五年级奥数,倍数问题.doc
五年级奥数倍数问题讲座及练习答案
五年级奥数倍数问题讲座及练习答案五年级奥数集训专题讲座(三)——倍数问题倍数问题在整个小学阶段中非常重要。
我们主要从“和倍、差倍、和差”这三个方面来研究倍数问题。
为了解决倍数问题,我们需要理解以下数量关系式:①和÷(倍数+1)=小数,小数×倍数=大数(和—小数=大数)②差÷(倍数—1)=小数,小数×倍数=大数(小数+差=大数)③(和-差)÷2=小数,小数+差=大数(和—小数=大数)④(和+差)÷2=大数,大数-差=小数(和—大数=小数)例1:三个筑路队共筑路1360米,甲队筑的米数是乙队的2倍,乙队比丙队多240米,三个队各筑多少米?分析:我们将乙队的米数看作“1”份,甲队筑的米数是2份。
假设丙队多筑240米,三个队共筑了1360+240=1600(米),正好是乙队的4倍。
因此,我们可以使用和倍问题来解答这个问题。
乙队:(1360+240)÷(2+1+1)=400(米),甲队:400×2=800(米),丙队:400-160=240(米)。
答案:甲队筑了800米,乙队筑了400米,丙队筑了240米。
巩固练】:三个植树队植树1900棵,甲队植树的棵数是乙队的2倍,乙队比丙队少植300棵,三个队各植了多少棵?解析:因为甲队植树的棵数是乙队的2倍,我们可以将乙队植树的棵数看作“1”份。
乙队比___少植300棵,即丙队植树的棵数=乙队植树棵数+300棵。
因此,三个队植树的总棵数是乙队的4倍多300棵。
如果我们从植树总数里减去300,则正好是乙队的4倍。
因此,乙队植树棵数=(1900-300)÷(1+1+2)=400(棵),甲队植树棵数=400×2=800(棵),丙队植树棵数=400+300=700(棵)。
答案:甲队植了800棵,乙队植了400棵,丙队植了700棵。
例2:师徒两人加工同样多的一批零件,师傅加工了102个,徒弟加工了40个。
五年级奥数倍数问题
五年级奥数倍数问题 Last revision date: 13 December 2020.五年级奥数训练——倍数问题(一)姓名:例1两根同样长的铁丝,第一根剪去18厘米,第二根剪去26厘米,余下的铁丝第一根是第二根的3倍。
原来两根铁丝各长多少厘米?练习一两个数的和是682,其中一个加数的个位是0,如果把这个0去掉,就得到另一个加数。
这两个加数各是多少?例2甲组有图书是乙组的3倍,若乙组给甲组6本,则甲组的图书是乙组的5倍。
原来甲组有图书多少本?练习二原来小明的画片是小红的3倍,后来二人各买了3张,这样小明的画片就是小红的2倍。
原来二人各有多少张画片?例3幼儿园买来苹果的个数是梨的2倍。
大班的同学每7人一组,每组领3个梨和4个苹果,结果梨正好分完,苹果还剩下16个。
大班共有多少个同学?练习三高年级同学植树,共有杉树苗和杨树苗100棵。
如果每个小组分给杉树苗6棵,杨树苗8棵,那么,杉树苗正好分完,杨树苗还剩2棵。
两种树苗原来各有多少棵?例4有两筐桔子,如果从甲筐拿出8个放进乙筐,两筐的桔子就同样多;如果从乙筐拿出13个放到甲筐,甲筐的桔子是乙筐的2倍。
甲、乙两筐原来各有多少个桔子?练习四甲、乙两仓存有货物,若从甲仓取31吨放入乙仓,则两仓所存货物同样多;若乙仓取14吨放入甲仓,则甲仓的货物是乙仓的4倍。
原来两仓各存货物多少吨?例5甲粮库的存粮是乙粮库的2倍,甲粮库每天运出粮食40吨,乙粮库每天运出30吨。
若干天后,乙粮库的粮全部运完,而甲粮库还有80吨。
甲、乙粮库原来各有粮食多少吨?练习五果园里桃树的棵数是梨树的3倍,某农民给这些果树喷洒农药,已知他每天喷洒24棵桃树和10棵梨树,几天后,梨树全部喷洒完,而桃树还剩下24棵。
果园里有桃树和梨树各多少棵?课堂练习1、一筐苹果和一筐梨的个数相同,卖掉40个苹果和15个梨后,剩下的梨是苹果的6倍。
原来两筐水果一共有多少个?2、幼儿园买来的苹果的个数是梨的3倍,吃掉10个梨和6个苹果后,剩下的苹果个数正好是梨的5倍。
小学五年级下册奥数应用题:倍数问题
小学五年级下册奥数应用题:倍数问题【篇一】1、今年爸爸的年纪是小明的 6 倍,再过 4 年,爸爸的年纪就是小明的 4 倍,今年小明多少岁?2、本来食堂里存的大米是面粉的 4 倍,大米和面粉各吃掉80 千克,大米的重量是面粉的 6 倍,食堂里本来存的大米、面粉各是多少千克?3、三堆货物共1800 箱,甲堆的箱数是乙堆的 2 倍,乙堆的箱数比丙堆少 200 箱,三堆货物各多少箱?4、甲、乙、丙三数之和是224,假如甲是乙的 3 倍,丙是甲的4倍,求甲、乙、丙三数各是多少?5、甲有邮票42 张,乙有邮票48 张,每次甲给乙 2 张,而乙又给甲 4 张,这样互换多少次后,甲的邮票张数是乙的 2 倍?6、甲仓存有大米650 袋,乙仓存有大米400 袋,每日从甲乙仓各运出50 袋,多少天后甲仓大米是乙仓的 6 倍?7、某工厂共有工人560 人,此中男工比女工的 3 倍少40 人,男工和女工各有多少人?8、三种水果共有 132 个,已知苹果的个数比梨的 3 倍少 6 个,梨的个数比橘子的 3 倍多 2 个,三种水果各有多少个?9、养鸡场新买来 100 只小鸡,此中母鸡只数的 4 倍是公鸡只数的3 倍多 120 只。
求买来母鸡、公鸡各有多少只?10、体育室有篮球和排球共65 个,已知篮球个数的 3 倍比排球个数的一半多 20 个,两种球各有多少个?【篇二】1、父亲年纪是女儿年纪的 4 倍, 3 年前父女年纪之和是49 岁,父女此刻各为多少岁?2、父子今年共100 岁, 20 年前,父亲年纪是儿子的 3 倍,今年两人各多少岁?3、今年妈妈 47 岁,小刚 20 岁,几年前妈妈年纪是小刚的 4 倍?4、女儿今年 6 岁,妈妈今年 36 岁,几年后妈妈的年纪是女儿的4倍?5、一家三口人,年纪之和是74 岁,妈妈比爸爸小 2 岁,妈妈年龄是儿子年纪的 4 倍,求三人各有多少岁?6、两根相同长的铁丝,第一根剪去 18 厘米,第二根剪去 26 厘米,余下的铁丝第一根是第二根的 3 倍。
