2018-2019学年上期初二期末考试成绩册
北京市丰台区2018-2019学年八年级上期末数学试卷及答案
一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1. 如果二次根式2x -有意义,那么x 的取值范围是A. 2x ≠B. 0x ≥C. 2x >D. 2x ≥ 2. 剪纸是中华传统文化中的一块瑰宝,下列剪纸图案中不是..轴对称图形的是3. 9的平方根是A .3B .±3C .3±D .81 4. 下列事件中,属于不确定事件的是 A .晴天的早晨,太阳从东方升起 B .一般情况下,水烧到50°C 沸腾C .用长度分别是2cm ,3cm ,6cm 的细木条首尾相连组成一个三角形D .科学实验中,前100次实验都失败,第101次实验会成功 5. 如果将分式2xx y+中的字母x 与y 的值分别扩大为原来的10倍,那么这个分式的值 A .不改变 B .扩大为原来的20倍 C .扩大为原来的10倍 D .缩小为原来的1106. 如果将一副三角板按如图方式叠放,那么∠1等于A .120°B .105°C .60°D .45°160°45°7. 计算32a b(-)的结果是 A. 332a b - B. 336a b - C. 338a b- D. 338a b8. 如图,在△ABC 中,∠ACB =90°, CD ⊥AB 于点D ,如果∠DCB =30°,CB =2,那么AB 的长为A. 23B. 25C. 3D. 4 9.下列计算正确的是 A.325+= B. 1233-= C.326⨯= D.842= 10. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是 A.102B. 104C.105D. 5二、填空题(本题共18分,每小题3分) 11. 如果分式14x x --的值为0,那么x 的值是_________. 12. 计算:2(3)-=_________. 13. 在-1,0,2,π,13这五个数中任取一个数,取到无理数的可能性是_________. 14. 如图,ABC △中,90C ∠=,BD 平分ABC ∠交AC 于点D ,如果CD =6cm ,那么点D 到AB 的距离为_________cm. 15. 如图,△ABC 是边长为2的等边三角形,BD 是AC 边上的中线,延长BC 至点E ,使CE =CD ,联结DE ,则DE 的长是 .ABCD D CBAACBEABCD16. 下面是一个按某种规律排列的数表:第1行 1第2行232第3行567223第4行1011231314154……那么第5行中的第2个数是,第n(1n>,且n是整数)行的第2个数是 .(用含n的代数式表示)三、解答题(本题共20分,每题5分)17. 计算:381232-+-.18. 计算:2121.224a a aa a--+÷--19. 解方程:11322x x x-+=--.20. 已知:如图,点B ,E ,C ,F 在同一条直线上, AB ∥DE ,AB =DE ,BE=CF . 求证:AC =DF .四、解答题(本题共11分,第21题5分,第22题6分) 21. 已知30x y -=,求22(+)+2x yx y x xy y -+的值.22. 列方程解应用题:学校要建立两个计算机教室,为此要购买相同数量的A 型计算机和B 型计算机.已知一台A 型计算机的售价比一台B 型计算机的售价便宜400元,如果购买A 型计算机需要22.4万元,购买B 型计算机需要24万元.那么一台A 型计算机的售价和一台B 型计算机的售价分别是多少元?E A C DB F五、解答题(本题共21分,每小题7分)23. 已知:如图,△AOB 的顶点O 在直线l 上,且AO =AB .(1)画出△AOB 关于直线l 成轴对称的图形△COD ,且使点A 的对称点为点C ; (2)在(1)的条件下, AC 与BD 的位置关系是 ;(3)在(1)、(2)的条件下,联结AD ,如果∠ABD =2∠ADB ,求∠AOC 的度数.24. 我们知道,假分数可以化为整数与真分数的和的形式.例如:32=112+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:像11x x +-,22x x -,…这样的分式是假分式;像42x - ,221x x +,…这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如:112122111111x x x x x x x x +-==+=+-----(-)+;22442(2)4422222x x x )x x x x x x -++-+===++----(. (1)将分式12x x -+化为整式与真分式的和的形式; (2)如果分式2211x x --的值为整数,求x 的整数值.BAOl25. 请阅读下列材料:问题:如图1,△ABC中,∠ACB=90°,AC=BC,MN是过点A的直线,DB⊥MN于点D,联结CD.求证:BD+ AD =2CD.小明的思考过程如下:要证BD+ AD =2CD,需要将BD,AD转化到同一条直线上,可以在MN上截取AE=BD,并联结EC,可证△ACE和△BCD全等,得到CE=CD,且∠ACE=∠BCD,由此推出△CDE为等腰直角三角形,可知DE =2CD,于是结论得证.小聪的思考过程如下:要证BD+ AD =2CD,需要构造以CD为腰的等腰直角三角形,可以过点C作CE⊥CD交MN于点E,可证△ACE和△BCD全等,得到CE=CD,且AE=BD,由此推出△CDE为等腰直角三角形,可知DE =2CD,于是结论得证.请你参考小明或小聪的思考过程解决下面的问题:(1) 将图1中的直线MN绕点A旋转到图2和图3的两种位置时,其它条件不变,猜想BD,AD,CD之间的数量关系,并选择其中一个图形加以证明;(2) 在直线MN绕点A旋转的过程中,当∠BCD=30°,BD =2时,CD=__________.MDNBCA图2BCNMDA图3AC BNDM E图1丰台区2019-2019学年度第一学期期末练习初二数学评分标准及参考答案一、选择题(本题共30分,每小题3分)题号 1 2 3 4 5 6 7 8 9 10 答案DCBDABCDBA二、填空题(本题共18分,每小题3分)题号 11 12 1314 1516答案13256332()212n -+三、解答题(本题共20分,每小题5分) 17.解:原式=22323-+- …… 3分 =433-. …… 5分 18.解:原式=21(1)22(2)a a a a --÷-- …… 2分=212(2)2(1)a a a a --⨯-- ……3分=21a -. ……5分19.解:11322x x x -+=-- ……1分13(2)1x x +-=- ……2分1361x x +-=- ……3分24x =2x =. ……4分经检验,2x = 是原方程的增根,所以,原方程无解. ……5分 20.证明:∵AB ∥DE ,∴∠B =∠DEC . ……1分∵BE = CF ,∴BE +EC = CF +EC ,即BC = EF . ……2分在△ABC 和△DEF 中,,AB DE B DEC BC EF ===⎧⎪⎨⎪⎩∠∠ ……3分 ∴△ABC ≌△DEF (SAS ). ……4分 ∴AC = DF .(全等三角形对应边相等)…5分 四、解答题(本题共11分,第21题5分,第22题6分)21.解:原式=()()2x yx y x y -⋅++ ……1分=x yx y-+. ……2分 ∵30x y -=,∴=3x y . ……3分∴原式=33y yy y-+. ……4分=12. ……5分22.解:设一台A 型计算机的售价是x 元,则一台B 型计算机的售价是(x +400)元.根据题意列方程,得 ……1分224000240000400x x =+ ……3分 解这个方程,得5600x = ……4分经检验,5600x =是所列方程的解,并且符合实际问题的意义. ……5分当5600x =时,+4006000x =.答:一台A 型计算机的售价是5600元,一台B 型计算机的售价是6000元. ……6分五、解答题(本题共21分,每小题7分) 23.(1)如图1.……1分 (2)平行. ……2分 (3)解:如图2,由(1)可知,△AOB 与△COD 关于直线l 对称, ∴△AOB ≌△COD .……3分∴AO =CO ,AB = CD ,OB = OD ,∠ABO =∠CDO . 图1 图2 ∴∠OBD =∠ODB . ……4分∴∠ABO+∠OBD =∠CDO+∠ODB ,即∠ABD =∠CDB .∵∠ABD =2∠ADB ,∴∠CDB =2∠ADB .∴∠CDA =∠ADB .……5分由(2)可知,AC ∥BD ,∴∠CAD =∠ADB .∴∠CAD =∠CDA ,∴CA = CD .……6分 ∵AO = AB ,∴AO = OC = AC ,即△AOC 为等边三角形. ∴∠AOC = 60°. ……7分 24.解:(1)12x x -+()232x x +-=+ ……1分2232x x x +=+-+ ……2分312x+=-. ……3分(2)2211x x --22211x x -+=- ()()21111x x x +-+=-()1211x x =++-. ……5分 ∵分式的值为整数,且x 为整数, ∴11x -=±,∴x =2或0.……7分25.解:(1)如图2,BD -AD =2CD . ……1分ABCDOllO DCB A如图3,AD -BD =2CD . ……2分证明图2:( 法一)在直线MN 上截取AE =BD ,联结CE .设AC 与BD 相交于点F ,∵BD ⊥MN ,∴∠ADB =90°,∴∠CAE+∠AFD =90°.∵∠ACB =90°,∴∠1+∠BFC =90°. ∵∠AFD =∠BFC ,∴∠CAE =∠1.∵AC =BC ,∴△ACE ≌△BCD (SAS ). ……3分 ∴CE =CD ,∠ACE =∠BCD .∴∠ACE -∠ACD =∠BCD -∠ACD ,即∠2=∠ACB =90°.在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分 ∵DE = AE -AD = BD -AD ,∴BD -AD =2CD . ……5分 ( 法二)过点C 作CE ⊥CD 交MN 于点E ,则∠2=90°. ∵∠ACB =90°,∴∠2+∠ACD =∠ACB+∠ACD , 即∠ACE =∠BCD .设AC 与BD 相交于点F ,∵DB ⊥MN ,∴∠ADB =90°. ∴∠CAE+∠AFD =90°,∠1+∠BFC =90°. ∵∠AFD =∠BFC ,∴∠CAE =∠1.∵AC =BC ,∴△ACE ≌△BCD (ASA ). ……3分 ∴CE =CD ,AE =BD .在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分 ∵DE = AE -AD = BD -AD ,∴BD -AD =2CD . ……5分 证明图3:( 法一)在直线MN 上截取AE =BD ,联结CE . 设AD 与BC 相交于点F ,∵∠ACB =90°,∴∠2+∠AFC =90°. ∵BD ⊥MN ,∴∠ADB =90°,∠3+∠BFD =90°. ∵∠AFC =∠BFD ,∴∠2=∠3.∵AC =BC ,∴△ACE ≌△BCD (SAS ). ……3分 ∴CE =CD ,∠1=∠4.∴∠1+∠BCE =∠4+∠BCE ,即∠ECD =∠ACB =90°.在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分F12图2A C BND ME FE M DNBC A 图221E BCN M DA 图3123F 4数学试卷∵DE = AD -AE = AD -BD ,∴AD -BD =2CD . ……5分 ( 法二)过点C 作CE ⊥CD 交MN 于点E ,则∠DCE =90°.∵∠ACB =90°,∴∠ACB -∠ECB = ∠DCE -∠ECB ,即∠1=∠4. 设AD 与BC 相交于点F ,∵DB ⊥MN ,∴∠ADB =90°. ∴∠2+∠AFC =90°,∠3+∠BFD =90°.∵∠AFC =∠BFD ,∴∠2=∠3.∵AC =BC ,∴△ACE ≌△BCD (ASA ).……3分 ∴CE =CD ,AE =BD .在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分∵DE = AD -AE = AD -BD ,∴AD -BD =2CD .……5分 (2)31± .……7分 4F 321 图3A D M N C B E。
河北省保定市定州市2018-2019学年八年级(上)期末数学试卷含解析
2021-2021学年八年级〔上〕期末数学试卷•选择题〔共12小题〕 1.如果分式 有意义,那么x+3x 的取值范围是〔 )x >— 3C.A. x v — 3B. x 工―3D. x =— 32.以下计算正确的选项是〔)_ 9 3 3B. c 3 2 6A. a * a = a3a ?2a = 6a6 6D. 325C. m * m = mm ?m = m3.有一种球状细菌,直径约为0.0000000018 m 那么0.0000000018用科学记数法表示为( )—10 —9 — 8 —8A. 18X 10B. 1.8 X 10C. 1.8 X 10D. 0.18 X 10 4•如图,小明书上的三角形被墨迹遮挡了一局部,但他很快想到方法在作业本上画了一样的三角形,那么这两个三角形完全一样的依据是〔A. 3B. 4C. 5D. 6 7.把多项式x 2+ax +b 分解因式,得〔 x +1) (x — 3),那么a +b 的值是() A. 5 B.- 5 C. 1D. —1&点P (a, 3)和点Q(4, b )关于x 轴对称, 那么(a +b ) 2021 的值〔)20212021A. 1B.- 1C. 7D. —79.假设(2a +3b )( 2 2)=9b - 4a ,那么括号内应填的代数式是〔)A. — 2a — 3bB. 2a +3bC. 2a — 3bD. 3b — 2aO) 6. 一个正多边形的内角和为 900。
,那么从一点引对角线的条数是〔10.假设分式 一一-2与三二的值互为相反数,那么 x =〔 〕x-5 x5. B. ASAC. SSSD. SASF 列长度的三条线段能组成三角形的是〔 A. 3, 4, 8B. 2, 5, 3C. L, 5D. 5, 5, 10A.B.C.—56211.如图,MN 是等边三角形 ABC 的一条对称轴,D 为AC 的中点,点 P 是直线MNk 的一个动点,当PGPD 最小时,/ PCD 勺度数是〔〕12•李老师开车去 20km 远的县城开会,假设按原方案速度行驶,那么会迟到10分钟,在保证17.如图,在 Rt △ ABC 中,/ C _ 90°,以顶点 A 为圆心,适当长为半径画弧,分别交AC , AB 于点M N,再分别以点 M N 为圆心,大于 £M N 勺长为半径画弧,两弧交于点P,作射线AP 交边BC 于点D,假设CD= 4, AB= 15,那么厶ABD 勺面积是 ______ .A. 30°B. 15C. 20°D. 35°平安驾驶的前提下,如果将速度每小时加快 10km 那么正好到达,如果设原来的行驶速度为xkm / h,那么可列分式方程为〔 〕A.———一=10X x+10 C 20 ^0_ 1':.2-L. U二.填空题〔共6小题〕 2_013.当x _时,分式——的值为零.---------x+33214. _______________________________ 分解因式:-m +6m- 9m= _________________ .B.—— —_ 10x+10 x20 — 2Q _ 1 x+10 x 616.如图,在△ ABC 中, AB= AC 点E 在CA 延长线上,EP 丄BC 于点P ,交AB 于点F ,假设AFc18•如图,把长方形纸片ABCD&对角线折叠,设重叠局部EBD那么以下说法:①厶EBD是等腰三角形,EB= ED②折叠后/ ABE和/ CB[一定相等;③折叠后得到的图形是轴对称图形;④厶EBAFH A EDC-定是全等三角形.其中正确的序号是C19.计算题.2 1 2 2(1)5xy -( xy)?( 2xy ).3(2)9 (a- 1) 2-( 3a+2) ( 3a-2).. _ 4 2 220. (1)因式分解:x - 81x y .4_Y7(2)先化简,再求值:「,其中x=- 5.2x-6 x-321. 解分式方程:22.如下图,在厶ABC中, ADL BC于D, CEL AB于E, AD与CE交.于点F,且AD= CD 求证:AB= CF.23.如图,在△ ABC中, AB= AC AB的垂直平分线MN交AC于点D,交AB于点E.(1)假设/ A= 40°,求/ DBC的度数;(2)假设AE= 6,A CBM周长为20,求厶ABC的周长.2 2x - 4x+2) (x - 4x+6) +4进行因式分解的过程解:设x2- 4x =y,原式=(y+2) (y+6) +4 (第一步)2=y +8y+16 (第二步)=(y+4) 2 3(第三步)2 该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果. 这个结果是否分解到最后?________ •(填“是〞或“否〞)如果否,直接写出最后的结果_______ .2 23 请你模仿以上方法尝试对多项式( x - 2x) (x - 2x+2) +1进行因式分解.=(x2-4x+4) 2(第四步)(1)该同学第二步到第三步运用了因式分解的 ___________ (填序号)A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式25 .某地下管道,假设由甲队单独铺设,恰好在规定时间内完成;假设由乙队单独铺设,需要超过规定时间15天才能完成,如果先由甲、乙两队合做10天,再由乙队单独铺设正好按时完成.(1) 这项工程的规定时间是多少天?(2) 甲队每天的施工费用为5000元,乙队每天的施工费用为3000元,为了缩短工期以减少对居民交通的影响,工程指挥部最终决定该工程由甲、乙队合做来完成,那么 该工程施工费用是多少?BDLAB AO BD= 7cm 点P 在线段 AB 上以2cn /s 的速图〔2〕〔1〕假设点Q 的运动速度与点 P 的运动速度相等,当t = 1时,△ BPC 是否全等,请说明理由;〔2〕 在〔1〕的前提条件下,判断此时线段 PC 和线段PQ 的位置关系,并证明; 〔3〕如图〔2〕,将图〔1〕中的“ ACL AB BDL AB'为改 “/ CAB=Z DBA= 50。
