半导体器件-第4章习题

合集下载

《半导体物理与器件》习题库

《半导体物理与器件》习题库

《半导体物理与器件》习题库目录《半导体物理与器件》习题库 (1)第1章思考题和习题 (2)第2章思考题和习题 (3)第3章思考题和习题 (6)第4章思考题和习题 (10)第5章半导体器件制备技术 (12)第6章Ga在SiO2/Si结构下的开管掺杂 (13)第1章思考题和习题1. 300K时硅的晶格常数a=5.43Å,求每个晶胞内所含的完整原子数和原子密度为多少?2. 综述半导体材料的基本特性及Si、GaAs的晶格结构和特征。

3. 画出绝缘体、半导体、导体的简化能带图,并对它们的导电性能作出定性解释。

4. 以硅为例,简述半导体能带的形成过程。

5. 证明本征半导体的本征费米能级E i位于禁带中央。

6. 简述迁移率、扩散长度的物理意义。

7. 室温下硅的有效态密度Nc=2.8×1019cm-3,κT=0.026eV,禁带宽度Eg=1.12eV,如果忽略禁带宽度随温度的变化,求:(a)计算77K、300K、473K 3个温度下的本征载流子浓度。

(b) 300K本征硅电子和空穴的迁移率分别为1450cm2/V·s和500cm2/V·s,计算本征硅的电阻率是多少?8. 某硅棒掺有浓度分别为1016/cm3和1018/cm3的磷,求室温下的载流子浓度及费米能级E FN的位置(分别从导带底和本征费米能级算起)。

9. 某硅棒掺有浓度分别为1015/cm3和1017/cm3的硼,求室温下的载流子浓度及费米能级E FP的位置(分别从价带顶和本征费米能级算起)。

10. 求室温下掺磷为1017/cm3的N+型硅的电阻率与电导率。

11. 掺有浓度为3×1016cm-3的硼原子的硅,室温下计算:(a)光注入△n=△p=3×1012cm-3的非平衡载流子,是否为小注入?为什么?(b)附加光电导率△σ为多少?(c)画出光注入下的准费米能级E’FN和E’FP(E i为参考)的位置示意图。

半导体物理与器件第三版(尼曼)04章答案

半导体物理与器件第三版(尼曼)04章答案
= C1
EC
z

C
F

F
1
C
EC
4.13 Computer Plot 4.14 Let g C ( E ) = K = constant Then, nO =
EC
z

g C ( E ) f F ( E )dE
so that dE = kT ⋅ dη kT We can write E − E F = E − EC + EC − E F Then − EC − E F nO = C1 exp kT
F −xI = 0 H kT K
4.3 Computer Plot
FG − E IJ H kT K So n aT f F T I L F 1 − 1 IJ OP = G J exp M − E G n aT f H T K N H kT kT K Q
ni = N CO N VO ⋅ (T ) ⋅ exp
Let E − E C ≡ x Then gC f F ∝
LM −a E − E f OP N kT Q LM −a E − E f OP expLM −a E − E f OP exp N kT Q N kT Q
E − E C exp
F C C F
x exp
Then
. I F 112 FTI = b2.912 x10 g exp H kT K H 300 K
* *
E1 = E C + 4 kT and E 2 = E C + Then
kT 2
a f= na E f
n E1
2
or
LM −a E − E f OP N kT Q kT 2 LM F 1 I OP = 2 2 exp(−3.5) = 2 2 exp − 4 − N H 2K Q na E f = 0.0854 na E f

半导体器件物理第四章习题

半导体器件物理第四章习题

第四章 金属-半导体结4-1. 一硅肖脱基势垒二极管有0.01 cm 2的接触面积,半导体中施主浓度为1016 cm 3−。

设V 7.00=ψ,V V R 3.10=。

计算 (a )耗尽层厚度,(b )势垒电容,(c )在表面处的电场4-2. (a )从示于图4-3的GaAs 肖脱基二极管电容-电压曲线求出它的施主浓度、自建电势势垒高度。

(b) 从图4-7计算势垒高度并与(a )的结果作比较。

4-3. 画出金属在P 型半导体上的肖脱基势垒的能带结构图,忽略表面态,指出(a )s m φφ>和(b )s m φφ<两种情形是整流节还是非整流结,并确定自建电势和势垒高度。

4-4. 自由硅表面的施主浓度为15310cm −,均匀分布的表面态密度为122110ss D cm eV −−=,电中性级为0.3V E eV +,向该表面的表面势应为若干?提示:首先求出费米能级与电中性能级之间的能量差,存在于这些表面态中的电荷必定与表面势所承受的耗尽层电荷相等。

4-5. 已知肖脱基二极管的下列参数:V m 0.5=φ,eV s 05.4=χ,31910−=cm N c ,31510−=cm N d ,以及k=11.8。

假设界面态密度是可以忽略的,在300K 计算: (a )零偏压时势垒高度,自建电势,以及耗尽层宽度。

(b)在0.3v 的正偏压时的热离子发射电流密度。

4-6.在一金属-硅的接触中,势垒高度为eV q b 8.0=φ,有效理查逊常数为222/10*K cm A R ⋅=,eV E g 1.1=,31610−=cm N d ,以及31910−==cm N N v c 。

