基本不等式的证明

合集下载

证明基本不等式的方法

证明基本不等式的方法

证明基本不等式的方法基本不等式是解决数学不等式问题中常用的方法,其核心思想是将一个不等式转化为另一个更简单的不等式,从而得到所需的解集。

在证明基本不等式的方法上,可以分为以下几种常见的方式:1.数学归纳法:数学归纳法是证明基本不等式的一种常用方法。

首先,我们需要证明当不等式成立时,对于一些特定的值$n$,不等式也成立。

接着,我们假设当$n=k$时不等式成立,可以通过这个假设证明当$n=k+1$时不等式成立。

最后,根据归纳法的原理,我们可以得出不等式对于所有自然数$n$成立。

2.递推法:递推法是证明基本不等式的另一种常用方法。

我们首先找到一个较小的数$k$,证明不等式对于这个特定的数成立。

然后,我们假设当$n=k$时不等式成立,接着通过这个假设证明当$n=k+1$时不等式也成立。

最后,根据递推法的原理,我们可以得出不等式对于所有自然数$n$成立。

3.反证法:反证法是证明基本不等式的另一种有效方法。

我们首先假设不等式不成立,即假设存在一些数使得不等式不成立。

接着,我们通过一系列的推导和推理,得出矛盾的结论。

这表明我们的假设是错误的,即不等式是成立的。

4.变量替换法:变量替换法是证明基本不等式的一种常用方法。

我们首先对不等式进行变量替换,将其转化为一个使用其他变量的等价不等式。

然后,通过对这个等价不等式进行一系列的变换和推导,我们可以得出所需的结论。

5.辅助不等式法:辅助不等式法是证明基本不等式的一种有效方法。

我们首先找到一个与原不等式相关的不等式,这个不等式往往更容易证明。

然后,我们通过对这个辅助不等式的推导和推理,结合原不等式的特点,得出所需的结论。

无论采用哪种方法,证明基本不等式的关键在于用恰当的方法将其转化为另一个更简单或更容易证明的不等式。

此外,在证明过程中需要注意推导的合理性和严密性,关注每一步的符号变化和不等式的严格性,避免出现错误的结论。

在证明过程中,也可以适当地运用数学知识和技巧,如代数运算、函数性质和数列性质等,使证明更加简洁和高效。

基本不等式几何证明方法

基本不等式几何证明方法

基本不等式几何证明方法宝子,今天咱来唠唠基本不等式的几何证明方法,可有趣啦。

咱先说说基本不等式是啥哈,就是对于正实数a、b,有(a + b)/(2) ≥ √(ab),当且仅当a = b时等号成立。

那它的几何证明可形象了呢。

想象一个直角三角形,设直角边为a和b。

我们以a + b为边长构造一个正方形。

这个正方形的面积就是(a + b)^2。

然后呢,我们把这个正方形进行分割。

在这个正方形里,有四个直角三角形,每个直角三角形的直角边就是a和b。

那这四个直角三角形的面积总和就是4×(1)/(2)ab = 2ab。

中间还剩下一个小正方形,这个小正方形的边长就是a - b(假设a>b哈),它的面积就是(a - b)^2。

所以整个大正方形的面积(a + b)^2就等于四个直角三角形面积加上中间小正方形面积,也就是(a + b)^2=4×(1)/(2)ab+(a - b)^2。

化简一下就得到(a + b)^2≥4ab,两边同时除以4,就有((a + b)^2)/(4)≥ ab,再开个方,就得到(a + b)/(2) ≥ √(ab)啦。

你看,当中间小正方形面积为0的时候,也就是a = b的时候,这个等号就成立了呢。

就好像这个正方形被分割得特别规整的时候。

还有一种几何证明也很有意思哦。

我们画一个半圆,直径是a + b。

然后在直径上取一点,把直径分成a和b两段。

从这点作一条垂直于直径的弦。

根据圆的性质,这条弦长的一半就是√(ab)。

而半圆的半径就是(a + b)/(2)。

因为弦长的一半肯定小于等于半径呀,所以又一次证明了(a + b)/(2) ≥ √(ab)。

当这条弦刚好是直径的时候,也就是a = b的时候,等号就成立啦。

宝子,这么看基本不等式的几何证明是不是超级好理解,就像看一幅画一样,一下子就明白这个不等式为啥是成立的啦。

基本不等式

基本不等式