小学五年级下册奥数应用题:倍数问题
小学五年级下册奥数应用题:倍数问题【篇一】1、今年爸爸的年龄是小明的6倍,再过4年,爸爸的年龄就是小明的4倍,今年小明多少岁?2、原来食堂里存的大米是面粉的4倍,大米和面粉各吃掉80千克,大米的重量是面粉的6倍,食堂里原来存的大米、面粉各是多少千克?3、三堆货物共1800箱,甲堆的箱数是乙堆的2倍,乙堆的箱数比丙堆少200箱,三堆货物各多少箱?4、甲、乙、丙三数之和是224,如果甲是乙的3倍,丙是甲的4倍,求甲、乙、丙三数各是多少?5、甲有邮票42张,乙有邮票48张,每次甲给乙2张,而乙又给甲4张,这样交换多少次后,甲的邮票张数是乙的2倍?6、甲仓存有大米650袋,乙仓存有大米400袋,每天从甲乙仓各运出50袋,多少天后甲仓大米是乙仓的6倍?7、某工厂共有工人560人,其中男工比女工的3倍少40人,男工和女工各有多少人?8、三种水果共有132个,已知苹果的个数比梨的3倍少6个,梨的个数比橘子的3倍多2个,三种水果各有多少个?9、养鸡场新买来100只小鸡,其中母鸡只数的4倍是公鸡只数的3倍多120只。
求买来母鸡、公鸡各有多少只?10、体育室有篮球和排球共65个,已知篮球个数的3倍比排球个数的一半多20个,两种球各有多少个?【篇二】1、父亲年龄是女儿年龄的4倍,3年前父女年龄之和是49岁,父女现在各为多少岁?2、父子今年共100岁,20年前,父亲年龄是儿子的3倍,今年两人各多少岁?3、今年妈妈47岁,小刚20岁,几年前妈妈年龄是小刚的4倍?4、女儿今年6岁,妈妈今年36岁,几年后妈妈的年龄是女儿的4倍?5、一家三口人,年龄之和是74岁,妈妈比爸爸小2岁,妈妈年龄是儿子年龄的4倍,求三人各有多少岁?6、两根同样长的铁丝,第一根剪去18厘米,第二根剪去26厘米,余下的铁丝第一根是第二根的3倍。
原来两根铁丝各长多少厘米?7、一筐梨和一筐苹果的个数相同,卖掉40个苹果和15个梨后,剩下的梨是苹果的6倍,原来两筐一共有多少个?8、幼儿园买来的苹果的个数是梨的2倍,如果每组领3个梨和4个苹果,结果梨正好分完,苹果还剩16个。
五年级奥数之----倍数问题
五年级奥数之-----倍数问题
1.甲、乙、丙三数之和是200,已知甲是乙的3倍,丙又是甲的2倍,求甲、乙、丙三数。
(甲:60,乙:20,丙:120)
2.有两筐苹果共80千克,第一框的3倍比第二框的2倍少10千克,求两筐苹果各多少千克?
(第一框30千克,第二框50千克)
3.大小两数之和为20,大数的3倍与小数的5倍和为74,求这两个数。
(大数13,小数7)
4.两个整数相除,商17,余数是8,已知被除数、除数、商、余数的和是501,求被除数和除数。
(被除数450,除数26)
5.有两堆煤,如果从第一堆运9吨给第二堆,两堆煤一样重;如果从第二堆运12吨给第一堆,则第一堆煤等于第二堆煤的2倍,两堆煤原来各有多少吨?
(第一堆72吨,第二堆54吨)
6.小华有连环画的本数是小明的6倍,如果两人各再买2本,那么小华所有的本数是小明的4倍,两人原来各有连环画多少本?(小华18本,小明3本)
7.已知被减数,减数与差之和为592,其中减数比差的2倍还多2,求减数。
(198)
8.有两堆煤,甲堆94吨,乙堆138吨,每天各运走9吨,几天后,乙堆剩下的煤是甲堆剩下煤的3倍?(8天)
9.有两根绳子,长的是短的2倍,如果长的每次剪去4dm,短的每次剪去3dm,结果短的正好剪完,长的还剩下16dm,两根绳子原来各是多长?
10.丁丁做数学题,计算时发现,由于把一个加数的个位的零漏掉,结果比正确答案少702,这个加数是多少?(780)
11.甲的存款是乙的5倍,如果甲取出60元给乙存入,那么乙的存款就是甲的2倍,求甲乙原有存款各多少元?(甲100元,乙20元)。
小学五年级奥数举一反三第16周 倍数问题(一)
王牌例题1: 两根同样长的铁丝,第一根剪去18厘米,第二根剪去26厘 米,余下的铁丝第一根是第二根的3倍。原来两根铁丝各长
多少厘米? 【思路导航】
第一根
剪去18厘米
第二根
剪去26厘米
(26-18)÷(3-1)=4cm 4+26=30cm
举一反三1 1.两个数的和是682,其中一个加数的个位 是0,如果把这个0去掉,就得到另一个加 数,这两个加数各是多少? 2.两根绳子一样长,第一根用去6.5米,第 二根用去0.9米,剩下部分第二根是第一根
放映结束 感谢各位批评指导!
谢 谢!
让我们共同进步
方法二:也可以这样思考
【思路导航】甲组的图书是乙组的3倍,若乙组拿出6 本,甲组相应的也拿出6×3=18本,则甲组仍是乙组的 3倍。事实上甲组不但没有拿出18本,反而接受了乙组 的6本,18+6就正好对应着后来乙组的(5-3)倍。 因此,后来乙组有图书(18+6)÷(5-3)=12本, 乙组原来有12+6=18本,甲组原来有18×3=54本。
王牌例题4: 有两筐橘子,如果从甲筐拿出8个放进乙筐,两筐的桔子就 同样多;如果从乙筐拿出13个放到甲筐,甲筐的桔子是乙
筐的2倍。甲、乙两筐原来各有多少个橘子?
【思路导航】根据“从甲筐拿出8个放进乙筐,两筐的橘子 就同样多”可知,原来甲筐比乙筐多8×2=16个橘子;如果 从乙筐拿出13个放到甲筐,这时,甲筐就比乙筐多16+ 13×2=42个。因此,乙筐里还有42÷(2-1)=42个,原来 乙筐里有42+13=55个,甲筐里原来有55+1要点
倍数问题是数学竞赛中的重要内容之一,它是指已 知几个数的和或差以及这几个数之间的倍数关系, 求这几个数的应用题。 解答倍数问题,必须先确定一个数(通常选用较小 的数)作为标准数,即1倍数,再根据其它几个数与 这个1倍数的关系,确定“和”或“差”相当于这样 的几倍,最后用除法求出1倍数。
人教版五年级奥数练习:倍数问题 (7)
人教版五年级奥数练习:倍数问题
例甲粮库的存粮是乙粮库的2倍,甲粮库每天运出粮食40吨,乙粮库每天运出30吨。
若干天后,乙粮库的粮全部运完,而甲粮库还有80吨。
甲、乙粮库原来各有粮食多少吨?
