泄漏电缆及天馈线在线监测系统介绍

合集下载

天馈线系统及测试

天馈线系统及测试

天馈线系统及测试使用说明1.基站天馈线的结构从基站天线口用1/2”软跳线连接,再从硬馈线转换成软跳线连接到天线。

在这里,软跳线主要用于连接,而硬馈线的损耗较小,主要用于信号传输。

室外馈线及接头处要接地。

也可采用塔顶放大器放大上行信号,以提高基站的接收灵敏度。

如图3-1所示。

图3-1基站天馈线的结构2.天线2.1天线的基本概念1.天线的作用天线是发射机发射无线电波和接收机接收无线电波的装置,发射天线将传输线中的高频电磁能转换为自由空间的电磁波,接收天线将自由空间的电磁波转换为高频电磁能。

因此,天线是换能装置,具有互易性。

天线性能将直接影响无线网络的性能。

2.天线辐射电磁波的基本原理导线载有交变电流时,就可以形成电磁波的辐射,辐射的能力与导线的长短和形状有关。

当两导线的距离很近、电流方向相反时,两导线所产生的感应电动势几乎可以抵消,因而辐射很微弱;如果将两导线张开,这时由于两导线的电流方向相同,由两导线所产生的感应电动势方向相同,因而辐射较强。

当导线的长度远小于波长时,导线的电流很小,辐射很微弱;当导线的长度增大到可与波长相比拟时,导线上的电流就大大增加,因而就能形成较强的辐射。

通常将上述能产生显著辐射的直导线称为振子。

两臂长度相等的振子叫做对称振子。

每臂长度为四分之一波长的称为半波振子;全长与波长相等的振子,称为全波对称振子;将振子折合起来的,称为折合振子。

实际天线是由振子叠放组成的。

如图3-2所示。

图3-2 天线辐射电磁波原理图3.天线的极化(1)电磁波的极化无线电波在空间传播时,其电场方向是按一定的规律而变化的,这种现象称为无线电波的极化。

无线电波的电场方向称为电波的极化方向。

如果电波的电场方向垂直于地面,我们就称它为垂直极化波。

如果电波的电场方向与地面平行,则称它为水平极化波。

如图3-3。

图3-3 电磁波的极化方向(2)天线的极化天线辐射的电磁场的电场方向就是天线的极化方向。

垂直极化波要用具有垂直极化特性的天线来接收;水平极化波要用具有水平极化特性的天线来接收;当来波的极化方向与接收天线的极化方向不一致时,在接收过程中通常都要产生极化损失。

电气工程中电力设备的在线监测

电气工程中电力设备的在线监测

电气工程中电力设备的在线监测在当今社会,电力作为一种不可或缺的能源,支撑着各行各业的运转和人们的日常生活。

而电力设备作为电力系统的核心组成部分,其稳定运行对于保障电力供应的可靠性和安全性至关重要。

为了确保电力设备的正常运行,减少故障发生的概率,提高电力系统的整体性能,电力设备的在线监测技术应运而生。

电力设备在线监测,简单来说,就是通过各种先进的技术手段,对电力设备的运行状态进行实时、连续的监测和分析。

它能够及时发现设备潜在的故障隐患,为设备的维护和检修提供科学依据,从而有效地避免设备突发故障造成的停电事故和经济损失。

在线监测技术涵盖了多种电力设备,包括变压器、断路器、避雷器、电缆等。

以变压器为例,其作为电力系统中重要的变电设备,承担着电压变换和电能传输的关键任务。

通过在线监测,可以实时获取变压器的油温、油中溶解气体含量、局部放电量等关键参数,从而对变压器的绝缘状况、铁芯是否存在过热等问题进行准确判断。

对于断路器,在线监测能够监测其机械特性、开断电流等参数,有助于提前发现断路器的操作机构故障和触头磨损等问题。

实现电力设备在线监测的技术手段多种多样。

传感器技术是其中的关键之一,各种类型的传感器,如温度传感器、压力传感器、电流传感器、电压传感器等,被广泛应用于电力设备的监测中。

这些传感器能够将设备的物理量转化为电信号,为后续的分析处理提供数据基础。

数据采集与传输技术也是在线监测系统的重要组成部分。

采集到的传感器信号需要经过可靠的传输通道,及时准确地送达监测中心。

常见的数据传输方式包括有线传输和无线传输。

有线传输具有稳定性高、传输速度快的优点,但在一些布线困难的场合则受到限制。

无线传输则具有灵活性强、安装方便的特点,但可能会受到信号干扰和传输距离的影响。

在数据处理和分析方面,利用先进的算法和软件工具对采集到的数据进行深入挖掘和分析,是在线监测技术的核心环节。

通过对历史数据的对比分析、趋势预测以及模式识别等方法,可以准确判断设备的运行状态,并预测可能出现的故障。

电缆综合在线监测处理方案

电缆综合在线监测处理方案

电缆综合在线监测处理方案1. 引言本文档旨在提供一份电缆综合在线监测处理方案,以确保电缆系统的稳定运行和故障预警。

通过监测电缆的各项指标,我们可以及时发现潜在问题并采取相应的处理措施,保障电缆系统的可靠性和安全性。

2. 监测指标为了全面了解电缆系统的运行状况,我们将监测以下指标:1. 温度:通过温度传感器实时监测电缆的温度变化,避免因过高温度引发的故障。

2. 电流:电缆的电流变化可以反映电缆的负载情况,及时发现过载或异常情况。

3. 局部放电:局部放电是电缆故障的常见前兆,我们将采用局部放电检测技术,对电缆进行在线监测。

4. 介质损耗:通过监测电缆的介质损耗情况,预防绝缘失效和泄漏电流的产生。

5. 同轴接地电阻:检测同轴接地电阻的变化,预警接地问题可能造成的电缆故障。

3. 监测系统我们将建立一套完善的电缆综合在线监测系统,包括以下组成部分:1. 传感器:采用高精度的温度传感器、电流传感器和局部放电传感器等,实现对电缆各项指标的监测。

