高中数学圆的方程典型例题
高中数学例题:圆的标准方程
高中数学例题:圆的标准方程例1.求满足下列条件的各圆的方程:(1)圆心在原点,半径是3;(2)已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上;(3)经过点()5,1P ,圆心在点()8,3C -.【思路点拨】一般情况下,如果已知圆心或易于求出圆心,可用圆的标准方程来求解,用待定系数法,求出圆心坐标和半径.【答案】(1)229x y +=(2)22(2)10x y -+=(3)()()228325x y -++=【解析】(1)229x y +=(2)线段AB 的中垂线方程为240x y --=,与x 轴的交点(2,0)即为圆心C 的坐标,所以半径为||0CB = ,所以圆C 的方程为22(2)10x y -+=.(3)解法一:∵圆的半径||5r CP ===,圆心在点()8,3C -∴圆的方程是()()228325x y -++=解法二:∵圆心在点()8,3C -,故设圆的方程为()()22283x y r -++= 又∵点()5,1P 在圆上,∴()()2225813r -++=,∴225r =∴所求圆的方程是()()228325x y -++=.【总结升华】确定圆的方程的主要方法是待定系数法,即列出关于a 、b 、r 的方程组,求a 、b 、r 或直接求出圆心(a ,b )和半径r ,一般步骤为:(1)根据题意,设所求的圆的标准方程为(x ―a)2+(y ―b)2=r 2;(2)根据已知条件,建立关于a 、b 、r 的方程组;(3)解方程组,求出a 、b 、r 的值,并把它们代入所设的方程中去,就得到所求圆的方程.举一反三:【变式1】圆心是(4,―1),且过点(5,2)的圆的标准方程是( )A .(x ―4)2+(y+1)2=10B .(x+4)2+(y ―1)2=10C .(x ―4)2+(y+1)2=100 D.22(4)(1)x y -++=【答案】A例2.求圆心在直线2x ―y ―3=0上,且过点(5,2)和(3,―2)的圆的方程.【答案】(x ―2)2+(y ―1)2=10【解析】 解法一:设所求圆的圆心为(a ,b ),半径为r ,由题意得222222230(5)(2)(3)(2)a b a b r a b r --=⎧⎪-+-=⎨⎪-+--=⎩,解方程组得a=2,b=1,r =∴所求圆的方程为(x ―2)2+(y ―1)2=10.解法二:因点(5,2)和(3,―2)在圆上,故圆心在这两点所连线段的垂直平分线上,可求得垂直平分线的方程为x+2y ―4=0.又圆心在直线2x ―y ―3=0上,故圆心为两直线的交点.由230240x y x y --=⎧⎨+-=⎩求得两直线交点为(2,1),故所求圆的方程为(x ―2)2+(y ―1)2=10.【总结升华】求圆的标准方程的关键是求圆的坐标和圆的半径,这就需要充分挖掘题目中所给的几何条件,并充分利用平面几何中的有关知识求解,如“若圆经过某两点,则圆心必在这两点连线的中垂线上”等.举一反三:【变式1】(1)过点(2,3),(2,5)A B ---且圆心在直线230x y --=上;(2)与x 轴相切,圆心在直线30x y -=上,且被直线0x y -=截得的弦长为【答案】(1)22(1)(2)10x y +++=(2)22(1)(3)9x y -+-=或22(1)(3)9x y +++=【解析】(1)设圆的方程为:()222()x a y b r -+-=,则()()()()2222222325230a b r a b r a b ⎧-+--=⎪⎪--+--=⎨⎪--=⎪⎩,解得:21,2,10a b r =-=-=所求圆的方程为:22(1)(2)10x y +++=(2)设圆的方程为:()222()x a y b r -+-=,则()222230142r b a b a b r ⎧=⎪⎪-=⎨⎪-+=⎪⎩解得:2139a b r ⎧=⎪=⎨⎪=⎩或2139a b r ⎧=-⎪=-⎨⎪=⎩ 所求圆的方程为:22(1)(3)9x y -+-=或22(1)(3)9x y +++=.。
圆的方程 高中数学讲义
圆的方程讲义一、圆的标准方程:1.以点),(b a C 为圆心,r 为半径的圆的标准方程为 特别的,圆心在原点,半径为r 的圆的标准方程为 注:特殊位置的圆的方程(1)圆心在原点(2)圆心在x 轴上(3)圆心在y 轴上(4)圆过原点(5)与x 轴相切的圆(6)与y 轴相切的圆2.点与圆的位置关系:已知点),(00y x M 和圆C :)0()()(222>=-+-r r b y a x ,点M 到圆心C 的距离为d ,则(1)点M 在圆上⇔ ⇔(2)点M 在圆内⇔ ⇔(3)点M 在圆外⇔ ⇔3.典型例题例1.ABC ∆的三个顶点)8,2(),3,7(),1,5(--C B A ,求它的外接圆的方程例2.已知圆心为C 的圆经过点)1,1(A 和)2,2(-B ,且圆心C 在直线 l :01=+-y x 上,求圆心为C 的圆的标准方程例 3.已知两点),(),,(2211y x B y x A ,求证:以AB 为直径的圆的方程为0))(())((2121=--+--y y y y x x x x二、圆的一般方程1.对于方程022=++++F Ey Dx y x(1)当0422>-+F E D 时,方程表示(2)当0422=-+F E D 时,方程表示(3)当0422<-+F E D 时,方程表示2.圆的一般方程:方程 叫做圆的一般方程,其圆心为 ,半径为注圆的一般方程的系数特点:(1)22,y x 项的系数(2)无xy 的项(3)3.点与圆的位置关系:已知点),(00y x M 和圆C :022=++++F Ey Dx y x ,则(1)点M 在圆上⇔(2)点M 在圆内⇔(3)点M 在圆外⇔例1.若方程01222222=-+++++a a ay ax y x 表示圆,求a 的取值范围变式:若原点在圆01222222=-+++++a a ay ax y x 外,求a 的取值范围例2.求过三点)2,4(),1,1(),0,,0(B A O 的圆的方程,并求出这个圆的半径长和圆心坐标.三、直线与圆的位置关系1.平面几何中,直线与圆有三种位置关系:(1)直线与圆相交,有 个公共点;(2)直线与圆相切,有 个公共点;(3)直线与圆相离,有 个公共点.2.直线与圆的位置关系的判定:已知直线l :0=++C By Ax ,圆C :)0()()(222>=-+-r r b y a x(1)方法1:(几何法)设圆心C 到直线l 的距离(弦心距)为22b a C bB aA d +++=,则 ① ⇔直线与圆相交② ⇔直线与圆相切③ ⇔直线与圆相离(2)方法2:(代数法)联立直线l 与圆C 的方程0)()(02222=++⇒⎩⎨⎧=-+-=++t qx px r b y a x C By Ax ① ⇔直线与圆相交② ⇔直线与圆相切③ ⇔直线与圆相离例1.如图,已知直线l :063=-+y x 和圆心为C 的圆04222=--+y y x ,判断直线l 与圆C 的位置关系例2.直线m x y +-=33与圆122=+y x 在第一象限内有两个交点,求实数m 的取值范围3.弦长公式:设直线l :b kx y +=与圆C :)0()()(222>=-+-r r b y a x 相交于B A ,两点,则弦长AB 的求法有:(1)几何法:由弦心距d ,半弦长2L ,圆的半径r 满足勾股定理222)2(r L d =+=⇒L (2)代数法:(弦长公式)=AB == =例3.已知直线l :012=--y x 与圆C :01222=--+y y x 交于B A ,,求弦长AB例4.过点)3,3(--M 的直线l 被圆C :021422=-++y y x 所截得的弦长为54,求直线l 的方程变式1:过点)3,3(--M 的直线l 被圆C :021422=-++y y x 所截得的弦长为8,求直线l 的方程变式2:过点)0,3(P 直线l 被圆C :0122822=+--+y x y x 截得的弦长为4,求直线l 的方程4.弦的中点(中点弦)问题:例5.过点)0,4(P 的直线l 与圆C :422=+y x 交于B A ,两点,求弦AB 的中点Q 的轨迹方程例6.直线kx y =与圆0104622=+--+y x y x 相交于B A ,,求弦AB 的中点P 的轨迹方程5.以弦为直径的圆过定点问题例7.已知圆0622=+-++m y x y x 与直线032=-+y x 交于Q P ,两点,且以PQ 为直径的圆过原点,求m 的值四、圆的切线问题1.求过圆上一点的圆的切线方程例8.求过点)3,1(P 的圆O :422=+y x 的切线l 的方程例9.证明:过圆222r y x =+上一点),(00y x P 的圆的切线方程为:200r y y x x =+注:常见的与圆的切线有关的结论(1)过圆222r y x =+上一点),(00y x P 的圆的切线方程为(2)过圆222)()(r b y a x =-+-上一点),(00y x P 的圆的切线方程为(3)过圆022=++++F Ey Dx y x 上一点),(00y x P 的圆的切线方程为(4)过二次曲线(包括圆、椭圆、双曲线、抛物线)022=++++F Ey Dx Cy Ax 上一点),(00y x P 的圆的切线方程为2.求过圆外一点的圆的切线方程例10.求过点)3,4(-A 的圆1)1()3(22=-+-y x 的切线l 的方程练习:求过点)4,3(A 的圆1)1()2(22=-+-y x 的切线l 方程3.求切线长例11.过圆C :1)2()2(22=-+-y x 外一点)2,0(P 作圆C 的切线PT ,T 为切点,求切线PT 的长注:圆的切线长公式:(1)设点),(00y x P 是圆222)()(r b y a x =-+-外任意一点,过点P 作圆的切线PT ,T 为切点,则切线长=PT(2)设点),(00y x P 是圆022=++++F Ey Dx y x 外任意一点,过点P 作圆的切线PT ,T 为切点,则切线长=PT例12.已知圆C :1)1()2(22=-+-y x ,在直线l :01243=--y x 上求一点P ,过点P 作圆C 的切线,使得切线段最短4.切点弦例13.设点),(00y x P 是圆222)()(r b y a x =-+-外任意一点,过点P 作圆的切线,切点为B A ,,则切点弦AB 所在直线方程为注:圆的切点弦所在直线方程(1)设点),(00y x P 是圆222)()(r b y a x =-+-外任意一点,过点P 作圆的切线,切点为B A ,,则切点弦AB 所在直线方程为(2)设点),(00y x P 是圆022=++++F Ey Dx y x 外任意一点,过点P 作圆的切线,切点为B A ,,则切点弦AB 所在直线方程为五、圆和圆的位置关系1.圆和圆的位置关系:(1)圆和圆相离,有 个公共点(2)圆和圆外切,有 个公共点(3)圆和圆相交,有 个公共点(4)圆和圆内切,有 个公共点(5)圆和圆内含,有 个公共点2.圆和圆的五种位置关系的判定(1)几何法:设两圆21,C C 的半径分别为21,r r ,圆心距为d ,则①圆和圆相离⇔②圆和圆外切⇔③圆和圆相交⇔④圆和圆内切⇔⑤圆和圆内含⇔(2)代数法:联立两圆的方程①圆和圆相离⇔②圆和圆外切⇔③圆和圆相交⇔注:用代数法判断出两圆相切后,若要进一步区分是外切还是内切,则还要判断小圆圆心是在大圆内还是在大圆外,若在大圆内,则两圆 ,若在大圆外,则两圆 , 类似可以区分外离与内含例14.已知圆1C :088222=-+++y x y x 和圆2C :024422=---+y x y x ,试判断圆1C 与圆2C 的位置关系例15.设圆1C :088222=-+++y x y x 和圆2C :024422=---+y x y x 相交于B A ,两点,求(1)两圆的公共弦AB 所在的直线方程(2)求两圆的公共弦AB 的长3.两圆的公切线条数(1)当两圆外离时,有 条公切线, 条外公切线, 条内公切线(2)当两圆外切时,有 条公切线, 条外公切线, 条内公切线(3)当两圆相交时,有 条公切线(4)当两圆内切时,有 条公切线(5)当两圆内含时,有 条公切线例16.(1)圆1C :122=+y x 与圆1C :1)3(22=-+y x 有 条公切线(2)点)1,0(A 和)5,4(B 到直线l 的距离分别为1和2,则符合条件的直线l 有 条4.两圆公切线的求法例17.已知圆1O :096222=++++y x y x ,2O :012622=++-+y x y x ,求两圆的公切线方程。
高中数学人教版必修2 4.1.2圆的一般方程 作业(系列四)