基本不等式一、基础知识☐基本不等式:在不等式的应用中,有一些很基本而十分重要的不等式,如平均值不等式和三角不等式等,我们将其统称为基本不等式.☐平均值不等式:两个正数的算术平均值大于等于它们的几何平均值,即对于任意的正数a 、b ,有2a b ab ,且等号当且仅当a b 时成立.证明:对于正数a 、b ,要证明定理所述之平均值不等式,只要证明2a bab ,即20a b ab.由22a b aba b.上式显然成立,且只有当ab 时,原不等式两边才相等.☐常用不等式:对于任意的正数a 、b ,有22a bab ,且等号当且仅当a b 时成立.☐三角不等式:对于任意的实数a 、b ,有a b a b ,且等号当且仅当0ab 时成立.证明:为证明a ba b ,只需证明22a ba b,即222222aab b a ab b ,也即22ab ab ,这是显然的,且等号当且仅当a 、b 同号,即0ab时成立.二、拓展知识☐基本不等式:如果a ,b ,c R ,那么3333a b c abc (当且仅当a b c 时取“”)证明:33333223333a b c abca bc a b ab abc223a b ca ba b c c ab a b c22223a b c a ab b ac bc c ab 222a b c a b c ab bc ac 22212a bc a ba cbca ,b ,cR ,222102a b c a b a cb c从而3333ab c abc☐推论:如果a ,b ,c R ,那么33a b c abc (当且仅当a b c 时取“”)☐基本不等式:1212nn a a a a a a n,*n N ,ia R ,1in .证明可用数学归纳法,二项式定理证明,这里证明省略; ☐柯西不等式:222222211221212n nn n a b a b a b a a a b b b,1,2,,i i a b R i n ,等号当且仅当120na a a 或i ib ka 时成立(k 为常数,1,2,,i n )证明:构造二次函数2221122n nf xa xb a x b a x b2222222121122122n n n n a a a xa b a b a b xb b b222120n aa a又0f x 恒成立222222211221212440n nn n a b a b a b a a a b b b即222222211221212n nn n a b a b a b a a a b b b当且仅当0i i a x b x(1,2,,i n )即1212nna a ab bb 时等号成立. ☑一个重要的不等式链:2112a b a b+≤≤≤+. ☑函数()()0,0bf x ax a b x =+>>图象及性质 (1)函数()0)(>+=b a xb ax x f 、图象大致如下图(xx x f 1)(+=)所示:(2)函数()0)(>+=b a xb ax x f 、性质:①值域:()2,ab,⎡-∞-+∞⎣;②单调递增区间:,,⎛⎫-∞+∞ ⎪ ⎪⎝⎭;单调递减区间:0,,0⎛⎡⎫ ⎪⎢ ⎪⎝⎣⎭.三、最值常见类型注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”; (2)求最值的条件“一正,二定,三相等”;(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 类型一:积定和最小;重点:利用好“一正,二定,三相等”,凑积为定值; 例1、已知1->x ,求221xx 的最小值【解析】求和的最小值,去找积的定值,这里面发现2x 与21x 的积没有关系,但是能够注意到题目中有1->x ,从而01>+x ,且可以将2x 出来1x 让分母抵消,故有222221222122111xx x x x x ,当且仅当2211x x 即0x 时取等号;注意:在使用积定和最小时,第一要注意两个式子是正还是负(一正);第二要注意两个式子乘起来是不是定值,如果是定值,结束,如果不是定值要注意进行变形,凑成乘起来是定值的式子(二定);第三是要注意进行验证,是否可以取等(三取等);注意:三取等一定要关注,一个是为了验证等号,第二个是因为有的不等式是会进行多次应用基本不等式(多次放缩),如果多次应用中等号不一致,是不可以进行取等的; 例2、已知0xy ,1xy ,求yx y x -+22的最小值及相应的y x ,的值。