2. 数据采集:通过数据采集设备,实时收集传感器采集到的数据,并进行处理和分析。

3. 数据传输:采用可靠的通信网络,将监测得到的数据传输到监测中心。

4. 监测中心:建立一个专门的监测中心,对传输过来的数据进行实时监测和分析,并作出预警和处理措施。

4. 处理方案当监测系统检测到电缆存在异常情况时,我们将采取以下处理方案:1. 温度异常:及时调整电缆的负载,降低电缆的温度;如有需要,进行紧急维修或更换电缆。

2. 电流过载:降低电缆的负载,减少电流的用量;检查电缆连接是否正常,如有问题及时修复。

3. 局部放电:对出现局部放电的电缆进行维修或更换,避免故障的发生。

4. 介质损耗:对介质损耗较高的电缆进行检测和维修,避免绝缘失效和泄漏电流的产生。

5. 同轴接地电阻异常:及时检查同轴接地电阻的连接情况,修复或更换有问题的部件。

5. 结论通过建立电缆综合在线监测处理方案,我们可以及时发现电缆故障的迹象,并采取相应的处理措施,确保电缆系统的稳定运行和安全性。

电缆故障在线监测及定位系统方案及应用

电缆故障在线监测及定位系统方案及应用

第30卷 第12期2023年12月仪器仪表用户INSTRUMENTATIONVol.302023 No.12电缆故障在线监测及定位系统方案及应用林 阳,王 耀,李续照,潘仁秋(南京南瑞继保电气有限公司,南京 211102)摘 要:提出了一套以具有电缆局放预警、环流预警、故障选线、故障测距“四合一”功能的故障在线监测定位装置为核心,适用于地下及配网电缆的故障在线监测及定位系统及其应用方案。

系统由监测信号传感器(含行波/局放/环流传感器)、信号采集及监测定位装置、监测主站和通讯网络4部分构成。

根据城市配电网、地下电缆、工矿企业电缆网络等不同应用场景的需求,提出了相应的系统配置原则和方案,并提供了现场应用的案例。

关键词:在线预警;局部放电;行波选线中图分类号:TM75 文献标志码:AScheme and Application of On-Line Monitoring andLocating System for Cable FaultLin Yang ,Wang Yao ,Li Xuzhao ,Pan Renqiu (NR Electric Co., Ltd., Nanjing,211102,China )Abstract:This article proposes a set of on-line monitoring and locating system for cable fault for underground and distribution network cables and its application scheme, which can achieve the functions of partial discharge monitoring and early warning, sheath circulation monitoring and early warning, traveling wave fault line selection, and traveling wave fault location. The system consists of four parts: monitoring signal sensors (including traveling wave/partial discharge/sheath circulating current sensors), signal acquisition and locating devices, master station, and communication network. This article proposes configuration principles and application solutions for different application scenarios, such as urban distribution networks, underground cables, industrial and mining enterprises. This article proposes an application case of the on-line monitoring and positioning system. Key words:on-line monitoring ;partial discharge (PD );traveling wave fault line selection收稿日期:2023-07-31作者简介:林阳(1981-),男,辽宁营口人,本科,工程师,研究方向:能源管控系统、电缆隧道监控系统。

泄漏电缆的工作原理

泄漏电缆的工作原理

泄漏电缆的工作原理泄漏电缆是一种专门用于检测地下水位或液体泄漏的仪器。

它通过测量电缆的电阻值来确定泄漏或液位的情况。

其工作原理主要包括电缆结构、电缆传感器和测量系统三个方面。

以下是对泄漏电缆工作原理的详细解释,共计1200字以上。

1.电缆结构:2.电缆传感器:3.测量系统:测量系统是通过测量电缆的电阻值来判断泄漏情况或液体高度的。

在正常情况下,电缆两个端点间的电阻值是已知的。

当泄漏发生时,泄漏液体使得电阻值增加,这是因为液体的存在会导致电流的分散和损耗。

因此,通过测量电缆两端的电阻值的变化,可以判断泄漏发生的位置以及液体的高度。

具体地说首先,电缆两个端点之间被施加一个已知大小的电流。

然后,测量设备会记录电缆两个端点的电压差,以此计算出电阻值。

这个测量过程是连续进行的,直到出现泄漏情况或液体高度超过设定值。

当液体泄漏或液位升高时,液体开始渗透到电缆中,导致电阻值的变化。

因此,通过将电阻值与初始已知的电阻值进行比较,就可以确定泄漏的位置或液体的高度。

测量系统通常还配备触发和报警装置。

一旦检测到泄漏或液体高度超过设定值,触发装置会向操作人员发出警报。

这样,及时采取预防措施,防止泄漏或溢流事故的发生。

总结而言,泄漏电缆通过电缆结构、电缆传感器和测量系统共同工作,通过测量电缆的电阻值来判断地下水位或液体泄漏情况。

它的工作原理简单而有效,可广泛应用于各种需要持续监测液体泄漏的环境中,如油罐、化工厂等。

同时,泄漏电缆工作原理的解析也为进行进一步的改进和研究提供了基础。

FT-100用户手册

FT-100用户手册

FT-100型泄漏电缆周界防越探测器北京盛达嘉科技发展有限公司2007年4月目录1.概述 (1)2.主要特点 (1)3.适用范围 (1)4.原理 (2)5.结构及功能 (3)5.1组成及结构 (3)6.性能和接口 (4)7.安装及使用 (5)7.1仪表及工具 (5)7.2安装前检验 (5)7.3安装顺序 (6)7.4设备使用 (1)8.注意事项 (3)9.维护 (4)10.故障及排除方法 ............................................... 错误!未定义书签。

1.概述FT-100型泄漏电缆周界防越探测器是一种专为重要的军用或民用设施而设计的隐蔽式周界防范系统,沿埋入电缆周围可产生一个无形的电磁射频探测场。

如果探测场受到入侵者的干扰,系统就会报警。

2.主要特点1)上下行隔离度高,稳定可靠2)探测正确率高,对入侵目标反应灵敏。

3)误报率极低,对环境因素变化适应能力强,不受气候影响,可排除小动物的影响。

4)安装方式灵活,可适应多种地形、地物特点,既可埋设地下,也可安装在围墙、围栏上。

5)具有自检功能,当受到破坏时,产生入侵报警或破坏报警。

6)大小周界均可使用。

7)无论入侵者走过,还是跑过、跳过泄漏电缆,都能被探测到。

3.适用范围●仓库、农场、养殖场●军事基地、企事业单位、文物单位●飞机场、重大工程现场●教养所●高层住宅、智能小区、别墅区等场所设备布设方式示意图见图3.1所示。