圆的一般方程A 组 基础巩固1.圆的方程为(x -1)(x +2)+(y -2)(y +4)=0,则圆心坐标为( )A .(1,-1)B .(12,-1) C .(-1,2) D .(-12,-1) 解析:将圆的方程化为标准方程,得(x +12)2+(y +1)2=454,所以圆心为(-12,-1). 答案:D2.设A 为圆(x -1)2+y 2=1上的动点,PA 是圆的切线且|PA|=1,则P 点的轨迹方程是( )A .(x -1)2+y 2=4B .(x -1)2+y 2=2C .y 2=2xD .y 2=-2x解析:由题意知,圆心(1,0)到P 点的距离为2,所以点P 在以(1,0)为圆心,以2为半径的圆上,所以点P 的轨迹方程是(x -1)2+y 2=2.答案:B3.过坐标原点,且在x 轴和y 轴上的截距分别是2和3的圆的方程为( )A .x 2+y 2-2x -3y =0B .x 2+y 2+2x -3y =0C .x 2+y 2-2x +3y =0D .x 2+y 2+2x +3y =0解析:解法一(排除法):由题意知,圆过三点O(0,0),A(2,0),B(0,3),分别把A ,B 两点坐标代入四个选项,只有A 完全符合,故选A.解法二(待定系数法):设方程为x 2+y 2+Dx +Ey +F =0,则⎩⎨⎧ F =0,2D +F =-4,3E +F =-9,解得⎩⎨⎧ D =-2,E =-3,F =0,故方程为x 2+y 2-2x -3y =0.解法三(几何法):由题意知,直线过三点O(0,0),A(2,0),B(0,3),由弦AB 所对的圆心角为90°,知线段AB 为圆的直径,即所求的圆是以AB 中点⎝⎛⎭⎫1,32为圆心,12|AB|=132为半径的圆,其方程为(x -1)2+⎝⎛⎭⎫y -322=⎝⎛⎭⎫1322,化为一般式得x 2+y 2-2x -3y =0.答案:A4.圆x 2+y 2-4x -4y -10=0上的点到直线x +y -14=0的最大距离与最小距离的差是( )A .30B .18C .6 2D .5 2解析:圆心为(2,2),则圆心到直线距离为d =|2+2-14|2=52,R =3 2. ∴圆上点到直线的距离最大值为d +R =82,最小值为d -R =2 2.∴(d +R)-(d -R)=82-22=6 2.答案:C5.若圆x 2+y 2-2x -4y =0的圆心到直线x -y +a =0的距离为22,则a 的值为( ) A .-2或2 B.12或32C .2或0D .-2或0解析:由圆心(1,2)到直线的距离公式得|1-2+a|2=22得a =0或a =2.故选C. 答案:C6.已知两定点A(-2,0),B(1,0),如果动点P 满足|PA|=2|PB|,则点P 的轨迹所围成的图形的面积等于( )A .πB .4πC .8πD .9π解析:设点P 的坐标为(x ,y),由|PA|=2|PB|得(x +2)2+y 2=4(x -1)2+4y 2,即(x -2)2+y 2=4.故点P 的轨迹所围成的图形的面积S =4π.答案:B7.如果圆的方程为x 2+y 2+kx +2y +k 2=0,且圆的面积为π,则圆心坐标为__________. 解析:本题考查圆的一般方程及其面积.因为圆x 2+y 2+kx +2y +k 2=0的面积为π,所以圆的半径为1,即12k 2+22-4k 2=124-3k 2=1,所以k =0,所以圆的方程为x 2+y 2+2y =0,得圆心坐标为(0,-1).答案:(0,-1)8.已知圆C :x 2+y 2+2x +ay -3=0(a 为实数)上任意一点关于直线l :x -y +2=0的对称点都在圆C 上,则a =________解析:由题意可得圆C 的圆心⎝⎛⎭⎫-1,-a 2在直线x -y +2=0上,将⎝⎛⎭⎫-1,-a 2代入直线方程得-1-⎝⎛⎭⎫-a 2+2=0,解得a =-2. 答案:-29.由方程x 2+y 2+x +(m -1)y +12m 2=0所确定的圆中,最大面积是__________. 解析:所给圆的半径长为r =1+-2-2m 22=12-+2+3.所以当m =-1时,半径r 取最大值32,此时最大面积是3π4. 答案:3π410.已知圆C :x 2+y 2+Dx +Ey +3=0,圆心在直线x +y -1=0上,且圆心在第二象限,半径长为2,求圆的一般方程.解析:圆心C(-D 2,-E 2), ∵圆心在直线x +y -1=0上,∴-D 2-E 2-1=0,即D +E =-2.① 又∵半径长r =D 2+E 2-122=2, ∴D 2+E 2=20.② 由①②可得⎩⎨⎧ D =2,E =-4,或⎩⎨⎧ D =-4,E =2.又∵圆心在第二象限,∴-D 2<0即D >0.则⎩⎨⎧D =2,E =-4. 故圆的一般方程为x 2+y 2+2x -4y +3=0.B 组 能力提升11.若圆x 2+y 2+2ax -4ay +5a 2-4=0上的所有点都在第二象限,则a 的取值范围为A .(-∞,2)B .(-∞,-1)C .(1,+∞)D .(2,+∞)解析:本题考查圆的性质.由x 2+y 2+2ax -4ay +5a 2-4=0得(x +a)2+(y -2a)2=4,其圆心坐标为(-a,2a),半径为2,由题意知 ⎩⎪⎨⎪⎧ -a <02a >0|-a|>2|2a|>2,解得a >2,故选D.答案:D12.若圆x 2+y 2+2x -6y +1=0上有相异的两点P ,Q 关于直线kx +2y -4=0对称,则直线PQ 的斜率k PQ =__________.解析:本题考查圆的对称性及两垂直直线的斜率的关系.由题意知圆心(-1,3)在直线kx +2y -4=0上,所以k =2,即直线kx +2y -4=0的斜率为-k 2=-1,又直线PQ 与直线kx +2y -4=0垂直,所以k PQ =1.答案:113.已知线段AB 的端点B 的坐标为(8,6),端点A 在圆C :(x +1)2+y 2=4上运动,求线段AB 的中点P 的轨迹方程,并说明它的轨迹是什么?解析:设点P 的坐标为(x ,y),点A 的坐标为(x 0,y 0),由于点B 的坐标为(8,6),且P 为AB的中点,所以x =x 0+82,y =y 0+62.于是有x 0=2x -8,y 0=2y -6. ∵点A 在圆C 上运动,∴点A 的坐标满足方程:(x +1)2+y 2=4,即(x 0+1)2+y 20=4.∴(2x -8+1)+(2y -6)2=4,整理得,(x -72)2+(y -3)2=1. ∴点P 的轨迹是以(72,3)为圆心,1为半径的圆. 14.已知以点C(t ,2t)(t ∈R ,t≠0)为圆心的圆与x 轴交于点O ,A ,与y 轴交于点O ,B ,其中O 为原点.求证:△OAB 的面积为定值.解析:由于圆C 过原点,故可设圆C 的方程为x 2+y 2+Dx +Ey =0.由于圆心为C(t ,2t ),∴D =-2t ,E =-4t. 令y =0,得x =0或x =-D =2t ,∴A(2t,0).令x =0,得y =0或y =-E =4t ,∴B(0,4t), ∴S △OAB =12|OA|·|OB|=12·|2t|·|4t|=4(定值).。
高中数学例题:圆的一般方程
高中数学例题:圆的一般方程例3.已知直线x 2+y 2―2(t+3)x+2(1―4t 2)y+16t 4+9=0表示一个圆.(1)求t 的取值范围;(2)求这个圆的圆心和半径;(3)求该圆半径r 的最大值及此时圆的标准方程.【思路点拨】若一个圆可用一般方程表示,则它具备隐含条件D 2+E 2―4F >0,解题时,应充分利用这一隐含条件.【答案】(1)117t -<<(2)(t+3,4t 2-1) (3)7 222413167497x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭ 【解析】(1)已知方程表示一个圆⇔D 2+E 2―4F >0,即4(t+3)2+4(1―4t 2)2―4(16t 4+9)>0,整理得7t 2―6t ―1<0117t ⇔-<<.(2)圆的方程化为[x ―(t+3)]2+[y+(1―4t 2)]2=1+6t ―7t 2.∴它的圆心坐标为(t+3,4t 2-1).(3)由7r ===≤.∴r 的最大值为7,此时圆的标准方程为 222413167497x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭. 【总结升华】 在本例中,当t 在1,17⎛⎫- ⎪⎝⎭中任取一个值,它对应着一个不同的圆,它实质上是一系列的圆,因此本例中的圆的方程实质上是一个圆系方程,由2341x t y t =+⎧⎨=-⎩得y=4(x ―3)2―1,再由117t -<<,知2047x <<,因此它是一个圆心在抛物线2204(3)147y x x ⎛⎫=--<< ⎪⎝⎭的圆系方程.举一反三:【变式1】(1)求过(2,2),(5,3),(3,1)A B C -的圆的方程,及圆心坐标和半径;(2)求经过点(2,4)A --且与直线3260x y +-=相切于点(8,6)的圆的方程.【答案】(1)()224(1)5x y -+-= (4,1)(2)22113300x y x y +-+-= 【解析】(1)法一:设圆的方程为:220x y Dx Ey F ++++=,则8220345301030D E F D E F D E F +++=⎧⎪+++=⎨⎪+-+=⎩,解得:8212D E F =-⎧⎪=-⎨⎪=⎩所以所求圆的方程为:228220x y x y +--+=,即()224(1)5x y -+-=,所以圆心为(4,1)法二:线段AB 的中点为为75,22⎛⎫ ⎪⎝⎭,321523AB k -==- 线段AB 的中垂线为57322y x ⎛⎫-=-- ⎪⎝⎭,即3130x y --= 同理得线段BC 中垂线为260x y +-=联立2603130x y x y +-=⎧⎨+-=⎩,解得41x y =⎧⎨=⎩所以所求圆的方程为(4,1),半径r ==所以()224(1)5x y -+-=.(2)法一:设圆的方程为:220x y Dx Ey F ++++=,则2024062382100860D E F ED DEF --+=⎧⎪⎪+⎪=⎨⎪+⎪⎪+++=⎩,解得:11330D E F =-⎧⎪=⎨⎪=-⎩ 所以圆的方程为22113300x y x y +-+-=.法二:过点B 与直线3260x y +-=垂直的直线是3180x y --=, 线段AB 的中垂线为40x y +-=,由318040x y x y --=⎧⎨+-=⎩得:圆心坐标为113,22⎛⎫- ⎪⎝⎭,由两点间距离公式得半径21252r =, 所以圆的方程为22113125222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭. 【变式2】判断方程ax 2+ay 2―4(a ―1)x+4y=0(a ≠0)是否表示圆,若表示圆,写出圆心和半径长.【答案】表示圆,圆心坐标2(1)2,a a a -⎛⎫- ⎪⎝⎭,半径||r a = 【变式3】方程2222210x y ax ay a a +++++-=表示圆,则a 的取值范围是A .2a <-或23a >B .203a -<<C .20a -<<D .223a -<<【答案】D【解析】方程x 2+y 2+ax+2ay+2a 2+a-1=0转化为2223()124a x y a a a ⎛⎫+++=--+ ⎪⎝⎭,所以若方程表示圆,则有23104a a --+>,∴ 23440a a +-<,∴ 223a -<<.例4.(1)△ABC 的三个顶点分别为A (―1,5),B (―2,―2),C (5,5),求其外接圆的方程;(2)圆C 过点P (1,2)和Q (―2,3),且圆C 在两坐标轴上截得的弦长相等,求圆C 的方程.【思路点拨】在(1)中,由于所求的圆过三个点,因而选用一般式,从而只要确定系数D 、E 、F 即可;注意到三角形外接圆的圆心为各边的垂直平分线的交点,所以也可先求圆心,再求半径,从而求出圆的方程.在(2)中,可用圆的一般方程,但这样做计算量较大,因此我们可以通过作图,利用图形的直观性来进行分析,从而得到圆心或半径所满足的条件.【答案】(1)x 2+y 2―4x ―2y ―20=0(2)(x+1)2+(y ―1)2=5或(x+2)2+(y+2)2=25【解析】(1)解法一:设所求的圆的方程为x 2+y 2+Dx+Ey+F=0,由题意有5260228055500D E F D E F D E F -+++=⎧⎪--++=⎨⎪+++=⎩,解得4220D E F =-⎧⎪=-⎨⎪=-⎩.故所求的圆的方程为x 2+y 2―4x ―2y ―20=0.解法二:由题意可求得AC 的中垂线的方程为x=2,BC 的中垂线方程为x+y ―3=0.∴圆心是两中垂线的交点(2,1),∴半径5r ==,∴所求的圆的方程为(x ―2)2+(y ―1)2=25,即x 2+y 2―4x ―2y ―20=0.(2)解法一:如右图所示,由于圆C 在两坐标轴上的弦长相等,即|AD|=|EG|,所以它们的一半也相等,即|AB|=|GF|,又|AC|=|GC|,∴Rt △ABC ≌Rt △GFC ,∴|BC|=|FC|.设C (a ,b ),则|a|=|b|. ①又圆C 过点P (1,2)和Q (―2,3),∴圆心在PQ 的垂直平分线上, 即51322y x ⎛⎫-=+ ⎪⎝⎭,即y=3x+4,∴b=3a+4. ② 由①知a=±b ,代入②得11a b =-⎧⎨=⎩或22a b =-⎧⎨=-⎩.∴r ==5.故所求的圆的方程为(x+1)2+(y ―1)2=5或(x+2)2+(y+2)2=25.即x 2+y 2+2x ―2y ―3=0或x 2+y 2+4x+4y ―17=0.解法二:设所求的圆的方程为x 2+y 2+Dx+Ey+F=0.∵圆C 过点P (1,2)和Q (-2,3),∴22122049230D E F D E F ⎧++++=⎨+-++=⎩,解得38117E D F D =-⎧⎨=-⎩. ∴圆C 的方程为x 2+y 2+Dx+(3D ―8)y+11―7D=0,将y=0代入得x 2+Dx+11―7D=0.∴圆C 在x 轴上截得的弦长为12||x x -=x=0代入得y 2+(3D ―8)y+11―7D=0,∴圆C 在y 轴上截得的弦长为12||y y -=由题意有=,即D 2―4(11―7D)=(3D ―8)2―4(11―7D),解得D=4或D=2.故所求的圆的方程为x 2+y 2+4x+4y ―7=0或x 2+y 2+2x ―2y ―3=0.【总结升华】 (1)本例(1)的解法二思维迂回链过长,计算量过大,而解法一则较为简捷,因此,当所有已知的条件与圆心和半径都无直接关系,在求该圆的方程时,一般设圆的方程为一般方程,再用待定系数法来确定系数即可.(2)本例(2)中,尽管所给的条件也都与圆心和半径无直接关系,但可通过画图分析,利用平面几何知识,找到与圆心和半径相联系的蛛丝马迹,从而避免了选用圆的一般方程带来的繁琐的计算.(3)一般地,当给出了圆上的三点坐标,特别是当这三点的横坐标和横坐标之间、纵坐标和纵坐标之间均不相同时,选用圆的一般方程比选用圆的标准方程简捷;而在其他情况下的首选应该是圆的标准方程,此时要注意从几何角度来分析问题,以便找到与圆心和半径相联系的可用条件.举一反三:【变式1】如图,等边△ABC 的边长为2,求这个三角形的外接圆的方程,并写出圆心坐标和半径长.【答案】⎛ ⎝⎭2243x y ⎛+= ⎝⎭。