分析因为甲粮库的存粮是乙粮库的2倍,如果每天乙粮库运30吨,甲粮库运出30×2=60吨,两粮库的粮食就会同时运完。
而实际上甲粮库每天只运出40吨,所以,每天就少运60-40=20吨。
80吨里包含有4个20吨,也就是已经运了4天,因此,甲粮库原有粮食40×4+80=240吨,乙粮库原有240÷2=120吨。
练习
1,果园里桃树的棵数是梨树的3倍,某农民给这些果树喷洒农药,已知他每天喷洒24棵桃树和10棵梨树,几天后,梨树全部喷洒完,而桃树还剩下24棵。
果园里有桃树和梨树各多少棵?
2,小朋友带着一篮桔子和苹果送给敬老院的老人们,每个老人分各3个苹果和5个桔子,最后苹果分完,篮子里还剩下7个桔子。
如果原来桔子的个数是苹果的2倍,那么,分给了几个老人?原来有多少个苹果?
3,甲、乙二人共存钱550元,当甲取出自己存款的一半,乙取出自己的70元钱时,两人余下的钱正好相等。
求甲、乙原来各存有多少钱?。
五年级奥数专题 和倍问题(学生版)
学科培优数学“和倍问题”学生姓名授课日期教师姓名授课时长知识定位和倍问题是已知大小两个数的和与它们的倍数关系,求大小两个数的应用题.为了帮助我们理解题意,弄清两种量彼此间的关系,常采用画线段图的方法来表示两种量间的这种关系,以便于找到解题的途径。
和倍问题基本公式:小数=和÷(倍数+1)大数=和-小数(或者:大数=小数×倍数知识梳理和倍问题是已知大小两个数的和与它们的倍数关系,求大小两个数的应用题.为了帮助我们理解题意,弄清两种量彼此间的关系,常采用画线段图的方法来表示两种量间的这种关系,以便于找到解题的途径。
和倍问题基本公式:小数=和÷(倍数+1)大数=和-小数(或者:大数=小数×倍数例题精讲【试题来源】【题目】甲班和乙班共有图书160本.甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?【试题来源】【题目】甲班有图书120本,乙班有图书30本,甲班给乙班多少本,甲班的图书是乙班图书的2倍?【试题来源】【题目】光明小学有学生760人,其中男生比女生的3倍少40人,男、女生各有多少人?【试题来源】【题目】果园里有桃树、梨树、苹果树共552棵.桃树比梨树的2倍多12棵,苹果树比梨树少20棵,求桃树、梨树和苹果树各有多少棵?【试题来源】【题目】549是甲、乙、丙、丁4个数的和.如果甲数加上2,乙数减少2,丙数乘以2,丁数除以2以后,则4个数相等.求4个数各是多少?【试题来源】【题目】甲水池有水2600立方米,乙水池有水1200立方米,如果甲水池里的水以每分种23立方米的速度流入乙水池,那么多少分种后,乙水池中的水是甲水池的4倍?【试题来源】【题目】甲桶里有油470千克,乙桶里有油190千克,甲桶的油倒入乙桶多少千克,才能使甲桶油是乙桶油的2倍?【试题来源】【题目】有3条绳子,共长95米,第一条比第二条长7米,第二条比第三条长8米,问3条绳子各长多少米?【试题来源】【题目】一个长方形的周长是36厘米,长是宽的2倍,这个长方形的面积是多少平方厘米?【试题来源】【题目】北京某小学的同学为幼儿园的小朋友做红花和黄花共300朵。
五年级奥数题:因数与倍数
五年级奥数题:因数与倍数因数与倍数相关习题(1)⼀、填空题1 ? 28的所有因数之和是 ______ .2. ⽤105个⼤⼩相同的正⽅形拼成⼀个长⽅形,有_______ 中不同的拼法?3. ⼀个两位数,⼗位数字减个位数字的差是28的因数,⼗位数字与个位数字的积是24.这个两位数是______ .4. 李⽼师带领⼀班学⽣去种树,学⽣恰好被平均分成四个⼩组,总共种树667棵,如果师⽣每⼈种的棵数⼀样多,那么这个班共有学⽣_____ ⼈.5. 两个⾃然数的和是50,它们的最⼤公因数是5,则这两个数的差是_________ .6. 现有梨36个,桔108个,分给若⼲个⼩朋友,要求每⼈所得的梨数,桔数相等,最多可分给 _____ ⼩朋友,每个⼩朋友得梨______ 个,桔______ 个.7. ⼀块长48厘⽶、宽42厘⽶的布,不浪费边⾓料,能剪出最⼤的正⽅形布⽚____ 块.8. 长180厘⽶,宽45厘⽶,⾼18厘⽶的⽊料,能锯成尽可能⼤的正⽅体⽊块(不余料)__ 块.9. 张师傅以1元钱3个苹果的价格买苹果若⼲个,⼜以2元钱5个苹果的价格将这些苹果卖出,如果他要赚得10元钱利润,那么他必须卖出苹果_____ 个.10. 含有6个因数的两位数有_____ 个.11?写出⼩于20的三个⾃然数,使它们的最⼤公因数是1,但两两均不互质,请问有多少组这种解?12?和为1111的四个⾃然数,它们的最⼤公因数最⼤能够是多少?13. 狐狸和黄⿏狼进⾏跳跃⽐赛,狐狸每次跳4丄⽶,黄⿏狼每次跳2-⽶,2 4它们每秒钟都只跳⼀次.⽐赛途中,从起点开始每隔12-⽶设有⼀个陷井,当它们8之中有⼀个掉进陷井时,另⼀个跳了多少⽶?14. 已知a与b的最⼤公因数是12, a与c的最⼩公倍数是300,b与c的最⼩公倍数也是300,那么满⾜上述条件的⾃然数a, b, c共有多少组?(例如:a=12、b=300、c=300,与a=300、b=12、c=300是不同的两个⾃然数----------------------------- 答案-----------------------------------------------答案:1. 5628的因数有1,2,4,7,14,28,它们的和为1+2+4+7+14+28=56.2. 4因为105 的因数有1,3,5,7,15,21,35,105 能拼成的长⽅形的长与宽分别是105和1,35和3,21与5,15与7.所以能拼成4种不同的长⽅形.3. 64因为28=2 2 7,所以28的因数有6个:1,2,4,7,14,28. 在数字0,1,2,…,9 中,只有6与4之积,或者8与3之积是24,⼜6-4=2,8-3=5.故符合题⽬要求的两位数仅有64.4. 28因为667=23 29, 所以这班师⽣每⼈种的棵数只能是667 的因数:1,23,29,667. 显然,每⼈种667棵是不可能的.当每⼈种29棵树时,全班⼈数应是23-1=22,但22不能被4整除,不可能.当每⼈种23棵树时,全班⼈数应是29-1=28,且28恰好是4的倍数,符合题⽬要求.当每⼈种1 棵树时, 全班⼈数应是667-1=666, 但666 不能被 4 整除, 不可能. 所以, ⼀班共有28 名学⽣.5. 40 或20两个⾃然数的和是50,最⼤公因数是5,这两个⾃然数可能是5和45,15 和35,它们的差分别为(45-5=)40,(35-15=)20, 所以应填40或20.[注]这⾥的关键是依最⼤公因数是5的条件,将50分拆为两数之和:50=5+45=15+35.6. 36,1,3.