(a )计算在300K 零偏压时半导体的体电势n V和自建电势。

(b )假设s cm D p /152=和um L p 10=,计算多数载流子电流对少数载流子电流的注入比。

4-7. 计算室温时金-nGaAs 肖脱基势垒的多数载流子电流对少数载流子电流的比例。

半导体器件物理(第四章 双极型晶体管及其特性)

半导体器件物理(第四章 双极型晶体管及其特性)

4.1 晶体管结构与工作原理 三极电流关系
I E I B IC
对于NPN晶体管,电子电流是主要成分。电子从发射极出发,通 过发射区到达发射结,由发射结注入到基区,再由基区输运到集电结 边界,然后又集电结收集到集电区并到达集电极,最终称为集电极电 流。这就是晶体管内部载流子的传输过程。 电子电流在传输过程中有两次损失:一是在发射区,与从基区注 入过来的空穴复合损失;而是在基区体内和空穴的复合损失。因此
* 0
可见,提高电流放大系数的途径是减小基区平均掺杂浓度、减 薄基区宽度Wb以提高RsB,提高发射区平均掺杂浓度以减小RsE。另外, 提高基区杂质浓度梯度,加快载流子传输,减少复合;提高基区载 流子的寿命和迁移率,以增大载流子的扩散长度,都可以提高电流 放大系数。
4.2 晶体管的直流特性 4.2.1 晶体管的伏安特性曲线 1.共基极晶体管特性曲线
' ine 1 jCTe 1 ine re 1 jCTe 1 jreCTe
re in e
iCTe
' in e
交流发射效率
1 0 1 jre CTe
CTe
re CTe e
发射极延迟时间
4.3 晶体管的频率特性
2.发射结扩散电容充放电效应对电流放大系数的影响
虽然共基极接法的晶体管不能放大电流,但是由于集电极可以 接入阻抗较大的负载,所以仍然能够进行电压放大和功率放大。
4.1 晶体管结构与工作原理
(2)共发射极直流电流放大系数
IC 0 IB
(3)α0和β0的关系
C
IC
N
IB
B
I IC I I 0 C C E 0 I B I E IC 1 IC I E 1 0

半导体物理与器件习题

半导体物理与器件习题

第一章 固体晶格结构1.如图是金刚石结构晶胞,若a 是其晶格常数,则其原子密度是 。

2.所有晶体都有的一类缺陷是:原子的热振动,另外晶体中常的缺陷有点缺陷、线缺陷。

3.半导体的电阻率为10-3~109Ωcm 。

4.什么是晶体?晶体主要分几类?5.什么是掺杂?常用的掺杂方法有哪些?答:为了改变导电性而向半导体材料中加入杂质的技术称为掺杂。

常用的掺杂方法有扩散和离子注入。

6.什么是替位杂质?什么是填隙杂质? 7.什么是晶格?什么是原胞、晶胞?第二章 量子力学初步1.量子力学的三个基本原理是三个基本原理能量量子化原理、波粒二相性原理、不确定原理。

2.什么是概率密度函数?3.描述原子中的电子的四个量子数是: 、 、 、 。

第三章 固体量子理论初步1.能带的基本概念⏹ 能带(energy band )包括允带和禁带。

⏹ 允带(allowed band ):允许电子能量存在的能量范围。

⏹ 禁带(forbidden band ):不允许电子存在的能量范围。

⏹ 允带又分为空带、满带、导带、价带。

⏹ 空带(empty band ):不被电子占据的允带。

⏹满带(filled band ):允带中的能量状态(能级)均被电子占据。

导带:有电子能够参与导电的能带,但半导体材料价电子形成的高能级能带通常称为导带。

价带:由价电子形成的能带,但半导体材料价电子形成的低能级能带通常称为价带。

2.什么是漂移电流?漂移电流:漂移是指电子在电场的作用下的定向运动,电子的定向运动所产生的电流。

3.什么是电子的有效质量?晶格中运动的电子,在外力和内力作用下有: F总=F外+F内=ma, m 是粒子静止的质量。

F外=m*n a, m*n 称为电子的有效质量。

4.位于能带底的电子,其有效质量为正,位于能带顶电子,其有效质量为负。

5.在室温T=300K ,Si 的禁带宽度:Eg=1.12eV Ge 的禁带宽度:Eg=0.67eV GaAs 的禁带宽度:Eg=1.43eVEg 具有负温度系数,即T 越大,Eg 越小;Eg 反应了,在相同温度下,Eg 越大,电子跃迁到导带的能力越弱。

《半导体光电学》课后习题

《半导体光电学》课后习题

《半导体光电学》课后习题第一章半导体中光子-电子的相互作用思考与习题1、在半导体中有哪几种与光有关的跃迁,利用这些光跃迁可制造出哪些类型的半导体光电子学期间。

2、为什么半导体锗、硅不能用作为半导体激光器的有源介质,面却是常用的光探测器材料?3、用量子力学理论证明直接带隙跃迁与间接带隙跃迁半导体相比其跃迁几率大。

4、什么叫跃迁的K选择定则?它对电子在能带间的跃迁速率产生什么影响?5、影响光跃迁速率的因素有哪些?6、推导伯纳德-杜拉福格条件,并说明其物理意义。

7、比较求电子态密度与光子态密度的方法与步骤的异同点。

8、在半导体中重掺杂对能带结构、电子态密度、带隙、跃迁几率等带来什么影响?9、什么叫俄歇复合?俄歇复合速率与哪些因素有关?为什么在GaInAsP/InP等长波长激光器中,俄歇复合是影响其阀值电流密度、温度稳定性与可靠性的重要原因?10、比较严格k选择定则与其受到松弛情况下增益-电流特性的区别。