高中数学必修圆的一般方程-精选文档
结论:任何一个圆方程可以写成下面形式:
x2 +y 2+Dx+Ey+F=0
结论:任何一个圆方程可以写成下面形式:
x2 +y 2+Dx+Ey+F=0
问:是不是任何一个形如
x2 +y 2+Evaluation Dx+Ey+only. F=0 方程表示
ted with Aspose.Slides for .NET 3.5 Client Profile 5.2 的曲线是圆呢? Copyright 2019-2019 Aspose Pty Ltd.
请举例
把方程:x2 +y 2+Dx+Ey+F=0 2 2 D E D E 4 F 2 2 配方可得: ( x ) ( y )= 2 2 4
(1)当D2+E2-4F>0时,表示以( 为圆心,以(
1 2 2 D E 4 F) 2
D E , 2 2
)
为半径的圆
Evaluation only. (2)当D2+E2-4F=0 时,方程只有一组解 X=-D/2 D 3.5 EClient Profile 5.2 ted with Aspose.Slides for .NET y=-E/2,表示一个点( 2 , 2 ) Copyright 2019-2019 Aspose Pty Ltd.
不表示任何图形。
(3)当D2+E2-4F<0时,方程(1)无实数解,所以
所以形如x2 +y 2+Dx+Ey+F=0 (D2+E2-4F>0) 可表示圆的方程
圆的一般方程:
x2 +y
2+Dx+Ey+F=0
(D2+E2-4F>0)
圆的一般方程与标准方程的关系:
1 2 2 D E 4 F (1)a=-D/2,b=-E/2 ,r= Evaluation only. 2 ted with Aspose.Slides for .NET 3.5 Client Profile 5.2 ( 2)标准方程易于看出圆心与半径 Copyright 2019-2019 Aspose Pty Ltd. 一般方程突出形式上的特点:
高中数学圆的方程典型例题(含答案)
高中数学圆的方程典型例题类型一:圆的方程例1 求过两点 A(1,4)、B(3,2)且圆心在直线 y 0上的圆的标准方程并判断点 P(2,4)与圆的关系. 分析: 欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点 P 与圆的位置关系,只须看点 心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径, 则点在圆内.解法一:(待定系数法)设圆的标准方程为 (x a)2 (y b)2 r 2 . ∵圆心在 y 0 上,故 b 0. ∴圆的方程为 (x a)2 y 2 r 2.又∵该圆过 A(1,4)、 B(3,2)两点.22(1 a)216 r 2 22(3 a)24 r 2解之得: a 1, r 2 20.所以所求圆的方程为 (x 1)2 y 2 20 . 解法二:(直接求出圆心坐标和半径)42 因为圆过 A(1,4) 、 B(3 , 2)两点,所以圆心 C 必在线段 AB 的垂直平分线 l 上,又因为 k AB 4 21AB1 3 斜率为1,又 AB 的中点为 (2,3),故 AB 的垂直平分线 l 的方程为: y 3 x 2即 x y 1 0.又知圆心在直线 y 0上,故圆心坐标为 C( 1,0) ∴半径 r AC (1 1)2 42 20 . 故所求圆的方程为 (x 1)2 y 2 20 . 又点 P(2 ,4) 到圆心 C( 1,0)的距离为d PC (2 1)2 4225 r .∴点 P 在圆外.例2 求半径为 4,与圆 x 2 y 2 4x 2y 4 0相切,且和直线 y 0相切的圆的方程. 分析: 根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆 C :(x a)2 (y b)2 r 2.圆C 与直线 y 0相切,且半径为 4,则圆心 C 的坐标为 C 1(a, 4)或C 2(a, 4). 又已知圆 x 2 y 2 4x 2y 4 0的圆心 A 的坐标为 (2 ,1) ,半径为 3.P 与圆,故 l 的52t 3tt 2 (3t 5)2 .若两圆相切,则 CA 4 3 7或 CA 4 3 1.2 2 2 2 2 2(1)当C 1(a , 4)时, (a 2)2 (4 1)2 72,或 (a 2)2 (4 1)2 12 (无解),故可得 a 2 2 10.∴所求圆方程为 (x 2 2 10)2 (y 4)2 42,或 (x 2 2 10)2 (y 4)2 42.(2)当C 2 (a , 4)时, (a 2)2 ( 4 1)2 72,或(a 2)2 ( 4 1)2 12 (无解),故 a 2 2 6.∴所求圆的方程为 (x 2 2 6)2 (y 4)2 42 ,或 (x 2 2 6)2 (y 4)2 42. 说明: 对本题,易发生以下误解:由题意,所求圆与直线 y 0相切且半径为 4,则圆心坐标为 C(a,4) ,且方程形如 (x a)2 (y 4)2 42.又 2 2 2 2 2圆x 2 y 2 4x 2y 4 0,即(x 2)2 (y 1)2 3 2 ,其圆心为 A(2 , 1) ,半径为 3.若两圆相切,则 CA 4 3.故 (a 2)2 (4 1)2 72 , 解 之 得 a 2 2 10 . 所 以 欲 求 圆 的 方 程 为 (x 2 2 10)2 (y 4)2 42 , 或 2 2 2 (x 2 2 10)2 (y 4)2 42 .上述误解只考虑了圆心在直线 y 0 上方的情形,而疏漏了圆心在直线 y 0下方的情形.另外,误解中没有考虑两圆 内切的情况.也是不全面的.例3 求经过点 A(0 , 5) ,且与直线 x 2y 0和2x y 0都相切的圆的方程.分析: 欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点 A ,故只需确定圆心坐标.又圆与两已知直 线相切,故圆心必在它们的交角的平分线上.解: ∵圆和直线 x 2y 0与 2x y 0相切, ∴圆心 C 在这两条直线的交角平分线上, 又圆心到两直线 x 2y 0和 2x y 0 的距离相等.∴x 2y x 2y .∴ 5 5 .∴两直线交角的平分线方程是 x 3y 0或 3x y 0. 又∵圆过点 A(0 ,5) ,∴圆心 C 只能在直线 3x y 0 上. 设圆心 C(t ,3t)∵ C 到直线 2x y 0 的距离等于 AC化简整理得 t 2 6t 5 0 .解得: t 1或 t 5∴圆心是 (1 , 3) ,半径为 5 或圆心是 (5 ,15) ,半径为 5 5 . ∴所求圆的方程为 (x 1)2 (y 3)2 5或 (x 5)2 (y 15)2 125.说明: 本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过 定点且与两已知直线相切的圆的方程的常规求法.例 4、 设圆满足: (1)截 y 轴所得弦长为 2; (2)被 x 轴分成两段弧,其弧长的比为 3:1,在满足条件 (1)(2)的所有圆中, 求圆心到直线 l :x 2y 0 的距离最小的圆的方程.分析: 要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个, 其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到 符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一: 设圆心为 P(a ,b) ,半径为 r . 则P 到 x 轴、 y 轴的距离分别为 b 和 a由题设知:圆截 x 轴所得劣弧所对的圆心角为 90 ,故圆截 x 轴所得弦长为 2r . 2∴r 2b 2又圆截 y 轴所得弦长为 2.2∴r a 2 1 .又∵ P(a ,b) 到直线 x 2y 0的距离为22a 2 4b 24ab2 2 2 2a 2 4b 2 2(a 2 b 2 )2b当且仅当 a b 时取“ =”号,此时 d mina b这时有2b 2 a 2 1a 1 a1或b 1b1又r22b 22∴ 5d 22a 2b2故所求圆的方程为(x 1)2 (y 1)2 2或(x 1)2 (y 1)2 2 解法二:同解法一,得a 2bd.5∴ a 2b 5d .2 2 2∴ a2 4b2 4 5bd 5d2.将a2 2b2 1代入上式得:222b2 4 5bd 5d2 1 0 .上述方程有实根,故28(5d 2 1) 0,∴d 5.5将d 5代入方程得b 1.5又2b2 a2 1 ∴ a 1.由a 2b 1 知a 、b 同号.故所求圆的方程为(x 1)2 (y 1)2 2或(x 1)2 (y 1)2 2 .说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?类型二:切线方程、切点弦方程、公共弦方程例 5 已知圆O:x2 y2 4,求过点P 2,4 与圆O相切的切线.解:∵点P 2,4 不在圆O 上,∴切线PT 的直线方程可设为y k x 2 4根据d r∴2k 4 221 k3解得k343所以y 3 x 2 44即3x 4y 10 0因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0 解决(也要注意漏解) .还可以运用2x0x y0y r 2,求出切点坐标x0、y0的值来解决,此时没有漏解.例6 两圆C 1:x 2 y 2 D 1x E 1y F 1 0与C 2:x 2 y 2 D 2x E 2yF 2 0相交于 A 、 B 两点,求它们的公共弦AB 所在直线的方程.分析: 首先求 A 、 B 两点的坐标,再用两点式求直线 AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求,可以采用“设而不求”的技巧.解: 设两圆 C 1、C 2 的任一 交点坐标为 (x 0 , y 0) ,则有:22 x 0 y 0 D 1xE 1y 0F 1 0①22 x 0 yD 2x0 E 2 yF 2 0②①-②得: (D 1 D 2)x 0 (E 1 E 2)y 0 F 1F 2 0 .∵ A 、 B 的坐标满足方程(D 1 D 2)x(E 1 E 2)yF 1F 2 0 .∴方程 (D 1 D 2 )x (E 1E 2)yF 1 F 2是过 A 、 B 两点的直线方程又过 A 、 B 两点的直线是唯一的.∴两圆C 1、 C 2的公共弦 AB 所在直线的方程为 (D 1 D 2)x (E 1 E 2)yF 1 F 2 0.说明: 上述解法中,巧妙地避开了求 A 、 B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲 线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了 对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例 7、过圆 x 2 y 2 1外一点 M(2,3) ,作这个圆的两条切线 MA 、 MB ,切点分别是 A 、B ,求直线 AB 的方程。
高中数学:圆的方程