图3.1 设备布设方式示意图图3.1中,长方形采集盒,就是电缆探测器主机;图中显示一个完整的区域,通过多套泄漏电缆周界防越探测器设备进行全范围的布防。

4.原理该设备根据多普勒雷达原理进行工作,其信号沿电缆长度方向传播。

平行铺设的两条电缆,一条用于发射,一条用于接收。

如果有人在两条电缆形成的感应区内移动,这部分电磁场将受到扰动,由信号处理器检测出接收信号的变化,产生的探测信息送监控单元进行报警。

漏缆故障定位监测系统简介(shj)

漏缆故障定位监测系统简介(shj)

漏缆、馈线故障产生的原因(1)
人为弯折过度
漏缆、馈线故障产生的原因(2)
接头根部受力过度
漏缆、馈线故障产生的原因(3)
踩踏、磕压
漏缆、馈线故障产生的原因(4)
防水未做好,接头进水、雾腐蚀
漏缆、馈线故障产生的原因(5)
工程安装过程中,没有按安装规范操作,未做到 如下要求: • • • • • 精心清理中心导体上的粘合剂 正确修整和扩展外导体 除去泡沫介质中的金属芯片 正确紧固接头/ 箝位螺母 确保合适的探针深度
漏缆链路在线监测方案的演变
直放站自带功能:
不足之处
1、无法监测漏缆末端带天馈线的情况,因在此处没有能够检 测接入的物理接口,而隧洞口处的接头和天馈线恰恰是故 障高发的部位。
2、无法做到漏缆链路故障的精确定位 3、误告警频发
漏缆链路在线监测方案的演变
在线监测新方式 故障定位式(反射式)(在漏缆单端测试)
Birtronix RX100R 漏缆监测系统
漏缆故障定位监测系统示意图
监控中心
监控中心 监控中心
Router
铁路系统 SDH 光纤网
GSM
基站 机房
基站内 以太接口 FSU 漏缆 监测数据
天 线 漏缆 漏缆
现场管理单元
漏缆故障 定位单元 插入器 插入器 区 间 短 光 纤
室内
室内
功分器
功分器
直放站
漏缆故障定位及天馈线监测系统
特点: 能够漏缆故障精确定位(5米内); 能够监测漏缆及所接的接头、跳线、避雷器、直流阻隔器、 天线等整个漏缆链路每个位置的回波损耗和驻波值;
在漏缆的单端测试,工程安装简单;
无增设配电箱等特殊要求。
漏缆故障定位及天馈线监测系统

电缆多状态在线监测系统

电缆多状态在线监测系统

电缆多状态在线监测系统一、综述目前全国大多数电力公司一样,对电力隧道、沟道内主干电缆的管理还处于计划检修阶段,一般采用定期巡视的方法对电缆的运行状况进行检查。

从经济角度和技术角度来说,计划检修都有很大的局限性,例如定期试验和检修造成了很大的直接和间接经济浪费,许多绝缘缺陷和潜在的故障无法及时发现。

随着国家电力基础设施投入的逐年增大,电力隧道的长度也正在迅速增加,由于运行维护人员的增长速度远远跟不上电力基础设施的增长速度,致使电力隧道运行工作面临着巨大压力,再者随着城市的加速发展,电力沟道和高压管线的迅速增长,电力负荷的急剧增加,电力公司对隧道的运行维护工作面临着巨大压力。

如何保证隧道内电缆不因过载、过热等情况突发大的运行安全事故,隧道内积水、可燃气体等不影响到供电系统的安全等新的要求,想解决当前面临的种种问题,仅靠大量增加运行人员数量来应对电力隧道的迅速增长和管理压力已经不现实,采用现代化的技术手段来提高电力隧道运行维护水平是当务之急。

电力隧道加装水位、气体探测装置,可有效监测到隧道内水位及气体情况,及时发现由于外部跑水至电力隧道内,外部可燃气体进入隧道内等情况。

通过水位、气体监测报警,及时发现隐患点所在位置及水位数值、气体成分含量等情况,为及时有效处置提供技术支撑,改善电力隧道运行环境,保证电力隧道及隧道内电力电缆的安全稳定运行有重要意义。

电缆是电缆网发生故障几率较大的设施,分别通过传感器耦合电缆接地线的信号、传感器对电缆接头的局部放电及分布式光纤测温系统对电缆进行监测数据采集,将其采集到的接地电流参量、局部放电参量及电缆温度参量传送到监测中心,对电缆的运行状态进行分析评估,实现电缆运行状态的时时监控,从而为电力部门有效的预防事故灾害的发生提供有力的的保障。

二、总体结构电力电缆多状态在线监测系统,主要对电缆局部放电、温度、接地电流、有害气体及水位,井盖进行在线监测,将监测信号上传至工业服务器进行处理存储,可实现对各技术监测量进行界面显示,谱图分析,报表打印,数据查询,报警等功能。

铁路通信漏缆实时监测系统的应用

铁路通信漏缆实时监测系统的应用

铁路通信漏缆实时监测系统的应用漏泄电缆是保证铁路GSM-R移动通讯系统安全运行的硬件保障。

我国现有铁路养护过程中,对于漏泄电缆的养护工作存在问题。

文章主要对漏缆实时监测系统的运行过程开展深入研究,从而实现准确定位理念。

同时以某段铁路工程为实例,针对各种铁路隧道的规划方案开展实际验证工作,使漏缆实时监测系统的优化提供重要的理论依据。

铁路通信漏缆实时监测系统应用伴随着我国社会经济的不断发展,铁路建设是城市之间沟通的桥梁,很多新建的铁路已经进入了后期的养护运营阶段。

在GSM-R移动通信系统运行下,各铁路线路都出现了众多的问题,例:漏缆接头老化、断裂等,这无形之中极大了维修工作量,严重影响了我国铁路交通网的运行秩序。

因此,文章主要对漏缆监测系统在铁路隧道之中的应用进行分析探究,寻找更好的解决方法,实现我国铁路网的正常运行。

一、漏缆实时监测系统组成与运行1.1系统组成漏缆实时监测系统主要由连接线、信号接收器、网管中心和输出检测设备等组成,工作时输出设备端发出输出电磁波,电磁波经过连接线传送,最终到目的区域产生反射电波。