11、带尾的存在对半导体有源介质增益特性产生哪些影响?12、证明式(1.7-20)。

13、说明图1.7-5和图1.7-6所依据的假设有何不同?并说明它们各自的局限性。

第二章异质结思考与习题1、什么是半导体异质结?异质结在半导体光电子器件中有哪些作用?2、若异质结由n型(E∅1,χ1,ϕ1)和P型半导体(E∅2,χ2,ϕ2)结构,并有E∅1<E∅2,χ1>χ2,ϕ1<ϕ2,试画出np 能带图。

3、同型异质结的空间电荷区是怎么形成的?它与异质结的空间电荷形成机理有何区别?4、推导出pn 异质结结电容C j 与所加正向偏压的关系,C j 的大小时半导体光电子器件的应用产生什么影响?5、用弗伽定律计算Ga 1−x Al x As 半导体当x=0.4时的晶格常数,并求出GaAs 的晶格失配率。

6、探讨在Si 衬底上生GaAs 异质结的可能性。

7、用Ga 1−x Al x As 半导体作为激射波长为0.78μm 可且光激光器的有源材料,计算其中AlAs 的含量。

(整理)第4章常用半导体器件-练习复习题

(整理)第4章常用半导体器件-练习复习题

第4章:常用半导体器件-复习要点基本概念:了解半导体基本知识和PN结的形成及其单向导电性;掌握二极管的伏安特性以及单向导电性特点,理解二极管的主要参数及意义,掌握二极管电路符号;理解硅稳压管的结构和主要参数,掌握稳压管的电路符号;了解三极管的基本结构和电流放大作用,理解三极管的特性曲线及工作在放大区、饱和区和截止区特点,理解三极管的主要参数,掌握NPN型和PNP型三极管的电路符号。

分析依据和方法:二极管承受正向电压(正偏)二极管导通,承受反向电压(反偏)二极管截止。

稳压管在限流电阻作用下承受反向击穿电流时,稳压管两端电压稳定不变(施加反向电压大于稳定电压,否者,稳压管反向截止);若稳压管承受正向电压,稳压管导通(与二极管相同)。

理想二极管和理想稳压管:作理想化处理即正向导通电压为零,反向截止电阻无穷大。

三极管工作在放大区:发射结承受正偏电压;集电结承受反偏电压;三极管工作在饱和区:发射结承受正偏电压;集电结承受正偏电压;三极管工作在截止区:发射结承受反偏电压;集电结承受反偏电压;难点:含二极管和稳压管电路分析,三极管三种工作状态判断以及三极管类型、极性和材料的判断。

一、填空题1.本征半导体中价电子挣脱共价键的束缚成为自由电子,留下一个空位称为空穴,它们分别带负电和正电,称为载流子。

2.在本征半导体中掺微量的五价元素,就称为N型半导体,其多数载流子是自由电子,少数载流子是空穴,它主要依靠多数载流子导电。

3.在本征半导体中掺微量的三价元素,就称为P型半导体,其多数载流子是空穴,少数载流子是自由电子,它主要依靠多数载流子导电。

4.PN结加正向电压时,有较大的电流通过,其电阻较小,加反向电压时处于截止状态,这就是PN结的单向导电性。

5.在半导体二极管中,与P区相连的电极称为正极或阳极,与N区相连的电极称为负极或阴极。

6.晶体管工作在截止区的条件是:发射结反向偏置,集电结反向偏置。

7.晶体管工作在放大区的条件是:发射结正向偏置,集电结反向偏置。

半导体物理 第四章

半导体物理 第四章

中 北 大 学 电 子 科 学 与 技 术 系
5. 掌握热平衡状态下半导体材料中两种载流 子浓度与掺杂之间的关系; 6. 熟悉费米能级位置与半导体材料中掺杂浓 度之间的关系; 7. 了解半导体材料的两种掺杂方法。
中 北 大 学 电 子 科 学 与 技 术 系
热平衡状态:
没有外界影响作用于半导体上的状态。 即半导体材料不受外加电压、电场、磁场以及 温度梯度的影响。 此时半导体材料的各种特性均不随时间变 化,即与时间无关。它是分析各种稳态和瞬态 问题的起点。
Δ E D= E C – E D
受主原子的电离能:激发价带电子进入受主能级 所需要的能量。
Δ E A= E A – E V
中 北 大 学 电 子 科 学 与 技 术 系
硅、锗等半导体材料中常见的几种施主杂质和受 主杂质的电离能一般在几十个毫电子伏特左右。 下表所示为硅和锗单晶材料中几种常见的施主杂 质和受主杂质的电离能。
本征硅晶体的二维示意图
中 北 大 学 电 子 科 学 与 技 术 系
假定向本征硅晶体材料中掺入少量代位型的V族元素 杂质(例如磷原子)。 磷原子共有五个价电子,代替一个硅原子之后,其中 四个价电子与硅原子形成共价键结构,多余的第五个 价电子则比较松散地束缚在磷原子的周围,如下图所 示。 这第五个价电子称作施主电子。
中 北 大 学 电 子 科 学 与 技 术 系
如下图所示,在正常温度下,硅原子共价键中的一个 电子获得一定的热运动能量,就可以转移到硼原子的 空位上,从而在价带中形成一个空穴,同时产生一个 带负电的硼离子。价带中的空穴可以参与导电,而带 负电的硼离子则在晶体中形成固定的负电荷中心。
中 北 大 学 电 子 科 学 与 技 术 系
右图:给出了导带gC(E)与价 带gV(E)以及fF(E) 的分布曲 线。 其中费米能级EF位置位于禁 带中心附近。 当 mn﹡= mp﹡时, 导带gC(E)与价带gV(E)关于 禁带中心线对称。