高中数学:圆的方程1.(2019·福建厦门联考)若a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,则方程x 2+y 2+ax +2ay +2a 2+a -1=0表示的圆的个数为( B )A .0B .1C .2D .3解析:方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆的条件为a 2+4a 2-4(2a 2+a -1)>0,即3a 2+4a -4<0,解得-2<a <23.又a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,∴仅当a =0时,方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,故选B.2.若圆x 2+y 2+2ax -b 2=0的半径为2,则点(a ,b )到原点的距离为( B )A .1B .2 C. 2D .4解析:由半径r =12D 2+E 2-4F =124a 2+4b 2=2,得a 2+b 2=2.∴点(a ,b )到原点的距离d =a 2+b 2=2,故选B.3.(2019·广东珠海四校联考)已知圆C 与直线x -y =0及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的标准方程为( B )A .(x +1)2+(y -1)2=2B .(x -1)2+(y +1)2=2C .(x -1)2+(y -1)2=2D .(x +1)2+(y +1)2=2解析:由题意设圆心坐标为(a ,-a ),则有|a -(-a )|2=|a -(-a )-4|2,即|a |=|a -2|,解得a =1. 故圆心坐标为(1,-1),半径r =22=2, 所以圆C 的标准方程为(x -1)2+(y +1)2=2,故选B.4.圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,则1a +3b 的最小值是( D )A .2 3 B.203 C .4D.163解析:由圆x 2+y 2+2x -6y +1=0知,其标准方程为(x +1)2+(y -3)2=9,∵圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,∴该直线经过圆心(-1,3),即-a -3b +3=0,∴a +3b =3(a >0,b >0),∴1a +3b =13(a +3b )⎝ ⎛⎭⎪⎫1a +3b=13⎝ ⎛⎭⎪⎫1+3a b +3b a +9≥13⎝ ⎛⎭⎪⎫10+2 3a b ·3b a =163, 当且仅当3b a =3ab ,即a =b 时取等号,故选D.5.(2019·河南豫西五校联考)在平面直角坐标系xOy 中,以点(0,1)为圆心且与直线x -by +2b +1=0相切的所有圆中,半径最大的圆的标准方程为( B )A .x 2+(y -1)2=4B .x 2+(y -1)2=2C .x 2+(y -1)2=8D .x 2+(y -1)2=16解析:法一 由题意可得圆心(0,1)到直线x -by +2b +1=0的距离d =|1+b |1+b 2=(1+b )21+b 2=1+2b 1+b 2≤ 1+2|b |1+b 2≤2,当且仅当b =1时取等号,所以半径最大的圆的半径r =2, 此时圆的标准方程为x 2+(y -1)2=2.法二 直线x -by +2b +1=0过定点P (-1,2),如图.∴圆与直线x -by +2b +1=0相切于点P 时,圆的半径最大,为2,此时圆的标准方程为x 2+(y -1)2=2,故选B.6.(2019·福建三明第一中学月考)若对圆(x -1)2+(y -1)2=1上任意一点P (x ,y ),|3x -4y +a |+|3x -4y -9|的取值与x ,y 无关,则实数a 的取值范围是( D )A .(-∞,-4]B .[-4,6]C .(-∞,-4]∪[6,+∞)D .[6,+∞)解析:设z =|3x -4y +a |+|3x -4y -9|=5⎝ ⎛⎭⎪⎪⎫|3x -4y +a |9+16+|3x -4y -9|9+16,故|3x -4y +a |+|3x -4y -9|可看作点P 到直线m :3x -4y +a =0与直线l :3x -4y -9=0距离之和的5倍,∵取值与x ,y 无关,∴这个距离之和与P 无关,如图所示,可知直线m 向上平移时,P 点到直线m ,l 间的距离之和均为m ,l 间的距离,即此时与x ,y 的值无关,当直线m 与圆相切时,|3-4+a |9+16=1,化简得|a -1|=5,解得a =6或a =-4(舍去),∴a ≥6,故选D.7.(2019·河南新乡模拟)若圆C :x 2+⎝ ⎛⎭⎪⎫y +12m 2=n 的圆心为椭圆M :x 2+my 2=1的一个焦点,且圆C 经过M 的另一个焦点,则圆C 的标准方程为x 2+(y +1)2=4.解析:∵圆C 的圆心为⎝ ⎛⎭⎪⎫0,-12m ,∴1m -1=12m ,m =12.又圆C 经过M 的另一个焦点, 则圆C 经过点(0,1),从而n =4. 故圆C 的标准方程为x 2+(y +1)2=4.8.(2019·东北三省四校联考)已知圆C :(x -3)2+(y -4)2=1,设点P 是圆C 上的动点.记d =|PB |2+|P A |2,其中A (0,1),B (0,-1),则d 的最大值为74.解析:设P (x 0,y 0),d =|PB |2+|P A |2=x 20+(y 0+1)2+x 20+(y 0-1)2=2(x 20+y 20)+2.x 20+y 20为圆上任一点到原点距离的平方, ∴(x 20+y 20)max =(5+1)2=36,∴d max =74.9.设点P 是函数y =-4-(x -1)2图象上的任意一点,点Q 坐标为(2a ,a -3)(a ∈R ),则|PQ |的最小值为5-2.解析:函数y =-4-(x -1)2的图象表示圆(x -1)2+y 2=4在x轴及下方的部分,令点Q 的坐标为(x ,y ),则⎩⎪⎨⎪⎧x =2a ,y =a -3,得y =x2-3,即x -2y -6=0,作出图象如图所示,由于圆心(1,0)到直线x -2y -6=0的距离d =|1-2×0-6|12+(-2)2=5>2,所以直线x -2y -6=0与圆(x -1)2+y 2=4相离, 因此|PQ |的最小值是5-2.10.(2019·安徽“江南十校”联考)已知圆C 的圆心在直线x +y =0上,圆C 与直线x -y =0相切,且在直线x -y -3=0上截得的弦长为6,则圆C 的方程为(x -1)2+(y +1)2=2.解析:解法一:∵所求圆的圆心在直线x +y =0上, ∴设所求圆的圆心为(a ,-a ). 又∵所求圆与直线x -y =0相切, ∴半径r =2|a |2=2|a |.又所求圆在直线x -y -3=0上截得的弦长为6,圆心(a ,-a )到直线x -y -3=0的距离d =|2a -3|2,∴d 2+⎝ ⎛⎭⎪⎫622=r 2,即(2a -3)22+32=2a 2,解得a =1.∴圆C 的方程为(x -1)2+(y +1)2=2.解法二:设所求圆的方程为(x -a )2+(y -b )2=r 2(r >0),则圆心(a ,b )到直线x -y -3=0的距离d =|a -b -3|2.∴r 2=(a -b -3)22+32, 即2r 2=(a -b -3)2+3.①由于所求圆与直线x -y =0相切, ∴(a -b )2=2r 2.②又∵圆心在直线x +y =0上,∴a +b =0.③ 联立①②③,解得⎩⎪⎨⎪⎧a =1,b =-1,r =2,故圆C 的方程为(x -1)2+(y +1)2=2.解法三:设所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心为⎝ ⎛⎭⎪⎫-D 2,-E 2,半径r =12D 2+E 2-4F ,∵圆心在直线x +y =0上, ∴-D 2-E2=0,即D +E =0,① 又∵圆C 与直线x -y =0相切, ∴⎪⎪⎪⎪⎪⎪-D 2+E 22=12D 2+E 2-4F ,即(D -E )2=2(D 2+E 2-4F ), ∴D 2+E 2+2DE -8F =0.②又知圆心⎝ ⎛⎭⎪⎫-D2,-E 2到直线x -y -3=0的距离d =⎪⎪⎪⎪⎪⎪-D 2+E 2-32,由已知得d 2+⎝ ⎛⎭⎪⎫622=r 2,∴(D -E +6)2+12=2(D 2+E 2-4F ),③ 联立①②③,解得⎩⎪⎨⎪⎧D =-2,E =2,F =0,故所求圆的方程为x 2+y 2-2x +2y =0,即(x -1)2+(y +1)2=2.11.在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为22,求圆P 的方程. 解:(1)设P (x ,y ),圆P 的半径为r .由题设y 2+2=r 2,x 2+3=r 2,从而y 2+2=x 2+3.故P 点的轨迹方程为y 2-x 2=1. (2)设P (x 0,y 0).由已知得|x 0-y 0|2=22.又P 点在双曲线y 2-x 2=1上,从而得⎩⎪⎨⎪⎧ |x 0-y 0|=1,y 20-x 20=1.由⎩⎪⎨⎪⎧ x 0-y 0=1,y 20-x 20=1,得⎩⎪⎨⎪⎧x 0=0,y 0=-1.此时,圆P 的半径r = 3.由⎩⎪⎨⎪⎧ x 0-y 0=-1,y 20-x 20=1,得⎩⎪⎨⎪⎧x 0=0,y 0=1.此时,圆P 的半径r = 3.故圆P 的方程为x 2+(y -1)2=3或x 2+(y +1)2=3.12.已知M 为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3).(1)求|MQ |的最大值和最小值;(2)若M (m ,n ),求n -3m +2的最大值和最小值.解:(1)由圆C :x 2+y 2-4x -14y +45=0, 可得(x -2)2+(y -7)2=8,所以圆心C 的坐标为(2,7),半径r =2 2. 又|QC |=(2+2)2+(7-3)2=42>2 2. 所以点Q 在圆C 外,所以|MQ |max =42+22=62, |MQ |min =42-22=2 2.(2)可知n -3m +2表示直线MQ 的斜率,设n -3m +2=k ,则直线MQ 的方程为y -3=k (x +2), 即kx -y +2k +3=0, 因为直线MQ 与圆C 有交点,所以|2k -7+2k +3|1+k 2≤22,可得2-3≤k ≤2+3,所以n -3m +2的最大值为2+3,最小值为2- 3.13.已知点P (t ,t ),t ∈R ,点M 是圆x 2+(y -1)2=14上的动点,点N 是圆(x -2)2+y 2=14上的动点,则|PN |-|PM |的最大值是( B )A.5-1 B .2 C .3D.5解析:易知圆x 2+(y -1)2=14的圆心为A (0,1),圆(x -2)2+y 2=14的圆心为B (2,0),P (t ,t )在直线y =x 上,A (0,1)关于直线y =x 的对称点为A ′(1,0),则|PN |-|PM |≤|PB |+12-⎝ ⎛⎭⎪⎫|P A |-12=|PB |-|P A |+1=|PB |-|P A ′|+1≤|A ′B |+1=2,故选B.14.(2019·厦门模拟)已知两点A (0,-3),B (4,0),若点P 是圆C :x 2+y 2-2y =0上的动点,则△ABP 的面积的最小值为( B )A .6 B.112 C .8D.212解析:x 2+y 2-2y =0可化为x 2+(y -1)2=1, 则圆C 为以(0,1)为圆心,1为半径的圆.如图,过圆心C 向直线AB 作垂线交圆于点P ,连接BP ,AP ,这时△ABP 的面积最小,直线AB 的方程为x 4+y-3=1,即3x -4y -12=0,圆心C 到直线AB 的距离d =165,又|AB |=32+42=5,∴△ABP 的面积的最小值为12×5×⎝ ⎛⎭⎪⎫165-1=112.15.如图,在等腰△ABC 中,已知|AB |=|AC |,B (-1,0),AC 边的中点为D (2,0),则点C 的轨迹所包围的图形的面积为4π.解析:由已知|AB |=2|AD |,设点A (x ,y ), 则(x +1)2+y 2=4[(x -2)2+y 2],所以点A 的轨迹方程为(x -3)2+y 2=4(y ≠0),设C (x ′,y ′),由AC 边的中点为D (2,0)知A (4-x ′,-y ′), 所以C 的轨迹方程为(4-x ′-3)2+(-y ′)2=4, 即(x -1)2+y 2=4(y ≠0),所以点C 的轨迹所包围的图形面积为4π.16.(2017·全国卷Ⅲ)已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M 的方程. 解:(1)证明:设A (x 1,y 1),B (x 2,y 2),l :x =my +2.由⎩⎪⎨⎪⎧x =my +2,y 2=2x可得y 2-2my -4=0,则y 1y 2=-4.又x 1=y 212,x 2=y 222,故x 1x 2=(y 1y 2)24=4.因此OA 的斜率与OB 的斜率之积为y 1x 1·y 2x 2=-44=-1,所以OA ⊥OB .故坐标原点O 在圆M 上.(2)由(1)可得y 1+y 2=2m ,x 1+x 2=m (y 1+y 2)+4=2m 2+4. 故圆心M 的坐标为(m 2+2,m ),圆M 的半径r =(m 2+2)2+m 2. 由于圆M 过点P (4,-2), 因此AP →·BP →=0,故(x 1-4)(x 2-4)+(y 1+2)(y 2+2)=0, 即x 1x 2-4(x 1+x 2)+y 1y 2+2(y 1+y 2)+20=0. 由(1)可得y 1y 2=-4,x 1x 2=4. 所以2m 2-m -1=0, 解得m =1或m =-12.当m =1时,直线l 的方程为x -y -2=0,圆心M 的坐标为(3,1),圆M 的半径为10,圆M 的方程为(x -3)2+(y -1)2=10.当m =-12时,直线l 的方程为2x +y -4=0,圆心M 的坐标为⎝ ⎛⎭⎪⎫94,-12,圆M 的半径为854,圆M 的方程为⎝ ⎛⎭⎪⎫x -942+⎝ ⎛⎭⎪⎫y +122=8516.。