2018-2019学年广东省江门市八年级(上)期末数学试卷-普通用卷
2018-2019学年广东省江门市八年级(上)期末数学试卷副标题一、选择题(本大题共10小题,共30.0分)1.下列图案中是轴对称图形的有()A. 1个B. 2 个C. 3个D. 4个2.下列计算正确的是()A. B. C.D.3.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A. 三角形的稳定性B. 两点之间线段最短C. 两点确定一条直线D. 垂线段最短4.下列多项式中能用平方差公式分解因式的是()A. B. C. D.5.如图,已知E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,添加以下条件之一,仍不能证明△ABC≌△DEF的是()A. B. C. D.6.一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A. 4B. 5C. 6D. 77.如图,△ABC中,D、E分别是BC、AD的中点,若△ABC的面积是18,则△ABE的面积是()A. 9B. 6C.D. 48.等腰三角形周长为18,其中一边长为4,则其它两边长分别为()A. 4,10B. 7,7C. 4,10或7,7D. 无法确定9.如图,DE是△ABC中AC边的垂直平分线,若BC=6cm,AB=8cm,则△EBC的周长为()A. 14cmB. 18cmC. 20cmD. 22cm10.一件工作,甲独做x小时完成,乙独做y小时完成,那么甲、乙合做全部工作需()小时A. B. C. D.二、填空题(本大题共6小题,共24.0分)11.一根头发的直径约为0.0000715米,该数用科学记数法表示为______.12.已知点A(m,-3)与点B(-4,n)关于x轴对称,则m+n的值为______.13.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β=______.14.已知单项式-2x a+2b y a-b与3x4y是同类项,则2a+b的值为______.15.Rt△ABC中,CD是斜边AB上的高,∠B=30°,AD=2cm,则BD的长度是______.16.若a+b=7,ab=12,则的值为______.三、计算题(本大题共2小题,共13.0分)17.计算:(1-)÷18.先化简,再求值:(x+2y)(x-2y)+(20xy3-8x2y2)÷4xy,其中x=2018,y=2019.四、解答题(本大题共7小题,共53.0分)19.分解因式:-2a3+12a2-18a20.如图,在所给正方形网格图中完成下列各题:(用直尺画图,保留痕迹)(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点Q,使△QAB的周长最小.21.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点M在BC边上,且∠MDF=∠ADF.(1)求证:△ADE≌△BFE.(2)连接EM,如果FM=DM,判断EM与DF的关系,并说明理由.22.上午8时,一艘轮船从A处出发以每小时20海里的速度向正北航行,10时到达B处,则轮船在A处测得灯塔C在北偏西36°,航行到B处时,又测得灯塔C在北偏西72°,求从B到灯塔C的距离.23.因课外活动的需要,鹏胜同学第一次在文具店买若干支笔芯,花了30元,第二次再去买该款笔芯时,发现每一盒(20支装)价钱升了2元,他这一次买该款笔芯的数量是第一次的2倍,花了68元,求他两次买的笔芯分别是多少支?24.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.25.如图,在正方形ABCD中,AB=BC=CD=AD=10cm,∠A=∠B=∠C=∠D=90°,点E在边AB上,且AE=4cm,如果点P在线段BC上以2cm/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.设运动时间为t秒.(1)若点Q与点P的运动速度相等,经过2秒后,△BPE与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,则当t为何值时,△BPE与△CQP全等?此时点Q的运动速度为多少?答案和解析1.【答案】B【解析】解:第一个图形是轴对称图形,第二个图形不是轴对称图形,第三个图形不是轴对称图形,第四个图形是轴对称图形,综上所述,是轴对称图形的有第一、四共2个.故选:B.根据轴对称图形的概念对各图形分析判断后即可求解.本题考查了轴对称图形,图形两部分沿对称轴折叠后可重合,轴对称图形的关键是寻找对称轴.2.【答案】D【解析】解:(a-b)2=a2-2ab+b2,A错误;(x2)3=x6,B错误;x8÷x2=x6,C错误;x2•x5=x7,D正确;故选:D.根据完全平方公式,同底数幂的乘除法法则,幂的乘方法则进行计算,判断即可.本题考查的是完全平方公式,同底数幂的乘除法,幂的乘方,掌握它们的运算法则是解题的关键.3.【答案】A【解析】解:根据三角形的稳定性可固定窗户.故选:A.根据三角形的稳定性即可解决问题.本题考查了三角形的稳定性,熟练掌握三角形的稳定性是解题的关键.4.【答案】D【解析】解:A、a2+(-b)2符号相同,不能用平方差公式分解因式,故A选项错误;B、5m2-20mn两项不都是平方项,不能用平方差公式分解因式,故B选项错误;C、-x2-y2符号相同,不能用平方差公式分解因式,故C选项错误;D、-x2+9=-x2+32,两项符号相反,能用平方差公式分解因式,故D选项正确.故选:D.能用平方差公式分解因式的式子特点是:两项平方项,符号相反.本题考查用平方差公式分解因式的式子特点,两平方项的符号相反.5.【答案】B【解析】解:A.添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故A选项不符合题意.B.添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故B选项符合题意;C.添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项不符合题意;D.添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故D选项不符合题意;故选:B.由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.【答案】C【解析】解:设这个多边形是n边形,根据题意,得(n-2)×180°=2×360,解得:n=6.即这个多边形为六边形.故选:C.多边形的外角和是360°,则内角和是2×360=720°.设这个多边形是n边形,内角和是(n-2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.7.【答案】C【解析】解:∵D、E分别是BC,AD的中点,∴△ABD是△ABC面积的,△ABE是△ABD面积的,∴△ABE的面积=18××=18×=4.5.故选:C.中线AD把△ABC分成面积相等的两个三角形,中线BE又把△ABD分成面积相等的两个三角形,所以△ABE的面积是△ABC的面积的.本题考查了三角形的面积计算,解题的关键是熟悉三角形的中线把三角形分成面积相等的两个小三角形.8.【答案】B【解析】解:当腰为4时,另一腰也为4,则底为18-2×4=10,∵4+4=8<10,∴这样的三边不能构成三角形.当底为4时,腰为(18-4)÷2=7,∵0<7<7+4=11,∴以4,7,7为边能构成三角形∴其它两边长分别为7,7.故选:B.由于长为4的边可能为腰,也可能为底边,故应分两种情况讨论.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.9.【答案】A【解析】解:∵DE是△ABC中AC边的垂直平分线,∴AE=CE,∴CE+BE=AB=8cm.∵BC=6cm,∴△EBC的周长=BC+CE+BE=BC+AB=6+8=14(cm).故选:A.先根据线段垂直平分线的性质得出AE=CE,故CE+BE=AB,再由△EBC的周长=BC+CE+BE=BC+AB即可得出结论.本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.10.【答案】D【解析】解:∵一件工作,甲独做x小时完成,乙独做y小时完成,∴甲每小时完成总工作量的:,乙每小时完成总工作量的:,∴甲、乙合做全部工作需:=,故选:D.根据甲独做x小时完成,乙独做y小时完成,可以表示出两人每小时完成的工作量,进而得出甲、乙合做全部工作所需时间.此题考查了列代数式,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.11.【答案】7.15×10-5【解析】解:0.0000715=7.15×10-5;故答案为7.15×10-5.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.【答案】-1【解析】解:∵点A(m,-3)与点B(-4,n)关于x轴对称,∴m=-4,n=3,则m+n=-4+3=-1,故答案为:-1.利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数求得m、n 的值,再代入计算可得.此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.13.【答案】240°【解析】解:∵等边三角形的顶角为60°,∴两底角和=180°-60°=120°;∴∠α+∠β=360°-120°=240°故答案是:240°.本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题.14.【答案】5【解析】解:∵单项式-2x a+2b y a-b与3x4y是同类项,∴,解得,a=2,b=1,则2a+b=5,故答案为:5.根据同类项的定义列出二元一次方程组,解方程组求出a,b,计算即可.本题考查的是同类项的定义,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.15.【答案】6cm【解析】解:在Rt△ABC中,∵CD是斜边AB上的高,∴∠ADC=90°,∴∠ACD=∠B=30°(同角的余角相等),∵AD=2cm,在Rt△ACD中,AC=2AD=4cm,在Rt△ABC中,AB=2AC=8cm.∴AB的长度是8cm.∴BD的长度=8-2=6cm,故答案为:6cm先求出∠ACD=30°,然后根据30°所对的直角边等于斜边的一半解答.本题主要考查直角三角形30°角所对的直角边等于斜边的一半的性质,关键是先求出∠ACD=30°.16.【答案】【解析】解:原式=,由于a+b=7,ab=12.∴原式==,故答案为:.根据完全平方公式进行化简,然后将a+b与ab的值代入即可求出答案.本题考查整式的运算,解题的关键是熟练运用完全平方公式,本题属于基础题型.17.【答案】解:原式=•=•=x+1.【解析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.18.【答案】解:原式=x2-4y2+5y2-2xy=x2-2xy+y2,=(x-y)2,当x=2018,y=2019时,原式=(2018-2019)2=(-1)2=1.【解析】先根据整式的混合运算顺序和运算法则化简原式,再将x与y的值代入计算可得.本题主要考查整式的混合运算-化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则.19.【答案】解:原式=-2a(a2-6a+9)=-2a(a-3)2.【解析】先提取公因式-2a,再根据完全平方公式进行二次分解.完全平方公式:a2±2ab+b2=(a±b)2.本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.20.【答案】解:(1)如图所示:从△ABC各顶点向DE引垂线并延长相同的长度,找到对应点,顺次连接即可得△A1B1C1;(2)如图所示:利用轴对称图形的性质可得点A关于直线DE的对称点A1,连接A1B,交直线DE于点Q,点Q即为所求,此时△QAB的周长最小.【解析】(1)从三角形各顶点向DE引垂线并延长相同的长度,找到对应点,顺次连接;(2)利用轴对称图形的性质可作点A关于直线DE的对称点A1,连接BA1,交直线DE于点Q,点Q即为所求.此题主要考查了有关轴对称--最短路线的问题中的作图步骤,是此类问题的基础,需熟练掌握,用到的知识点为:两点之间,线段最短.注意,作图形变换这类题的关键是找到图形的对应点.21.【答案】(1)证明:∵AD∥BC,∴∠ADE=∠BFE,∵E为AB的中点,∴AE=BE,在△AED和△BFE中,,∴△AED≌△BFE(AAS);(2)解:EM与DM的关系是EM垂直且平分DF;理由如下:连接EM,如图所示:由(1)得:△AED≌△BFE,∴DE=EF,∵∠MDF=∠ADF,∠ADE=∠BFE,∴∠MDF=∠BFE,∴FM=DM,∴EM⊥DF,∴ME垂直平分DF.【解析】(1)由平行线的性质得出∠ADE=∠BFE,由E为AB的中点,得出AE=BE,由AAS证明△AED≌△BFE即可;(2)由△AED≌△BFE,得出对应边相等DE=EF,证明FM=DM,由三角形的三线合一性质得出EM⊥DF,即可得出结论.本题考查了平行线的性质、全等三角形的判定与性质、等腰三角形的判定与性质;熟练掌握全等三角形的判定与性质,并能进行推理论证是解决问题的关键.22.【答案】解:由题意得:AB=(10-8)×20=40海里,∵∠C=72°-∠A=36°=∠A,∴BC=AB=40海里.答:从B到灯塔C的距离为40海里.【解析】易得AB长为40海里,利用三角形的外角知识可得△ABC为等腰三角形,那么BC=AB.考查方向角问题;利用外角知识判断出△ABC的形状是解决本题的突破点.23.【答案】解:设他第一次买的笔芯为x支,则第二次买的笔芯为2x支.由题意得方程:=,化简,得:,解得:x=40,2x=80,经检验,x=40是原分式方程的解.答:他两次买的笔芯分别是40支、80支.【解析】根据“第二次购买的单价-第一次购买的单价=每支的单价=”这一等量关系即可列出方程求解.此题考查了分式方程的应用,能根据单价列出相应的等量关系是解决本题的关键.24.【答案】解:(1)∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;(2)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.【解析】(1)根据平行线的性质得到∠BAD+∠ADC=180°,根据角平分线的定义得到∠MAD+∠ADM=90°,根据垂直的定义得到答案;(2)作NM⊥AD,根据角平分线的性质得到BM=MN,MN=CM,等量代换得到答案.本题考查的是角平分线的性质,掌握平行线的性质和角的平分线上的点到角的两边的距离相等是解题的关键.25.【答案】解:(1)全等.理由:由题意:BP=CQ=2t当t=2时,BP=CQ=4∵AB=BC=10,AE=4∴BE=CP=10-4=6∵BP=CQ,∠B=∠C=90°,BE=CP∴△BPE≌△CQP(SAS)(2)∵P、Q运动速度不相等∴BP≠CQ∵∠B=∠C=90°∴当BP=CP,CQ=BE时,△BPE≌△CQP∴BP=CP=BC=5,CQ=BE=6∴当t=5÷2=(秒)时,△BPE≌△CQP此时点Q的运动速度为6÷=(cm/s)【解析】(1)由题意可得BP=CQ,BE=CP,由“SAS”可证△BPE≌△CQP;(2)由全等三角形的性质可得BP=CP=5,BE=CQ=6,即可求点Q的速度.本题考查了正方形的性质,全等三角形的判定和性质,熟练运用全等三角形的性质解决问题是本题的关键.。
北京市朝阳区2018-2019学年八年级(上)期末数学试卷及答案