要把梨36个、桔⼦108个分给若⼲个⼩朋友,要求每⼈所得的梨数、桔⼦相等,⼩朋友的⼈数⼀定是36的因数,⼜要是108的因数,即⼀定是36和108 的公因数.因为要求最多可分给多少个⼩朋友,可知⼩朋友的⼈数是36和108的最⼤公因数.36 和108的最⼤公因数是36,也就是可分给36个⼩朋友.每个⼩朋友可分得梨: 36 36=1( 只)每个⼩朋友可分得桔⼦: 108 36=3( 只)所以,最多可分得36个⼩朋友,每个⼩朋友可分得梨1只,桔⼦3只.7. 56剪出的正⽅形布⽚的边长能分别整除长⽅形的长48厘⽶及宽42厘⽶,所以它是48与42的公因数,题⽬⼜要求剪出的正⽅形最⼤,故正⽅形的边长是48与42 的最⼤公因数.因为48=2 2 2 2 3,42=2 3 7,所以48与42的最⼤公因数是 6.这样,最⼤正⽅形的边长是6厘⽶.由此可按如下⽅法来剪:长边每排剪8块,宽边可剪7 块,共可剪(48 6) (42 6)=8 7=56(块)正⽅形布⽚.8. 200根据没有余料的条件可知长、宽和⾼分别能被正⽅体的棱长整除, 即正⽅体的棱长是1 80,45和1 8的公因数.为了使正⽅体⽊块尽可能⼤,正⽅体的棱长应是180、45和18的最⼤公因数.180,45 和18的最⼤公因数是9,所以正⽅体的棱长是9厘⽶.这样,长180厘⽶可公成20段,宽45厘⽶可分成5段,⾼18厘⽶可分成2段.这根⽊料共分割成(180 9) (45 9) (18 9)=200块棱长是9厘⽶的正⽅体.9. 150根据3与5的最⼩公倍数是 1 5,张⽼师傅以5元钱买进15个苹果,⼜以6元钱卖出15个苹果, 这样, 他1 5个苹果进与出获利 1 元. 所以他获利 1 0元必须卖出150 个苹果.10. 16含有6个因数的数,它的质因数有以下两种情况:⼀是有5个相同的质因数连乘;⼆是有两个不同的质因数其中⼀个需连乘两次,如果⽤M表⽰含有6个因数的数,⽤a和b表⽰M的质因数,那么M a5或M a2 b因为M是两位数,所以M= a5只有⼀种可能M=25,⽽M= a2 b就有以下15种情况:M223,M225,M227,M2211,M2213,M2217,M2219, M2223, M322,M325,M327,M3211M522,M523,M722.所以,含有6个因数的两位数共有15+1=16(个)11. 三个数都不是质数,⾄少是两个质数的乘积,两两之间的最⼤公因数只能分别是2,3和5,这种⾃然数有6,10,15和12,10,15及18,10,15三组.12. 四个数的最⼤公因数必须能整除这四个数的和,也就是说它们的最⼤公因数应该是1111的因数.将1111作质因数分解,得1111=11 101最⼤公因数不可能是1111,其次最⼤可能数是101.若为101,则将这四个数分别除以101,所得商的和应为11.现有1+2+3+5=11,即存在着下⾯四个数101,101 2,101 3,101 5,它们的和恰好是101 (1+2+3+5)=101 11=1111,它们的最⼤公因数为101.所以101为所求.13. 黄⿏狼掉进陷井时已跳的⾏程应该是2-与123的“最⼩公倍数” 99,4 8 499 11 1 3即跳了⼀⼀=9次掉进陷井,狐狸掉进陷井时已跳的⾏程应该是4-和12-的4 4 2 8“最⼩公倍数” 99,即跳了99-=11次掉进陷井.2 2 2经过⽐较可知,黄⿏狼先掉进陷井,这时狐狸已跳的⾏程是14- 9=40.5(⽶).14. 先将12、300分别进⾏质因数分解:212=2 32 2300=2 3 5⑴确定a的值.依题意a只能取12或12 5(=60)或12 25(=300).⑵确定b的值.当a=12时,b可取12,或12 5,或12 25;当a=60,300时,b都只能取12.所以,满⾜条件的a、b共有5组:a=12 - a=12 - a=12 a=60 - a=300b=12, 〔 b=60, 〔 b=300, I b=12, [ b=12.⑶确定a, b, c的组数.对于上⾯a、b的每种取值,依题意,c均有6个不同的值:2 2 2 2 2 2 2 25,5 2, 5 2,5 3, 5 2 3, 5 2 3, 即⼙25, 50, 100, 75, 150, 300. 所以满⾜条件的⾃然数a、b、c共有5 6=30 (组)因数与倍数相关习题(2)⼀、填空题1 .把20个梨和25个苹果平均分给⼩朋友,分完后梨剩下2个,⽽苹果还缺2个,⼀共有_________ 个⼩朋友.2. 幼⼉园有糖115颗、饼⼲148块、桔⼦74个,平均分给⼤班⼩朋友;结果糖多出7颗,饼⼲多出4块,桔⼦多出2个.这个⼤班的⼩朋友最多有 __________ ⼈.3. ⽤长16厘⽶、宽14厘⽶的长⽅形⽊板来拼成⼀个正⽅形,最少需要⽤这样的⽊板_____ 块.4. ⽤长是9厘⽶、宽是6厘⽶、⾼是7厘⽶的长⽅体⽊块叠成⼀个正⽅体,⾄少需要这种长⽅体⽊块_____ 块.5. ⼀个公共汽车站,发出五路车,这五路车分别为每隔3、5、9、15、10分钟发⼀次,第⼀次同时发车以后,_____ 钟⼜同时发第⼆次车.6. 动物园的饲养员给三群猴⼦分花⽣,如只分给第⼀群,则每只猴⼦可得12粒;如只分给第⼆群,则每只猴⼦可得15粒;如只分给第三群,则每只猴⼦可得20粒.那么平均给三群猴⼦,每只可得_________ 粒.7. 这样的⾃然数是有的:它加1是2的倍数,加2是3的倍数,加3是4的倍数,加4是5的倍数,加5是6的倍数,加6是7的倍数,在这种⾃然数中除了 1 以外最⼩的是_____ .8. _________________________________________________ 能被3、7、& 11四个数同时整除的最⼤六位数是____________________________ .9. 把26,33,34,35,63,85,91,143 分成若⼲组,要求每⼀组中任意两个数的最⼤公因数是1,那么⾄少要分成________ 组.10. 210与330的最⼩公倍数是最⼤公因数的_______ 倍.⼆、解答题11. 公共汽车总站有三条线路,第⼀条每8分钟发⼀辆车,第⼆条每10分钟发⼀辆车,第三条每16分钟发⼀辆车,早上6: 00三条路线同时发出第⼀辆车.该总站发出最后⼀辆车是20:00,求该总站最后⼀次三辆车同时发出的时刻.12. 甲⼄两数的最⼩公倍数除以它们的最⼤公因数,商是12.如果甲⼄两数的差是18,则甲数是多少?⼄数是多少?5 15 113. ⽤-、些、1丄分别去除某⼀个分数,所得的商都是整数.这个分数28 56 20最⼩是⼏?14. 有15位同学,每位同学都有编号,他们是1号到15号,1号同学写了⼀个⾃然数,2号说:“这个数能被2整除”,3号说:“这个数能被他的编号数整除.1 号作了检验:只有编号连续的⼆位同学说得不对,其余同学都对,问:(1) 说的不对的两位同学,他们的编号是哪两个连续⾃然数?