不等式的证明

不等式的证明

不等式的证明最新考纲 通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法.知 识 梳 理1.基本不等式定理1:如果a ,b ∈R,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a ,b >0,那么a +b 2≥a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥a =b =c 时,等号成立.2.不等式的证明方法(1)比较法①作差法(a ,b ∈R):a -b >0⇔a >b ;a -b <0⇔a <b ;a -b =0⇔a =b . ②作商法(a >0,b >0):a b >1⇔a >b ;a b <1⇔a <b ;a b=1⇔a =b .(2)综合法与分析法①综合法:从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.综合法又叫顺推证法或由因导果法.②分析法:从要证的结论出发,逐步寻求使它成立的充分条件,所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证法称为分析法,即“执果索因”的证明方法.[微点提醒]1.作差比较法的实质是把两个数或式子的大小判断问题转化为一个数(或式子)与0的大小关系.2.用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)……”“即要证……”“就要证……”等分析到一个明显成立的结论,再说明所要证明的数学问题成立.3.利用基本不等式证明不等式或求最值时,要注意变形配凑常数.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)比较法最终要判断式子的符号得出结论.( )(2)综合法是从原因推导到结果的思维方法,它是从已知条件出发,经过逐步推理,最后达到待证的结论.( )(3)分析法又叫逆推证法或执果索因法,是从待证结论出发,一步一步地寻求结论成立的必要条件,最后达到题设的已知条件或已被证明的事实.( )(4)使用反证法时,“反设”不能作为推理的条件应用.( )解析(1)作商比较法是商与1的大小比较.(3)分析法是从结论出发,寻找结论成立的充分条件.(4)应用反证法时,“反设”可以作为推理的条件应用.答案(1)×(2)√(3)×(4)×2.(选修4-5P23习题2.1T1改编)已知a≥b>0,M=2a3-b3,N=2ab2-a2b,则M,N的大小关系为________.解析2a3-b3-(2ab2-a2b)=2a(a2-b2)+b(a2-b2)=(a2-b2)(2a+b)=(a-b)(a+b)(2a+b).因为a≥b>0,所以a-b≥0,a+b>0,2a+b>0,从而(a-b)(a+b)(2a+b)≥0,故2a3-b3≥2ab2-a2b.答案M≥N3.(选修4-5P25T3改编)已知a,b,c∈(0,+∞),且a+b+c=1,则1a +1b+1c的最小值为________.解析把a+b+c=1代入1a +1b+1c得a+b+ca+a+b+cb+a+b+cc=3+⎝⎛⎭⎪⎫ba+ab+⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c ≥3+2+2+2=9, 当且仅当a =b =c =13时等号成立. 答案 94.(2019·聊城模拟)下列四个不等式:①log x 10+lg x ≥2(x >1);②|a -b |<|a |+|b |;③⎪⎪⎪⎪⎪⎪b a +a b ≥2(ab ≠0);④|x -1|+|x -2|≥1,其中恒成立的个数是( )A.1B.2C.3D.4解析 log x 10+lg x =1lg x+lg x ≥2(x >1),①正确; ab ≤0时,|a -b |=|a |+|b |,②不正确;因为ab ≠0,b a 与a b同号,所以⎪⎪⎪⎪⎪⎪b a +a b =⎪⎪⎪⎪⎪⎪b a +⎪⎪⎪⎪⎪⎪a b ≥2,③正确; 由|x -1|+|x -2|的几何意义知,|x -1|+|x -2|≥1恒成立,④也正确,综上①③④正确.答案 C5.(2017·全国Ⅱ卷)已知a >0,b >0,且a 3+b 3=2.证明:(1)(a +b )(a 5+b 5)≥4;(2)a +b ≤2.