半导体物理与器件第四版答案

半导体物理与器件第四版答案

半导体物理与器件第四版答案【篇一:半导体物理第五章习题答案】>1. 一个n型半导体样品的额外空穴密度为1013cm-3,已知空穴寿命为100?s,计算空穴的复合率。

解:复合率为单位时间单位体积内因复合而消失的电子-空穴对数,因此1013u1017cm?3?s ?6100102. 用强光照射n型样品,假定光被均匀吸收,产生额外载流子,产生率为gp,空穴寿命为?,请①写出光照开始阶段额外载流子密度随时间变化所满足的方程;②求出光照下达到稳定状态时的额外载流子密度。

解:⑴光照下,额外载流子密度?n=?p,其值在光照的开始阶段随时间的变化决定于产生和复合两种过程,因此,额外载流子密度随时间变化所满足的方程由产生率gp和复合率u的代数和构成,即 d(?p)?pgp dtd(?p)0,于是由上式得⑵稳定时额外载流子密度不再随时间变化,即 dtppp0gp3. 有一块n型硅样品,额外载流子寿命是1?s,无光照时的电阻率是10??cm。

今用光照射该样品,光被半导体均匀吸收,电子-空穴对的产生率是1022/cm3?s,试计算光照下样品的电阻率,并求电导中少数载流子的贡献占多大比例?解:光照被均匀吸收后产生的稳定额外载流子密度pngp10221061016 cm-3取?n?1350cm2/(v?s),?p?500cm/(v?s),则额外载流子对电导率的贡献2pq(?n??p)?1016?1.6?10?19?(1350?500)?2.96 s/cm无光照时?0?10.1s/cm,因而光照下的电导率0?2.96?0.1?3.06s/cm相应的电阻率 ??110.33cm 3.06少数载流子对电导的贡献为:?p?pq?p??pq?p?gp?q?p代入数据:?p?(p0??p)q?p??pq?p?1016?1.6?10?19?500?0.8s/cm∴p00.80.2626﹪ 3.06即光电导中少数载流子的贡献为26﹪4.一块半导体样品的额外载流子寿命? =10?s,今用光照在其中产生非平衡载流子,问光照突然停止后的20?s时刻其额外载流子密度衰减到原来的百分之几?解:已知光照停止后额外载流子密度的衰减规律为p(t)p0e因此光照停止后任意时刻额外载流子密度与光照停止时的初始密度之比即为t??p(t)e p0t当t?20?s?2?10?5s时20??p(20)e10e20.13513.5﹪ ?p05. 光照在掺杂浓度为1016cm-3的n型硅中产生的额外载流子密度为?n=?p= 1016cm-3。

半导体制造技术 习题4-7章

半导体制造技术 习题4-7章

4-5章1.为什么集成电路芯片制造需要用单晶硅材料?因为非晶态和多晶态,从晶粒边界散射的电子会会严重影响PN节的特性。

2.在一个立方体上画出<100>和<111>平面。

3.在集成电路工业中,硅晶圆比其他半导体晶圆普遍使用的原因是什么?1.硅是地球上最丰富的元素之一2.硅晶圆能够再热氧化的过程中生长一层二氧化硅3.硅材料具有较大的能隙,所以能承受较高的工作温度和较大的杂质掺杂范围4.哪种化学药品用于将MGS纯化成EGS?说明其安全性与危险性。

HCL和氢气5. CZ法提拉单晶的工艺流程是什么?为什么CZ法提拉的晶圆比悬浮区熔法提拉的单晶有较高的氧浓度?1.将高纯度的电子级硅材料放入缓慢转动的石英坩埚中在1415C熔化(硅的熔点是1414C)2.将一个安装在慢速转动夹具上的单晶硅籽晶棒缓慢降低高度,溶解在熔融硅中3.将单晶硅籽晶缓慢拉出就可以把熔融的硅拉出来,使其沿着籽晶的晶体方向凝固。

CZ法提拉的单晶硅棒总是有微量的氧和碳杂质,这是由于坩埚本身的材料引起的。

而悬浮区熔法处理的时候不接触坩埚。

6.说明外延工艺的目的。

外延层能够在低阻衬底上形成一个高阻层,这样可以提高双载流子晶体管bipolar transistor的性能外延层也可以增强动态随机存储DRAM和互补金属氧化物半导体CMOS的性能。