若漏缆连接线某一接头出现故障时,可以向输出设备发出警告信息,输出设备受到警告信息户立即发往网络中心,工作人员可以在电脑屏幕上了解问题发生的区域,以便组织工作人员及时前往问题区域处理,有助于铁路信号安全传播。

随着铁路信号的不断升级,漏缆监测系统也在不断优化和完善,于是就形成了新一代漏缆实时监测系统,新系统的功能更加强大,可以实现问题区域的准确定位,这样就缩短了问题的处理时间,更好的保障了铁路信号安全传播。

1.2系统运行原理漏缆实时监测系统的运行基本原理是:利用驻波比与正常波的比较来实现检测,当某一区域出现问题时,信号传播的驻波比大小将会发生变化,通过变化的程度大小来判断问题的严重性,报警装置就能及时报警,一般分为3个报警等级,即一级报警、二级报警和三级报警,级数越高表示故障越大。

漏缆实时检测系统的作用是能够对问题区域准确定位,其主要定位手段是进行设点采样,设点采样的个数越多,就表示精确度越高,一般最大采样点为1050个在500m范围内的精确度可以达到0.8m。

GSM-R漏缆及天馈线在线监测系统在高速铁路中的应用

GSM-R漏缆及天馈线在线监测系统在高速铁路中的应用

GSM-R漏缆及天馈线在线监测系统在高速铁路中的应用摘要本文分析了GSM-R漏缆在高速铁路中的应用,介绍了其使用的基础理论,以及天馈线在线监测系统的原理、性能特点和优势。

本文还详细讨论了如何正确地安装GSM-R漏缆,并且展示了一些应用实例,以说明其在高速铁路中的重要性。

最后,文章总结出GSM-R漏缆与天馈线在线监测系统的结合对高速铁路的运行具有重要的意义。

关键词GSM-R漏缆;高速铁路;在线监测系统;安装正文本文旨在探讨GSM-R漏缆在高速铁路中的应用,以及天馈线在线监测系统在该应用中的作用。

GSM-R漏缆是一种适用于有线通讯和电力系统的光纤电缆,它由一条或多条单模光纤和集成电缆组成,内部覆盖有一层绝缘材料,具有抗水、耐腐蚀和耐化学腐蚀的特点。

GSM-R漏缆可用于传输数据和信号,可用于线路作业的控制接口,可用于开关机控制接口,还可以作为监控张力的接口。

由于其具有体积小、重量轻、耐候性好和阻燃性好等优点,因此GSM-R漏缆被广泛应用于新建线路或改造线路中。

在GSM-R漏缆的应用中,需要配合使用天馈线在线监测系统。

该系统是高速铁路监控、报警和安全保障所必需的装备,它可以实时监控天馈线的受力情况,并采取相应的措施确保铁路安全,保障铁路运行的正常和稳定。

天馈线在线监测系统可以帮助铁路部门检测、识别和预防由于老化因素引起的漏损;它也可以帮助铁路部门检测、识别和预防由于非正常使用所引起的漏损。

正确安装GSM-R漏缆是安全、稳定运行的关键。

在安装GSM-R漏缆前,首先应该建立全面的计划,明确各个安装环节的要求,包括地质条件、天气条件和工作环境的要求。

在安装过程中,需要采用专业的工具与材料,及时添加橥连接器,避免人力损坏,并且要将漏缆固定支架固定,防止其振动变形,保证漏缆的安全。

本文介绍了GSM-R漏缆在高速铁路中的应用,并讨论了如何正确安装,以及天馈线在线监测系统的作用。

实例展示中,我们可以看到GSM-R漏缆与天馈线在线监测系统的结合,对于保障高速铁路运行具有重要意义。

电缆局放在线监测系统(1)

电缆局放在线监测系统(1)

电缆局放在线监测系统
现代化的城市发展离不开电,而且用电需求是不断增长,这就对电力系统运行安全有了更高的要求。

电缆目前已经成为电力运输的主要设备,应用是逐渐扩大。

如何保障电缆线路的长期安全稳定的运行呢?电缆局部放电在线监测系统尤为必要。

陕西公众智能研发的高压电缆局部放电在线监测系统能够6kV及以上电压等级电缆局部放电在线监测,能实时显示各个接头及各段电缆局部放电幅值、频次、放电总能量,必要时给出报警,并能存储测试谱图、放电趋势,从而及时发现电缆及接头的绝缘缺陷,并为评估其绝缘水平及老化程度提供判据,为电缆的检修工作提供依据。

系统采用模拟滤波、脉冲分组、周期脉冲剔除、设置动态阈值、开相位窗口等综合抗干扰措施,使测试数据真实可靠。

局部放电的危害
局部放电对绝缘结构起着一种侵蚀作用,它对绝缘的破坏机理有以下几个方面:
①带电粒子(电子、离子等)冲击绝缘,破坏其分子结构,如纤维碎裂,因而绝缘受到损伤。

②由于带电离子的撞击作用,使该绝缘出现局部温度升高,从而易引起绝缘的过热,严重时就会出现碳化。

③局部放电产生的臭氧及氮的氧化物会侵蚀绝缘,当遇有水分则产生硝酸,对绝缘的侵蚀更为剧烈。

④在局部放电时,油因电解及电极的肖特基辐射效应使油分解,加上油中原来存在些杂质,故易使纸层处凝集着因聚合作用生成的油泥(多在匝绝缘或其他绝缘的油楔处),油泥生成将使绝缘的介质损伤角增大,散热能力降低,甚至导致热击穿的可能性。