(2) 如果告诉你,1号写的数是五位数,请找出这个数.答案:若梨减少2个,则有20-2=18(个);若将苹果增加2个,则有25+2=27(个),这样都被⼩朋友刚巧分完?由此可知⼩朋友⼈数是18与27的最⼤公因数.所以最多有9个⼩朋友.2. 36根据题意不难看出,这个⼤班⼩朋友的⼈数是115-7=108,148-4=144,74-2=72 的最⼤公因数.所以,这个⼤班的⼩朋友最多有36⼈.3. 56所铺成正⽅形的⽊板它的边长必定是长⽅形⽊板长和宽的倍数,也就是长⽅形⽊板的长和宽的公倍数,⼜要求最少需要多少块,所以正⽅形⽊板的边长应是14与16的最⼩公倍数.先求14与16的最⼩公倍数.2 16 1⼻8 7故14与16的最⼩公倍数是2 8 7=112.因为正⽅形的边长最⼩为112厘⽶,所以最少需要⽤这样的⽊板112 112 _=7 8=56(块)16 144. 5292与上题类似,依题意,正⽅体的棱长应是9, 6, 7的最⼩公倍数,9, 6, 7的最⼩公倍数是126.所以,⾄少需要这种长⽅体⽊块126 126 126 , =14 21 18=5292(块)9 6 7[注]上述两题都是利⽤最⼩公倍数的概念进⾏“拼图”的问题,前⼀题是平⾯图形,后⼀题是⽴体图形,思考⽅式相同,后者可看作是前者的推⼴?将平⾯问题推⼴为空间问题是数学家喜欢的研究问题的⽅式之⼀?希望引起⼩朋友们注意?5. 90依题意知,从第⼀次同时发车到第⼆次同时发车的时间是3,5,9,15 和10的最⼩公倍数.因为3,5,9,15 和10 的最⼩公倍数是90, 所以从第⼀次同时发车后90 分钟⼜同时发第⼆次车.依题意得花⽣总粒数=12 第⼀群猴⼦只数=15 第⼆群猴⼦只数=20 第三群猴⼦只数由此可知, 花⽣总粒数是12,15,20 的公倍数,其最⼩公倍数是60.花⽣总粒数是60,120,180,……,那么第⼀群猴⼦只数是5, 10, 15,……第⼆群猴⼦只数是4, 8, 12,……第三群猴⼦只数是3, 6, 9,……所以,三群猴⼦的总只数是12, 24, 36,…….因此,平均分给三群猴⼦,每只猴⼦所得花⽣粒数总是 5 粒.7. 421依题意知, 这个数⽐2、3、4、5、6、7的最⼩公倍数⼤1,2、3、4、5、6、7的最⼩公倍数是420,所以这个数是421.8. 999768由题意知,最⼤的六位数是3,7,8,11 的公倍数,⽽3,7,8,11 的最⼩公倍数是1848.因为999999 1848=541……231,由商数和余数可知符合条件的最⼤六位数是1848的541 倍,或者是999999与231 的差.所以,符合条件的六位数是999999-231=999768.9. 3根据题⽬要求, 有相同质因数的数不能分在⼀组,26=2 13,91=7 13,143=11 13,所以,所分组数不会⼩于 3.下⾯给出⼀种分组⽅案:(1)26 , 33, 35; (2)34 , 91; (3)63 , 85, 143.因此,⾄少要分成3组.[注]所求组数不⼀定等于出现次数最多的质因数的出现次数,如15=3 5, 2仁3 7,35=5 7,3,5,7各出现两次,⽽这三个数必须分成三组,⽽不是两组除了上述分法之外,还有多种分组法,下⾯再给出三种:(1) 26,35 ;33,85,91;34,63,143.(2) 85,143,63 ;26,33,35;34,91.。
五年级下期奥数专题三 倍数的应用
五年级下期奥数专题三倍数的应用在解答有关倍数应用题时,往往要找准“1”倍数,在根据“差不变”或“和不变”或“倍数和、倍数差所对应的数量”进行求解。
也可以把“1”倍数量设为X,列出方程进行求解。
例1火树银花楼七层,层层红灯倍加增,共有红灯三八一,试问四层几红灯?例2甲乙两数的和与商都是15,那么甲乙两数的差是多少?例3 甲数比乙数大32.4,把甲数的小数点向左移动一位就是乙数,甲数是。
例3甲池有水7.4立方米,乙池有水2.2立方米,把甲池水流入乙池,每分钟流0.35立方米,多少分钟后,乙池的水是甲池的两倍?例5妈妈今年28岁,女儿今年4岁,多少年后,妈妈的年龄是女儿的4倍?例6某校五年级有13个课外兴趣小组,每组人数依次是:2、3、5、7、9、10、11、13、14、17、21、22、24人,一天下午,学校同时举办语文、数学两个讲座,已知有12个小组去听讲座,其中听语文讲座的人数是听数学讲座的6倍,还剩下一个小组在教室里讨论,剩下的是哪一个小组?例7 五辆自行车由八个人来骑,一共骑了4小时,平均每人骑了小时。
练习:1、甲乙两数的和是41.36,如果甲数的小数点向右移动一位,就等于乙数,则乙数是多少?2、大小两数的差是12.276,若小数的小数点向右移动两位就与大数一样大,则大数是多少?小数是多少?3、已知甲乙两个数的商与差都是5,那么两数的和是多少?4、甲乙两数的和与商都是9,那么甲乙两数的差是多少?5、甲仓有粮食150吨,乙仓有粮食60吨,要从甲仓运多少吨粮食到乙仓,才能使乙仓的粮食是甲仓的3倍?6、已知一个四位数的后两位数是34,前两位数比后两位数的2倍少7,那么这个四位数是多少?7、老师今年25岁,小乐今年9岁,多少年前老师的年龄是小乐的5倍?8、今年李叔叔的年龄正好是小芳的9倍,几年后小芳上学了,李叔叔年龄又正好是小芳的4倍,问今年李叔叔多少岁?小芳多少岁?9、有六个玻璃瓶,分别装着白糖水、盐水、自来水。
五年级下册第二单元因数和倍数能力提高题和奥数题(附答案)
五年级下册第二单元因数和倍数能力提高题和奥数题(附答案)第二单元:因数和倍数提高题和奥数题板块一:因数和倍数例题1:一个数在150至250之间,且是18的倍数,这个数可能是多少?最大是多少?练1:一个数是25的倍数,它位于110至160之间,这个数是多少?例题2:有一个数,它是40的因数,又是5的倍数,这个数可能是多少?练2:既是7的倍数,又是42的因数,这样的数有哪些?例题3:妈妈买来30个苹果,让XXX把苹果放入篮子里。
不许一次拿完,也不许一个一个地拿,要每次拿的个数相同,拿到最后正好一个不剩。
XXX共有几种拿法?每种拿法每次各拿多少个?练3:五(1)班有学生42人,把他们平均分成几个研究小组,每组多于2人且少于8人。
可以分成几个小组呢?板块二:2、5、3的倍数的特征例题1:一个五位数29ABC(A、B、C是~9中不同的数字)同时是2、5、3的倍数,这个数可能是多少?练1:在17的后面添上三个数字组成五位数,使这个五位数既是偶数,又同时含有因数3和5.这个五位数最大是多少?最小是多少?例题2:5□□是有两个数字相同的四位数,它同时是2、5、3的倍数,这个四位数最小是多少?最大是多少?练2:4□□□是有两个数字相同的四位数,它同时是2、5、3的倍数,这个四位数最小是多少?最大是多少?板块三:奇数和偶数例题1:一只小船每天从河的南岸摆渡到北岸,再从北岸摆渡到南岸,不断往返。