双载流子晶体管需要外延层在硅的深部形成重掺杂深埋层。

外延层能够提供与衬底晶圆不同的物理特性。

7.什么是自掺杂效应?如何避免?8.列出三种外延硅的原材料。

SIH4SIH2CL2SIHCL3掺杂AsH3、PH3、B2H69.列出常用的三种外延硅掺杂物,并说明掺杂气体的安全性。

掺杂AsH3、PH3、B2H6三种氢化物都有剧毒、易燃和易爆炸10.单晶硅外延反应器优于批量外延系统的优点是什么?有较高的外延层生长速率和较高的可靠性,重复性,能够在大气压和低压下沉积高质量、低成本的薄膜。

11.键合SOI技术需要哪种离子注人? SIMOX注氧隔离SOI晶圆需要哪种离子注人?氢离子氧离子键合SOI的主要优势在于成本12.解释为什么大多数IC制造商使用局部应变strain技术代替应变硅技术制造MOSFET?因为只有MOSFET的栅极氧化层下方的沟道需要应变,因此没有必要对整个晶片进行应变,13.大多数IC制造商将具有局部应变的体硅晶圆用于先进IC芯片制造,而且使用混合定位技术,请解释原因是什么?在PMOS和NMOS上分别实现压应变和拉应变,用于提高P沟道的空穴迁移率和N沟道的电子迁移率。

半导体器件物理(第四章)_Part1_238403818

半导体器件物理(第四章)_Part1_238403818

半导体器件物理进展第四章CMOS的等比例缩小、优化设计及性能因子CMOS Scaling, Design Optimization, and Performance FactorsPart 1 MOSFET模型及小尺寸效应内容提要:MOSFET结构及其偏置条件MOSFET的漏极电流模型MOSFET的亚阈区特性与温度特性 MOSFET的小尺寸效应MOSFET的缩比特征长度MOSFET的速度饱和效应1. MOSFET结构及其偏置条件MOSFET在实际集成电路中的剖面结构如下图所示。

横向:源-沟道-漏;纵向:M-O-S;几何参数L:沟道长度;W:沟道宽度;t ox:栅氧化层厚度;x j:源漏结深;MOSFET的发展简史:早期:主要采用铝栅电极,栅介质采用热氧化二氧化硅,扩散形成源、漏区,其与栅电极之间采用非自对准结构,场区采用厚氧化层隔离;中期:栅极采用N型掺杂的多晶硅栅,源、漏区与栅极之间采用自对准离子注入结构,场区采用硅的局部氧化工艺(LOCOS)实现器件隔离;后期:栅极采用互补双掺杂(N型和P型)的多晶硅栅,源漏区与栅极之间采用LDD(轻掺杂漏)结构和金属硅化物结构,场区采用浅沟槽隔离(STI)技术。

近期:栅极采用难熔金属栅极(例如W、Mo等),栅介质采用高K介质材料(例如氧化铪等),源、漏区与栅极之间采用自对准金属硅化物结构,场区采用浅沟槽隔离或其它介质隔离技术。

一个自对准MOSFET的工艺制造过程以NMOS器件为例,包含四个结构化的光刻掩模:(1)场区光刻掩模:利用氮化硅掩蔽的LOCOS局部氧化工艺,在P型掺杂的硅单晶衬底上定义出器件有源区和场氧化层隔离区;(2)栅极光刻掩模:通过多晶硅的淀积、光刻和刻蚀工艺,定义出器件的多晶硅栅电极;(3)接触孔光刻掩模:通过对源漏有源区及多晶硅栅电极上二氧化硅绝缘层的光刻和刻蚀工艺,定义出相应的欧姆接触窗口;(4)铝引线光刻掩模:通过铝布线金属的溅射、光刻和刻蚀工艺,定义出器件各引出端的铝引线电极;对于包含PMOS器件的CMOS工艺,则还需要增加一步N阱区的掩模及其光刻定义。

半导体器件物理4章半导体中的载流子输运现象

半导体器件物理4章半导体中的载流子输运现象

第四章 半导体中载流子的输运现象在前几章我们研究了热平衡状态下,半导体导带和价带中的电子浓度和空穴浓度。

我们知道电子和空穴的净流动将会产生电流,载流子的运动过程称谓输运。

半导体中的载流子存在两种基本的输运现象:一种是载流子的漂移,另一种是载流子的扩散。

由电场引起的载流子运动称谓载流子的漂移运动;由载流子浓度梯度引起的运动称谓载流子扩散运动。

其后我们会将会看到,漂移运动是由多数载流子(简称多子)参与的运动;扩散运动是有少数载流子(简称少子)参与的运动。

载流子的漂移运动和扩散运动都会在半导体内形成电流。

此外,温度梯度也会引起载流子的运动,但由于温度梯度小或半导体的特征尺寸变得越来越小,这一效应通常可以忽略。

载流子运动形成电流的机制最终会决定半导体器件的电流-电压特性。

因此,研究半导体中载流子的输运现象非常必要。

4.1漂移电流密度如果导带和价带都有未被电子填满的能量状态,那么在外加电场的作用下,电子和空穴将产生净加速度和净移位。

电场力的作用下使载流子产生的运动称为“漂移运动”。

载流子电荷的净漂移会产生“漂移电流”。

如果电荷密度为ρ的正方体以速度dυ运动,则它形成的电流密度为()4.1dr fdJ ρυ=其中ρ的单位为3C cm - ,drfJ 的单位是2Acm -或2/C cms 。