局部放电的持续发展会使绝缘的劣化损伤逐步扩大,最终使绝缘正常寿命缩短、短时绝缘强度降低,甚至可能使整个绝缘击穿。

漏泄同轴电缆接续

漏泄同轴电缆接续

二、漏缆接续制作
3.2用钢尺量出接头说明书规定尺寸的外护套(如一体式短 接头25MM),然后用裁纸刀(环切刀)环切并将外护套剥离。
注意:剥外护套时不能伤到外导体,如果发现已伤及外导 体,务必重新锯断并将外导体表面打磨平整。
二、漏缆接续制作
3.3用裁纸刀或锉刀去除内导体毛刺,然后用毛刷或铜 丝刷将内导体铜管内的铜屑清理干净,最后用毛刷将切面处 的铜屑清除干净。
名称 漏缆接头套装(带热缩)
防水套件 轧带
终端阻抗
单位 个 套 包 个
序号 1 2
仪表
名称 万用表 天馈系统测试仪
单位 块 块
数量 若干 若干
1 1
数量 1 1
二、漏缆接续制作
3.漏缆接头安装 3.1将需要装接头的漏缆理直500mm。用锯弓将漏缆端面锯 垂直,用毛刷将端面刷干净。保证电缆端面光滑无毛刺。
图 6.5
图 6.6
二、漏缆接续制作
接续注意事项:
1、漏缆开剥应小心谨慎,不得伤及外导体。 2、漏缆切面应垂直并处理干净,内、外导 体不应出现毛刺,内导体内不应遗留碎屑。 3、内、外导体不应短路,连接牢靠。 4、驻波比不应大于1.5。 5、接头防水密封应完整、可靠。
二、漏缆接续制作
7.漏缆与射频电缆连接 漏缆与其他射频电缆连接时,必须要注意射频电缆的弯
天线输入阻抗和馈线的特性阻抗不一致时,产生的反射波和入 射波在馈线上叠加形成驻波。其相邻电压最大值和最小值就是电压 驻波比,它是检验馈线传输效率的依据。
一个比较形象的解释一般在传输线上的电磁波由行波(向前传 输的波)和反射波构成,驻波比就是反映波停留的状态,如驻波比 越大,波就越停留在原地,如果驻波比无穷大,就代表波是停留在 原地。相反地,驻波比的倒数可以定义为行波系数,它表示波行进 的状态,行波系数越大,代表波越向前行进。

电力电缆局放及环流在线监测系统技术方案

电力电缆局放及环流在线监测系统技术方案

上海宜商实业发展有限公司电缆终端接头局部放电及护套环流在线监测系统技术方案目录一、概述 (2)二、国内外现状和发展趋势 (3)三、系统指标及功能 (3)1.技术指标 (3)2.系统功能特点 (4)四、技术方案 (4)1.系统结构图 (4)2.前端采集单元介绍 (5)五、现有工作基础、装备水平及实验测试能力 (11)六.售后服务及培训 (11)一、概述由于交联聚乙烯(XLPE)电缆具有绝缘性能好、易于制造和安装方便、供电安全可靠、有利于美化城市等优点,在60年代初问世以来的40余年中得到了迅速发展。

在中低压领域几乎替代了油浸纸绝缘电缆,并已在高电压等级中使用。

近十年来,我国城市电网中大量采用XLPE电力电缆输配电。

但是这种电缆的绝缘结构中往往会由于加工技术上的难度或原材料不纯而存在气隙和有害性杂质,或者由于工艺原因,在绝缘与半导电屏蔽层之间存在间隙或半导电体向绝缘层突出,在这些气隙和杂质尖端处极易产生局部放电(PD),同时在电力电缆的安装和运行过程当中也可能会产生各种绝缘缺陷导致局部放电。

由于XLPE等挤塑型绝缘材料耐放电性较差,在局部放电的长期作用下,绝缘材料不断老化最终导致绝缘击穿,造成严重事故。

我公司生产的电缆接头局放测量系统已应用到国内多个供电局,因该系统结构复杂、成本较高,所以目前主要是便携式的带电监测方式应用。

经过多年的技术积累,我们已完成对国内近千个110KV、220kv、330KV电缆接头的带电检测。

通过对这些数据的对比分析,发现电缆接头处的局放水平与监测的脉冲幅值有密切的联系;在此基础上,拟对原有的局放测量系统进行简化设计,只以接头处接地线上的脉冲幅值大小和接地电流值所为主要监测参量,进行实时监测,从而以较低成本,并有效方便的实现对电缆接头局放水平的在线监测。

当电缆线芯中有电流流过时,将会使金属护套上产生感应电势。

在护套开路时,这个感应电势可能会很大,有时不但会危及人身安全,还会击穿金属护套的外护层,尤其是电缆线路发生过电压及短路故障时, 在金属护套上会形成很高的感应电压, 使电缆外护套绝缘发生击穿, 故应在金属护套的一定位置采用特殊的连接方式和接地方式这些不同类型的接地电流成分不仅可以反映电力电缆金属护层自身的状态,也可以反映主绝缘的品质状态(如老化以及缺陷等)引起的局部放电在内的多类故障。

电力电缆局放及环流在线监测系统技术方案

电力电缆局放及环流在线监测系统技术方案

上海宜商实业发展有限公司电缆终端接头局部放电及护套环流在线监测系统技术方案目录一、概述 (2)二、国内外现状和发展趋势 (3)三、系统指标及功能 (3)1.技术指标 (3)2.系统功能特点 (4)四、技术方案 (4)1.系统结构图 (4)2.前端采集单元介绍 (5)五、现有工作基础、装备水平及实验测试能力 (11)六.售后服务及培训 (11)一、概述由于交联聚乙烯(XLPE)电缆具有绝缘性能好、易于制造和安装方便、供电安全可靠、有利于美化城市等优点,在60年代初问世以来的40余年中得到了迅速发展。

在中低压领域几乎替代了油浸纸绝缘电缆,并已在高电压等级中使用。

近十年来,我国城市电网中大量采用XLPE电力电缆输配电。

但是这种电缆的绝缘结构中往往会由于加工技术上的难度或原材料不纯而存在气隙和有害性杂质,或者由于工艺原因,在绝缘与半导电屏蔽层之间存在间隙或半导电体向绝缘层突出,在这些气隙和杂质尖端处极易产生局部放电(PD),同时在电力电缆的安装和运行过程当中也可能会产生各种绝缘缺陷导致局部放电。