高中数学圆与方程精选题目(附答案)
高中数学圆与方程精选题目(附答案)1.在空间直角坐标系中,点P(3,4,5)关于yOz平面对称的点的坐标为()A.(-3,4,5)B.(-3,-4,5)C.(3,-4,-5) D.(-3,4,-5)解析:选A纵、竖坐标相同.故点P(3,4,5)关于yOz平面对称的点的坐标为(-3,4,5).2.已知圆O以点(2,-3)为圆心,半径等于5,则点M(5,-7)与圆O的位置关系是() A.在圆内B.在圆上C.在圆外D.无法判断解析:选B点M(5,-7)到圆心(2,-3)的距离d=(5-2)2+(-7+3)2=5,故点M 在圆O上.3.直线x+y-1=0被圆(x+1)2+y2=3截得的弦长等于()A. 2 B.2C.2 2 D.4解析:选B由题意,得圆心为(-1,0),半径r=3,弦心距d=|-1+0-1|12+12=2,所以所求的弦长为2r2-d2=2,选B.4.若点P(1,1)为圆x2+y2-6x=0的弦MN的中点,则弦MN所在直线的方程为() A.2x+y-3=0 B.x-2y+1=0C.x+2y-3=0 D.2x-y-1=0解析:选D由题意,知圆的标准方程为(x-3)2+y2=9,圆心为A(3,0).因为点P(1,1)为弦MN的中点,所以AP⊥MN.又AP的斜率k=1-01-3=-12,所以直线MN的斜率为2,所以弦MN所在直线的方程为y-1=2(x-1),即2x-y-1=0.5.已知圆M:x2+y2=2与圆N:(x-1)2+(y-2)2=3,那么两圆的位置关系是() A.内切B.相交C.外切D.外离解析:选B∵圆M:x2+y2=2的圆心为M(0,0),半径为r1=2;圆N:(x-1)2+(y-2)2=3的圆心为N(1,2),半径为r2=3;|MN|=12+22=5,且3-2<5<2+3,∴两圆的位置关系是相交.6.(2016·全国卷Ⅱ)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=()A.-43B.-34C. 3 D .2解析:选A 因为圆x 2+y 2-2x -8y +13=0的圆心坐标为(1,4),所以圆心到直线ax +y -1=0的距离d =|a +4-1|a 2+1=1,解得a =-43.7.半径长为6的圆与x 轴相切,且与圆x 2+(y -3)2=1内切,则此圆的方程为( ) A .(x -4)2+(y -6)2=6 B .(x ±4)2+(y -6)2=6 C .(x -4)2+(y -6)2=36D .(x ±4)2+(y -6)2=36解析:选D ∵半径长为6的圆与x 轴相切,设圆心坐标为(a ,b ),则b =6.再由a 2+32=5,可以解得a =±4,故所求圆的方程为(x ±4)2+(y -6)2=36.8.经过点M (2,1)作圆x 2+y 2=5的切线,则切线方程为( ) A.2x +y -5=0 B.2x +y +5=0 C .2x +y -5=0D .2x +y +5=0解析:选C ∵M (2,1)在圆上,∴切线与MO 垂直. ∵k MO =12,∴切线斜率为-2.又过点M (2,1),∴y -1=-2(x -2),即2x +y -5=0.9.把圆x 2+y 2+2x -4y -a 2-2=0的半径减小一个单位则正好与直线3x -4y -4=0相切,则实数a 的值为( )A .-3B .3C .-3或3D .以上都不对解析:选C 圆的方程可变为(x +1)2+(y -2)2=a 2+7,圆心为(-1,2),半径为a 2+7,由题意得|-1×3-4×2-4|(-3)2+42=a 2+7-1,解得a =±3. 10.如图,一座圆弧形拱桥,当水面在如图所示的位置时,拱顶离水面2米,水面宽12米,当水面下降1米后,水面宽度为( )A .14米B .15米 C.51米D .251米解析:选D 如图,以圆弧形拱桥的顶点为原点,以过圆弧形拱桥的顶点的水平切线为x 轴,以过圆弧形拱桥的顶点的竖直直线为y 轴,建立平面直角坐标系.设圆心为C ,水面所在弦的端点为A ,B , 则由已知可得A (6,-2), 设圆的半径长为r ,则C (0,-r ), 即圆的方程为x 2+(y +r )2=r 2.将点A 的坐标代入上述方程可得r =10, 所以圆的方程为x 2+(y +10)2=100,当水面下降1米后,水面弦的端点为A ′,B ′,可设A ′(x 0,-3)(x 0>0),代入x 2+(y +10)2=100,解得x 0=51, ∴水面宽度|A ′B ′|=251米.11.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=0解析:选A 设点P (3,1),圆心C (1,0).已知切点分别为A ,B ,则P ,A ,C ,B 四点共圆,且PC 为圆的直径.故四边形PACB 的外接圆圆心坐标为⎝⎛⎭⎫2,12,半径长为12(3-1)2+(1-0)2=52.故此圆的方程为(x -2)2+⎝⎛⎭⎫y -122=54.① 圆C 的方程为(x -1)2+y 2=1.②①-②得2x +y -3=0,此即为直线AB 的方程.12.已知在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2=-2y +3,直线l 经过点(1,0)且与直线x -y +1=0垂直,若直线l 与圆C 交于A ,B 两点,则△OAB 的面积为( )A .1B.2 C .2 D .2 2解析:选A 由题意,得圆C 的标准方程为x 2+(y +1)2=4,圆心为(0,-1),半径r =2.因为直线l 经过点(1,0)且与直线x -y +1=0垂直,所以直线l 的斜率为-1,方程为y -0=-(x -1),即为x +y -1=0.又圆心(0,-1)到直线l 的距离d =|0-1-1|2=2,所以弦长|AB |=2r 2-d 2=24-2=2 2.又坐标原点O 到弦AB 的距离为|0+0-1|2=12,所以△OAB 的面积为12×22×12=1.故选A.13.已知圆M 与直线x -y =0及x -y +4=0都相切,圆心在直线y =-x +2上,则圆M 的标准方程为____________________.解析:由圆心在y =-x +2上,设圆心为(a,2-a ), ∵圆M 与直线x -y =0及x -y +4=0都相切,∴圆心到直线x -y =0的距离等于圆心到直线x -y +4=0的距离, 即|2a -2|2=|2a +2|2,解得a =0, ∴圆心坐标为(0,2),r =|2a -2|2=2,∴圆M 的标准方程为x 2+(y -2)2=2. 答案:x 2+(y -2)2=214.已知空间直角坐标系中三点A ,B ,M ,点A 与点B 关于点M 对称,且已知A 点的坐标为(3,2,1),M 点的坐标为(4,3,1),则B 点的坐标为______________.解析:设B 点的坐标为(x ,y ,z ),则有x +32=4,y +22=3,z +12=1,解得x =5,y =4,z =1,故B 点的坐标为(5,4,1). 答案:(5,4,1)15.圆O :x 2+y 2-2x -2y +1=0上的动点Q 到直线l :3x +4y +8=0的距离的最大值是________.解析:∵圆O 的标准方程为(x -1)2+(y -1)2=1,圆心(1,1)到直线l 的距离为|3×1+4×1+8|32+42=3>1,∴动点Q 到直线l 的距离的最大值为3+1=4.答案:416.(2016·全国卷Ⅰ)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.解析:圆C :x 2+y 2-2ay -2=0化为标准方程为x 2+(y -a )2=a 2+2,所以圆心C (0,a ),半径r =a 2+2,因为|AB |=23,点C 到直线y =x +2a ,即x -y +2a =0的距离d =|0-a +2a |2=|a |2,由勾股定理得⎝⎛⎭⎫2322+⎝⎛⎭⎫|a |22=a 2+2,解得a 2=2,所以r =2,所以圆C 的面积为π×22=4π. 答案:4π17.(本小题满分10分)已知正四棱锥P -ABCD 的底面边长为4,侧棱长为3,G 是PD 的中点,求|BG |.解:∵正四棱锥P -ABCD 的底面边长为4,侧棱长为3, ∴正四棱锥的高为1.以正四棱锥的底面中心为原点,平行于AB ,BC 所在的直线分别为y 轴、x 轴,建立如图所示的空间直角坐标系,则正四棱锥的顶点B ,D ,P 的坐标分别为B (2,2,0),D (-2,-2,0),P (0,0,1).∴G 点的坐标为G ⎝⎛⎭⎫-1,-1,12 ∴|BG |=32+32+14=732.18.(本小题满分12分)已知圆C 的圆心为(2,1),若圆C 与圆O :x 2+y 2-3x =0的公共弦所在直线过点(5,-2),求圆C 的方程.解:设圆C 的半径长为r ,则圆C 的方程为(x -2)2+(y -1)2=r 2,即x 2+y 2-4x -2y +5=r 2,圆C 与圆O 的方程相减得公共弦所在直线的方程为x +2y -5+r 2=0,因为该直线过点(5,-2),所以r 2=4,则圆C 的方程为(x -2)2+(y -1)2=4.19.(本小题满分12分)已知从圆外一点P (4,6)作圆O :x 2+y 2=1的两条切线,切点分别为A ,B.(1)求以OP 为直径的圆的方程; (2)求直线AB 的方程.解:(1)∵所求圆的圆心为线段OP 的中点(2,3), 半径为12|OP |= 12(4-0)2+(6-0)2=13,∴以OP 为直径的圆的方程为(x -2)2+(y-3)2=13.(2)∵PA ,PB 是圆O :x 2+y 2=1的两条切线, ∴OA ⊥PA ,OB ⊥PB ,∴A ,B 两点都在以OP 为直径的圆上.由⎩⎪⎨⎪⎧x 2+y 2=1,(x -2)2+(y -3)2=13,得直线AB 的方程为4x +6y -1=0. 20.(本小题满分12分)已知圆过点A (1,-2),B (-1,4). (1)求周长最小的圆的方程;(2)求圆心在直线2x -y -4=0上的圆的方程.解:(1)当线段AB 为圆的直径时,过点A ,B 的圆的半径最小,从而周长最小, 即以线段AB 的中点(0,1)为圆心,r =12|AB |=10为半径.则所求圆的方程为x 2+(y -1)2=10. (2)法一:直线AB 的斜率k =4-(-2)-1-1=-3,则线段AB 的垂直平分线的方程是y -1=13x即x -3y +3=0.由⎩⎪⎨⎪⎧x -3y +3=0,2x -y -4=0,解得⎩⎪⎨⎪⎧x =3,y =2,即圆心的坐标是C (3,2).∴r 2=|AC |2=(3-1)2+(2+2)2=20. ∴所求圆的方程是(x -3)2+(y -2)2=20. 法二:设圆的方程为(x -a )2+(y -b )2=R 2.则⎩⎪⎨⎪⎧(1-a )2+(-2-b )2=R 2,(-1-a )2+(4-b )2=R 2,2a -b -4=0⇒⎩⎪⎨⎪⎧a =3,b =2,R 2=20.∴所求圆的方程为(x -3)2+(y -2)2=20.21.(本小题满分12分)已知圆x 2+y 2-4ax +2ay +20a -20=0. (1)求证:对任意实数a ,该圆恒过一定点; (2)若该圆与圆x 2+y 2=4相切,求a 的值.解:(1)证明:圆的方程可整理为(x 2+y 2-20)+a (-4x +2y +20)=0, 此方程表示过圆x 2+y 2-20=0和直线-4x +2y +20=0交点的圆系.由⎩⎪⎨⎪⎧x 2+y 2-20=0,-4x +2y +20=0得⎩⎪⎨⎪⎧x =4,y =-2.∴已知圆恒过定点(4,-2).(2)圆的方程可化为(x -2a )2+(y +a )2=5(a -2)2. ①当两圆外切时,d =r 1+r 2, 即2+5(a -2)2=5a 2, 解得a =1+55或a =1-55(舍去); ②当两圆内切时,d =|r 1-r 2|, 即|5(a -2)2-2|=5a 2, 解得a =1-55或a =1+55(舍去). 综上所述,a =1±55.22.(本小题满分12分)(2017·全国卷Ⅲ)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1),当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 解:(1)不能出现AC ⊥BC 的情况,理由如下: 设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0, 所以x 1x 2=-2. 又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC 的情况.(2)证明:由(1)知BC 的中点坐标为⎝⎛⎭⎫x 22,12,可得BC 的中垂线方程为y -12=x 2⎝⎛⎭⎫x -x 22. 由(1)可得x 1+x 2=-m , 所以AB 的中垂线方程为x =-m2.联立⎩⎨⎧x =-m 2,y -12=x 2⎝⎛⎭⎫x -x 22,x 22+mx 2-2=0,可得⎩⎨⎧x =-m2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为⎝⎛⎭⎫-m 2,-12,半径r =m 2+92.故圆在y 轴上截得的弦长为2r 2-⎝⎛⎭⎫m 22=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.。