若体电荷是带正电荷的空穴,则电荷密度epρ=,e 为电荷电量191.610(e C -=⨯库仑),p 为载流子空穴浓度,单位为3cm -。

则空穴的漂移电流密度/p drfJ可以写成:()()/ 4.2p drf dpJ ep υ=dp υ表示空穴的漂移速度。

空穴的漂移速度跟那些因素有关呢?在电场力的作用下,描述空穴的运动方程为()*4.3p F m a eE==e 代表电荷电量,a 代表在电场力F 作用下空穴的加速度,*pm 代表空穴的有效质量。

如果电场恒定,则空穴的加速度恒定,其漂移速度会线性增加。

但半导体中的载流子会与电离杂质原子和热振动的晶格原子发生碰撞或散射,这种碰撞或散射改变了带电粒子的速度特性。

半导体物理与器件孟庆巨第二版第四章答案

半导体物理与器件孟庆巨第二版第四章答案

半导体物理与器件孟庆巨第二版第四章答案
1、室温下,Si晶体中两个最近的SI原子的间距大约为()埃。

A、1
B、2
C、3
D、4
答案:2
2、室温下Ge晶体的导带底由()个旋转椭球构成。

A、2
B、4
C、6
D、8
答案:4
3、Si晶体的第一布里渊区是个()体。

A、立方体
B、正菱形12面体
C、截角8面体
D、球体
答案:截角8面体
4、费米-狄拉克分布函数预测:远远低于费米能级的位置其电子占据的几率趋向于()。

A、0
B、0.5
C、1
D、无穷大
答案:1
5、哪支能带的极值对应的电子有效质量最大?()
A、1
B、2
C、3
D、无法判断
答案:3
6、空穴是一种假设出来的粒子。

其有效质量为(),电荷为()。

A、正,负
B、正,正
C、负,正
D、负,负
答案:正,正
7、Si器件中,典型的少子扩散长度的数量级在()。

A、厘米
B、毫米
C、微米
D、纳米
答案:微米
8、随温度升高,Si的禁带宽度()。

A、不变
B、增加
C、减小
D、不清楚
答案:减小
9、Ga替位掺入Ge中,其将成为()。

A、施主
B、受主
C、两性杂质
D、中性杂质
答案:受主
10、Si中常见点缺陷是()缺陷。

A、弗伦克尔
B、肖特基
C、刃位错
D、螺位错
答案:肖特基
11、晶体Si是直接带隙半导体。

答案:错误。

(完整版)常用半导体器件选择复习题

(完整版)常用半导体器件选择复习题

第4章常用半导体器件-选择复习题1.半导体的特性不包括。

A. 遗传性B.光敏性C.掺杂性D. 热敏性2.半导体中少数载流子在内电场作用下有规则的运动称为。

A.漂移运动B. 扩散运动C.有序运动D.同步运动3.N型半导体中的多数载流子是。

A.自由电子B.电子C.空穴D.光子4.P型半导体中的多数载流子是。

A.空穴B.电子C. 自由电子D.光子5.本征半导体中掺微量三价元素后成为半导体。

A.P型B.N型C.复合型D.导电型6.本征半导体中掺微量五价元素后成为半导体。

A. N型B. P型C.复合型D.导电型7.在PN结中由于浓度的差异,空穴和电子都要从浓度高的地方向浓度低的地方运动,这就是。

A.扩散运动B.漂移运动C.有序运动D.同步运动8.将一个PN结两端各加一条引线,再封装起来,就成为一只。

A.二极管B. 三极管C.电子管D.晶闸管9.当外电场与内电场方向相同时,阻挡层,电子不容易通过。

A.变厚B.变薄C. 消失D.变为导流层10.当外电场与内电场方向相反时,阻挡层,电子容易通过。

A.变薄B. 变厚C. 消失D.变为导流层11.PN结的基本特性是。

A.单向导电性B. 半导性C.电流放大性D.绝缘性12.晶体三极管内部结构可以分为三个区,以下那个区不属于三极管的结构。

A.截止区B. 发射区C.基区D.集电区13.稳压二极管一般要串进行工作,以限制过大的电流。

A 电阻 B电容 C电感 D电源14.下图电路中,设硅二极管管的正向压降为0V,则Y= 。

A.0V B.3V C.10V D.1.5V15.下图电路中,设硅二极管管的正向压降为0V,则Y= 。

A.0V B.3V C.10V D.1.5V16.下图电路中,设硅二极管管的正向压降为0V,则Y= 。

A. 3V B.0 V C.10V D.1.5V17.下图电路中,设硅二极管管的正向压降为0V,则Y= 。

A.0V B.3V C.10V D.1.5V18.下图电路中,设硅二极管管的正向压降为0V,则Y= 。

半导体物理习题答案

半导体物理习题答案

第一章半导体中的电子状态例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。

即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。

解:K状态电子的速度为:(1)同理,-K状态电子的速度则为:(2)从一维情况容易看出:(3)同理有:(4)(5)将式(3)(4)(5)代入式(2)后得:(6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。

例2.已知一维晶体的电子能带可写成:式中,a为晶格常数。

试求:(1)能带的宽度;(2)能带底部和顶部电子的有效质量。

解:(1)由E(k)关系(1)(2)令得:当时,代入(2)得:对应E(k)的极小值。

当时,代入(2)得:对应E(k)的极大值。

根据上述结果,求得和即可求得能带宽度。

故:能带宽度(3)能带底部和顶部电子的有效质量:习题与思考题:1 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。

