它是专门为并行计算机设计的。
他可以在任何一个按装了C++编译器和MPI的平台上运算,这其中当然包括分布式和共享式并行机和Beowulf型的集群机。
LAMMPS是一可以修改和扩展的计算程序,比如,可以加上一些新的力场,原子模型,边界条件和诊断功能等.通常意义上来讲,LAMMPS是根据不同的边界条件和初始条件对通过短程和长程力相互作用的分子,原子和宏观粒子集合对它们的牛顿运动方程进行积分.高效率计算的LAMMPS通过采用相邻清单来跟踪他们邻近的粒子.这些清单是根据粒子间的短程互拆力的大小进行优化过的,目的是防止局部粒子密度过高。
在并行机上,LAMMPS采用的是空间分解技术来分配模拟的区域,把整个模拟空间分成较小的三维小空间,其中每一个小空间可以分配在一个处理器上。
各个处理器之间相互通信并且存储每一个小空间边界上的"ghost"原子的信息。
LAMMPS(并行情况)在模拟3维矩行盒子并且具有近均一密度的体系时效率最高.2.LAMMPS的功能总体功能:可以串行和并行计算分布式MPI策略模拟空间的分解并行机制开源高移植性C++语言编写MPI和单处理器串行FFT的可选性(自定义)可以方便的为之扩展上新特征和功能只需一个输入脚本就可运行有定义和使用变量和方程完备语法规则在运行过程中循环的控制都有严格的规则只要一个输入脚本试就可以同时实现一个或多个模拟任务粒子和模拟的类型:(atom style命令)原子粗粒化粒子全原子聚合物,有机分子,蛋白质,DNA联合原子聚合物或有机分子金属粒子材料粗粒化介观模型延伸球形与椭圆形粒子点偶极粒子刚性粒子所有上面的杂化类型力场:(命令:pair style,bond style, angle style, dihedral style,improper style, kspace style)对相互作用势:L—J,Buckingham,Morse, Yukawa,soft, class2(COMPASS), tabulated.带点对相互作用势:Coulombic,point-dipole。
LAMMPS手册-中文版讲解
LAMMPS手册-中文解析之阿布丰王创作一、简介本部分大至介绍了LAMMPS的一些功能和缺陷。
1.什么是LAMMPS?LAMMPS是一个经典的分子动力学代码,他可以模拟液体中的粒子,固体和汽体的系综。
他可以采取分歧的力场和鸿沟条件来模拟全原子,聚合物,生物,金属,粒状和粗料化体系。
LAMMPS可以计算的体系小至几个粒子,大到上百万甚至是上亿个粒子。
LAMMPS可以在单个处理器的台式机和笔记本本上运行且有较高的计算效率,但是它是专门为并行计算机设计的。
他可以在任何一个按装了C++编译器和MPI的平台上运算,这其中当然包含分布式和共享式并行机和Beowulf型的集群机。
LAMMPS是一可以修改和扩展的计算程序,比方,可以加上一些新的力场,原子模型,鸿沟条件和诊断功能等。
通常意义上来讲,LAMMPS是根据分歧的鸿沟条件和初始条件对通过短程和长程力相互作用的分子,原子和宏观粒子集合对它们的牛顿运动方程进行积分。
高效率计算的LAMMPS通过采取相邻清单来跟踪他们邻近的粒子。
这些清单是根据粒子间的短程互拆力的大小进行优化过的,目的是防止局部粒子密度过高。
在并行机上,LAMMPS采取的是空间分解技术来分配模拟的区域,把整个模拟空间分成较小的三维小空间,其中每一个小空间可以分配在一个处理器上。
各个处理器之间相互通信而且存储每一个小空间鸿沟上的”ghost”原子的信息。
LAMMPS(并行情况)在模拟3维矩行盒子而且具有近均一密度的体系时效率最高。
2.LAMMPS的功能总体功能:可以串行和并行计算分布式MPI战略模拟空间的分解并行机制开源高移植性C++语言编写MPI和单处理器串行FFT的可选性(自定义)可以方便的为之扩展上新特征和功能只需一个输入脚本就可运行有定义和使用变量和方程完备语法规则在运行过程中循环的控制都有严格的规则只要一个输入脚本试就可以同时实现一个或多个模拟任务粒子和模拟的类型:(atom style命令)原子粗粒化粒子全原子聚合物,有机分子,蛋白质,DNA联合原子聚合物或有机分子金属粒子资料粗粒化介观模型延伸球形与椭圆形粒子点偶极粒子刚性粒子所有上面的杂化类型力场:(命令:pair style, bond style, angle style, dihedral style, improper style, kspace style)对相互作用势:L-J, Buckingham, Morse, Yukawa, soft, class2(COMPASS), tabulated.带点对相互作用势:Coulombic, point-dipole.