已知小船最初在南岸。
1)摆渡15次后,小船是在南岸还是在北岸?为什么?2)XXX说摆渡2016次后,小船在北岸。
他说得对吗?为什么?练1:傍晚XXX开灯做作业,本来拉一次开关,灯就该亮了,但是他连续拉了5次开关,灯都没有亮,原来是停电了。
你知道来电的时候,灯应该亮着还是不亮呢?例题2:有36个苹果,把它们放在9个盘子里,每个盘子里只放奇数个苹果,能做到吗?练2:(1)1×2+3×4+5×6+…+199×200的和是奇数还是偶数?有2016个烟花,每次燃放奇数个,想在9次后恰好全部放完,能做到吗?为什么?可以做到。
五年级奥数举一反三第16讲倍数问题(一)含答案
第16 讲倍数问题(一)、知识要点倍数问题是数学竞赛中的重要内容之一,它是指已知几个数的和或差以及这几个数之间的倍数关系,求这几个数的应用题。
解答倍数问题,必须先确定一个数(通常选用较小的数)作为标准数,即1 倍数,再根据其它几个数与这个1 倍数的关系,确定“和”或“差”相当于这样的几倍,最后用除法求出1 倍数。
二、精讲精练【例题1】两根同样长的铁丝,第一根剪去18厘米,第二根剪去26 厘米,余下的铁丝第一根是第二根的3 倍。
原来两根铁丝各长多少厘米?练习1:1. 两个数的和是682.其中一个加数的个位是0,如果把这个0 去掉,就得到另一个加数。
这两个加数各是多少?2. 两根绳子一样长,第一根用去6.5米,第二根用去0.9 米,剩下部分第二根是第一根的3 倍。
两根绳子原来各长多少米?【例题2】甲组有图书是乙组的3倍,若乙组给甲组6 本,则甲组的图书是乙组的5 倍。
原来甲组有图书多少本?练习2:1. 原来小明的画片是小红的3 倍,后来二人各买了3 张,这样小明的画片就是小红的2 倍。
原来二人各有多少张画片?2. 一个书架分上、下两层,上层的书的本数是下层的4 倍。
从下层拿5 本放入上层后,上层的本数正好是下层的5 倍。
原来下层有多少本书?【例题3】幼儿园买来苹果的个数是梨的2 倍。
大班的同学每7 人一组,每组领3 个梨和4 个苹果,结果梨正好分完,苹果还剩下16 个。
大班共有多少个同学?练习3:1. 高年级同学植树,共有杉树苗和杨树苗100 棵。
如果每个小组分给杉树苗6棵,杨树苗8 棵,那么,杉树苗正好分完,杨树苗还剩2 棵。
两种树苗原来各有多少棵?2. 高年级同学植树,已知杨树的棵数正好是杉树的2 倍。
如果每小组分到杉树6 棵,杨树8 棵,那么,杉树正好分完,杨树还剩20 棵。
两种树原来各有多少棵?【例题4】有两筐桔子,如果从甲筐拿出8 个放进乙筐,两筐的桔子就同样多;如果从乙筐拿出13个放到甲筐,甲筐的桔子是乙筐的2 倍。
倍数问题奥数题及答案
倍数问题奥数题及答案倍数问题奥数题及答案(通用5篇)倍数是一数学名词,是指一个数和一整数的乘积。
以下是店铺收集整理了倍数问题奥数题及答案,供大家参考借鉴,希望可以帮助到有需要的朋友。
倍数问题奥数题及答案篇1两数和÷(倍数+1)=小数(一倍数)。
两个数的和是20xx,其中一个加数的个位是0,如果把这个0去掉,就正好等于另一个加数的两倍。
这两个加数各是多少?答案与解析:这两个加数分别是:96和1920。
因为把第一个加数个位上的"0"去掉,得到了第二个加数的2倍,所以,第一个加数是第二个加数的20倍。
把第二个加数看作"1倍数",第二个加数就是"20倍数",这两个数的和20xx就是"1+20"倍的数。
根据这个"量"与"倍"的对应关系,可先求出第二个加数。
这两个加数分别是:20xx/(1+20)=96,20xx—96=1920。
倍数问题奥数题及答案篇2在10和31之间有多少个数是3的倍数?答案与解析:由尝试法可求出答案:3×4=12,3×5=15,3×6=18,3×7=21,3×8=24,3×9=27,3×10=30可知满足条件的'数是12、15、18、21、24、27和30共7个。
注意:倘若问10和1000之间有多少个数是3的倍数,则用上述一一列举的方法就显得太繁琐了,此时可采用下述方法:10÷3=3余1,可知10以内有3个数是3的倍数;1000÷3=333余1,可知1000以内有333个数是3的倍数;333—3=330,则知10~1000之内有330个数是3的倍数。
由这个例题可体会枚举法的优点和缺点及其适用范围。
枚举法比较适用于数比较少的情况,是二年级小朋友应该掌握的一种方法。
五年级奥数举一反三第17讲 倍数问题(二)含答案
第17讲倍数问题(二)一、知识要点解决倍数问题的关键是,必须确定一个数作为标准数,并根据题中的已知条件,找出其它几个数与这个标准数的倍数关系,再用除法求出这个标准数。
由于倍数应用题中数量关系的变化,要求同学们在解题过程中注意解题技巧,灵活解题。
和倍问题的数量关系是:和数÷(倍数+1)=较小数较小数×倍数=较大数差倍问题的数量关系是:差数÷(倍数-1)=较小数较小数×倍数=较大数二、精讲精练【例题1】养鸡场的母鸡只数是公鸡的6倍,后来公鸡和母鸡各增加60只,结果母鸡只数就是公鸡的4倍。
原来养鸡场一共养了多少只鸡?练习1:1.今年,爸爸的年龄是小明的6倍,再过4年,爸爸的年龄就是小明的4倍。
今年小明多少岁?2.原来食堂里存的大米是面粉的4倍,大米和面粉各吃掉80千克,大米的重量是面粉的2倍。
食堂里原来存有大米、面粉各多少千克?3.饲养场的白兔只数是黑兔的5倍,后来卖掉了10只黑兔,买回来20只白兔,现在白兔的只数是黑兔的7倍。
饲养场原来养白兔和黑兔各多少只?【例题2】有1800千克的货物,分装在甲、乙、丙三辆车上。
已知甲车装的千克数正好是乙车的2倍,乙车比丙车多装200千克。
甲、乙、丙三辆车各装货物多少千克?练习2:1.三堆货物共1800箱,甲堆的箱数是乙堆的2倍,乙堆的箱数比丙堆少200箱。
三堆货物各多少箱?2.甲、乙、丙三数的和是224,如果甲是乙的3倍,丙是甲的4倍,求甲、乙、丙三数各是多少。
3.把840本书放在书架的三层里,下层放的本数比上层的3倍多5本,中层放的本数是上层的2倍多1本。
问:上、中、下三层各放书多少本?【例题3】甲、乙两个书架,已知甲书架有书600本,从甲书架借出三分之一,从乙书架借出四分之三后,甲书架的书是乙书架的2倍还多150本。
乙书架原来有书多少本?练习3:1.某校有男生630人,选出男生人数的三分之一和女生人数的四分之三去排练团体操,剩下的男生人数是女生人数的2倍。
(完整版)小学五年级奥数举一反三第16周倍数问题(一)
举一反三3
1.同学们带着水果去看敬老院的老人,带的苹果是桔子的3 倍。如果每位老人拿2个桔子和4个苹果,那么,桔子正好分 完,苹果还剩下14个。同学们把水果分给了几位老人?