高中数学圆的方程典型例题
高中数学圆的方程典型例题类型一:圆的方程例1求过两点)4,1(A、)2,3(B且圆心在直线0=y上的圆的标准方程并判断点)4,2(P与圆的关系.例2求半径为4,与圆042422=---+y某y某相切,且和直线0=y相切的圆的方程.例3求经过点)5,0(A,且与直线02=-y某和02=+y某都相切的圆的方程.例4、设圆满足:(1)截y轴所得弦长为2;(2)被某轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y某l:的距离最小的圆的方程.类型二:切线方程、切点弦方程、公共弦方程例5已知圆422=+y某O:,求过点()42,P与圆O相切的切线.例6两圆0111221=++++FyE某Dy某C:与0222222=++++FyE某Dy某C:相交于A、B两点,求它们的公共弦AB所在直线的方程.例7、过圆122=+y某外一点)3,2(M,作这个圆的两条切线MA、MB,切点分别是A、B,求直线AB的方程。
练习:1.求过点(3,1)M,且与圆22(1)4某y-+=相切的直线l的方程.2、过坐标原点且与圆0252422=++-+y某y某相切的直线的方程为3、已知直线0125=++ay某与圆0222=+-y某某相切,则a的值为.类型三:弦长、弧问题例8、求直线063:=--y某l被圆042:22=--+y某y某C截得的弦AB 的长.例9、直线0323=-+y某截圆422=+y某得的劣弧所对的圆心角为例10、求两圆0222=-+-+y某y某和522=+y某的公共弦长类型四:直线与圆的位置关系例11、已知直线0323=-+y某和圆422=+y某,判断此直线与已知圆的位置关系.例12、若直线m某y+=与曲线24某y-=有且只有一个公共点,求实数m的取值范围.例13圆9)3()3(22=-+-y某上到直线01143=-+y某的距离为1的点有几个?练习1:直线1=+y某与圆)0(0222>=-+aayy某没有公共点,则a的取值范围是练习2:若直线2+=k某y与圆1)3()2(22=-+-y某有两个不同的交点,则k的取值范围是.3、圆034222=-+++y某y某上到直线01=++y某的距离为2的点共有().(A)1个(B)2个(C)3个(D)4个4、过点()43--,P作直线l,当斜率为何值时,直线l与圆()()42122=++-y某C:有公共点,如图所示.类型五:圆与圆的位置关系问题导学四:圆与圆位置关系如何确定?例14、判断圆02662:221=--++y某y某C与圆0424:222=++-+y某y某C的位置关系,例15:圆0222=-+某y某和圆0422=++yy某的公切线共有条。
高中数学圆的方程典型例题
高中数学圆的方程典型例题类型一:圆的方程例1、 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.例2、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3 在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.类型二:切线方程、切点弦方程、公共弦方程例3 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线.例4两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.例5、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。
类型三:弦长、弧问题例6、求直线063:=--y x l 被圆042:22=--+y x y x C 截得的弦AB 的长.例7、直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为例8、求两圆0222=-+-+y x y x 和522=+y x 的公共弦长类型四:直线与圆的位置关系例9、已知直线0323=-+y x 和圆422=+y x ,判断此直线与圆的位置关系.例10、若直线m x y +=与曲线24x y -=有且只有一个公共点,求实数m 的取值范围.例11 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个?类型五:圆与圆的位置关系例12、判断圆02662:221=--++y x y x C 与圆0424:222=++-+y x y x C 的位置关系,例13:圆0222=-+x y x 和圆0422=++y y x 的公切线共有 条。
类型六:圆中的对称问题例14、圆222690x y x y +--+=关于直线250x y ++=对称的圆的方程是例15 自点()33,-A 发出的光线l 射到x 轴上, 被x 轴反射,反射光线所在的直线与圆074422=+--+y x y x C :相切(1)求光线l 和反射光线所在的直线方程.(2)光线自A 到切点所经过的路程.类型七:圆中的最值问题例16:圆0104422=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是例17 (1)已知圆1)4()3(221=-+-y x O :,),(y x P 为圆O 上的动点,求22y x d +=的最大、最小值(2)已知圆1)2(222=++y x O :,),(y x P 为圆上任一点.求12--x y 的最大、最小值,求y x 2-的最大、最小值.例18:已知)0,2(-A ,)0,2(B ,点P 在圆4)4()3(22=-+-y x 上运动,则22PB PA +的最小值是 .类型八:轨迹问题例19、基础训练:已知点M 与两个定点)0,0(O ,)0,3(A 的距离的比为21,求点M 的轨迹方程.例20、已知线段AB 的端点B 的坐标是(4,3),端点A 在圆4)1(22=++y x 上运动,求线段AB 的中点M 的轨迹方程.例21 如图所示,已知圆422=+y x O :与y 轴的正方向交于A 点,点B 在直线2=y 上运动,过B 做圆O 的切线,切点为C ,求ABC ∆垂心H 的轨迹.例22 已知圆的方程为222r y x =+,圆内有定点),(b a P ,圆周上有两个动点A 、B ,使PB PA ⊥,求矩形APBQ 的顶点Q 的轨迹方程.高中数学圆的方程典型例题类型一:圆的方程例1 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程. 分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切, ∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5y 2x 52y -x +=.∴两直线交角的平分线方程是03=+y x 或03=-y x . 又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t .解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x . 说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法. 例2、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程. 分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r . 则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2. ∴222b r =又圆截y 轴所得弦长为2.∴122+=a r . 又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=ab b a 4422-+=)(242222b a b a +-+≥ 1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 又2222==b r 故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=.将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d . 将55=d 代入方程得1±=b .又1222+=a b ∴1±=a . 由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢? 类型二:切线方程、切点弦方程、公共弦方程例3 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线.解:∵点()42,P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y 根据r d = ∴21422=++-k k 解得 43=k 所以 ()4243+-=x y 即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例4 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D .∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的. ∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D .说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例5、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。
高中数学圆的方程典型例题
4:过点 P(− 3,− 4)作直线 l ,当斜率为何值时,直线 l 与圆 C:(x −1)2 + (y + 2)2 = 4 有公共点
类型五:圆与圆的位置关系
例 14、判断圆 C1 : x 2 + y 2 + 2x − 6 y − 26 = 0 与圆 C2 : x 2 + y 2 − 4x + 2 y + 4 = 0 的位置关系,
=
y−2
的几何意义是过圆
x2
+
y2
= 1上一动点和定点 (−1 ,
2) 的连线的斜率,利用
x +1
此直线与圆 x2 + y2 = 1有公共点,可确定出 u 的取值范围.
解法二:由 u
=
y−2
得:
y − 2 = u(x +1) ,此直线与圆 x2
+
y2
= 1 有公共点,故点 (0 , 0) 到
x +1
解法三:设 A(r cosα , r sinα ) 、 B(r cos β , r sin β ) 、 Q(x , y) ,
第5页
由于 APBQ 为矩形,故 AB 与 PQ 的中点重合,即有
x + a = r cosα + r cos β ,
①
y + b = r sinα + r sin β ,
②
cosθ +1 ∴ u cosθ − sinθ = −(u + 2) .
即 u 2 + 1 sin(θ − ϕ ) = u + 2 ( tanϕ = u )
(u + 2)
直线与圆的方程典型例题
高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(ra r a解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程.分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:. 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .(2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a .∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x .说明:对本题,易发生以下误解:由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2227)14()2(=-+-a ,解之得1022±=a .所以欲求圆的方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .上述误解只考虑了圆心在直线0=y 上方的情形,而疏漏了圆心在直线0=y 下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的.例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切, ∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x .又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t . 解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r . 则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2. ∴222b r =又圆截y 轴所得弦长为2. ∴122+=a r .又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=ab b a 4422-+= )(242222b a b a +-+≥ 1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a又2222==b r故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=. 将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d . 将55=d 代入方程得1±=b . 又1222+=a b ∴1±=a . 由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上, ∴切线PT 的直线方程可设为()42+-=x k y 根据r d =∴21422=++-kk解得 43=k 所以 ()4243+-=x y即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例 6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D . ∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D .说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例7、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。