由于XLPE等挤塑型绝缘材料耐放电性较差,在局部放电的长期作用下,绝缘材料不断老化最终导致绝缘击穿,造成严重事故。

我公司生产的电缆接头局放测量系统已应用到国内多个供电局,因该系统结构复杂、成本较高,所以目前主要是便携式的带电监测方式应用。

经过多年的技术积累,我们已完成对国内近千个110KV、220kv、330KV电缆接头的带电检测。

通过对这些数据的对比分析,发现电缆接头处的局放水平与监测的脉冲幅值有密切的联系;在此基础上,拟对原有的局放测量系统进行简化设计,只以接头处接地线上的脉冲幅值大小和接地电流值所为主要监测参量,进行实时监测,从而以较低成本,并有效方便的实现对电缆接头局放水平的在线监测。

当电缆线芯中有电流流过时,将会使金属护套上产生感应电势。

在护套开路时,这个感应电势可能会很大,有时不但会危及人身安全,还会击穿金属护套的外护层,尤其是电缆线路发生过电压及短路故障时, 在金属护套上会形成很高的感应电压, 使电缆外护套绝缘发生击穿, 故应在金属护套的一定位置采用特殊的连接方式和接地方式这些不同类型的接地电流成分不仅可以反映电力电缆金属护层自身的状态,也可以反映主绝缘的品质状态(如老化以及缺陷等)引起的局部放电在内的多类故障。

泄漏电缆及天馈线在线监测系统介绍

泄漏电缆及天馈线在线监测系统介绍

泄漏电缆及天馈线在线监测系统介绍1. 背景GSM-R通信系统运行质量与铁路运输组织及运行安全密切相关,根据多个GSM-R系统开通后的实际运营情况,从系统设计、运行维护、工程实现等层面做了深入的调研,发现在GSM-R网络日常运营维护中,泄漏电缆及天馈线系统的性能对铁路GSM-R移动通信网络的安全运行有很重要的影响。

漏缆、天馈线等无源部件的故障占整个射频无线系统问题50%以上,接头、跳线、DC-Block、天线等问题占无源部件问题80%以上,随着GSM-R系统运行开通,由于设备质量问题或工程安装问题,部分漏缆所连接的接头、跳线、DC-Block、天线将开始进入故障多发期。

但由于维护的实际困难,例如长大隧道和窗口时间等因素的限制,有些故障很难被及时发现,而泄漏电缆、天馈线系统的性能对铁路GSM-R移动通信网络的安全运行有很重要的影响,但是对泄漏电缆及天馈线系统的检测,一直没有得到全面、完整地解决,因此非常有必要对泄漏电缆、天馈线系统进行全面在线监测。

为了确保GSM-R网络运行的安全,必须有先进的监测系统对GSM-R泄漏电缆及天馈线进行实时监测,为GSM-R网络优化、运行维护提供数据, 使GSM-R网络满足铁路专用调度通信、列车控制系统等特殊要求,以保证铁路通信安全畅通的要求。

2. 系统简介2.1 主要组成部分故障定位单元信号接入器FSU(现场控制单元)监控中心2.2 检测原理故障定位单元主要功能是产生故障定位信号、信号处理和通信部分,无源信号插入器将故障定位单元产生的故障定位信号,送进漏缆链路中,并将检测到的故障信号送回故障定位定位检测单元,进行信号处理,计算出故障发生点的回波损耗和故障发生的位置,并进行存储或转发。

2.3 系统示意图故障定位设备(设备间)故障定位设备(设备间)故障定位设备(设备间)故障定位设备(设备间)2.4 现场故障定位单元安装示意图漏缆链路需要被监测的重点:一、漏缆故障定位二、漏缆末端所连接的天馈线的故障定位三、隧道洞口处的天馈线(是普通检测的盲点,但又是重点)的故障定位注:漏缆末端所连接的天馈线实际上就是漏缆链路的一部分。

电缆多状态在线监测系统

电缆多状态在线监测系统

电缆多状态在线监测系统简介电缆多状态在线监测系统是一种可实现对电缆运行状态进行实时监测、故障快速定位和长期安全评估的智能化系统。

它能够利用传感技术、无线通信技术、数据处理与分析技术,对电缆的温度、电流、电压、绝缘阻抗、泄漏电流等多种状态进行在线监测,实现对电缆运行状态的全面掌控和管理。

功能电缆多状态在线监测系统的主要功能包括:实时监测电缆多状态在线监测系统能够实时监测电缆的温度、电流、电压、绝缘阻抗、泄漏电流等多个状态指标。

通过对这些指标的监测,可以及时发现电缆故障和异常,从而实现对电缆运行状态的快速掌握和处理。

故障定位电缆多状态在线监测系统能够快速对电缆故障进行定位。

通过对电缆多种状态指标的监测和分析,可以准确判断电缆故障的位置和范围,从而为故障处理提供依据和方向。

安全评估电缆多状态在线监测系统能够长期对电缆的运行状态进行监测和评估。

通过对多种状态指标的长期监测和分析,可以预测电缆的寿命和保养周期,并提供针对性的维护和保养建议,从而确保电缆的安全运行。

技术原理电缆多状态在线监测系统的核心技术包括传感技术、无线通信技术、数据处理技术、分析技术等。

传感技术传感技术是电缆多状态在线监测系统能够实现对电缆多种状态指标进行监测的基础。

传感器可以安装在电缆上,实时监测电缆的温度、电流、电压、绝缘阻抗、泄漏电流等多个状态指标,并将数据传输给后台服务器进行处理。

无线通信技术无线通信技术可以实现电缆多状态在线监测系统与后台服务器之间的数据传输。

无线通信技术可以将传感器监测到的数据直接传输给后台服务器,实现数据实时传输和监测。

数据处理技术数据处理技术是电缆多状态在线监测系统中最关键的技术之一。

它可以对传感器监测到的数据进行实时处理、存储和分析,并呈现给用户。

数据处理技术可以进行数据清洗、数据分析、数据挖掘等多种操作,从而实现对多种状态指标的综合分析和评估。

分析技术分析技术是电缆多状态在线监测系统实现故障快速定位和长期安全评估的基础。

高压电缆在线监测系统

高压电缆在线监测系统

高压电缆在线监测系统简介高压电缆在线监测系统是一种针对高压电力电缆的监测方案,可对电缆进行全面、实时、准确的监测。

该系统的主要作用是提高电力输送可靠性和供电质量,防止事故发生,以及减少停电时间和维修成本。

检测项目高压电缆在线监测系统主要监测以下几个项目:1. 温度检测高压电缆的温度是影响其使用寿命的主要因素之一,而高压电缆在线监测系统可对电缆温度进行实时监测,及早发现异常情况,确保电缆的安全运行。