2018-2019学年北京市朝阳区初二(上)期末数学及答案一.选择题(共8小题,满分24分)1. 画△ABC的边AB上的高,下列画法中,正确的是()【答案】D【解析】试题分析:三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.解:过点C作边AB的垂线段,即画AB边上的高CD,所以画法正确的是D.故选:D.考点:三角形的角平分线、中线和高.2.下列各式属于最简二次根式的是()A. B. C. D.【答案】B【解析】试题解析:A、含有能开方的因式,不是最简二次根式,故本选项错误;B、符合最简二次根式的定义,故本选项正确;C、含有能开方的因式,不是最简二次根式,故本选项错误;D、被开方数含分母,故本选项错误;故选B.3.若分式的值为0,则x的值是()A. 2或﹣2B. 2C. ﹣2D. 0【答案】A【解析】【分析】直接利用分式的值为零则分子为零进而得出答案.【详解】∵分式的值为0,∴x2﹣4=0,解得:x=2或﹣2.故选:A.【点睛】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.4.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【答案】B【解析】分析:根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.详解:①a2•a3=a5,故原题计算错误;②(a3)2=a6,故原题计算正确;③a5÷a5=1,故原题计算错误;④(ab)3=a3b3,故原题计算正确;正确的共2个,故选B.点睛:此题主要考查了同底数幂的除法、乘法、幂的乘方、积的乘方,关键是熟练掌握各计算法则.5.以下图形中,不是轴对称图形的是()A. B. C. D.【答案】D【解析】试题分析:A、沿一条直线对折后可以重合,是轴对称图形,故本选项错误;B、沿一条直线对折后可以重合,是轴对称图形,故本选项错误;C、沿一条直线对折后可以重合,是轴对称图形,故本选项错误;D、沿任何一条直线对折后都不能重合,不是轴对称图形,故本选项正确.故选:D.点睛:本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.已知∠A=60°24′,∠B=60.24°,∠C=60°14′24″,则( )A. ∠A>∠B>∠CB. ∠A>∠B=∠CC. ∠B>∠C>∠AD. ∠B=∠C>∠A【答案】B【解析】【分析】将∠A、∠B、∠C统一单位后比较即可.【详解】∵∠A=60°24′=60.4°,∠B=60.24°,∠C=60°14′24″=60.24°,∴∠A>∠B=∠C.故选B.【点睛】本题考查了度、分、秒的转化计算,比较简单,注意以60为进制即可.7.下列各式变形中,是因式分解的是()A. a2﹣2ab+b2﹣1=(a﹣b)2﹣1B. x4﹣1=(x2+1)(x+1)(x﹣1)C. (x+2)(x﹣2)=x2﹣4D. 2x2+2x=2x2(1+)【答案】B【解析】【分析】利用因式分解的定义判断即可.【详解】A选项:它的结果不是乘积的形式,不是因式分解,故是错误的;B选项:x4﹣1=(x2+1)(x+1)(x﹣1)结果是乘积形式,是因式分解,故是正确的;C选项:(x+2)(x﹣2)=x2﹣4中结果不是乘积的形式,不是因式分解,故是错误的;D选项:2x2+2x=2x2(1+)结果不是整式乘积的形式,不是因式分解,故是错误的;故选:B.【点睛】考查了因式分解的定义,理解因式分解的定义(把一个多项式在一个范围化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式)是解题的关键。
山东省潍坊市2018-2019学年八年级(上)期末数学试卷及答案解析
山东省潍坊市2018-2019学年八年级(上)期末数学试卷一、选择题1、如图,AD ∥BC ,∠ABC 的角平分线BP 与∠BAD 的角平分线AP 相交于点P ,作PE ⊥AB ,垂足为E .若PE=3,则两平行线AD 与BC 间的距离为 ( ) A .3 B .5 C .6 D .不能确定(第1题图) (第2题图) (第3题图) 2、如图所示,有以下三个条件:①AC =AB ;②AB ∥CD ;③∠1=∠2.从这三个条件中任选两个作为条件,另一个作为结论,则组成真命题的个数为( ) A .0 B .1 C .2 D .33、如图,在△ABC 和△DEC 中,已知AB =DE ,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是( )A .BC =EC ,∠B =∠E B .BC =EC ,AC =DC C .BC =DC ,∠A =∠D D .∠B =∠E ,∠A =∠D 4、下列六个图形中是轴对称图形的有( )A .0个B .6个C .3个D .4个5、化简的结果是( )A .B .C .D .6、命题:①对顶角相等;②两直线平行,内错角相等;③全等三角形的对应边相等.其中逆命题为真命题的有几个( ) A .0 B .1 C .2 D .37、如图,能判定EB ∥AC 的条件是( )A .∠C=∠ABEB .∠A=∠EBDC .∠C=∠ABCD .∠A=∠ABE8、若3x ﹣2y =0,则等于( )。
A .B .C .D .9、某同学使用计算器求30个数据的平均数时,错将其中一个数据108输入为18,那么由此求出的平均数与实际平均数的差是( )A .3.5B .3C .0.5D .﹣310、对于非零的两个实数a ,b ,规定a ⊕b =,若2⊕(2x ﹣1)=1,则x 的值为( )A .B .C .D .11、一艘海轮位于灯塔P 的南偏东70°方向的M 处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P 的北偏东40°的N 处,则N 处与灯塔P 的距离为( )。
2018-2019学年01月16日江苏南京建邺区初二上苏科版物理期末试卷与答案
南京建邺区2018~2019学年第一学期期末试卷八年级物理一、选择题(本题共12小题,每小题2分,共24分.每小题给出的四个选项中只有一个选项正确)1.以下估测与实际情况相符的是()A.物理课本的宽度约为18cmB.中学生脉搏跳动一次的时间约为3sC.冰箱冷冻室的最低温度约为2℃D.人步行的速度约为5m/s2.下列关于声现象的说法中,正确的是()A.只要物体振动,我们就能听到声音B.声音在真空中的传播速度为340m/sC.“轻声细语”指的是降低声音的音调D.声音既可以传递信息,又可以传递能量3.2018年俄罗斯足球世界杯中使用固体泡沫喷雾剂来辅助任意球的判罚,这种特制的速褪固体泡沫喷雾剂喷出一条白色直线,防守队员不可以越界,如图所示,而这条白色的直线也会在几分钟后“神奇”地自动消失,不会在草地上留下任何液体污渍,这条白色直线消失的过程中含有下列哪种物态变化()A.熔化C.升华B.汽化D.液化第3题图第4题图4.小明在查阅资料时,发现一张通过平面观后镜看到后方救护车的像的照片,如图所示,则该救护车车头上印有的字母图样是()A.B.C.D.5.“吹制玻璃工艺”是用一个管子插入加热熔化后的玻璃(玻璃为非晶体),在室温下不停的转动和吹气,使料泡不断胀大,再使用手工工具塑造出各种造型,在吹制过程中,玻璃的温度随时间而变化,下列图像最能正确反映这一变化的是()A.B.C.D.6.“影”是生活中常见的光现象,如做光学游戏的“手影”、留下美好记忆照片的“摄影”投影仪射到屏幕上的“投影”.湖岸景色在水中形成的“倒影”,如图所示,其中它们与物理知识对应关系正确的是()A.手影-平面镜成像B.摄影-透镜成像C.投影-小孔成像D.倒影-光的折射7.探究活动中,掌握研究问题的方法非常重要.例如,探究声音的产生的条件时,将发声的音叉触及水面,通过水花四溅来间接说明发声体在振动,以下活动中所用方法与上述研究方法相同的是()A.在研究光的传播特点时引入了光线B.研究材料的隔声性能时,要用同一声源,还要控制相同距离C.测量人体体温时,利用体温计内水银柱的长度变化来显示人体的温度高低D.探究声音的传播时,发声手机置于瓶内,不断抽出瓶内气体,听到的声音越来越小8.如图所示,小红和小明坐在车厢内,观察判断火车相对于地面的运动情况,小红:以窗外行驶中的动车为参照物,火车的位置变化了,因此火车是运动的。
浙江省绍兴市2018-2019学年八年级上学期科学期末考试试卷(解析版)
浙江省绍兴市2018-2019学年八年级上学期科学期末考试试卷一、选择题(本大题共有15题,每小题2分,共30分,每小题只有一个正确答案)1.某人反应迟钝、智力低下、身材矮小,这是由于该人()A. 幼年时生长激素分泌不足B. 幼年时胰岛素分泌不足C. 幼年时甲状腺激素分泌不足D. 青春期性激素分泌不足【答案】C【考点】激素对生命活动调节的作用,内分泌腺和激素【解析】【分析】题目的关键字是智力低下、身材矮小要与智力正常、身材矮小区分开来。
【解答】A 根据生长激素是促进生长的特点可知幼年时生长激素分泌不足会导致身材矮小,但智力是正常的。
A不符合题意。
B:胰岛素的作用是促进血循环中葡萄糖进入肝细胞、肌细胞、脂肪细胞及其他组织细胞合成糖原使血糖降低。
如果胰岛素分泌不足会导致血糖偏高,B不符合题意。
C甲状腺素的主要作用是促进物质与能量代谢,促进生长和发育,所以幼年时甲状腺激素分泌不足时会导致智力低下、身材矮小,C符合题意。
D 性激素是促进性器官的发育,及维持第二性征,D不符合题意。
故答案为:C。
2.根据大气温度的垂直变化,科学家将大气分层进行研究。
下列关于大气中对流层的相关叙述:①对流层有强烈的对流运动;②气温随高度的增加而升高;③对流层是与人类关系最密切的一层;④对流层中的天气现象复杂多变;⑤由于大气分5层,所以对流层占了大气质量的五分之一。
其中正确的描述是:()A. ①③④⑤ B. ①②③⑤ C. ①②③④ D. ①③④【答案】 D【考点】气温,大气的温度,大气的分层,对流层最显著的特点【解析】【分析】此题主要是考大气层的分层及各层具有的特点。
【解答】对流层的一个显著的特点就是有对流运动,所以①对;对流层就是随着高度的增加而降低的,②错;我们人类是生活在对流层的,所以与人类关系最密切,③对;所有的天气现象都是发生在对流层的,所以对流层中的天气现象复杂多变,④对;对流层集中了大气总质量75%左右,⑤错。
2018-2019学年广东省广州市海珠区八年级(上)期末物理试卷含答案
2018-2019学年广东省广州市海珠区八年级(上)期末物理试卷一、选择题(每小题3分,每小题给出的四个选项中,只有一项最符合题意)1.如图所示,用超声波查看胎儿的情况。
以下说法正确的是()A.利用超声波能检测胎儿的血型B.这主要是利用了声波传递能量C.利用超声波能查看胎儿的手脚是否发育正常D.准妈妈听不到超声波,主要是因为它的振幅较小2.梁老师和梁越群同学合唱歌曲《苔》的谱(部分简谱如图所示)。
以下说法错误的是()A.唱谱时,声音主要是由声带的振动产生的B.唱“苔”和“花”的音调时,振动的频率相同C.与其它相比,唱“牡”的音调时,声带每秒振动的次数最多D.根据音色,能分辨两人不同的声音3.以下是一些男生为中考体育项目制定的运动目标。
其中,他们无法实现的是()A.1000m长跑100s B.三级蛙跳8mC.立定跳远2.55m D.跳绳每分钟180次4.在匀速直线行驶的车内,小明在固定位置给小芳先后拍下甲、乙两张照片如图所示,可判断()A.车向西运动,小芳相对车是静止的B.车向西运动,小芳相对车是运动的C.车向东运动,小芳相对车是静止的D.车向东运动,小芳相对车是运动的5.小芳的100m跑成绩为15s,小明的50m跑成绩为8s。
下列判断正确的是()A.小芳跑的路程长,所以她跑得快B.小明跑的时间少,所以他跑得快C.小芳跑过每米平均用时少,所以她跑得快D.小明每秒跑过的平均路程长,所以他跑得快6.阳光灿烂的日子,在茂密的树林下面有许多圆形的光斑()A.这种现象是由于“光的反射”形成的B.这是由于太阳光透过树叶间的间隙形成的C.这是光的色散现象D.这种现象能推断出树木的叶子是圆的7.光从空气斜射入玻璃,最后从下表面再射入空气,以下光路图合理的是()A.B.C.D.8.如图所示,早期照相馆,摄影师取景时,在取景框看到模糊的倒立的像。
要在取景框看到清晰的倒立的像,摄影师进行了以下操作。
其中一定不可行的是()A.两人远离照相机B.两人靠近照相机C.仅调整镜头与取景框的距离D.仅调整照相机的高度9.人体总血量约为身体质量的8%,普通成年人的总血量可能是()A.5kg B.0.5t C.50kg D.5mg10.以下正确的是()A.1光年>24小时B.1毫米>1纳米C.lkm/h>1m/s D.1kg/m3>lg/cm311.以下四图,能表示近视眼成像模糊及其矫正做法的是()A.甲、丙B.甲、丁C.乙、丙D.乙、丁12.三棱镜对不同色光的偏折不同,其中对红光的偏折最小,对紫光的偏折最大,以下示意图(光在三棱镜中传播方向的箭头和其它色光没有画出)正确的是()A.B.C.D.13.如图所示,显微镜由两组凸透镜组成,来自被观察物体的光经过物镜后成一个放大的实像,道理就如()成像一样A.照相机的镜头B.投影仪的镜头C.放大镜D.平面镜14.同一针筒装有不同体积的同种液体,电子秤分别测量其质量如下图所示,以下不能推算出的物理量是()A.针筒中液体的质量B.针筒中液体的密度C.空针筒的质量D.空针筒的密度二、填空作图题(共26分)15.如图所示,有两束光入射到凸透镜。
2018-2019学年最新人教版八年级语文第一学期期末考试试题(含答案)
2018-2019学年度上学期八年级期末语文测试卷考试时间120分钟,试卷满分100分第一部分、积累与运用(30分)I•请把下面的名言工整地抄写在方格里。
(2分)天行健,君子以自强不息。
□□□□□□□□□□□□2下列词语中加点字注音有错误的一项是()(3分)A、矜持(j m)濒临灭绝(b m)序幕(X⑪笼罩(l eng)B、淘汰(t①拾级而上(sh 0障碍zh M g) 搅拌(jic C、贿赂(I0水泄不通(xi ©掩映(y ing)秧苗(y mg)D、承诺(hu ©矢志不移(sh 1)灼伤(zhu。
遗传(y i)3下列词语中有错别字的一组是()(3 分)A、无所事事光彩熠熠歇斯底里针锋相对B、耿耿于怀风度翩翩得天独厚一席之地C 、劫后余生手当其冲刀耕火种危言耸听D错综复杂仗义执言大相径庭不言而4.依次填入横线上的词语,正确的一项是()(3分)1、他觉出其中有什么 ____ ,逼我立即拿来,我只好进屋把书拿出来。
2、为了追求光和热,有人宁愿 _____ 自己的生命。
生命是可爱的。
但寒冷的、寂寞的生,却不如轰轰烈烈的死。
3、最终,这位收买专利权的商人按照合同―了自己的诺言A .奥秘放弃实现B . 秘诀舍弃实现C .秘诀放弃履行D奥秘舍奔履行5、下列句子没有语病的一个是()(3分)A. 我们每个人都应该端正学习科学知识的目的。
B. 我们只有相信自己的能力,才能在各种考验前充满信心。
C •通过全班同学的共同努力,使我们班总成绩在年级组的排位有了大幅度提升。
D.球馆设施齐全,可为乒乓球爱好者提供球拍、球衣、球鞋和衣柜等乒乓器材。
6下面句子没有使用修辞方法的一项是()(3分)A •回望兰亭,难忘残园雨锁,难忘清波泛舟,难忘竹林漫步……B. 每到冬季,流动的飞瀑凝固成一根根冰柱,仿佛一把巨大的竖琴,奏出美妙的乐章。
C. 林子里候多地方还积着厚厚的雪,高山杜鹃花却早已耐不住性子,径自开了起来。
2018-2019学年广东省珠海市香洲区八年级(上)期末数学试卷(解析版)
2018-2019学年广东省珠海市香洲区八年级(上)期末数学试卷一、选择题(本大题10小题,每小题3分,共30分)每小题给出四个选项在只有一个是正确的,请把答题卡上对应题目所选的选修涂黑。
1.下列图形中,不是轴对称图形的是()A.B.C.D.2.下列长度的三条线段,能组成三角形的是()A.3,4,8B.6,7,8C.5,6,11D.1,4,73.点A(2,﹣1)关于x轴对称的点B的坐标为()A.(2,1)B.(﹣2,1)C.(2,﹣1)D.(﹣2,﹣1)4.若分式有意义,则x的取值范围是()A.x≠0B.x≠1C.x≠﹣1D.x取任意实数5.下列计算正确的是()A.a2+a3=a5B.(a2)3=a6C.a6÷a2=a3D.2a×3a=6a6.如图,AB=CD,AE⊥BC,DF⊥BC,垂足分别为E,F,CE=BF,下列结论错误的是()A.∠C=∠B B.DF∥AE C.∠A+∠D=90°D.CF=BE7.下列多项式能用完全平方公式进行因式分解的是()A.a2﹣1B.a2+4C.a2+2a+1D.a2﹣4a﹣48.如果把分式中的x,y都扩大3倍,那么分式的值()A.扩大3倍B.不变C.缩小3倍D.扩大2倍9.如图,在△ABC中,∠B=50°,∠A=30°,CD平分∠ACB,CE⊥AB于点E,则∠DCE的度数是()A.5°B.8°C.10°D.15°10.如图,设k=(a>b>0),则有()A.0<k<B.<k<1C.0<k<1D.1<k<2二、填空题(本大题共6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上。