多体作用势:EAM, Finnis/Sinclair EAM, modified EAM(MEAM), Stillinger-Weber, Tersoff, AIREBO, ReaxFF粗粒化作用势:DPD, GayBerne, Resquared, Colloidal, DLVO介观作用势:granular, Peridynamics键势能:harmonic, FENE, Morse, nonlinear, class2, quartic键角势能:harmonic, CHARMM, cosine, cosine/squared, class2(COMPASS)二面角势能:harmonic, CHARMM, multi-harmonic, helix, OPLS, class2(COMPASS)分歧理势能:harmonic, CVFF, class2(COMPASS)聚合物势能:all-atom, united-atom, bead-spring, breakable水势能:TIP3P,TIP4P,SPC隐式溶剂势能:hydrodynamic lubrication, Debye长程库伦与分散:Ewald, PPPM, Ewald/N(针对长程L-J作用)可以有与普适化力场如CHARMM,AMBER,OPLS,GROMACS相兼容的力场可以采取GPU加速的成对类型杂化势能函数:multiple pair, bond, angle, dihedral, improper potentials(多对势能处于更高的优先级)原子创建:(命令:read_data, lattice, create-atoms, delete-atoms, displace-atoms, replicate)从文件中读入各个原子的坐标在一个或多个晶格中创建原子删除几何或逻辑原子基团复制已存在的原子多次替换原子系综,约束条件,鸿沟条件:(命令:fix)二维和三维体系正角或非正角模拟空间常NVE,NVT,NPT,NPH积分器原子基团与几何区域可选择分歧的温度控制器有Nose/Hoover和Berendsen压力控制器来控制体系的压力(任一维度上)模拟合子的变形(扭曲与剪切)简谐(unbrella)束缚力刚体约束摇摆键与键角约束各种鸿沟环境非平行太分子动力学NEMD各种附加鸿沟条件和约束积分器:Velocity-verlet积分器Brown积分器rRESPA继承时间延化积分器刚体积分器共轭梯度或最束下降算法能量最小化器输出:(命令:dump, restart)热力学信息日志原子坐标,速度和其它原子量信息的文本dump文件二进制重启文件各原子量包含:能量,压力,中心对称参数,CAN等用户自定义系统宽度或各原子的计算信息每个原子的时间与空间平均系统宽量的时间平均原子图像,XYZ,XTC,DCD,CFG格式数据的前处理与后处理:包里提供了一系列的前处理与后处理工具另外,可以使用独立发行的工具组pizza.py, 它可以进行LAMMPS 模拟的设置,分析,作图和可视化工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
lammps做分子动力学模拟时,需要一个输入文
件(input script),也就是in文件,以及关于体系的
原子坐标之类的信息的文件(data file)。
lammps在
执行计算的时候,从这个in文件中读入命令,所以对LAMMPS的使用最主要的就是对in 文件的编写和使
用。
下面介绍一些关于in文件的事项
λ每一非空行都被认为是一条命令(大小写敏
感,但极少有命令或参数大写的)。
λ in文件中各命令的顺序可能会对计算产生影
响,但大部分情况下不会有影响。
每行后的“λ&” 表示续行(类似fortran)。
λ“#”表示注释(类似bash)。
λ每行命令中的不同字段由空格或者制表符分
隔开来,每个字段可以由字母、数字、下划线、或
标点符号构成。
λ每行命令中第一个字段表示命令名,之后的
字段都是相关的参数。
λ很多命令都是在需要修改默认值的情况下才
特别设置的。
in文件整体来看分为4个部分
1. Initialization
这一部分包含了关于计算体系最基本的信息,
例如:
units: 单位系统(units style),lammps现在提供包
括lj、real、metal、si和cgs几种单位系统。
dimension: 定义了两维或者三维模拟(默认是三
维)。
boundary: 定义了分子动力学体系使用的边界条
件,例如周期性边界条件或者自由边界条件等。
atom_style: 定义模拟体系中的原子属性,这一
命令与力场设置的参数中的原子类型(atom type)不
同。
pair_style: 相互作用力场类型,例如范德化势或者硬球势等。
bond_style: 键合相互作用势类型。
angle_style: 键角作用势类型。
dihedral_style: 二面角作用势类型。
improper_style: 混合作用势类型。
其他还有一些参数设置,例如newton, processors,
boundary, atom_modify等。