2. 声波检测高压电缆线路中存在着一些不良的接头、内部缺陷等问题,会产生声波信号,因此声波监测是监测电缆线路状态的一项重要手段。

3. 电流检测电缆的电流是否正常,是评估其运行状态的关键指标之一。

高压电缆在线监测系统可以实时监测电流的变化,以确定电缆是否正常运行。

4. 电压检测电压是影响电力输送稳定性的主要因素之一。

高压电缆在线监测系统可以实时监测电压的变化,以保证电力输送质量。

原理高压电缆在线监测系统的主要原理是采用传感器自动捕捉电缆中的信号,并将信号传输到机房内的监测设备中进行分析处理。

当监测设备检测到异常情况时,会对运维人员自动报警,及时处理故障,防止事故的发生。

优点高压电缆在线监测系统具有以下几个优点:1. 无需停电高压电缆在线监测系统无需对电缆进行拆卸,也无需人员进入现场,即可实现全面监测。

2. 实时监测系统可以实时监测电缆的状态,能够及早发现异常情况,以强化电缆的监管。

3. 精准诊断高压电缆在线监测系统结合了多种检测手段,能够实现精准诊断,并能够有效地防止误报和漏报情况的发生。

4. 系统升级方便该系统采用智能化设备,可以根据厂家的需求,随时进行升级以适应更多的使用环境和监测需求。

高压电缆在线监测系统是智能化的高压电缆监测方案,具有多项优点。

通过系统的实时监测,能够及早发现异常情况,并及时处理故障,保障供电质量和电缆的安全运行。

电缆绝缘在线监测及故障定位 系统

电缆绝缘在线监测及故障定位 系统

上海蓝瑞电气有限公司CIM-II电缆绝缘监测及故障定位系统目录一、概述 (1)二、装置介绍 (1)1、工作原理 (1)2、功能介绍 (2)3、优势介绍 (3)4、技术指标 (4)5、配置介绍 (4)一、概述电线电缆是最常用的电力设备,同时也是出现绝缘故障概率最高的设备,由于电缆绝缘损坏直接导致线路相间短路、单相接地等重大事故,严重影响供电可靠性。

当电缆发生故障时,人工寻找故障点比较困难。

因此,对电缆绝缘状态进行在线监测及故障定位意义重大。

CIM-II电缆绝缘监测及故障定位系统是上海蓝瑞电气有限公司依托上海交通大学联合研制的,该系统由电缆绝缘在线监测装置和电缆故障智能测试仪组成。

电缆绝缘在线监测装置以改进的介损因数法+直流分量法为主,对电缆的绝缘情况给出预警,以便及时更换电缆,当电缆线路发生故障时,装置可在线辨识故障支路。

确定故障支路后,再通过电缆故障测试仪离线方式下精确定位故障点。

二、装置介绍1、工作原理1.1电缆绝缘在线监测装置(图1)根据国内外大量研究表明,电缆的绝缘老化过程是一个渐变的过程,通过绘制电缆介质因数的历史变化曲线,可以看出电缆绝缘老化趋势。

其基本方法是直接测量电缆护套接地电流和电缆对地电压,通过数字信号频谱分析方法分别计算出电缆的容性阻抗和阻性阻抗的大小,以改进的介损因数法+直流分量法分析绝缘状况,对于绝缘老化超限报警,绝缘故障线路选择。

因正常时容性电流远大于阻性电流,所以测量精度要求高,为保证监测的准确性,装置采用了以相对偏差和阻抗变化斜率为比较对象的方法,可有效屏蔽测量误差。

图1.电缆绝缘在线监测装置系统图1.2电缆故障智能测试仪(图2)电缆故障智能测试仪采用时域反射法,它可测试电力电缆的开路、短路、接地、低阻故障、高阻闪络、泄漏性故障以及电缆长度、埋地深度及走向。

图2. 电缆故障智能测试仪示意图2、功能介绍2.1电缆绝缘在线监测装置1)实时在线测量✧对电缆护套接地电流和相电压实时测量,通过数字信号频谱分析方法分别计算出电缆的容性阻抗和阻性阻抗。

泄漏电缆探测器的工作原理

泄漏电缆探测器的工作原理

泄漏电缆探测器的工作原理
泄漏电缆是一种具有特殊结构的同轴电缆,与普通的同轴电缆不同的是,其中心是铜导线,外面包围着绝缘材料(如聚乙烯额),绝缘材料外面用两条金属散层以螺旋式交叉缠绕并留有孔隙。

电缆最外面为聚乙烯保护层。

当电缆传输电磁能量时,屏蔽层的空隙处便将部分电磁能量向外辐射。

为了使电缆在一定长度范围内能够均匀地向空间泄漏能量,电缆空隙的尺寸大小是沿电缆变化的。

电缆内部传输的一部分高频电磁能可以由这些槽孔以电磁波的形式向外辐射,同时又可以通过槽孔接收外部的电磁波,加上同轴电缆原有的传输性能,可以说,泄漏同轴电缆兼有传输线和收、发天线的功能把平行安装的两根泄漏电缆分别接到高强信号发生器的接收器上,就组成了泄漏电缆入侵探测器。

当发生器产生的脉冲电磁能量沿发射电缆传输并通过泄漏孔向空间敷设时,在电缆周围形成空间电磁场,同时与发射电缆平行的接收电缆通过泄漏孔接收空间电磁能量,并沿电缆送入接收器,泄漏电缆可埋入地下,当入侵者进入探测区时,空间电磁场的分布状态发生变化,因而接收电缆收到的电磁能量发生变化,这个变化量就是入侵信号,经过分析处理后可使报警器动作。