2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。

3 试指出空穴的主要特征。

4 简述Ge、Si和GaAs的能带结构的主要特征。

5 某一维晶体的电子能带为其中E0=3eV,晶格常数a=5×10-11m。

求:(1)能带宽度;(2)能带底和能带顶的有效质量。

6原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同?原子中内层电子和外层电子参与共有化运动有何不同?7晶体体积的大小对能级和能带有什么影响?8描述半导体中电子运动为什么要引入“有效质量”的概念?用电子的惯性质量描述能带中电子运动有何局限性?9 一般来说,对应于高能级的能带较宽,而禁带较窄,是否如此?为什么?10有效质量对能带的宽度有什么影响?有人说:“有效质量愈大,能量密度也愈大,因而能带愈窄。

半导体集成电路部分习题答案(朱正涌)

半导体集成电路部分习题答案(朱正涌)
答:集成运算放大器电路的外延层电阻率比一般TTL集成电路的外延层电阻率高。
第2章集成电路中的晶体管及其寄生效应
复习思考题
2.2利用截锥体电阻公式,计算TTL“与非”门输出管的 ,其图形如图题2.2
所示。
提示:先求截锥体的高度
-
然后利用公式: ,
注意:在计算W、L时,应考虑横向扩散。
2.3伴随一个横向PNP器件产生两个寄生的PNP晶体管,试问当横向PNP器件在4种可能的偏置情况下,哪一种偏置会使得寄生晶体管的影响最大?
若驱动mos管的脉冲频率为50khz电1110pf试求开关电容电路的等效电阻eff144图题144是一个mos开关电容等效电路写出电路等效电阻eff151图题151为某电路的过热保护电路为被保护管试以芯片为175时保护电路的状态来说明该电路的过热保护作用
第1章集成电路的基本制造工艺
1.6一般TTL集成电路与集成运算放大器电路在选择外延层电阻率上有何区别?为什么?
此电路实施反相器功能。
题9.4(b)中 和 若为无比,无法反相器功能。
9.5分析图题9.5所示的两相动态电路的逻辑功能,并说明各级电路分别是有比的还是无
比的。假如图中 , ; 从 , ,试画出图中,A,B,C,D和 各点的波形图
答:该电路为具有保持功能的多路选通开关。
该电路中除最后一级为无比电路外,余下均为有比电路。
答:
14.4图题14.4是一个MOS开关电容等效电路,φ和 为两个同频反相的驱动脉冲信号。
(1)分析电路工作原理;
(2)写出电路等效电阻 的表达式。
答:
第15章集成稳压器
复习思考题
15.1图题15.1为某电路的过热保护电路, 为过热保护管, , 为被保护管,试

《电工与电子技术基础》第4章半导体器件习题解答

《电工与电子技术基础》第4章半导体器件习题解答

第4章半导体器件习题解答习题4.1计算题4.1图所示电路的电位U Y 。

(1)U A =U B =0时。

(2)U A =E ,U B =0时。

(3)U A =U B =E 时。

解:此题所考查的是电位的概念以及二极管应用的有关知识。

假设图中二极管为理想二极管,可以看出A 、B 两点电位的相对高低影响了D A 和D B 两个二极管的导通与关断。

当A 、B 两点的电位同时为0时,D A 和D B 两个二极管的阳极和阴极(U Y )两端电位同时为0,因此均不能导通;当U A =E ,U B =0时,D A 的阳极电位为E ,阴极电位为0(接地),根据二极管的导通条件,D A 此时承受正压而导通,一旦D A 导通,则U Y >0,从而使D B 承受反压(U B =0)而截止;当U A =U B =E 时,即D A 和D B 的阳极电位为大小相同的高电位,所以两管同时导通,两个1k Ω的电阻为并联关系。

本题解答如下:(1)由于U A =U B =0,D A 和D B 均处于截止状态,所以U Y =0;(2)由U A =E ,U B =0可知,D A 导通,D B 截止,所以U Y =Ω+Ω⋅Ωk k E k 919=109E ;(3)由于U A =U B =E ,D A 和D B 同时导通,因此U Y =Ω+Ω×⋅Ω×k k E k 19292=1918E 。

4.2在题4.2图所示电路中,设VD 为理想二极管,已知输入电压u I 的波形。

试画出输出电压u O 的波形图。

题4.1图题4.2图解:此题的考查点为二极管的伏安特性以及电路的基本知识。

首先从(b)图可以看出,当二极管D 导通时,电阻为零,所以u o =u i ;当D 截止时,电第4章半导体器件习题解答阻为无穷大,相当于断路,因此u o =5V,即是说,只要判断出D导通与否,就可以判断出输出电压的波形。