2.甲粮库的存粮是乙仓库的2倍,甲粮库每天运出40吨,乙 仓库每天运出30吨,若干天后乙粮库的粮食全部运完,而甲 仓库正好还有80吨,甲、乙两辆仓库原来各有粮食多少吨?
【思路导航】根据“从甲筐拿出8个放进乙筐,两筐的橘子 就同样多”可知,原来甲筐比乙筐多8×2=16个橘子;如果 从乙筐拿出13个放到甲筐,这时,甲筐就比乙筐多16+ 13×2=42个。因此,乙筐里还有42÷(2-1)=42个,原 来乙筐里有42+13=55个,甲筐里原来有55+16=71个。
举一反三 4
王牌例题5: 养鸡场新买来100只小鸡,其中母鸡只数的4倍比公鸡只数 的3倍多120只,买来母鸡公鸡只数各多少只? 【思路导航】题中已知母鸡和公鸡一共100只,就可推出, 母鸡只数的4倍和公鸡只数的4倍的和是100×4=400(只), 又因为母鸡只数的4倍比公鸡只数的3倍多120只,从400只 去掉120只就是公鸡只数的7倍,则公鸡只数为280÷(4+3) =40(只),母鸡只数为100-40=60(只)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
粮库每天只运出40吨,所以,每天就少运60-40=20吨。80吨里包含有4个20吨,也就是已经运了4天,因此,甲粮库原有粮食40×4+80=240吨,乙粮库原有240÷2=120吨。
兔各多少只
例2有1800千克的货物,分装在甲、乙、丙三辆车上。已知甲车
装的千克数正好是乙车的2倍,乙车比丙车多装200千克。甲、乙、丙三辆车各装货物多少千克
分析 如果丙车多装200千克,就和乙车装的货物同样多, 这样三辆车装的总重量就是1800+200=2000千克。再把2000千克平均分成4份,就得到乙车上装的货物是500千克,甲车上装500×2=1000千克,丙车上装有500-200=300千克。
14
v1.0可编辑可修改
3,三种水果共132个,已知苹果的个数比梨的3倍少6个,梨的个
数比桔子的3倍多2个。三种水果各有多少个
15
3,学校组织夏令营活动,如果参加的女生名额给5个男生,则男、
女生人数同样多; 如果参加的男生名额给4个女生,则男生是女生人
数的一半。原定夏令营中男、女生各多少人
例5甲粮库的存粮是乙粮库的2倍,甲粮库每天运出粮食40吨,
乙粮库每天运出30吨。若干天后,乙粮库的粮全部运完,而甲粮库还有80吨。甲、乙粮库原来各有粮食多少吨
3
v1.0可编辑可修改
练习三
1,高年级同学植树,共有杉树苗和杨树苗100棵。如果每个小组分给杉树苗6棵,杨树苗8棵,那么,杉树苗正好分完,杨树苗还剩2棵。两种树苗原来各有多少棵
2,高年级同学植树,已知杨树8棵,那么,杉树正好分完,杨树还剩20棵。两种树原来各的多少棵
8
v1.0可编辑可修改
只,母鸡增加60×6=360只,那么,后来的母鸡只数还是公鸡的6倍。可实际母鸡只增加了60只,比360只少300只。因此,现在母
鸡只数只有公鸡的4倍,少了2倍。所以,现在公鸡的只数是300÷2=150只,原来有公鸡150-60=90只,一共养了90×(1+6)=630
只鸡。
练习一
3,同学们带着水果去看“敬老院”的老人,带的苹果是桔子的3倍。如果每位老人拿2个桔子和4个苹果,那么,桔子正好分完, 苹果还剩下14个。同学们把水果分给了几位老人
4
v1.0可编辑可修改
例4有两筐桔子,如果从甲筐拿出8个放进乙筐,两筐的桔子就同
样多;如果从乙筐拿出13个放到甲筐,甲筐的桔子是乙筐的2倍。
剩下的苹果个数正好是梨的5倍。原来买来苹果和梨共多少个
例3幼儿园买来苹果的个数是梨的2倍。大班的同学每7人一组,
每组领3个梨和4个苹果,结果梨正好分完,苹果还剩下16个。大
班共有多少个同学
分析 因为苹果是梨的2倍,每组分3个梨和3×2=6个苹果最后就一起分完。可每组分4个苹果,少分6-4=2个,所以有8组同学,全班有7×8=56人。
练 习 二
2
v1.0可编辑可修改
1,原来小明的画片是小红的3倍,后来二人各买了3张,这样小明
的画片就是小红的2倍。原来二人各有多少张画片
2,一个书架分上、下两层,上层的书的本数是下层的4倍。从下层
拿5本放入上层后, 上层的本数正好是下层的5倍。原来下层有多少本书
3,幼儿园买来的苹果的个数是梨的3倍,吃掉10个梨和6个苹果后,
v1.0可编辑可修改
第16周倍数问题(一)
专题简析:
倍数问题是数学竞赛中的重要内容之一,它是指已知几个数的
和或差以及这几个数之间的倍数关系,求这几个数的应用题。
解答倍数问题,必须先确定一个数(通常选用较小的数) 作为标准数,
即1倍数,再根据其它几个数与这个1倍数的关系,确定“和”或“差”相当于这样的几倍,最后用除法求出1倍数。
3,甲、乙二人共存钱550元,当甲取出自己存款的一半,乙取出自己的70元钱时,两人余下的钱正好相等。求甲、乙原来各存有多少钱
7
v1.0可编辑可修改
第17周倍数问题(二)
专题简析:
解决倍数问题的关键是, 必须确定一个数作为标准数, 并根据题中的已知条件, 找出其它几个数与这个标准数的倍数关系, 再用除法求出这个标准数。 由于倍数应用题中数量关系的变化, 要求同学们在解题过程中注意解题技巧,灵活解题。