11.(4分)2﹣1=.12.(4分)如图,△ABC≌△DCB,∠DBC=35°,则∠AOB的度数为.13.(4分)因式分解:a2﹣2a=.14.(4分)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,则∠DBC=度.15.(4分)已知(x+y)2=25,(x﹣y)2=9,则x2+y2=.16.(4分)如图,等边△ABC的周长为18cm,BD为AC边上的中线,动点P,Q分别在线段BC,BD上运动,连接CQ,PQ,当BP长为cm时,线段CQ+PQ的和为最小.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)计算:(2x+y)(2x﹣y)+y(2x+y).18.(6分)如图,在Rt△ABC中,∠C=90°,∠A=30°.(1)尺规作图:作∠B的平分线BD交AC于点D;(不写作法,保留作图痕迹)(2)若DC=2,求AC的长.19.(6分)解方程:.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)先化简,再求值:÷(﹣1),其中x=﹣2018.21.(7分)如图,在△ABC中,点D在BC上,AB=AC=BD,AD=DC,将△ACD沿AD折叠至△AED,AE交BC于点F.(1)求∠C的度数;(2)求证:BF=CD.22.(7分)港珠澳大桥是世界最长的跨海大桥,连接香港大屿山、澳门半岛和广东省珠海市,其中珠海站到香港站全长约55千米,2018年10月24日上午9时正式通车.一辆观光巴士自珠海站出发,25分钟后,一辆小汽车从同一地点出发,结果同时到达香港站.已知小汽车的速度是观光巴士的1.6倍,求观光巴士的速度.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)观察下列式子:0×2+1=12……①1×3+1=22……②2×4+1=32……③3×5+1=42……④……(1)第⑤个式子,第⑩个式子;(2)请用含n(n为正整数)的式子表示上述的规律,并证明:(3)求值:(1+)(1+)(1+)(1+)…(1+).24.(9分)如图,在等腰△ABC中,AB=AC,过点B作BD⊥AB,过点C作CD⊥BC,两线相交于点D,AF平分∠BAC交BC于点E,交BD于点F.(1)若∠BAC=68°,则∠DBC=°;(2)求证:点F为BD中点;(3)若AC=BD,且CD=3,求四边形ABDC的面积.25.(9分)如图,在Rt△ABO中,∠BAO=90°,AO=AB,BO=8,点A的坐标(﹣8,0),点C在线段AO上以每秒2个单位长度的速度由A向O运动,运动时间为t秒,连接BC,过点A 作AD⊥BC,垂足为点E,分别交BO于点F,交y轴于点D.(1)用t表示点D的坐标;(2)如图1,连接CF,当t=2时,求证:∠FCO=∠BCA;(3)如图2,当BC平分∠ABO时,求t的值.2018-2019学年广东省珠海市香洲区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)每小题给出四个选项在只有一个是正确的,请把答题卡上对应题目所选的选修涂黑。
2018-2019学年度第一学期期末教学质量检测八年级 语文试题
2018-2019学年度第一学期期末教学质量检测八年级语文(说明:全卷分为A卷和B卷,A卷满分100分,B卷满分50分,满分150分。
考试时间120分钟。
)A卷B卷A卷(共100分)第Ⅰ卷(选择题,共24分)一、基础知识(每小题3分,共12分)1.下面加点字注音全部正确的一项是()A.歼.灭(jiān) 阻塞.(sài) 签.订(qiān) 翘.首以待(qiào)B.泄.气(xiè) 溃.退(kuì) 覆.灭(fù) 颁.发奖状(bān)C.纤.维(xiān) 封锁.(suǒ) 对峙.(shì) 屏.声静气 (píng)D.遗憾.(hàn) 舆.论(yú) 督.战(dū) 锐不可当.(dàng)2.下列语句中书写正确的一项是()A.倍受外界关注的我国航母舰载战斗机首次着舰进入最关键时刻。
B.除下帽来,油光可鉴,婉如小姑娘的发髻一般。
C.当你在积雪初融的高原上走过,看见平坦的大地上傲然挺立这么一株或一排白杨树,难道你就觉得它只是树?D.疏林簿雾,农舍田畴,春寒料峭,赶集的乡人驱赶着往城内送炭的毛驴驮队。
3.下列各句中,加点的成语或熟语使用有误的一项是( )A.城市绿化必须因地制宜....,突出环境保护与人文景观和谐统一的发展观念。
B.叶圣陶先生说,苏州园林是我国各地园林的标本。
去年到苏州游览了几个园林,果然觉得名正言顺....。
八年级语文第1 页共12 页C.人们常用谚语“三百六十行.....”劝勉别人不要嫌弃行业不好,任何工作都能.....,行行出状元创造出超人的业绩。
D.改革开放三十年来,全国人民安居乐业....,生活水平日益提高。
4.下列句子没有语病的一句是( )A.半期考试之后,由于她这样好的成绩,得到了老师和同学们的赞扬。
B.全校师生在雷锋精神的鼓舞下,好人好事如雨后春笋似的涌现出来。
C.他们胸怀祖国,放眼世界,在高手如林的雅典奥运会上,大力发扬了敢拼敢搏,终于夺得了冠军。
最新2018-2019学年苏教版数学八年级上册期末模拟检测卷及答案解析-精品试卷
苏教版八年级第一学期期末模拟考试数学试题一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,无理数是()A.πB.C.D.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状3.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)4.下列图形中,对称轴的条数最多的图形是()A.线段B.角C.等腰三角形D.正方形5.在平面直角坐标系中,一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.4的平方根是.8.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B 的坐标是(,).9.任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小到大排列为.①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数.10.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为人.11.比较大小:1(填“>”、“<”或“=”).12.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是.13.如图,在平面直角坐标系中,函数y=﹣2x与y=kx+b的图象交于点P(m,2),则不等式kx+b>﹣2x的解集为.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.15.如图,D为等边△ABC的边AB上一点,且DE⊥BC,EF⊥AC,FD⊥AB,垂足分别为点E、F、D.若AB=6,则BE= .16.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是(填序号).三、解答题(本大题共10小题,共68分)17.(4分)计算:.18.(6分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)C组学生的频率为,在扇形统计图中D组的圆心角是度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?19.(6分)如图:点C、D在AB上,且AC=BD,AE=FB,AE∥BF.求证:DE∥CF.20.(6分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.21.(7分)已知平移一次函数y=2x﹣4的图象过点(﹣2,1)后的图象为l1.(1)求图象l1对应的函数表达式,并画出图象l1;(2)求一次函数y=﹣2x+4的图象l2与l1及x轴所围成的三角形的面积.22.(8分)如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a= km,AB两地的距离为km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?23.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.24.(7分)如图,△ABC中,AB=AC,D、E分别是AB及AC延长线上的点,且BD=CE,连接DE交BC于点O.过点D作DH⊥BC,过E作EK⊥BC,垂足分别为H、K.(1)求证:DH=EK;(2)求证:DO=EO.25.(7分)某工厂每天生产A、B两种款式的布制环保购物袋共4500个.已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设该厂每天生产A种购物袋x个,购物袋全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本10000元,那么该厂每天生产的购物袋全部售出后最多能获利多少元?26.(10分)(1)如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB.求证:CA+AD=BC.小明为解决上面的问题作了如下思考:作△ADC关于直线CD的对称图形△A′DC,∵CD平分∠ACB,∴A′点落在CB上,且CA′=CA,A′D=AD.因此,要证的问题转化为只要证A′D=A′B.请根据小明的思考写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,无理数是()A.πB.C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数就是无限不循环小数,π是无理数,故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解一批圆珠笔的寿命,调查具有破坏性,适合抽样调查,故A错误;B、检查一枚用于发射卫星的运载火箭的各零部件是精确度要求高的调查,适合普查,故B正确;C、考察人们保护海洋的意识,调查范围广适合抽样调查,故C错误;D、了解全国九年级学生的身高现状,调查范围广适合抽样调查,故D错误;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)【分析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解.【解答】解:A、(1,2)在第一象限,故本选项错误;B、(﹣1,2)在第二象限,故本选项错误;C、(1,﹣2)在第四象限,故本选项正确;D、(﹣1,﹣2)在第三象限,故本选项错误.故选:C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.下列图形中,对称轴的条数最多的图形是()A.线段B.角C.等腰三角形D.正方形【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、线段有2条对称轴,故此选项错误;B、角有1条对称轴,故此选项错误;C、等腰三角形有1条或3条对称轴,故此选项错误;D、正方形有4条对称轴,故此选项正确;故选:D.【点评】此题主要考查了轴对称图形,关键是正确确定对称轴.5.在平面直角坐标系中,一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的性质可知一次函数y=2x﹣3的图象经过哪几个象限,不经过哪个象限,从而可以解答本题.【解答】解:∵y=2x﹣3,∴该函数的图象经过第一、三、四象限,不经过第二象限,故选:B.【点评】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6【分析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【解答】解:A、从一装有2个白球和1个红球的袋子中任取一球,取到白球的概率是≈0.67>0.16,故此选项错误;B、从一副扑克牌中任意抽取一张,这张牌是“红色的概率=≈0.24>0.16,故此选项错误;C、掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率==0.5>0.16,故此选项错误;D、掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率=≈0.16故此选项正确,故选:D.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.4的平方根是±2 .【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B 的坐标是( 1 ,﹣1 ).【分析】让横坐标不变,纵坐标加1可得到所求点的坐标.【解答】解:∵﹣2+1=﹣1,∴点B的坐标是(1,﹣1),故答案为:1,﹣1.【点评】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.9.任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小到大排列为①③②.①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数.【分析】根据概率公式分别求出每种情况发生的概率,然后比较出它们的大小即可.【解答】解:任意掷一枚质地均匀的骰子,共有6种等可能结果,其中①面朝上的点数小于2的有1种结果,其概率为;②面朝上的点数大于2的有4种结果,其概率为=;③面朝上的点数是奇数的有3种结果,其概率为=;所以按事件发生的可能性大小,按从小到大排列为①③②,故答案为:①③②.【点评】此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为120 人.【分析】用学校总人数乘以教师所占的百分比,计算即可得解.【解答】解:1500×(1﹣48%﹣44%)=1500×8%=120.故答案为:120.【点评】本题考查的是扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.11.比较大小:>1(填“>”、“<”或“=”).【分析】直接估计出的取值范围,进而得出答案.【解答】解:∵2<<3,∴1<﹣1<2,故>1.故答案为:>.【点评】此题主要考查了实数大小比较,正确得出的取值范围是解题关键.12.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是a>b .【分析】根据一次函数的一次项系数结合一次函数的性质,即可得出该一次函数的单调性,由此即可得出结论.【解答】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为:a>b.【点评】本题考查了一次函数的性质,解题的关键是找出该一次函数单调递减.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的解析式结合一次函数的性质,找出该函数的单调性是关键.13.如图,在平面直角坐标系中,函数y=﹣2x与y=kx+b的图象交于点P(m,2),则不等式kx+b>﹣2x的解集为x>﹣1 .【分析】先利用正比例函数解析式确定P点坐标,然后观察函数图象得到,当x>﹣1时,直线y=﹣2x都在直线y=kx+b的下方,于是可得到不等式kx+b>﹣2x的解集.【解答】解:当y=2时,﹣2x=2,x=﹣1,由图象得:不等式kx+b>﹣2x的解集为:x>﹣1,故答案为:x>﹣1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)﹣2x的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在﹣2x上(或下)方部分所有的点的横坐标所构成的集合.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.【分析】根据线段的垂直平分线的性质得到DB=DC=2,根据角平分线的性质得到DE=AD=1,根据勾股定理计算即可.【解答】解:∵DE是BC的垂直平分线,∴DB=DC=2,∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,∴DE=AD=1,∴BE==,故答案为:.【点评】本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15.如图,D为等边△ABC的边AB上一点,且DE⊥BC,EF⊥AC,FD⊥AB,垂足分别为点E、F、D.若AB=6,则BE= 2 .【分析】求出∠BDE=∠FEC=∠AFD=30°,求出∠DEF=∠DFE=∠EDF=60°,推出DF=DE=EF,即可得出等边三角形DEF,根据全等三角形性质推出三个三角形全等即可.求出AB=3BE,即可解答.【解答】解:∵△ABC是等边三角形,∴AB=AC=BC,∠B=∠C=∠A=60°,∵DE⊥BC、EF⊥AC、FD⊥AB,∴∠DEB=∠EFC=∠FDA=90°,∴∠BDE=∠FEC=∠AFD=30°,∴∠DEF=∠DFE=∠EDF=180°﹣90°﹣30°=60°,∴DF=DE=EF,∴△DEF是等边三角形,在△ADF、△BED、△CFE中∴△ADF≌△BED≌△CFE,∴AD=BE=CF,∵∠DEB=90°,∠BDE=30°,∴BD=2BE,∴AB=3BE,∴BE=AB=2.