高中数学圆的方程典型例题(含答案)
高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(ra r a解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程.分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:. 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3.若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a . ∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .(2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a . ∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x .说明:对本题,易发生以下误解:由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2227)14()2(=-+-a ,解之得1022±=a .所以欲求圆的方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .上述误解只考虑了圆心在直线0=y 上方的情形,而疏漏了圆心在直线0=y 下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的.例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切, ∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x . 又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t .解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r . 则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2. ∴222b r =又圆截y 轴所得弦长为2. ∴122+=a r .又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=ab b a 4422-+= )(242222b a b a +-+≥ 1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 又2222==b r故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=. 将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d . 将55=d 代入方程得1±=b . 又1222+=a b ∴1±=a . 由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上, ∴切线PT 的直线方程可设为()42+-=x k y 根据r d =∴21422=++-kk解得 43=k 所以 ()4243+-=x y即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D . ∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D .说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例7、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。
高中数学必修2圆与方程典型例题
第二节:圆与圆的方程典型例题一、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
(1 点00(,)M x y 与圆222()()x a y b r -+-=的位置关系:当2200()()x a y b -+->2r ,点在圆外当2200()()x a y b -+-=2r ,点在圆上当2200()()x a y b -+-<2r ,点在圆内(2当04>-+F E D 时,方程表示圆,此时圆心为⎪⎭⎫ ⎝⎛--2,2E D ,半径为F E D r 42122-+= 当0422=-+F E D时,表示一个点;当0422<-+F E D 时,方程不表示任何图形。
(3)求圆方程的方法:一般都采用待定系数法:先设后求。
确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
例1 已知方程2222(1)2(23)51060x y m x m y m m +---++++=.(1)此方程表示的图形是否一定是一个圆?请说明理由;(2)若方程表示的图形是是一个圆,当m 变化时,它的圆心和半径有什么规律?请说明理由.答案:(1)方程表示的图形是一个圆;(2)圆心在直线y =2x +5上,半径为2.练习:1.方程222460x y x y ++--=表示的图形是( )A.以(12)-,为半径的圆 B.以(12),C.以(12)--,为半径的圆 D.以(12)-,2.过点A (1,-1),B (-1,1)且圆心在直线x +y -2=0上的圆的方程是( ).A .(x -3)2+(y +1)2=4B .(x +3)2+(y -1)2=4C .(x -1)2+(y -1)2=4D .(x +1)2+(y +1)2=4 3.点(11),在圆22()()4x a y a -++=的内部,则a 的取值范围是( ) A.11a -<<B.01a << C.1a <-或1a > D.1a =± 4.若22(1)20x y x y λλλ++-++=表示圆,则λ的取值范围是5.若圆C 的圆心坐标为(2,-3),且圆C 经过点M (5,-7),则圆C 的半径为 .6.圆心在直线y =x 上且与x 轴相切于点(1,0)的圆的方程为 .7.以点C (-2,3)为圆心且与y 轴相切的圆的方程是 .8.求过原点,在x 轴,y 轴上截距分别为a ,b 的圆的方程(ab ≠0).9.求经过A (4,2),B (-1,3)两点,且在两坐标轴上的四个截距之和是2的圆的方程.10.求经过点(8,3),并且和直线x =6与x =10都相切的圆的方程.三、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 的距离为,则有相离与C l r d ⇔>;相切与C l r d ⇔=;相交与C l r d ⇔<)过圆外一点的切线:①k 不存在,验证是否成立②kk ,得到方程【一定两解】 程:圆(x-a)2+(y-b)2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为例2 已知圆22:(2)1M x y +-=,Q 是x 轴上的动点,QA 、QB 分别切圆M 于A ,B 两点(1)若点Q 的坐标为(1,0),求切线QA 、QB 的方程;(答:切线QA 、QB 的方程分别为0343=-+y x 和1=x )(2)求四边形QAMB 的面积的最小值; (答MAQB S MA QA QA ∴=⋅=(3)若3AB =,求直线MQ 的方程. (答:直线MQ 的方程为05252=-+y x 或05252=+-y x )练习:1.以点(-3,4)为圆心,且与x 轴相切的圆的方程是( ).A .(x -3)2+(y +4)2=16B .(x +3)2+(y -4)2=16C .(x -3)2+(y +4)2=9D .(x +3)2+(y -4)2=192.若直线x +y +m =0与圆x 2+y 2=m 相切,则m 为( ).A .0或2B .2C .2D .无解 3.直线l 过点),(02-,l 与圆x y x 222=+有两个交点时,斜率k 的取值范围是( ) A ),(2222- B ),(22- C ),(4242- D ),(8181- 4.设圆x 2+y 2-4x -5=0的弦AB 的中点为P (3,1),则直线AB 的方程是 .5. 圆(x -1)2+(y +2)2=20在x 轴上截得的弦长是 。
高中数学-圆与方程试题含答案
高中数学-圆与方程试题含答案1.圆(x+2)^2+y=5关于原点P(0,0)对称的圆的方程为()A。
(x-2)^2+y=5B。
x+(y-2)^2=5C。
(x+2)^2+(y+2)^2=5D。
x+(y+2)^2=52.若P(2,-1)为圆(x-1)^2+y=25的弦AB的中点,则直线AB的方程是()A。
x-y-3=0B。
2x+y-3=0C。
x+y-1=0D。
2x-y-5=03.圆x+y-2x-2y+1=1的点到直线x-y=2的距离最大值是()A。
2B。
1+√2C。
1+2√2D。
1+24.将直线2x-y+λ=0,沿x轴向左平移1个单位,所得直线与圆x^2+y^2+2x-4y=0相切,则实数λ的值为()A。
-3或7B。
-2或8C。
0或10D。
1或115.在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有()A。
1条B。
2条C。
3条D。
4条6.圆x+y-4x=0在点P(1,3)处的切线方程为()A。
x+3y-2=0B。
x+3y-4=0C。
x-3y+4=0D。
x-3y+2=0二、填空题1.若经过点P(-1,0)的直线与圆x^2+y^2+4x-2y+3=0相切,则此直线在y轴上的截距是 _________.2.由动点P向圆x^2+y^2=1引两条切线PA,PB,切点分别为A,B,∠APB=60,则动点P的轨迹方程为 _________.3.圆心在直线2x-y-7=0上的圆C与y轴交于两点A(0,-4),B(0,-2),则圆C的方程为 _________.4.已知圆(x-3)^2+y^2=4和过原点的直线y=kx的交点为P,Q,则OP·OQ的值为 _________.5.已知P是直线3x+4y+8=0上的动点,PA,PB是圆x^2+y^2-2x-2y+1=0的切线,A,B是切点,C是圆心,那么四边形PACB面积的最小值是 _________.三、解答题1.点P(a,b)在直线x+y+1=0上,求a^2+b^2-2a-2b+2的最小值。
高中数学必修二圆的一般式方程
3
)2+(y+
4
3
)2=
50
9
2、从圆x2+y2=9外一点P(3,2)向该圆引切线,求切线方程。 x=3和5x+12y-39=0
圆心:两条弦的中垂线的交点
半径:圆心到圆上一点
方法二:待定系数法
解:设所求圆的方程为:
( x a) ( y b) r
2 2
2
因为A(5,1),B (7,-3),C(2,8)都在圆上
(5 a ) 2 (1 b) 2 r 2 a2 2 2 2 (7 a ) (3 b) r b 3 (2 a) 2 (8 b) 2 r 2 r 5
解
设 P( x1 , y1 ) , Q( x2 , y2 )
P
O Q
x2 y 2 m 0 x y 1 0
1 m x1 x2 2
2x 2x (1 m) 0
2
1 m 同理y1 y2 2
OP OQ
x1 x2 y1 y2 0 (2)
1、求圆心C在直线 x+2y+4=0 上,且过两定点A(-1 , 1)、 B(1,-1)的圆的方程。
2
2
( D E 4 F 0)
2
思 方程Ax Bxy Cy Dx Ey F 0 考 什么时候可以表示圆? 2 2 A C 0, B 0, D E 4 AF 0.