要判断D 是否导通,可以以接地为参考点(电位零点),判断出D 两端电位的高低,从而得知是否导通。

半导体物理答案

半导体物理答案

第一篇 半导体中的电子状态习题1-1、 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。

1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。

1-3、试指出空穴的主要特征。

1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。

1-5、某一维晶体的电子能带为[])sin(3.0)cos(1.01)(0ka ka E k E --=其中E 0=3eV ,晶格常数a=5х10-11m 。

求:(1) 能带宽度;(2) 能带底和能带顶的有效质量。

题解:1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为导电电子的过程就是本征激发。

其结果是在半导体中出现成对的电子-空穴对。

如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。

1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。

温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。

反之,温度降低,将导致禁带变宽。

因此,Ge 、Si 的禁带宽度具有负温度系数。

1-3、 解:空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。

主要特征如下:A 、荷正电:+q ;B 、空穴浓度表示为p (电子浓度表示为n );C 、E P =-E nD 、m P *=-m n *。

1-4、 解:(1) Ge 、Si:a )Eg (Si :0K) = 1.17eV ;Eg (Ge :0K) = 0.744eV ;b )间接能隙结构c )禁带宽度E g 随温度增加而减小;(2) GaAs :a )Eg (0K) = 1.52eV ;b )直接能隙结构;c )Eg 负温度系数特性: dE g /dT = -3.95×10-4eV/K ;1-5、 解:(1) 由题意得:[][])sin(3)cos(1.0)cos(3)sin(1.002220ka ka E a k d dE ka ka aE dk dE+=-=eVE E E E a kd dE a k E a kd dE a k a k a k ka tg dk dE ooo o 1384.1min max ,01028.2)4349.198sin 34349.198(cos 1.0,4349.198,01028.2)4349.18sin 34349.18(cos 1.0,4349.184349.198,4349.1831,04002222400222121=-=∆<⨯-=+==>⨯=+====∴==--则能带宽度对应能带极大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:内建电势 所以,Vbi
(P96附)
由结电容公式(p100, 式38)
=
9
10. 在T=300K,计算理想p-n结二极管在反向偏压达到95%的反 向饱和电流值时,需要外加的反向电压。
解:由题意,可知
J = Jp(xp) + Jn(xn) = Js[exp(qV/kT)-1]
V=0.017V
10
11. 设计一硅p-n二极管,使得在Va=0.7V时,Jn=25A/cm2和 Jp=7A/cm2。其他参数如下:ni=9.65×109cm-3,Dn=21cm2/sec, Dp=10cm2/sec, τp0=τn0=5×10-7sec.
解,根据
Vbi
kT N A N D ln q ni2

Vbi=0.837
Vbi=0.896
Vbi=0.956
7
1015cm-3
1/Cj2
1016cm-3 1017cm-3 曲线的斜率反比于掺杂浓度,曲线的截距给出p-n结的内 建电势。
8
6. 线性缓变硅结,其掺杂梯度为1020cm-4,计算内建电势及4V反 向偏压的结电容(T=300K)。
解:假定在τp=τn=10-6s时,Dn=21cm2/s, Dp=10cm2/s (a) 由饱和电流密度的公式

所以,Js
13
由p-n结的截面积为 可得 (b) 总电流密度为 所以,
14
17. 设计一p+-n硅突变结二极管,其反向击穿电压为130V,且正 向偏压电流在Va=0.7V时为2.2mA. 假设τpo=10-7s.
n侧
p侧
=8×1014cm-3, 根据空间电荷区电荷的电中 性条件,有 Naxp/2=NDxn
2
可得,n侧耗尽层宽度为: xn=1.067μm
因此,总的耗尽层宽度为1.067+0.8=1.867μm 根据泊松方程
对于n型半导体一侧,有
对于p型半导体一侧,有
因此,内建电势为:
4. 决定符合下列p-n硅结规格的n型掺杂浓度:NA=1018cm-3,且 VR=30V, T=300K, Emax=4×105V/cm.
解:
耗尽区宽度 所以,
当T=300K,VR=30V时,
5
由于VR>>Vbi,所以
ND=1.76×1016cm-3
6
5. 一突变p-n结在轻掺杂n侧的掺杂浓度为1015cm-3,1016cm-3和 1017cm-3,而重掺杂p侧为1019cm-3,求出一系列的1/C2对V的曲 线,其中V的范围从-4V到0V, 以0.5V为间距,对于这些曲线的斜 率及电压轴的交点给出注释。
17
所以, (b) 由NB=2×1016cm-3,查p116,图4.26得, Ec=5×105V/cm 所以,VB
18
解:由题极管,其NA=5.278×1016 cm-3, ND=5.2×1015cm-3.
12
12. 一理想硅p-n二极管,ND=1018cm-3,NA=1016cm-3,τp=τn=10-6s, 且器件面积为1.2×10-5cm2. (a) 计算在300K,饱和电流的理论值; (b) 计算在±0.7V时的正向和反向电流。
解:由题意知,如果忽略产生-复合电流的影响,则
设二极管的截面积为A,则
15
对于p+-n结,击穿电压为: 所以,
设: Ec=4×105V/cm,得
当 时,少数载流子的迁移率为500.
A=8.6×10-5cm2
16
解:
解: (a) 对于p-i-n二极管,其本征层极易耗尽,并假定耗尽 区中的电场为常数。 由 得:
第4章 习题
1
1. 一扩散的p-n硅结在p侧为线性缓变结,其a=1019cm-4,而n侧 为均匀掺杂,浓度为3×1014cm-3,如果在零偏压时,p侧耗尽区 宽度为0.8μm,找出在零偏压时的总耗尽区宽度,内建电势和最 大电场。
解:
由已知条件,可得p侧耗尽区
边缘的杂质浓度为:
axp=0.8×10-4cm×1019cm-4
相关文档
最新文档