故答案为:2.【点评】本题考查了等边三角形性质,含30度角的直角三角形性质,解决本题的关键是熟记含30度角的直角三角形性质.16.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是①②③(填序号).【分析】根据甲步行720米,需要9分钟,进而得出甲的运动速度,利用图形得出乙的运动时间以及运动距离,进而分别判断得出答案.【解答】解:由图象得出甲步行720米,需要9分钟,所以甲的运动速度为:720÷9=80(m/分),当第15分钟时,乙运动15﹣9=6(分钟),运动距离为:15×80=1200(m),∴乙的运动速度为:1200÷6=200(m/分),∴200÷80=2.5,(故②正确);当第19分钟以后两人之间距离越来越近,说明乙已经到达终点,则乙先到达青少年宫,(故①正确);此时乙运动19﹣9=10(分钟),运动总距离为:10×200=2000(m),∴甲运动时间为:2000÷80=25(分钟),故a的值为25,(故④错误);∵甲19分钟运动距离为:19×80=1520(m),∴b=2000﹣1520=480,(故③正确).故正确的有:①②③.故答案为:①②③.【点评】此题主要考查了一次函数的应用,利用数形结合得出乙的运动速度是解题关键.三、解答题(本大题共10小题,共68分)17.(4分)计算:.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:=﹣2﹣2+1=﹣3【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(6分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是50 ,并补全频数分布直方图;(2)C组学生的频率为0.32 ,在扇形统计图中D组的圆心角是72 度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?【分析】(1)根据A组的百分比和频数得出样本容量,并计算出B组的频数补全频数分布直方图即可;(2)由图表得出C组学生的频率,并计算出D组的圆心角即可;(3)根据样本估计总体即可.【解答】解:(1)这次抽样调查的样本容量是4÷8%=50,B组的频数=50﹣4﹣16﹣10﹣8=12,补全频数分布直方图,如图:(2)C组学生的频率是0.32;D组的圆心角=;(3)样本中体重超过60kg的学生是10+8=18人,该校初三年级体重超过60kg的学生=人,故答案为:(1)50;(2)0.32;72.【点评】此题考查频数分布直方图,关键是根据频数分布直方图得出信息进行计算.19.(6分)如图:点C、D在AB上,且AC=BD,AE=FB,AE∥BF.求证:DE∥CF.【分析】欲证明DE∥CF,只要证明∠ADE=∠BCF,只要证明△AED≌△BFC即可;【解答】证明:∵AE∥BF,∴∠A=∠B,∵AC=BD,∴AC+BD=BD+CD,即:AD=BC,在△AED和△BFC中,∴△AED≌△BFC(SAS),∴∠ADE=∠BCF,∴DE∥CF.【点评】本题考查全等三角形的判定和性质、平行线的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.20.(6分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.【分析】(1)根据角平分线的尺规作图即可得;(2)作DE⊥AB,由△ADB的面积为15cm2求得DE=3cm,再根据角平分线的性质可得.【解答】解:(1)如图所示,AD即为所求;(2)过D作DE⊥AB,E为垂足,由△ADB的面积为15cm2,得AB•ED=15,解得:ED=3cm,∵AD平分∠BAC,DE⊥AB,∠ACB=90°∴CD=ED=3cm.【点评】本题主要考查作图﹣基本作图,解题的关键是熟练掌握角平分线的尺规作图及角平分线的性质.21.(7分)已知平移一次函数y=2x﹣4的图象过点(﹣2,1)后的图象为l1.(1)求图象l1对应的函数表达式,并画出图象l1;(2)求一次函数y=﹣2x+4的图象l2与l1及x轴所围成的三角形的面积.【分析】(1)根据平行一次函数的定义可知:k=2,再利用待定系数法求出b的值即可;(2)过点A作AD⊥x轴于D点,利用三角形面积公式解答即可.【解答】解:(1)由已知可设l1对应的函数表达式为y=2x+b,把x=﹣2,y=1代入表达式解得:b=5,∴l1对应的函数表达式为y=2x+5,画图如下:,(2)设l1与l2的交点为A,过点A作AD⊥x轴于D点,由题意得,解得即A(,),则AD=,设l1、l2分别交x轴的于点B、C,由y=﹣2x+4=0,解x=2,即C(2,0)由y=2x+5=0解得,即B(,0)∴BC=,∴即l2与l1及x轴所围成的三角形的面积为.【点评】本题考查了函数的平移和两条直线的平行问题;同时还要熟练掌握若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.22.(8分)如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a= 240 km,AB两地的距离为390 km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?【分析】(1)根据图象中的数据即可得到A,B两地的距离;(2)根据函数图象中的数据即可得到两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)根据题意可以分相遇前和相遇后两种情况进行解答.【解答】解:(1)由题意和图象可得,a=千米,A,B两地相距:150+240=390千米,故答案为:240,390(2)由图象可得,A与C之间的距离为150km汽车的速度,PM所表示的函数关系式为:y1=150﹣60xMN所表示的函数关系式为:y2=60x﹣150(3)由y1=60得 150﹣60x=60,解得:x=1.5由y2=60得 60x﹣150=60,解得:x=3.5由图象可知当行驶时间满足:1.5h≤x≤3.5h,小汽车离车站C的路程不超过60千米【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和函数的思想解答.23.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.【分析】欲证明AO垂直平分BC,只要证明AB=AC,BO=CO即可;【解答】证明:∵BD⊥AC,CE⊥AB,∴∠BEC=∠BDC=90°,在Rt△BEC和Rt△CDB中,∴Rt△BEC≌Rt△CDB (HL),∴∠ABC=∠ACB,∠ECB=∠DBC,∴AB=AC,BO=OC,∴点A、O在BC的垂直平分线上,∴AO垂直平分BC.【点评】本题考查全等三角形的判定和性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.24.(7分)如图,△ABC中,AB=AC,D、E分别是AB及AC延长线上的点,且BD=CE,连接DE交BC于点O.过点D作DH⊥BC,过E作EK⊥BC,垂足分别为H、K.(1)求证:DH=EK;(2)求证:DO=EO.【分析】(1)只要证明△BDH≌△CEK,即可解决问题;(2)只要证明△DHO≌△EKO即可解决问题;【解答】解:(1)∵DH⊥BC,EK⊥BC,∴∠DHB=∠K=90°,∵AB=AC,∴∠B=∠ACB,又∵∠ACB=∠ECK,∴∠B=∠ECK,在△BDH和△CEK中∵∠ACB=∠ECK,∠B=∠ECK,BD=CE∴△BDH≌△CEK(AAS).∴DH=EK.(2)∵DH⊥AC,EK⊥BC,∴∠DHO=∠K=90°,由(1)得EK=DH,在△DHO和△EKO中,∵∠DHO=∠K,∠DOH=∠EOK,DH=EK∴△DHO≌△EKO(AAS),∴DO=EO.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.(7分)某工厂每天生产A、B两种款式的布制环保购物袋共4500个.已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设该厂每天生产A种购物袋x个,购物袋全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本10000元,那么该厂每天生产的购物袋全部售出后最多能获利多少元?【分析】(1)根据总成本y=A种购物袋x个的成本+B种购物袋x个的成本即可得到答案.(2)列出不等式,根据函数的增减性解决.【解答】解:(1)根据题意得:y=(2.3﹣2)x+(3.5﹣3)(4500﹣x)=﹣0.2x+2250即y与x的函数表达式为:y=﹣0.2x+2550,(2)根据题意得:﹣x+13500≤10000,解得:x≥3500元,∵k=﹣0.2<0,∴y随x增大而减小,∴当x=3500时,y取得最大值,最大值y=﹣0.2×3500+2250=1550,答:该厂每天最多获利1550元.【点评】本题考查了销售量、成本、售价、利润之间的关系,正确理解这些量之间的关系是解决问题的关键,学会用函数的增减性解决实际问题.26.(10分)(1)如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB.求证:CA+AD=BC.小明为解决上面的问题作了如下思考:作△ADC关于直线CD的对称图形△A′DC,∵CD平分∠ACB,∴A′点落在CB上,且CA′=CA,A′D=AD.因此,要证的问题转化为只要证A′D=A′B.请根据小明的思考写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.【分析】(1)作△ADC关于CD的对称图形△A′DC,再证明AD=BA′即可;(2)如图,作△ADC关于AC的对称图形△A′DC.过点C作CE⊥AB于点E,则D′E=BE.设D′E=BE=x.在Rt△CEB中,CE2=CB2﹣BE2=102﹣x2,在Rt△CEA中,CE2=AC2﹣AE2=172﹣(9+x)2.由此构建方程即可解决问题;【解答】(1)证明:作△ADC关于CD的对称图形△A′DC,∴A′D=AD,C A′=CA,∠CA′D=∠A=60°,∵CD平分∠ACB,∴A′点落在CB上∵∠ACB=90°,∴∠B=90°﹣∠A=30°,∵CD平分∠ACB,∴∠ACD=45°在△ACD中,∠ADC=180°﹣∠A﹣∠A CD=75°∴∠A′DC=∠ADC=75°,∴∠A′DB=180°﹣∠ADC﹣∠A′DC=30°,∴∠A′DB=∠B,∴A′D=A′B,∴CA+AD=CA′+A′D=C A′+A′B=CB.(2)如图,作△ADC关于AC的对称图形△A′DC.∴D′A=DA=9,D′C=DC=10,∵AC平分∠BAD,∴D′点落在AB上,∵BC=10,∴D′C=BC,过点C作CE⊥AB于点E,则D′E=BE.设D′E=BE=x.在Rt△CEB中,CE2=CB2﹣BE2=102﹣x2,在Rt△CEA中,CE2=AC2﹣AE2=172﹣(9+x)2.∴102﹣x2=172﹣(9+x)2,解得:x=6,∴AB=AD′+D′E+EB=9+6+6=21.【点评】本题考查全等三角形的判定和性质、直角三角形30度角性质、轴对称、勾股定理、一元二次方程等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用方程的思想思考问题,属于中考常考题型.。
辽宁省沈阳市铁西区2018-2019学年 八年级(上)期末数学试卷 含解析
2018-2019学年辽宁省沈阳市铁西区八年级(上)期末数学试卷一、选择题(下列各题的四个选项中,只有一个是正确的,请将正确答案写在答题卡上,每小题2分,共20分)1.(2分)在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π2.(2分)如图,∠B的同位角是()A.∠1 B.∠2 C.∠3 D.∠43.(2分)一组数据2,1,2,5,3,2的众数是()A.1 B.2 C.3 D.54.(2分)下列各式中正确的是()A.=±3 B.=﹣3 C.=3 D.﹣=5.(2分)若一次函数y=(k﹣2)x+1的函数值y随x的增大而增大,则()A.k<2 B.k>2 C.k>0 D.k<06.(2分)已知一组数据1,2,3,x,5,它们的平均数是3,则这一组数据的方差为()A.4 B.3 C.2 D.17.(2分)在平面直角坐标系中,点P(x2+1,﹣2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限8.(2分)如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有()A.1个B.2个C.3个D.4个9.(2分)一个长方形抽屉长12厘米,宽9厘米,贴抽屉底面放一根木棒,那么这根木棒最长(不计木棒粗细)可以是()A.15厘米B.13厘米C.9厘米D.8厘米10.(2分)对于实数a、b定义运算“*”:a*b=,例如4*3,因为4>3,所以4*3=4×3=12,若x、y满足方程组,则x*y=()A.B.13 C.D.119二、填空题(每小题2分,共12分)11.(2分)直角三角形的两条直角边长分别为3和4,那么它的斜边长是.12.(2分)如图,直线a∥b,∠l=60°,∠2=40°,则∠3=.13.(2分)一组数据2、4、6、4、8的中位数为.14.(2分)小强同学生日的月数减去日数为2,月数的两倍和日数相加为31,设小强同学生日的月数为x,日数为y,根据题意可列方程组为.15.(2分)在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A 与点B关于原点O对称,则ab=.16.(2分)如图,在等腰△ABC中,AB=AC,底边BC上的高AD=6cm,腰AC上的高BE=4m,则△ABC的面积为cm2.三、解答题(每题6分,共18分)17.(6分)解方程组:.18.(6分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AC=12,BC=5,求BD 的长.19.(6分)如图,直线AB、CD交直线MN于点E、F,过AB上的点H作HG⊥MN于点G,若∠EHG=27°,∠CFN=117°,判断直线AB、CD是否平行?并说明理由.四、(每题6分,共12分)20.(6分)某校八年级师生共368人准备参加社会实践活动,现已预备了A、B两种型号的客车,除司机外A型号客车有49个座,B型号客车有37个座,两种客车共8辆,刚好坐满,求A、B两种型号的客车各用了多少辆?21.(6分)如图,在Rt△ABC中,∠ACB=90°,∠A=28°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E,过点D作DF∥BE,交AC的延长线于点F,求∠D的度数.五、(本题8分)22.(8分)用若干个形状、大小完全相同的长方形纸片围正方形,如图①是用4个长方形纸片围成的正方形,其阴影部分的面积为16;如图②是用8个长方形纸片围成的正方形,其阴影部分的面积为8;如图③是用12个长方形纸片围成的正方形,求其阴影部分的周长.六、(本题8分)23.(8分)某公司招聘职员一名,对甲、乙、丙三名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%,面试占40%计算候选人的综合成绩.他们的各项成绩如下表所示:候选人笔试成绩/分面试成绩/分甲90 88乙84 92丙x90(1)这三名候选人面试成绩的中位数为分;(2)若候选人丙的综合成绩为87.6分,求表中x的值;(3)请求岀其余两名候选人的综合成绩,并以综合成绩最高确定所要招聘的候选人是哪一位?七、(本题10分)24.(10分)为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A、B 两个果园运送有机化肥,甲、乙两个仓库分别可运出80吨和100吨有机化肥,A、B两个果园分别需要110吨和70吨有机化肥.甲仓库到A、B两个果园的路程分别为15千米和25千米,乙仓库到A、B两个果园的路程都是20千米.设甲仓库运往A果园x吨有机化肥,解答下列问题:(1)甲仓库运往B果园吨有机化肥,乙仓库运往B果园吨有机化肥;(2)若汽车每吨每千米的运费为2元,设总运费为y元,求y关于x的函数表达式,并求当甲仓库运往A果园多少吨有机化肥时,总运费最省?此时的总运费是多少元?八、(本题12分)25.(12分)在等腰△OAB和等腰△OCD中,OA=OB,OC=OD,连接AC、BD交于点M.(1)如图1,若∠AOB=∠COD=40°:①AC与BD的数量关系为;②∠AMB的度数为;(2)如图2,若∠AOB=∠COD=90°:①判断AC与BD之间存在怎样的数量关系?并说明理由;②求∠AMB的度数;(3)在(2)的条件下,当∠CAB=30°,且点C与点M重合时,请直接写出OD与OA 之间存在的数量关系.2018-2019学年辽宁省沈阳市铁西区八年级(上)期末数学试卷参考答案与试题解析一、选择题(下列各题的四个选项中,只有一个是正确的,请将正确答案写在答题卡上,每小题2分,共20分)1.