证明 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 4+b 4-2a 2b 2)=4+ab (a 2-b 2)2≥4.(2)(a+b)3=a3+3a2b+3ab2+b3=2+3ab(a+b)≤2+3(a+b)24(a+b)=2+3(a+b)34,所以(a+b)3≤8,因此a+b≤2.考点一比较法证明不等式【例1】设a,b是非负实数,求证:a2+b2≥ab(a+b). 证明因为a2+b2-ab(a+b)=(a2-a ab)+(b2-b ab)=a a(a-b)+b b(b-a)=(a-b)(a a-b b)=(a 12-b12)(a32-b32).因为a≥0,b≥0,所以不论a≥b≥0,还是0≤a≤b,都有a 12-b12与a32-b32同号,所以(a 12-b12)(a32-b32)≥0,所以a2+b2≥ab(a+b).规律方法比较法证明不等式的方法与步骤1.作差比较法:作差、变形、判号、下结论.2.作商比较法:作商、变形、判断、下结论.提醒(1)当被证的不等式两端是多项式、分式或对数式时,一般使用作差比较法.(2)当被证的不等式两边含有幂式或指数式或乘积式时,一般使用作商比较法.【训练1】(1)(2019·锦州模拟)设不等式|2x-1|<1的解集为M.①求集合M;②若a,b∈M,试比较ab+1与a+b的大小.(2)若a >b >1,证明:a +1a >b +1b. (1)解 ①由|2x -1|<1得-1<2x -1<1,解得0<x <1.所以M ={x |0<x <1}.②由①和a ,b ∈M 可知0<a <1,0<b <1,所以(ab +1)-(a +b )=(a -1)(b -1)>0.故ab +1>a +b .(2)证明 a +1a -⎝ ⎛⎭⎪⎫b +1b =a -b +b -a ab =(a -b )(ab -1)ab . 由a >b >1得ab >1,a -b >0,所以(a -b )(ab -1)ab>0. 即a +1a -⎝ ⎛⎭⎪⎫b +1b >0, 所以a +1a >b +1b. 考点二 综合法证明不等式【例2】 (1)已知a ,b ,c ∈R,且它们互不相等,求证a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2;(2)已知x ,y ,z 均为正数,求证:x yz +y zx +z xy ≥1x +1y +1z. 证明 (1)∵a 4+b 4≥2a 2b 2,b 4+c 4≥2b 2c 2,a 4+c 4≥2a 2c 2,∴2(a 4+b 4+c 4)≥2(a 2b 2+b 2c 2+c 2a 2),即a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2.又∵a ,b ,c 互不相等,∴a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2.(2)因为x ,y ,z 都为正数,所以x yz +y zx =1z ⎝ ⎛⎭⎪⎫x y +y x ≥2z①,同理可得yxz+zyx≥2x②,z xy +xyz≥2y③,当且仅当x=y=z时,以上三式等号都成立. 将上述三个不等式两边分别相加,并除以2,得xyz +yzx+zxy≥1x+1y+1z.规律方法 1.综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键.2.在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.【训练2】已知实数a,b,c满足a>0,b>0,c>0,且abc=1.(1)证明:(1+a)(1+b)(1+c)≥8;(2)证明:a+b+c≤1a+1b+1c.证明(1)1+a≥2a,1+b≥2b,1+c≥2c,相乘得:(1+a)(1+b)(1+c)≥8abc=8.(2)1a +1b+1c=ab+bc+ac,ab+bc≥2ab2c=2b,ab+ac≥2a2bc=2a,bc+ac≥2abc2=2c,相加得a+b+c≤1a +1b+1c.考点三分析法证明不等式【例3】已知函数f(x)=|x-1|.