2
[观察]:圆的标准方程与圆的一般 方程在形式上的异同点.
圆的标准方程
2 2 ( x a ) ( y b) r 2
(2) x y 2ax y a 0表示圆, 1 a R, a 则a的取值范围是 _____ 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学圆的方程典型例题
类型一:圆的方程
例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.
例2 求半径为4,与圆04242
2
=---+y x y x 相切,且和直线0=y 相切的圆的方程. 例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.
例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.
类型二:切线方程、切点弦方程、公共弦方程
例5 已知圆42
2
=+y x O :,求过点()42,
P 与圆O 相切的切线. 例 6 两圆0111221=++++F y E x D y x C :与02222
22=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.
例7、过圆12
2=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。
练习:1.求过点(3,1)M ,且与圆2
2
(1)4x y -+=相切的直线l 的方程. 2、过坐标原点且与圆02
5
242
2
=+
+-+y x y x 相切的直线的方程为 3、已知直线0125=++a y x 与圆022
2=+-y x x 相切,则a 的值为 .
类型三:弦长、弧问题
例8、求直线063:=--y x l 被圆042:2
2=--+y x y x C 截得的弦AB 的长.
例9、直线0323=-+y x 截圆42
2=+y x 得的劣弧所对的圆心角为
例10、求两圆0222=-+-+y x y x 和52
2=+y x 的公共弦长
类型四:直线与圆的位置关系
例11、已知直线0323=-+y x 和圆42
2=+y x ,判断此直线与已知圆的位置关系.
例12、若直线m x y +=与曲线24x y -=
有且只有一个公共点,求实数m 的取值范围.
例13 圆9)3()3(2
2
=-+-y x 上到直线01143=-+y x 的距离为1的点有几个?
练习1:直线1=+y x 与圆)0(022
2>=-+a ay y x 没有公共点,则a 的取值范围是
2:若直线2+=kx y 与圆1)3()2(2
2=-+-y x 有两个不同的交点,则k 的取值范围是 .
3、 圆03422
2=-+++y x y x 上到直线01=++y x 的距离为2的点共有( ).
(A )1个 (B )2个 (C )3个 (D )4个
4、 过点()43--,
P 作直线l ,当斜率为何值时,直线l 与圆()()4212
2
=++-y x C :有公共点,如图所示.
类型五:圆与圆的位置关系
例14、判断圆02662:2
2
1=--++y x y x C 与圆
0424:222=++-+y x y x C 的位置关系,
例15:圆0222=-+x y x 和圆042
2=++y y x 的公切线共有 条。
练习1:若圆042222=-+-+m mx y x 与圆084422
22=-+-++m my x y x 相切,则实数m 的取值集合是 .
2:求与圆52
2=+y x 外切于点)2,1(-P ,且半径为52的圆的方程.
类型六:圆中的对称问题
例16、圆2
2
2690x y x y +--+=关于直线250x y ++=对称的圆的方程是
例17 自点()33,
-A 发出的光线l 射到x 轴上,被x 轴反射,反射光线所在的直线与圆07442
2
=+--+y x y x C :相切 求(1)求光线l 和反射光线所在的直线方程.(2)光线自A 到切点所经过的路程.
类型七:圆中的最值问题
例18:圆0104422
=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是
例19 (1)已知圆1)4()3(2
2
1=-+-y x O :,),(y x P 为圆O 上的动点,求22y x d +=的最大、最小值.
(2)已知圆1)2(2
2
2=++y x O :
,),(y x P 为圆上任一点.求1
2
--x y 的最大、最小值,求y x 2-的最大、最小值.
图
例20:已知)0,2(-A ,)0,2(B ,点P 在圆4)4()3(2
2=-+-y x 上运动,则2
2PB PA +的最小
值是 .
练习:1:已知点),(y x P 在圆1)1(2
2=-+y x 上运动.
(1)求
2
1
--x y 的最大值与最小值;(2)求y x +2的最大值与最小值. 2 设点),(y x P 是圆12
2=+y x 是任一点,求1
2+-=x y u 的取值范围.
3、已知点)2,4(),6,2(),2,2(----C B A ,点P 在圆422=+y x 上运动,求2
2
2
PC PB PA ++的最大值和最小值. 类型八:轨迹问题
例21、基础训练:已知点M 与两个定点)0,0(O ,)0,3(A 的距离的比为
2
1
,求点M 的轨迹方程. 例22、已知线段AB 的端点B 的坐标是(4,3),端点A 在圆4)1(2
2=++y x 上运动,求线段AB
的中点M 的轨迹方程.
例23 如图所示,已知圆42
2
=+y x O :与y 轴的正方向交于A 点,点B 在直线2=y 上运动,过B 做圆O 的切线,切点为C ,求ABC ∆垂心H 的轨迹.
例24 已知圆的方程为2
22r y x =+,圆内有定点),(b a P ,圆周上有两个动点A 、B ,使PB PA ⊥,求矩形APBQ 的顶点Q 的轨迹方程.
练习:1、由动点P 向圆12
2=+y x 引两条切线PA 、PB ,切点分别为A 、B ,APB ∠=600,则
动点P 的轨迹方程是 .
解:设),(y x P .∵APB ∠=600,∴OPA ∠=300.∵AP OA ⊥,∴22==OA OP ,∴222=+y x ,
化简得422=+y x ,∴动点P 的轨迹方程是42
2=+y x .
练习巩固:设)0)(0,(),0,(>-c c B c A 为两定点,动点P 到A 点的距离与到B 点的距离的比为定值
)0(>a a ,求P 点的轨迹.
2、已知两定点)0,2(-A ,)0,1(B ,如果动点P 满足PB PA 2=,则点P 的轨迹所包围的面积等于
4、已知定点)0,3(B ,点A 在圆12
2=+y x 上运动,M 是线段AB 上的一点,且MB AM 3
1
=
,问点M 的轨迹是什么?
例5、已知定点)0,3(B ,点A 在圆12
2=+y x 上运动,AOB ∠的平分线交AB 于点M ,则点M 的
轨迹方程是 .
练习巩固:已知直线1+=kx y 与圆42
2=+y x 相交于A 、B 两点,以OA 、OB 为邻边作平行四
边形OAPB ,求点P 的轨迹方程. 类型九:圆的综合应用
例25、 已知圆062
2
=+-++m y x y x 与直线032=-+y x 相交于P 、Q 两点,O 为原点,且
OQ OP ⊥,求实数m 的值.
例26、已知对于圆1)1(2
2
=-+y x 上任一点),(y x P ,不等式0≥++m y x 恒成立,求实数m 的取值范围.
例27 有一种大型商品,A 、B 两地都有出售,且价格相同.某地居民从两地之一购得商品后运回的费用是:每单位距离A 地的运费是B 地的运费的3倍.已知A 、B 两地距离为10公里,顾客选择A 地或B 地购买这种商品的标准是:包括运费和价格的总费用较低.求A 、B 两地的售货区域的分界线的曲线形状,并指出曲线上、曲线内、曲线外的居民应如何选择购货地点.
11.求经过三点(1,5),(5,5),(6,2)A B C --的圆的方程:
12.已知过点(1,1)A --的直线l 与圆222660x y x y +-++=相交,则直线l 斜率的取值范围是:(,0)-∞
13.若方程220x y x y m +-++=表示一个圆,则m 的取值范是 . 14.已经圆222420x y x by b ++++=与x 轴相切,则b =
15.直线20x y +=被曲线2262150x y x y +---=所截得的弦长等于
16.已知两圆2210100x y x y +--=和2262400x y x y ++--=,则它们公共弦所在直线的方程是:
17.求圆心在y 轴上,且与直线1:43120,l x y -+=直线2:34120l x y --=都相切的圆的方程. 18.已知两个圆C 1:x 2
+y 2
=4,C 2:x 2
+y 2
-2x-4y+4=0,直线l :x+2y=0,求经过C 1和C 2的交点 且和l 相切的圆的方程.
19,求经过点A (0,4),B (4,6)且圆心在直线x ―2y ―2=0上的圆的方程;
20,已知一个圆经过直线:240l x y ++=与圆2
2
:2410C x y x y ++-+=的两个交点,并且有最小面积,求此圆的方程。