和倍问题的数量关系是:
和数÷(倍数+1)=较小数
较小数×倍数=较大数
差倍问题的数量关系是:
差数÷(倍数-1)=较小数
较小数×倍数=较大数
例1,养鸡场的母鸡只数是公鸡的6倍,后来公鸡和母鸡各增加60
只,结果母鸡只数就是公鸡的4倍。原来养鸡场一共养了多少只鸡
分析养鸡场原来母鸡的只数是公鸡的6倍,如果公鸡增加60
1,今年,爸爸的年龄是小明的6倍,再过4年,爸爸的年龄就是小明的4倍。今年小明多少岁
2,原来食堂里存的大米是面粉的4倍,大米和面粉各吃掉80千克,
大米的重量是面粉的2倍。食堂里原来存有大米、面粉各多少千克
9
v1.0可编辑可修改
3,饲养场的白兔只数是黑兔的5倍,后来卖掉了10只黑兔,买回来
20只白兔,现在白兔的只数是黑兔的7倍。饲养场原来养白兔和黑
甲、乙两筐原来各有多少个桔子
分析 根据“从甲筐拿出8个放进乙筐,两筐的橘子就同样多” 可知,原来甲筐比乙筐多8×2=16个橘子;如果从乙筐拿出13个放到甲筐,这时,甲筐就比乙筐多16+13×2=42个。因此,乙筐里还有42÷(2-1)=42个,原来乙筐里有42+13=55个,甲筐里原来有55+16=71个。
练习五
6
v1.0可编辑可修改
1,果园里桃树的棵数是梨树的3倍,某农民给这些果树喷洒农药,已知他每天喷洒24棵桃树和10棵梨树,几天后,梨树全部喷洒完,而桃树还剩下24棵。果园里有桃树和梨树各多少棵
2,小朋友带着一篮桔子和苹果送给敬老院的老人们,每个老人分各
3个苹果和5个桔子,最后苹果分完,篮子里还剩下7个桔子。如果原来桔子的个数是苹果的2倍,那么,分给了几个老人原来有多少个苹果
练习二
1,三堆货物共1800箱,甲堆的箱数是乙堆的2倍,乙堆的箱数比丙堆少200箱。三堆货物各多少箱
10
v1.0可编辑可修改
2,甲、乙、丙三数的和是224,如果甲是乙的3倍,丙是甲的4倍,
求甲、乙、丙三数各是多少。
3,把840本书放在书架的三层里,下层放的本数比上层的
3倍多5
本,中层放的本数是上层的2倍多1本。问:上、中、下三层各放书多少本
例1 两根同样长的铁丝,第一根剪去18厘米,第二根剪去26厘米,余下的铁丝第一根是第二根的3倍。原来两根铁丝各长多少厘米
分析 由于第二根比第一根多剪去26-18=8厘米,所以剩下的铁丝第一根就比第二根多(3-1)倍。因此,8÷(3-1)=4(厘米)。就是现在第二根铁丝的长度,它原来长4+26=30厘米。
例3甲、乙两个书架,已知甲书架有书600本,从甲书架借出三分
之一,从乙书架借出四分之三后,甲书架的书是乙书架的2倍还多
150本。乙书架原来有书多少本
11
v1.0可编辑可修改
练习三
1,某校有男生630人,选出男生人数的三分之一和女生人数的四分之三去排练团体操, 剩下的男生人数是女生人数的2倍。这个学校共有学生多少人
练 习 四
1,甲有邮票42张,乙有邮票48张。每次甲给乙2张,而乙又给甲
4张,这样交换多少次后,甲的邮票张数是乙的2倍
2,甲仓存有大米650袋,乙仓存有大米400袋。每天从甲、乙仓各
运出50袋,多少天后甲仓的大米袋数是乙仓的
6倍
3,有两杯水,一杯有水104毫升,另一杯有水24毫升,每次往两只
杯子中各倒进8毫升水,倒几次后,一只杯中的水是另一杯的
练习四
1,甲、乙两仓存有货物,若从甲仓取31吨放入乙仓,则两仓所存货物同样多;若乙仓取14吨放入甲仓,则甲仓的货物是乙仓的4倍。原来两仓各存货物多少吨
2,兄弟两人原有同样多的人民币,后来哥哥买了5本书,平均每本
元;弟弟买了3支笔,每支笔元,现在弟弟的钱是哥哥的3倍。兄弟
两人原来各有多少元
5
v1.0可编辑可修改
例2甲组有图书是乙组的3倍,若乙组给甲组6本,则甲组的图书是乙组的5倍。原来甲组有图书多少本
分析 甲组的图书是乙组的3倍,若乙组拿出6本,甲组相应的也拿出6×3=18本,则甲组仍是乙组的3倍。事实上甲组不但没有拿出18本,反而接受了乙组的6本,18+6就正好对应着后来乙组的(5
-3)倍。因此,后来乙组有图书(18+6)÷(5-3)=12本,乙组原来有12+6=18本,甲组原来有18×3=54本。
练习一
1,两个数的和是682,其中一个加数的个位是0,如果把这个0去掉,
就得到另一个加数。这两个加数各是多少
1
v1.0可编辑可修改
2,两根绳子一样长,第一根用去米,第二根用去米,剩下部分第二
根是第一根的3倍。两根绳子原来各长多少米
3,一筐苹果和一筐梨的个数相同,卖掉40个苹果和15个梨后,剩
下的梨是苹果的6倍。原来两筐水果一共有多少个
2,食堂存有同样重量的大米和面粉, 吃大米的四分之三和60千克面粉后,剩下的面粉的重量地大米的3倍。原来存有大米和面粉各多少
千克
3,有两堆水泥,甲堆有吨,已知甲堆重量的三分之一和乙堆重量的
四分之一相等,乙堆有水泥多少吨
12
v1.0可编辑可修改
例4 A站有公共汽车26辆,B站有公共汽车30辆。每小时由A站向B站开出汽车12辆,B站向A站开出汽车8辆,都是经过1小时到达。几小时后B站的公共汽车辆数是A站的3倍
2倍
13
v1.0可编辑可修改
例5甲、乙、丙三数的和是78,甲数比乙数的2倍多4,乙数比丙数的3倍少2。求这三个数。
练习五