(1)解不等式f (x -1)+f (x +3)≥6;(2)若|a |<1,|b |<1,且a ≠0,求证:f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a . (1)解 由题意,知原不等式等价为|x -2|+|x +2|≥6,令g (x )=|x -2|+|x +2|,则g (x )=⎩⎨⎧-2x ,x ≤-2,4,-2<x <2,2x ,x ≥2.当x ≤-2时,由-2x ≥6,得x ≤-3;当-2<x <2时,4≥6不成立,此时无解;当x ≥2时,由2x ≥6,得x ≥3.综上,不等式的解集是(-∞,-3]∪[3,+∞).(2)证明 要证f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a , 只需证|ab -1|>|b -a |,只需证(ab -1)2>(b -a )2.而(ab -1)2-(b -a )2=a 2b 2-a 2-b 2+1=(a 2-1)(b 2-1)>0,从而原不等式成立. 规律方法 1.当要证的不等式较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.2.分析法证明的思路是“执果索因”,其框图表示为: Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→得到一个明显成立的条件【训练3】 已知a >b >c ,且a +b +c =0,求证:b 2-ac <3a .证明 由a >b >c 且a +b +c =0,知a >0,c <0. 要证b 2-ac <3a ,只需证b 2-ac <3a 2.∵a +b +c =0,只需证b 2+a (a +b )<3a 2,只需证2a 2-ab -b 2>0,只需证(a -b )(2a +b )>0,只需证(a -b )(a -c )>0.∵a >b >c ,∴a -b >0,a -c >0,∴(a -b )(a -c )>0显然成立,故原不等式成立.[思维升华]证明不等式的方法和技巧:(1)如果已知条件与待证明的结论直接联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”等方式给出或否定性命题、唯一性命题,则考虑用反证法;如果待证不等式与自然数有关,则考虑用数学归纳法等.(2)在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明.尤其是对含绝对值不等式的解法或证明,其简化的根本思路是去绝对值号,转化为常见的不等式(组)求解.多以绝对值的几何意义或“找零点、分区间、逐个解、并起来”为简化策略,而绝对值三角不等式,往往作为不等式放缩的依据.[易错防范]在使用基本不等式时,等号成立的条件是一直要注意的事情,特别是连续使用时,要求分析每次使用时等号是否成立.基础巩固题组(建议用时:60分钟)1.设a ,b >0且a +b =1,求证:⎝⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252. 证明 因为(12+12)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b 2=⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫1a +1b 2=⎝ ⎛⎭⎪⎫1+1ab 2≥25⎝⎛⎭⎪⎫因为ab ≤14. 所以⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252.2.设a >0,b >0,a +b =1,求证1a +1b +1ab≥8. 证明 ∵a >0,b >0,a +b =1,∴1=a +b ≥2ab , 即ab ≤12,∴1ab≥4, ∴1a +1b +1ab =(a +b )⎝ ⎛⎭⎪⎫1a +1b +1ab ≥2ab ·21ab +1ab ≥4+4=8. 当且仅当a =b =12时等号成立, ∴1a +1b +1ab≥8. 3.(2019·大理一模)已知函数f (x )=|x |+|x -3|.(1)解关于x 的不等式f (x )-5≥x .(2)设m ,n ∈{y |y =f (x )},试比较mn +4与2(m +n )的大小.解 (1)f (x )=|x |+|x -3|=⎩⎨⎧3-2x ,x <0,3,0≤x ≤3,2x -3,x >3.f (x )-5≥x ,即⎩⎨⎧x <0,3-2x ≥x +5或⎩⎨⎧0≤x ≤3,3≥x +5或⎩⎨⎧x >3,2x -3≥x +5,解得x ≤-23或x ∈∅或x ≥8. 