(2分)在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.【解答】解:在实数|﹣3|,﹣2,0,π中,|﹣3|=3,则﹣2<0<|﹣3|<π,故最小的数是:﹣2.故选:B.2.(2分)如图,∠B的同位角是()A.∠1 B.∠2 C.∠3 D.∠4【分析】同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角.【解答】解:∠B与∠3是DE、BC被AB所截而成的同位角,故选:C.3.(2分)一组数据2,1,2,5,3,2的众数是()A.1 B.2 C.3 D.5【分析】根据众数的定义即一组数据中出现次数最多的数,即可得出答案.【解答】解:在数据2,1,2,5,3,2中2出现3次,次数最多,所以众数为2,故选:B.4.(2分)下列各式中正确的是()A.=±3 B.=﹣3 C.=3 D.﹣=【分析】原式利用平方根、立方根定义计算即可求出值.【解答】解:A、原式=3,不符合题意;B、原式=|﹣3|=3,不符合题意;C、原式不能化简,不符合题意;D、原式=2﹣=,符合题意,故选:D.5.(2分)若一次函数y=(k﹣2)x+1的函数值y随x的增大而增大,则()A.k<2 B.k>2 C.k>0 D.k<0【分析】根据一次函数的性质,可得答案.【解答】解:由题意,得k﹣2>0,解得k>2,故选:B.6.(2分)已知一组数据1,2,3,x,5,它们的平均数是3,则这一组数据的方差为()A.4 B.3 C.2 D.1【分析】根据平均数的计算公式先求出x的值,再代入方差公式进行计算即可得出答案.【解答】解:∵数据1、2、3、x、5的平均数是3,∴=3,解得:x=4,则数据为1、2、3、4、5,∴方差为×[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2,故选:C.7.(2分)在平面直角坐标系中,点P(x2+1,﹣2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据平方数非负数判断出点P的横坐标是正数,再根据各象限内点的坐标特征解答.【解答】解:∵x2≥0,∴x2+1≥1,∴点P的横坐标是正数,∴点P(x2+1,﹣2)所在的象限第四象限.故选:D.8.(2分)如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有()A.1个B.2个C.3个D.4个【分析】直接利用平行线的性质得出相等的角以及互补的角进而得出答案.【解答】解:∵l1∥l2,l3∥l4,∴∠1+∠2=180°,2=∠4,∵∠4=∠5,∠2=∠3,∴图中与∠1互补的角有:∠2,∠3,∠4,∠5共4个.故选:D.9.(2分)一个长方形抽屉长12厘米,宽9厘米,贴抽屉底面放一根木棒,那么这根木棒最长(不计木棒粗细)可以是()A.15厘米B.13厘米C.9厘米D.8厘米【分析】根据勾股定理即可得到结论.【解答】解:这根木棒最长==15厘米,故选:A.10.(2分)对于实数a、b定义运算“*”:a*b=,例如4*3,因为4>3,所以4*3=4×3=12,若x、y满足方程组,则x*y=()A.B.13 C.D.119【分析】首先应用加减消元法,求出方程组的解是多少;然后根据“*”的运算方法,求出x*y的值是多少即可.【解答】解:①×2+②,可得:9x=45,解得x=5③,把③代入①,解得y=12,∴原方程组的解是,∵5<12,∴x*y=5*12==故选:C.二、填空题(每小题2分,共12分)11.(2分)直角三角形的两条直角边长分别为3和4,那么它的斜边长是 5 .【分析】利用勾股定理即可求解.【解答】解:斜边长是:=5.故答案是:5.12.(2分)如图,直线a∥b,∠l=60°,∠2=40°,则∠3=80°.【分析】根据平行线的性质求出∠4,根据三角形内角和定理计算即可.【解答】解:∵a∥b,∴∠4=∠l=60°,∴∠3=180°﹣∠4﹣∠2=80°,故答案为:80°.13.(2分)一组数据2、4、6、4、8的中位数为 4 .【分析】根据中位数的意义,将这5个数据从小到大排序后,找出处第3位的数即可,【解答】解:将这五个数从小到大排序后,处在第3位的数是4,因此中位数是4.故答案为:4.14.(2分)小强同学生日的月数减去日数为2,月数的两倍和日数相加为31,设小强同学生日的月数为x,日数为y,根据题意可列方程组为.【分析】设小强同学生日的月数为x,日数为y,根据等量关系:①强同学生日的月数减去日数为2,②月数的两倍和日数相加为31,列出方程组即可.【解答】解:设小强同学生日的月数为x,日数为y,依题意有,故答案是:.15.(2分)在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A 与点B关于原点O对称,则ab=12 .【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案.【解答】解:∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O 对称,∴a=﹣4,b=﹣3,则ab=12.故答案为:12.16.(2分)如图,在等腰△ABC中,AB=AC,底边BC上的高AD=6cm,腰AC上的高BE=4m,则△ABC的面积为9cm2.【分析】根据三角形的面积求得=,根据勾股定理求得AC2=BC2+36,依据这两个式子求出BC的值,即可求得面积.【解答】解:∵AD是BC边上的高,BE是AC边上的高,∴AC•BE=BC•AD,∵AD=6,BE=4,∴=,∴=,∵AB=AC,AD⊥BC,∴BD=DC=BC,∵AC2﹣CD2=AD2,∴AC2=BC2+36,∴=,整理得;BC2=,解得:BC=3,∴△ABC的面积为×3×6=9cm2故答案为:9.三、解答题(每题6分,共18分)17.(6分)解方程组:.【分析】两个方程②﹣①×2,即可去掉x,求得y的值,进而利用代入法求得x的值.【解答】解:②﹣①×2得:13y=65,解得:y=5,把y=5代入①得:2x﹣25=﹣21,解得:x=2,故方程组的解是:.18.(6分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AC=12,BC=5,求BD 的长.【分析】在Rt△ACB中,利用勾股定理可求出AB的长,再根据三角形ABC的面积为定值可求出CD的长,再利用勾股定理即可求出BD的长【解答】解:∵在Rt△ABC中,∠ACB=90°,AC=12,BC=5,∴AB==13,∵AB•CD=AC•BC∴CD==,∴BD==.19.(6分)如图,直线AB、CD交直线MN于点E、F,过AB上的点H作HG⊥MN于点G,若∠EHG=27°,∠CFN=117°,判断直线AB、CD是否平行?并说明理由.【分析】结论:AB∥CD,只要证明∠CFN=∠AEF即可.【解答】解:结论:AB∥CD.理由:∵HG⊥MN,∴∠HGE=90°,∵∠AEF=∠HGE+∠EHG=90°+27°=117°,∠CFN=117°,∴∠CFN=∠AEF,∴AB∥CD.四、(每题6分,共12分)20.(6分)某校八年级师生共368人准备参加社会实践活动,现已预备了A、B两种型号的客车,除司机外A型号客车有49个座,B型号客车有37个座,两种客车共8辆,刚好坐满,求A、B两种型号的客车各用了多少辆?【分析】设A型号客车用了x辆,B型号客车用了y辆,根据两种客车共8辆正好乘坐368人,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设A型号客车用了x辆,B型号客车用了y辆,依题意,得:,解得:.答:A型号客车用了6辆,B型号客车用了2辆.21.(6分)如图,在Rt△ABC中,∠ACB=90°,∠A=28°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E,过点D作DF∥BE,交AC的延长线于点F,求∠D的度数.【分析】根据直角三角形的性质求出∠ABC,根据平分线的定义、平行线的性质解答即可.【解答】解:∵∠ACB=90°,∠A=28°,∴∠ABC=62°,∴∠CBD=180°﹣62°=118°,∵BE平分∠CBD,∴∠EBC=∠CBD=59°,∴∠ABE=62°+59°=121°,∵DF∥BE,∴∠D=∠ABE=121°.五、(本题8分)22.(8分)用若干个形状、大小完全相同的长方形纸片围正方形,如图①是用4个长方形纸片围成的正方形,其阴影部分的面积为16;如图②是用8个长方形纸片围成的正方形,其阴影部分的面积为8;如图③是用12个长方形纸片围成的正方形,求其阴影部分的周长.【分析】三个图中阴影部分都是正方形,根据前两个阴影面积列方程组求矩形的边长,再计算图③阴影面积.【解答】解:图①中阴影边长为=4,图②阴影边长为=2,设矩形长为a,宽为b,根据题意得,解得,所以图③阴影正方形的边长=a﹣3b=8﹣2﹣3(4﹣2)=4﹣4,∴如图③是用12个长方形纸片围成的正方形,其阴影部分的周长为16﹣16.六、(本题8分)23.(8分)某公司招聘职员一名,对甲、乙、丙三名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%,面试占40%计算候选人的综合成绩.他们的各项成绩如下表所示:候选人笔试成绩/分面试成绩/分甲90 88乙84 92丙x90(1)这三名候选人面试成绩的中位数为90 分;(2)若候选人丙的综合成绩为87.6分,求表中x的值;(3)请求岀其余两名候选人的综合成绩,并以综合成绩最高确定所要招聘的候选人是哪一位?【分析】(1)根据中位数的概念计算即可;(2)根据题意列出方程,解方程即可;(3)根据加权平均数的计算公式分别求出余二名候选人的综合成绩,比较即可.【解答】解:(1)这三名候选人面试成绩的中位数为90分;故答案为:90;(2)根据题意得:x×60%+90×40%=87.6解得,x=86,答:表中x的值为86;(3)甲候选人的综合成绩为:90×60%+88×40%=89.2(分),乙候选人的综合成绩为:84×60%+92×40%=87.2(分),则以综合成绩排序确定所要招聘的人选是甲.七、(本题10分)24.(10分)为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A、B 两个果园运送有机化肥,甲、乙两个仓库分别可运出80吨和100吨有机化肥,A、B两个果园分别需要110吨和70吨有机化肥.甲仓库到A、B两个果园的路程分别为15千米和25千米,乙仓库到A、B两个果园的路程都是20千米.设甲仓库运往A果园x吨有机化肥,解答下列问题:(1)甲仓库运往B果园(80﹣x)吨有机化肥,乙仓库运往B果园(x﹣10)吨有机化肥;(2)若汽车每吨每千米的运费为2元,设总运费为y元,求y关于x的函数表达式,并求当甲仓库运往A果园多少吨有机化肥时,总运费最省?此时的总运费是多少元?【分析】(1)根据题意可以用含x的代数式表示出甲仓库运往B果园和乙仓库运往B果园的有机化肥的吨数,本题得以解决;(2)根据题意可以直接写出y与x的函数关系式,然后根据一次函数的性质即可求得当甲仓库运往A果园多少吨有机化肥时,总运费最省,此时的总运费是多少元.【解答】解:(1)甲仓库运往A果园x吨有机化肥,则甲仓库运往B果园(80﹣x)吨有机化肥,乙仓库运往A果园(110﹣x)吨有机化肥,乙仓库运往B果园70﹣(80﹣x)=(x﹣10)吨有机化肥,故答案为:(80﹣x),(x﹣10);(2)由题意可得,y=15×2x+25×2(80﹣x)+20×2(110﹣x)+20×2(x﹣10)=﹣20x+8000,∵∴10≤x≤80,∴当x=80时,y取得最小值,此时y=6400,答:y关于x的函数表达式是y=﹣20x+8000,当甲仓库运往A果园80吨有机化肥时,总运费最省,此时的总运费6400元.八、(本题12分)25.(12分)在等腰△OAB和等腰△OCD中,OA=OB,OC=OD,连接AC、BD交于点M.(1)如图1,若∠AOB=∠COD=40°:①AC与BD的数量关系为AC=BD;②∠AMB的度数为40°;(2)如图2,若∠AOB=∠COD=90°:①判断AC与BD之间存在怎样的数量关系?并说明理由;②求∠AMB的度数;(3)在(2)的条件下,当∠CAB=30°,且点C与点M重合时,请直接写出OD与OA 之间存在的数量关系.【分析】(1)①先证明:∠BOD=∠AOC,再证明△BOD≌△AOC(SAS),即可得AC=BD;②由△BOD≌△AOC及三角形内角和定理即可求得∠AMB=40°;(2)①证明△BOD≌△AOC(SAS)即可得BD=AC,②根据全等三角形性质和三角形内角和定理即可求得∠AMB;(3)由(2)得△BOD≌△AOC(SAS),根据30°角所对的直角边等于斜边一半及勾股定理可求得AC=BD=AB,再结合等腰直角三角形直角边与斜边的关系即可求得OC=OA.【解答】解:(1)如图1所示,①∵∠AOB=∠COD∴∠AOB+∠AOD=∠COD+∠AOD∴∠BOD=∠AOC在△BOD和△AOC中∴△BOD≌△AOC(SAS)∴AC=BD故答案为:AC=BD,②∵△BOD≌△AOC∴∠OBD=∠OAC∵∠AOB=40°,∴∠OAB+∠OBA=180°﹣∠AOB=180°﹣40°=140°又∵∠OAB+∠OBA=∠OAB+∠ABD+∠OBD∴∠OAB+∠OBA=∠OAB+∠ABD+∠OAC=140°,∴∠MAB+ABM=140°∵在△ABM中,∠AMB+∠MAB+ABM=180°,∴∠AMB=40°故答案为:40°;(2)如图2所示,①AC=BD,∵∠AOB=∠COD=90°,∴∠AOB+∠AOD=∠COD+∠AOD,∴∠BOD=∠AOC,在△BOD和△AOC中,∴△BOD≌△AOC(SAS)∴BD=AC②∵△BOD≌△AOC,∴∠OBD=∠OAC,又∵∠OAB+∠OBA=90°,∠ABO=∠ABM+∠OBD,∠MAB=∠MAO+∠OAB,∴∠MAB+∠MBA=90°,又∵在△AMB中,∠AMB+∠ABM+∠BAM=180°,∴∠AMB=180°﹣(∠ABM+∠BAM)=180°﹣90°=90°;(3)如图3所示,∠AOB=∠COD=90°,OA=OB,OC=OD,∠CAB=30°,∴∠OAB=∠OBA=∠OCD=∠ODC=45°,AB=OA,CD=OC,由(2)得△BOD≌△AOC(SAS)∴∠ACO=∠BDO=45°,BD=AC∴∠ACD=∠ACO+∠OCD=90°∴∠ACB=90°∴BC=AB由勾股定理得:AC==AB∴CD=AC﹣BC=AB∴OC=×OA∴OD=OC=OA.如图4,同上易求得OD=OC=OA综上所述,OD=OA或OD=OA.。
2018-2019学年第一学期八年级期末考试数学试题(有答案和解析)
2018-2019学年八年级(上)期末数学试卷一、选择题(本题共10小题,每小题4分,共40分)1.点A(﹣3,4)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.一次函数y=﹣3x﹣2的图象和性质,述正确的是()A.y随x的增大而增大B.在y轴上的截距为2C.与x轴交于点(﹣2,0)D.函数图象不经过第一象限3.一个三角形三个内角的度数之比为3:4:5,这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形4.下列命是真命题的是()A.π是单项式B.三角形的一个外角大于任何一个内角C.两点之间,直线最短D.同位角相等5.等腰三角形的底边长为4,则其腰长x的取值范国是()A.x>4B.x>2C.0<x<2D.2<x<46.已知点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,则m与n的大小关系为()A.m>n B.m<nC.m=n D.大小关系无法确定7.把函数y=3x﹣3的图象沿x轴正方向水平向右平移2个单位后的解析式是()A.y=3x﹣9B.y=3x﹣6C.y=3x﹣5D.y=3x﹣18.一个安装有进出水管的30升容器,水管单位时间内进出的水量是一定的,设从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到水量y(升)与时间x(分)之间的函数关系如图所示.根据图象信思给出下列说法,其中错误的是()A.每分钟进水5升B.每分钟放水1.25升C.若12分钟后只放水,不进水,还要8分钟可以把水放完D.若从一开始进出水管同时打开需要24分钟可以将容器灌满9.如图,在△ABC中,点D、E、F分别在边BC、AB、AC上,且BD=BE,CD=CF,∠A=70°,那么∠FDE等于()A.40°B.45°C.55°D.35°10.如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC =15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为()A.1个B.2个C.3个D.4个二、填空(本大共4小,每小题5分,满分20分)11.函数y=中,自变量x的取值范围是.12.若点(a,3)在函数y=2x﹣3的图象上,a的值是.13.已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则此等腰三角形的顶角为.14.如图,CA⊥AB,垂足为点A,AB=24,AC=12,射线BM⊥AB,垂足为点B,一动点E从A 点出发以3厘米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过秒时,△DEB与△BCA全等.