分析城市轨道交通直流馈出电缆在线监测技术

分析城市轨道交通直流馈出电缆在线监测技术

分析城市轨道交通直流馈出电缆在线监测技术【摘要】城市轨道交通运行过程中的供电系统安全是保障城市轨道交通安全平稳运行的重要因素之一。

直流馈出电缆作为城市轨道牵引供电系统中的重要组成部分,保障其安全可靠的运行状态,及时发现潜在隐患,避免问题进一步扩大而引发严重的安全事故则显得十分重要。

受制于直流馈出电缆敷设条件恶劣,数量巨大等现实条件,传统绝缘检测方法耗时费力、检测精度不高且无法及时预判及监测电缆缺陷。

因此,城市轨道交通直流馈出电缆在线监测技术的提出及应用,则为解决这一难题提供了一条切实有效的途径。

本文分析了城市轨道交通直流馈出电缆在线监测技术的监测原理及应用系统构成,对于实际工作起到参考作用。

关键词:城市轨道交通;直流馈出电缆;在线监测技术城市轨道交通列车牵引供电一般采用接触轨(第三轨)或架空接触网形式分别通过列车受流靴或受电弓为列车供电,常用额定电压等级分别为DC750V、DC1500V。

直流馈出电缆作为连接直流馈出开关柜和隔离开关的桥梁及直流电流通路,一般采用多根并联的形式以提高供电可靠性。

传统的直流电缆绝缘检测手段一般为停电后,通过绝缘电阻测试仪分别测试各直流电缆的绝缘电阻,通过查看绝缘电阻的数值及变化趋势判断直流电缆的绝缘状态及运行趋势。

然而随着城市轨道交通的蓬勃发展,直流馈出电缆的投用数量非常巨大,传统检测手段需要耗费大量的人力物力,且细微的绝缘缺陷不易发现,检测手段低效。

利用城市轨道交通直流馈出电缆在线监测技术可以在直流馈出电缆运行情况下实时监测电缆运行状态,及时发现电缆缺陷,为直流馈出电缆的精准化检修提供了可靠依据,极大的降低了直流馈出电缆检修的人力物力成本,保障了直流馈出电缆的可靠运行。

下文将分别分析阐述直流馈出电缆在线监测技术的监测原理及应用系统构成。

1.直流馈出电缆在线监测技术原理直流馈出电缆在线监测技术研究主要借鉴交流电缆的监测手段,通过原理分析用于交流电缆检测的直流叠加法、介质损耗检测、接地电流法、交流叠加法均不适用,故直流馈出电缆的检测原理依据为直流电缆的局部放电法和泄露电流法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泄漏电缆及天馈线在线监测系统介绍
1. 背景
GSM-R通信系统运行质量与铁路运输组织及运行安全密切相关,根据多个GSM-R系统开通后的实际运营情况,从系统设计、运行维护、工程实现等层面做了深入的调研,发现在GSM-R网络日常运营维护中,泄漏电缆及天馈线系统的性能对铁路GSM-R移动通信网络的安全运行有很重要的影响。

漏缆、天馈线等无源部件的故障占整个射频无线系统问题50%以上,接头、跳线、DC-Block、天线等问题占无源部件问题80%以上,随着GSM-R系统运行开通,由于设备质量问题或工程安装问题,部分漏缆所连接的接头、跳线、DC-Block、天线将开始进入故障多发期。

但由于维护的实际困难,例如长大隧道和窗口时间等因素的限制,有些故障很难被及时发现,而泄漏电缆、天馈线系统的性能对铁路GSM-R移动通信网络的安全运行有很重要的影响,但是对泄漏电缆及天馈线系统的检测,一直没有得到全面、完整地解决,因此非常有必要对泄漏电缆、天馈线系统进行全面在线监测。

为了确保GSM-R网络运行的安全,必须有先进的监测系统对GSM-R泄漏电缆及天馈线进行实时监测,为GSM-R网络优化、运行维护提供数据, 使GSM-R网络满足铁路专用调度通信、列车控制系统等特殊要求,以保证铁路通信安全畅通的要求。

2. 系统简介
2.1 主要组成部分
故障定位单元
信号接入器
FSU(现场控制单元)
监控中心
2.2 检测原理
故障定位单元主要功能是产生故障定位信号、信号处理和通信部分,无源信号插入器将故障定位单元产生的故障定位信号,送进漏缆链路中,并将检测到的故障信号送回故障定位定位检测单元,进行信号处理,计算出故障发生点的回波损耗和故障发生的位置,并进行存储或转发。

2.3 系统示意图
故障定位设备(设备间)故障定位设备(设备间)故障定位设备(设备间)故障定位设备(设备间)
2.4 现场故障定位单元安装示意图
漏缆链路需要被监测的重点:
一、漏缆故障定位
二、漏缆末端所连接的天馈线的故障定位
三、隧道洞口处的天馈线(是普通检测的盲点,但又是重点)的故
障定位
注:漏缆末端所连接的天馈线实际上就是漏缆链路的一部分。

2.5故障定位单元使用条件
检测频率:800MHz左右,既不能干扰GSM-R,又要具备GSM-R 的射频特性。

工作温度:-30℃~50℃;
相对湿度:20%~90%(在40℃±2℃条件下);
海拔高度:≤3000米;
供电电源:-48V DC 、220V AC。

过压过流保护、防雷保护、环境、振动、结构满足《GSM-R固定用户接入系统技术条件》的要求。

2.6 系统功能
2.6.1 可对泄漏电缆及其所连接的天馈线进行故障在线检测,能故障定位,单台故障定位单元检测距离最长约4公里,故障定位精度10米。

2.6.2 系统实时监测,监测数据由传输网络传至网管中心,并图形化显示,分级告警,具备数据管理功能、监测单元的远程控制。

2.7 性能
2.7.1 可靠性: 平均故障间隔时间(MTBF)≥10万小时。

2.7.2 信号插入器插入损耗:≤0.7dB(GSM-R频段)
2.7.3 软件升级:可以通过本地维护端口进行软件升级;
2.7.4 硬件升级:预留出升级空间。

相关文档
最新文档