2. Atom definition
lammps提供3种定义原子方式:
通过read_data或read_restart命令从data或restart文
件读入,这些文件可以包含分子拓扑结构信息,这
一方法在续算上也很有用。
按照晶格的方式创建原子,这种方式不包含
分子拓扑信息,可能会用到例如如下的一些命令:
lattice, region, create_box, create_atoms。
对已经设置好的原子可以用replicate命令复制后
生成一个更大规模的计算体系。
3. Settings
原子或分子的拓扑信息定义好后,就需要制定
一系列的设置,例如力场系数、模拟参数、输出选
项等。
力场系数可以通过例如这样的一些命令来
定义:pair_coeff, bond_coeff, angle_coeff, dihedral_
coeff, improper_coeff, kspace_style, dielectric, special_
bonds等。
实际上力场系数也可以在关于体系的原子
坐标之类的信息的文件(data file)中制定,这样具
体参考read_data命令的相关介绍。
各种模拟参数可以由例如如下这样一些命令来
设置:neighbor, neigh_modify, group, timestep, reset_ timestep, run_style, min_style, min_modify等。
模拟过程
中通过compute, compute_modify, variable等一些命令来
制定。
而输出选项可以由thermo, dump, restart等一些
命令来设置。
4. Run a simulation
通常run命令被设置在in文件的最后,使用run命
令来开始一个分子动力学模拟的过程。
另外,使用
minimize命令来实施能量最小化计算。
使用temper命
令来进行复制品交换采样模拟。
其他一些重要的命令被分类列于如下:
Initialization: atom_modify, atom_style, boundary, dimension, newton, processors, units
Atom definition: create_atoms, create_box, lattice,
read_data, read_restart, region, replicate
Force fields: angle_coeff, angle_style, bond_coeff,
bond_style, dielectric, dihedral_coeff, dihedral_style,
improper_coeff, improper_style, kspace_modify, kspace_
style, pair_coeff, pair_modify, pair_style, pair_write,special_bonds Settings: communicate, dipole, group, mass, min_
modify, min_style, neigh_modify, neighbor, reset_timestep,
run_style, set, shape, timestep, velocity
Fixes: fix, fix_modify, unfix
Computes: compute, compute_modify, uncompute
Output: dump, dump_modify, restart, thermo, thermo_
modify, thermo_style, undump, write_restart
Actions: delete_atoms, delete_bonds, displace_atoms,
displace_box, minimize, run, temper
Miscellaneous: clear, echo, if, include, jump, label, log, next, print, shell, variable
关于LAMMPS计算前后的处理问题,计算前
的原子初始形态文件的生成,由read_data读入一个data文件,这个文件包括体系中各个原子的xyz坐标等等相关参数,或者由其他软件生成并修改后符合LAMMPS的输入文件格式生成。
而计算后的输出,因为LAMMPS不支持图形输出,需要借助第三方可视化软件实现,例如VMD。
LAMMPS的输出文件主要可以分为三种:一种是mmps,这里面记录了整个计算过程屏幕上显示的所有信息,可由thermo、thermo_modify等命令控制;另一种是输出应力、能量、原子位置、速度等等信息,由dump命令控制输出文件;第三种是断点续算的restart文件输出信息,由write_restart命令控制。