三、解答题(本题共2小题,每小题8分,共16分)15.已知一次函数的图象经过A(﹣1,4),B(1,﹣2)两点.(1)求该一次函数的解析式;(2)直接写出函数图象与两坐标轴的交点坐标.16.△ABC在平面直角坐标系中的位置如图所示.(1)在图中画出△ABC与关于y轴对称的图形△A1B1C1,并写出顶点A1、B1、C1的坐标;(2)若将线段A1C1平移后得到线段A2C2,且A2(a,2),C2(﹣2,b),求a+b的值.四、解答题(本大題共2小题,每小题8分,计16分)17.如图,一次函数图象经过点A(0,2),且与正比例函数y=﹣x的图象交于点B,B点的横坐标是﹣1.(1)求该一次函数的解析式:(2)求一次函数图象、正比例函数图象与x轴围成的三角形的面积.18.如图,P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,求∠ABC的度数.五、解答题(20分)19.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米.(2)小明在书店停留了分钟.(3)本次上学途中,小明一共行驶了米.一共用了分钟.(4)在整个上学的途中(哪个时间段)小明骑车速度最快,最快的速度是米/分.20.如图,在△ABC中,点D在AB上,点E在BC上,BD=BE.(1)请你再添加一个条件,使得△BEA≌△BDC,并给出证明.你添加的条件是.(2)根据你添加的条件,再写出图中的一对全等三角形.(只要求写出一对全等三角形,不再添加其他线段,不再标注或使用其他字母,不必写出证明过程)六、解答题(本大题12分)21.P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.七、解答题(本大题12分)22.某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.八、解答題(本大题14分23.在平面直角坐标系中,O是坐标原点,A(2,2),B(4,﹣3),P是x轴上的一点(1)若PA+PB的值最小,求P点的坐标;(2)若∠APO=∠BPO,①求此时P点的坐标;②在y轴上是否存在点Q,使得△QAB的面积等于△PAB的面积,若存在,求出Q点坐标;若不存在,说明理由.参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分)1.【分析】应先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【解答】解:因为点A(﹣3,4)的横坐标是负数,纵坐标是正数,符合点在第二象限的条件,所以点A在第二象限.故选B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.【分析】根据一次函数的图象和性质,依次分析各个选项,选出正确的选项即可.【解答】解:A.一次函数y=﹣3x﹣2的图象y随着x的增大而减小,即A项错误,B.把x=0代入y=﹣3x﹣2得:y=﹣2,即在y轴的截距为﹣2,即B项错误,C.把y=0代入y=﹣3x﹣2的:﹣3x﹣2=0,解得:x=﹣,即与x轴交于点(﹣,0),即C项错误,D.函数图象经过第二三四象限,不经过第一象限,即D项正确,故选:D.【点评】本题考查了一次函数图象上点的坐标特征,一次函数的图象,一次函数的性质,正确掌握一次函数图象的增减性和一次函数的性质是解题的关键.3.【分析】由题意知:把这个三角形的内角和180°平均分了12份,最大角占总和的,根据分数乘法的意义求出三角形最大内角即可.【解答】解:因为3+4+5=12,5÷12=,180°×=75°,所以这个三角形里最大的角是锐角,所以另两个角也是锐角,三个角都是锐角的三角形是锐角三角形,所以这个三角形是锐角三角形.故选:A.【点评】此题考查了三角形内角和定理,解题时注意:三个角都是锐角,这个三角形是锐角三角形;有一个角是钝角的三角形是钝角三角形;有一个角是直角的三角形是直角三角形.4.【分析】根据单项式、三角形外角性质、线段公理、平行线性质解答即可.【解答】解:A、π是单项式,是真命题;B、三角形的一个外角大于任何一个与之不相邻的内角,是假命题;C、两点之间,线段最短,是假命题;D、两直线平行,同位角相等,是假命题;故选:A.【点评】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5.【分析】根据等腰三角形两腰相等和三角形中任意两边之和大于第三边列不等式,求解即可.【解答】解:∵等腰三角形的底边长为4,腰长为x,∴2x>4,∴x>2.故选:B.【点评】本题考查等腰三角形的性质,等腰三角形中两腰相等,以及三角形的三边关系.6.【分析】根据一次函数y=﹣2x+b图象的增减性,结合点A和点B纵坐标的大小关系,即可得到答案.【解答】解:∵一次函数y=﹣2x+b图象上的点y随着x的增大而减小,又∵点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,且﹣3<3,∴m>n,故选:A.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.7.【分析】根据平移性质可由已知的解析式写出新的解析式即可.【解答】解:根据题意,直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=3(x﹣2)﹣3=3x﹣9.故选:A.【点评】此题主要考查了一次函数图象与几何变换,能够根据平移迅速由已知的解析式写出新的解析式:y=kx左右平移|a|个单位长度的时候,即直线解析式是y=k(x±|a|);当直线y=kx上下平移|b|个单位长度的时候,则直线解析式是y=kx±|b|.8.【分析】根据前4分钟计算每分钟进水量,结合4到12分钟计算每分钟出水量,可逐一判断.【解答】解:每分钟进水:20÷4=5升,A正确;每分钟出水:(5×12﹣30)÷8=3.75 升;故B错误;12分钟后只放水,不进水,放完水时间:30÷3.75=8分钟,故C正确;30÷(5﹣3.75)=24分钟,故D正确,故选:B.【点评】本题考查函数图象的相关知识.从图象中获取并处理信息是解答关键.9.【分析】首先根据三角形内角和定理,求出∠B+∠C的度数;然后根据等腰三角形的性质,表示出∠BDE+∠CDF的度数,由此可求得∠EDF的度数.【解答】解:△ABC中,∠B+∠C=180°﹣∠A=110°;△BED中,BE=BD,∴∠BDE=(180°﹣∠B);同理,得:∠CDF=(180°﹣∠C);∴∠BDE+∠CDF=180°﹣(∠B+∠C)=180°﹣∠FDE;∴∠FDE=(∠B+∠C)=55°.故选:C.【点评】此题主要考查的是等腰三角形的性质以及三角形内角和定理.有效地进行等角的转移时解答本题的关键.10.【分析】(1)先求出∠BPC的度数是360°﹣60°×2﹣90°=150°,再根据对称性得到△BPC 为等腰三角形,∠PBC即可求出;(2)根据题意:有△APD是等腰直角三角形;△PBC是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD是轴对称图形,进而可得②③④正确.【解答】解:根据题意,∠BPC=360°﹣60°×2﹣90°=150°∵BP=PC,∴∠PBC=(180°﹣150°)÷2=15°,①正确;根据题意可得四边形ABCD是轴对称图形,∴②AD∥BC,③PC⊥AB正确;④也正确.所以四个命题都正确.故选:D.【点评】本题考查轴对称图形的定义与判定,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.二、填空(本大共4小,每小题5分,满分20分)11.【分析】由二次根式中被开方数为非负数且分母不等于零求解可得.【解答】解:根据题意,得:,解得:x≤2且x≠﹣2,故答案为:x≤2且x≠﹣2.【点评】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.【分析】把点(a,3)代入y=2x﹣3得到关于a的一元一次方程,解之即可.【解答】解:把点(a,3)代入y=2x﹣3得:2a﹣3=3,解得:a=3,故答案为:3.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握代入法是解题的关键.13.【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【解答】解:当为锐角时,如图∵∠ADE=50°,∠AED=90°,∴∠A=40°当为钝角时,如图∠ADE=50°,∠DAE=40°,∴顶角∠BAC=180°﹣40°=140°,故答案为40°或140°.【点评】本题考查了等腰三角形的性质及三角形内角和定理,分类讨论是正确解答本题的关键.14.【分析】设点E经过t秒时,△DEB≌△BCA;由斜边ED=CB,分类讨论BE=AC或BE=AB 或AE=0时的情况,求出t的值即可.【解答】解:设点E经过t秒时,△DEB≌△BCA;此时AE=3t分情况讨论:(1)当点E在点B的左侧时,BE=24﹣3t=12,∴t=4;(2)当点E在点B的右侧时,①BE=AC时,3t=24+12,∴t=12;②BE=AB时,3t=24+24,∴t=16.(3)当点E与A重合时,AE=0,t=0;综上所述,故答案为:0,4,12,16.【点评】本题考查了全等三角形的判定方法;分类讨论各种情况下的三角形全等是解决问题的关键.三、解答题(本题共2小题,每小题8分,共16分)15.【分析】(1)利用待定系数法容易求得一次函数的解析式;(2)分别令x=0和y=0,可求得与两坐标轴的交点坐标.【解答】解:(1)∵图象经过点(﹣1,4),(1,﹣2)两点,∴把两点坐标代入函数解析式可得,解得,∴一次函数解析式为y=﹣3x+1;(2)在y=﹣3x+1中,令y=0,可得﹣3x+1=0,解得x=;令x=0,可得y=1,∴一次函数与x轴的交点坐标为(,0),与y轴的交点坐标为(0,1).【点评】本题主要考查待定系数及函数与坐标轴的交点,掌握待定系数法求函数解析式的步骤是解题的关键.16.【分析】(1)根据轴对称的性质确定出点A1、B1、C1的坐标,然后画出图形即可;(2)由点A1、C1的坐标,根据平移与坐标变化的规律可规定出a、b的值,从而可求得a+b的值.【解答】解:(1)如图所示:A1(2,3)、B1(3,2)、C1(1,1).(2)∵A1(2,3)、C1(1,1),A2(a,2),C2(﹣2,b).∴将线段A1C1向下平移了1个单位,向左平移了3个单位.∴a=﹣1,b=0.∴a+b=﹣1+0=﹣1.【点评】本题主要考查的轴对称变化、坐标变化与平移,根据根据平移与坐标变化的规律确定出a、b的值是解题的关键.四、解答题(本大題共2小题,每小题8分,计16分)17.【分析】(1)根据点B在函数y=﹣x上,点B的横坐标为﹣1,可以求得点B的坐标,再根据一次函数过点A和点B即可求得一次函数的解析式;(2)将y=0代入(1)求得的一次函数的解析式,求得该函数与x轴的交点,即可求得一次函数图象、正比例函数图象与x轴围成的三角形的面积.【解答】解:(1)∵点B在函数y=﹣x上,点B的横坐标为﹣1,∴当x=﹣1时,y=﹣(﹣1)=1,∴点B的坐标为(﹣1,1),∵点A(0,2),点B(﹣1,1)在一次函数y=kx+b的图象上,∴,得,即一次函数的解析式为y=x+2;(2)将y=0代入y=x+2,得x=﹣2,则一次函数图象、正比例函数图象与x轴围成的三角形的面积为:=1.【点评】本题考查两条直线相交或平行问题、待定系数法求一次函数解析式,解答本题的关键是明确题意,利用数形结合的思想解答.18.【分析】根据等边三角形的性质,得∠PAQ=∠APQ=∠AQP=60°,再根据等腰三角形的性质和三角形的外角的性质求得∠ABC=∠BAP=∠CAQ=30°,从而求解.【解答】解:∵BP=PQ=QC=AP=AQ,∴∠PAQ=∠APQ=∠AQP=60°,∠B=∠BAP,∠C=∠CAQ.又∵∠BAP+∠ABP=∠APQ,∠C+∠CAQ=∠AQP,∴∠ABC=∠BAP=∠CAQ=30°.【点评】此题主要考查了运用等边三角形的性质、等腰三角形的性质以及三角形的外角的性质.五、解答题(20分)19.【分析】(1)因为y轴表示路程,起点是家,终点是学校,故小明家到学校的路程是1500米;(2)与x轴平行的线段表示路程没有变化,观察图象分析其对应时间即可.(3)共行驶的路程=小明家到学校的距离+折回书店的路程×2.(4)观察图象分析每一时段所行路程,然后计算出各时段的速度进行比较即可.【解答】解:(1)∵y轴表示路程,起点是家,终点是学校,∴小明家到学校的路程是1500米.(2)由图象可知:小明在书店停留了4分钟.(3)1500+600×2=2700(米)即:本次上学途中,小明一共行驶了2700米.一共用了14分钟.(4)折回之前的速度=1200÷6=200(米/分)折回书店时的速度=(1200﹣600)÷2=300(米/分),从书店到学校的速度=(1500﹣600)÷2=450(米/分)经过比较可知:小明在从书店到学校的时候速度最快即:在整个上学的途中从12分钟到14分钟小明骑车速度最快,最快的速度是450 米/分【点评】本题考查了函数的图象及其应用,解题的关键是理解函数图象中x轴、y轴表示的量及图象上点的坐标的意义.20.【分析】本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件求解.【解答】解:添加条件例举:BA=BC;∠AEB=∠CDB;∠BAC=∠BCA;证明例举(以添加条件∠AEB=∠CDB为例):∵∠AEB=∠CDB,BE=BD,∠B=∠B,∴△BEA≌△BDC.另一对全等三角形是:△ADF≌△CEF或△AEC≌△CDA.故填∠AEB=∠CDB;△ADF≌△CEF或△AEC≌△CDA.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.六、解答题(本大题12分)21.【分析】(1)过点P作PF∥BC交AC于点F;证出△APF也是等边三角形,得出∠APF=∠BCA=60°,AP=PF=AF=CQ,由AAS证明△PDF≌△QDC,得出对应边相等即可;(2)过P作PF∥BC交AC于F.同(1)由AAS证明△PFD≌△QCD,得出对应边相等FD=CD,证出AE+CD=DE=AC,即可得出结果.【解答】(1)证明:如图1所示,点P作PF∥BC交AC于点F;∵△ABC是等边三角形,∴△APF也是等边三角形,∴∠APF=∠BCA=60°,AP=PF=AF=CQ,∴∠FDP=∠DCQ,∠FDP=∠CDQ,在△PDF和△QDC中,,∴△PDF≌△QDC(AAS),∴PD=DQ;(2)解:如图2所示,过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=6,∴DE=3.【点评】本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、平行线的性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.七、解答题(本大题12分)22.【分析】(1)设A奖品的单价是x元,B奖品的单价是y元,根据条件建立方程组求出其解即可;(2)根据总费用=两种奖品的费用之和表示出W与m的关系式,并有条件建立不等式组求出x 的取值范围,由一次函数的性质就可以求出结论.【解答】解(1)设A奖品的单价是x元,B奖品的单价是y元,由题意,得,解得:.答:A奖品的单价是10元,B奖品的单价是15元;(2)由题意,得W=10m+15(100﹣m)=﹣5m+1500∴,解得:70≤m≤75.∵m是整数,∴m=70,71,72,73,74,75.∵W=﹣5m+1500,∴k=﹣5<0,∴W随m的增大而减小,=1125.∴m=75时,W最小∴应买A种奖品75件,B种奖品25件,才能使总费用最少为1125元.【点评】本题考查了一次函数的性质的运用,二元一次方程组的运用,一元一次不等式组的运用,解答时求一次函数的解析式是关键.八、解答題(本大题14分23.【分析】(1)根据题意画坐标系描点,根据两点之间线段最短,求直线AB解析式,与x轴交点即为所求点P.(2)①作点A关于x轴的对称点A',根据轴对称性质有∠APO=∠A'PO,所以此时P、A'、B在同一直线上.求直线A'B解析式,与x轴交点即为所求点P.②法一,根据坐标系里三角形面积等于水平长(右左两顶点的横坐标差)与铅垂高(上下两顶点的纵坐标差)乘积的一半,求得△PAB的面积为12,进而求得△QAP的铅垂高等于6,再得出直线BQ上的点E坐标为(2,8)或(2,﹣4),求出直线BQ,即能求出点Q坐标.法二,根据△QAB与△PAB同以AB为底时,高应相等,所以点Q在平行于直线AB、且与直线AB距离等于P到直线AB距离的直线上.这样的直线有两条,一条即过点P且与AB平行的直线,另一条在AB上方,根据平移距离相等即可求出.所求直线与y轴交点即点Q.【解答】解:(1)∵两点之间线段最短∴当A、P、B在同一直线时,PA+PB=AB最短(如图1)设直线AB的解析式为:y=kx+b∵A(2,2),B(4,﹣3)∴解得:∴直线AB:y=﹣x+7当﹣x+7=0时,得:x=∴P点坐标为(,0)(2)①作点A(2,2)关于x轴的对称点A'(2,﹣2)根据轴对称性质有∠APO=∠A'PO∵∠APO=∠BPO∴∠A'PO=∠BPO∴P 、A '、B 在同一直线上(如图2)设直线A 'B 的解析式为:y =k 'x +b '解得:∴直线A 'B :y =﹣x ﹣1当﹣x ﹣1=0时,得:x =﹣2∴点P 坐标为(﹣2,0)②存在满足条件的点Q法一:设直线AA '交x 轴于点C ,过B 作BD ⊥直线AA '于点D (如图3)∴PC =4,BD =2∴S △PAB =S △PAA '+S △BAA '=设BQ 与直线AA '(即直线x =2)的交点为E (如图4)∵S △QAB =S △PAB则S △QAB ==2AE =12∴AE =6∴E 的坐标为(2,8)或(2,﹣4)设直线BQ 解析式为:y =ax +q或解得: 或∴直线BQ :y =或y =∴Q 点坐标为(0,19)或(0,﹣5)法二:∵S △QAB =S △PAB∴△QAB 与△PAB 以AB 为底时,高相等即点Q 到直线AB 的距离=点P 到直线AB 的距离i )若点Q 在直线AB 下方,则PQ ∥AB设直线PQ :y =x +c ,把点P (﹣2,0)代入解得c =﹣5,y =﹣x ﹣5即Q (0,﹣5)ii )若点Q 在直线AB 上方,∵直线y =﹣x ﹣5向上平移12个单位得直线AB :y =﹣x +7∴把直线AB:y=﹣x+7再向上平移12个单位得直线AB:y=﹣x+19∴Q(0,19)综上所述,y轴上存在点Q使得△QAB的面积等于△PAB的面积,Q的坐标为(0,﹣5)或(0,19)【点评】本题考查了两点之间线段最短,轴对称性质,求直线解析式,求三角形面积,平行线之间距离处处相等.解题关键是根据题意画图描点,直角坐标系里三角形面积的求法()是较典型题,两三角形面积相等且等底时,高相等即第三个顶点在平行于底的直线上.。
2018-2019学年人教版八年级上期末考试英语试题含答案
2018-2019 学年度第一学期期末教学质量检测八年级英语试题(时间:120分钟,满分120分)友情提示:亲爱的同学,你好!今天是你展示才能的时候,只要你仔细审题、认真答题,你就会有出色的表现!请注意以下事项:1.考生务必将姓名、考场、考号填涂在答题卡规定的位置上。
2.第1-50题是选择题,每小题选出答案后,用2B铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案不能答在试卷上。
3.所有题目均在答题卡上作答,考试结束后,将答题卡上交。
第I卷(共55分)第一部分听力(25分)I.根据你所听到的对话,选择正确的选项。
每小题将听到一段对话,每段对话听两遍。
你将有10秒钟的时间完成有关小题和也读下一小题。
(共10小题,每小题1分,共10分)2. W3. W4. HA. B. C.5. W hoisthetallestofthethree?A.Nick.B.Jim.C.Sam.6. D oesthemanhaveenoughmoneytobuythebookintheend?A.Wedon’tknow.B.Yes,hedoes.C.No,hedoesn ’t.7. W hatdoesFangMingusuallydoonweekends?A.Hedoesshopping.B.Heplaysthepiano.C.Wedon ’tknow.8. W hoisTimmycalling?A.Peter.B.Tom.C.Betty.9. W hattimedoesthetrainleave?A.6:05.B.6:15.C.6:25.10. WhatcantheydoinBeachParktomorrow?A.Theycangobirdwatching.B.Theycangofishingandswim.C.Theycangobirdwatchingandswim.II. 听对话和问题,选择正确答案。
部编版2018-2019学年上学期期末考试八年级语文试卷(含答案)
部编版2018-2019学年上学期期末考试八年级语文试卷(含答案)一、积累与运用(33分)1.下列各组词中字形和加点字的读音完全正确..的一项()(2分)A.纤.维(q iān)喧嚣藏污纳垢.(gòu)旁逸斜出B.诏.令(zhào) 婆娑春寒料峭. (xiào) 重峦叠障C.丘壑.(hè)题跋杳.无消息(yǎo)筋疲力尽D.轩.榭(xuān)狼籍舳.舻相接(zhóu)潜滋暗长2.下列句子中,加点的词语使用恰当..的一项是()(2分)A.当海啸到来时,很多人都在默默无闻....中,完全没有察觉到灾难的来临。
B.拙政园内,花树俯仰生姿....,蜂蝶轻飞曼舞。
游客徜徉其中,流连忘返。
C.现在,诈骗的手段是层出不穷,而且诈骗手法别具匠心....,令人防不胜防。
D.时间真如行云流水....,还记得刚入初中时的豪言壮语,转眼间,初二学年已过去一半。
3.下列句子中,没有..语病的一句是()(2分)A.笔记本电脑显示了快捷、稳定、方便而日渐成为人们日常工作中的重要工具。
B.林老师的课不仅让在后排观摩的老师们受益匪浅,而且牢牢地吸引了全班学生。
C.司法大数据显示,近年来,10%的交通事故案件发生的原因为开车看手机造成的。
D.看到山林中的老枫树伸开它依然翠绿的手掌时,我不禁想起大慈大悲的千手观音。
4.下列句子组成语段,顺序排列最恰当..的一项是( )(2分)①考察表明,塔里木地区有非常长的聚水期。
②早在30万年前,塔里木盆地和柴达木盆地还是连在一起的大海,后来这里的地壳逐渐抬升。
③这一时期一直持续了数万年,使得塔里木地区积聚了大量地下水。
④但还是个湿润地带,降水比较丰富,草原、沼泽密布。
⑤为什么塔里木盆地地下会形成巨大的地下水库呢?A.①③②④⑤ B.⑤①②④③ C.⑤②①④③ D.①⑤②④③5.下列对语文知识和传统文化常识解析正确的一项是()(2分)A.“商鞅立木、尾生抱柱、一诺千金、烽火戏诸侯”都是中国古人诚信守信的故事。
2018-2019学年成都市成华区八年级(上)期末数学试卷(含解析)
2018-2019学年成都市成华区八年级(上)期末数学试卷(考试时间:12。
分钟满分:150分)A卷(共100分)一.选择题(每小题3分,共30分)1.下列各数中.为无理数的是(2.关于赤的叙述正确的是()A.在数轴上不存在表示桐的点B.V8=V2+V6C.与最接近的整数是2d.Va=2V23.有五名射击运动员,教练为了分析他们成绩的波动程度.应选择下列统计量中的()A.方差B.中位数C.众数D.平均数4.如图,直线.a,b被直线c所截,下列条件中,不能判定打〃b的是()A.Z2=Z5B.Z1=Z3C.Z5=Z4D.Zl+Z5=180°5.已知直线a〃b,将一块含45°角的直角三角板(NC=90°)按如图所示的位置摆放,若Zl=55°,则匕2的度数为()A.80°B.70°C.85°D.75°6.二元一次方程组x-y=-2廿广2的解是(x=0 y=-2x=0y=2x=-2y=07.若一次函数、,=(k-2) x+1的函数值y 随x 的增大而增大,则()A. k<2 B. k>2 C. k>0 D. k<08.我国古代数学著作《孙子算经》中有“鸡兔同笼"问题:“今有鸡兔同笼.上有三十五头.下有九十四足,问鸡兔各几何设筠x 只,兔y 只,可列方程组为( )\+y=35k 2x+2y=94x+y=354x+4y=949.如图,在矩形AOBC 中,A ( -2, 0), B (0, 1).若正比例函数y=kx 的图象经过点C.则k 的值为(A. B.D.x 4y=35、4"2y=94 x+y=35k 2x+4y=949---------512A.“ 1 D.-- C. -2 D. 2210.如图,小巷左右两侧是竖直的墙,一架梯子斜幸在左墙时,梯子底墙到左墙角的距膏为0.7米,距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度岫A. 0.7 米B. 1.5 米C. 2.2 米D. 2.4 米二.填空题:(每小题4分,共16分)11. 若关于X 、y 的二元一次方程3x - ay = 1有一个解是{ .则a=_______.______ y=212. 若3x - 2y+l *Vx+y-3 = 0,则xy 的算术平方根是.13. 如图所示,一次曲数y=ax+b 的图象与x 轴相交于点(2, 0),与y 轴相交于点(0, 4),结合图象可知,关于x 的方程ax+b=0的解是.. V4* L 214.如围,在RtAABC中,ZC=90°.AC=3.AB=5,分别以点A.B为圆心,大于《AB的长为半径画弧,2两弧交点分别为点P,Q,过P,Q两点作直线交BC于点D,则CD的长是三.解答下列各题(共54分)15.(10分)计算下列各题:(1)计算:(1-V3)2(2)计算:6X^1+(ji-2019) °-|5-VTr-(*)-216.(10分)解下列方程组:(1J x+2y=0®'3x+4y=6®17.(8分)某单位750名职工积极参加向贫困地区学校捐书活动,为了解职工的指数量,采用随机抽样方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A, B. C. D.E表示.根据统计数据绘制成了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:(1)补全条形统计图;(2)这30名职工捐书本数的众数是本,中位数是本;(3)求这30名职工捐书本数的平均数是多少本?并估计该单位750名职工共捐书多少本?18.(8分)如图,已知点D,E分别是ZXABC的边HA和BC延长线上的点,作ZDAC的平分线AF,若AF〃BC.(1)求证:ZiABC是等腰三角形;(2)作NACE的平分线交AF于点G,若ZB=40°,求NAGC的度数.BC E19.(8分)某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示.其中BA是线段,且BA〃x轴,AC是射线.(1)若小李11月份上网20小时.他应付多少元的上网费用?(2)当xN3O,求y与x之间的函数关系式;(3)若小李12月份上网费用为135元,则他在该月份的上网时间是多少?20.(10分)如图,直角坐标系xOy中.一次函数y=-*x+5的图象L分别与x,y轴交于A・B两点.正比例函数的图象12与L交于点C(m,3).(1)求m的值及k的解析式;(2)求S ec-S△叩的值;(3)一次函数y=kx+l的图象为L,且1.,12,L不能围成三角形,直接写出k的值.B卷(50分)一.填空题(每小题4分,共20分)21.函数y=-x的图象与函数y=x+l的图象的交点在第象限.22.如图,数辅上点A表示的数为*化简:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中2017级成绩册组别学校名称姓名考号班级语文数学英语物理
2.2彰加初中彭红60118010017110495.2100.486
2.2彰加初中龚珏媚6011801004819
3.686.486.482
2.2彰加初中刘松榕60118010050185.295.2104.859
2.2彰加初中张逍遥60118010043197.289.690.866
2.2彰加初中李佳雨60118010028191.287.278.477
2.2彰加初中余鑫月6011801003918495.28
3.264
2.2彰加初中彭瑞琳6011801001119487.29
3.279
2.2彰加初中唐礼俊6011801002417687.290.463
2.2彰加初中余浩然60118010004182.481.645.661
2.2彰加初中蔡佳丽60118010021195.670.472.861
2.2彰加初中陈宝凌60118010008187.27
3.650.479
2.2彰加初中王豪林60118010010180.478.479.257
2.2彰加初中周珂羽60118010036194.854.480.450
2.2彰加初中胡新译6011801005119099.26
3.276
2.2彰加初中李玉西60118010005184.479.292.861
2.2彰加初中邓容珍6011801004219471.245.255
2.2彰加初中唐青诚60118010013190.878.44
3.4455
2.2彰加初中李凌霄6011801004918810.44860
2.2彰加初中刘星余60118010009171.285.62473
2.2彰加初中罗丹6011801003419230.446.848
2.2彰加初中袁美玲60118010003184647
3.247
2.2彰加初中雷秋婷6011801002718
3.23271.660
2.2彰加初中李晓红6011801000717866.452.455
2.2彰加初中杨英60118010025169.260.82
3.641
2.2彰加初中代晓兰60118010041178.4405448
2.2彰加初中林柯良60118010012170.8322634
2.2彰加初中苏佳宝60118010018167.636.847.234
2.2彰加初中袁新翔6011801001418890.42032
2.2彰加初中黄巾芝60118010031182.842.434.842
2.2彰加初中陈荣杰60118010032180.440.82238
2.2彰加初中陆靓60118010045182.89.634.832
2.2彰加初中蒋宜杉60118010046175.610.435.236
2.2彰加初中杨凯6011801003517018.427.238
2.2彰加初中刘欣6011801000116
3.22
4.82053
2.2彰加初中李鑫祎60118010038176.814.420.432
2.2彰加初中王丽6011801001617
3.213.628.432
2.2彰加初中吴林峰6011801004416624.832.447
2.2彰加初中成学梅6011801004716619.224.425
2.2彰加初中成佳丽6011801002915
3.610.43025
2.2彰加初中林龙60118010020165.212.828.429
2.2彰加初中夏一雄60118010033156.821.62629
2.2彰加初中杨德权60118010002157.28.820.831
2.2彰加初中粟宏宇6011801003013614.421.619
2.2彰加初中蒋小艳6011801004015
3.632.852.414
2.2彰加初中蒋小兰60118010026145.210.42020
2.2彰加初中陈俊良60118010023144.89.617.242
2.2彰加初中戴承宇60118010037151.2 4.821.626
2.2彰加初中徐宇兴60118010019151.214.42823
2.2彰加初中徐佳明60118010015138.4 5.625.210 2.2彰加初中余思成60118010006119.29.617.220 2.2彰加初中文涛60118010022128.4 2.425.617
3732.82334.42401.042343
73.245.847.145.9
成绩册
政治历史生物地理总分
77775167657.6汪洋学区
78606970625.4汪洋学区
77726556614.2汪洋学区
67745462600.6汪洋学区
68685068587.8汪洋学区
56735962576.4汪洋学区
61524563574.4汪洋学区
76664862568.6汪洋学区
82785764551.6汪洋学区
64714962545.8汪洋学区
57734876544.2汪洋学区
59744569542汪洋学区
70825352536.6汪洋学区
77682422519.4汪洋学区
61414158518.4汪洋学区
65795648513.4汪洋学区
70474754485.64汪洋学区
73743284469.4汪洋学区
70534542463.8汪洋学区
79665347462.2汪洋学区
64453932448.2汪洋学区
56583352445.8汪洋学区
52512639419.8汪洋学区
67573554407.6汪洋学区
61642624395.4汪洋学区
63713440370.8汪洋学区
55513433358.6汪洋学区
44441425357.4汪洋学区
53343234355汪洋学区
60553024350.2汪洋学区
55525031347.2汪洋学区
56423435324.2汪洋学区
49543124311.6汪洋学区
42343140308汪洋学区
59562422304.6汪洋学区
53452823296.2汪洋学区
29442020283.2汪洋学区
43273833275.6汪洋学区
47353930270汪洋学区
41453010261.4汪洋学区
31183020232.4汪洋学区
35341428228.8汪洋学区
50422614223汪洋学区
181********.8汪洋学区
38372020210.6汪洋学区
3616928202.6汪洋学区
32242018197.6汪洋学区
22102218188.6汪洋学区
30342812183.2汪洋学区21141825144汪洋学区21221210138.4汪洋学区2770257518342020
54.350.536.039.6392.4。