所以不等式的解集为⎝⎛⎦⎥⎤-∞,-23∪[8,+∞). (2)由(1)易知f (x )≥3,所以m ≥3,n ≥3.由于2(m +n )-(mn +4)=2m -mn +2n -4=(m -2)(2-n ).且m ≥3,n ≥3,所以m -2>0,2-n <0,即(m -2)(2-n )<0,所以2(m +n )<mn +4.4.(2019·郴州质量检测)已知a ,b ,c 为正数,函数f (x )=|x +1|+|x -5|.(1)求不等式f (x )≤10的解集;(2)若f (x )的最小值为m ,且a +b +c =m ,求证:a 2+b 2+c 2≥12.(1)解 f (x )=|x +1|+|x -5|≤10等价于⎩⎨⎧x ≤-1,-(x +1)-(x -5)≤10或⎩⎨⎧-1<x <5,(x +1)-(x -5)≤10或⎩⎨⎧x ≥5,(x +1)+(x -5)≤10,解得-3≤x ≤-1或-1<x <5或5≤x ≤7,∴不等式f (x )≤10的解集为{x |-3≤x ≤7}.(2)证明 ∵f (x )=|x +1|+|x -5|≥|(x +1)-(x -5)|=6,∴m =6,即a +b +c =6.∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,c 2+b 2≥2cb ,∴2(a 2+b 2+c 2)≥2(ab +ac +bc ),∴3(a 2+b 2+c 2)≥a 2+b 2+c 2+2ab +2ac +2bc =(a +b +c )2,∴a 2+b 2+c 2≥12.当且仅当a =b =c =2时等号成立.5.(2019·沈阳模拟)设a ,b ,c >0,且ab +bc +ca =1.求证:(1)a +b +c ≥3; (2)a bc +b ac +c ab ≥3(a +b +c ). 证明 (1)要证a +b +c ≥3,由于a ,b ,c >0,因此只需证明(a +b +c )2≥3.即证a 2+b 2+c 2+2(ab +bc +ca )≥3.而ab +bc +ca =1,故只需证明a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ),即证a 2+b 2+c 2≥ab +bc +ca .而这可以由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c时等号成立)证得.所以原不等式成立. (2)a bc +b ac +c ab =a +b +c abc. 在(1)中已证a +b +c ≥ 3.因此要证原不等式成立,只需证明1abc ≥a +b +c , 即证a bc +b ac +c ab ≤1,即证a bc +b ac +c ab ≤ab +bc +ca .而a bc =ab ·ac ≤ab +ac2, b ac ≤ab +bc2,c ab ≤bc +ac2,所以a bc +b ac +c ab ≤ab +bc +ca⎝ ⎛⎭⎪⎫当且仅当a =b =c =33时等号成立. 所以原不等式成立.6.(2019·百校联盟联考)已知函数f (x )=|2x -3|+|2x -1|的最小值为M .(1)若m ,n ∈[-M ,M ],求证:2|m +n |≤|4+mn |;(2)若a ,b ∈(0,+∞),a +2b =M ,求2a +1b的最小值. (1)证明 ∵f (x )=|2x -3|+|2x -1|≥|2x -3-(2x -1)|=2,∴M =2. 要证明2|m +n |≤|4+mn |,只需证明4(m +n )2≤(4+mn )2,∵4(m +n )2-(4+mn )2=4(m 2+2mn +n 2)-(16+8mn +m 2n 2)=(m 2-4)(4-n 2), ∵m ,n ∈[-2,2],∴m 2,n 2∈[0,4],∴(m 2-4)(4-n 2)≤0,∴4(m +n )2-(4+mn )2≤0,∴4(m +n )2≤(4+mn )2,可得2|m +n |≤|4+mn |.(2)解 由(1)得,a +2b =2,因为a ,b ∈(0,+∞),所以2a +1b =12⎝ ⎛⎭⎪⎫2a +1b (a +2b ) =12⎝ ⎛⎭⎪⎫2+2+a b +4b a ≥12⎝ ⎛⎭⎪⎫4+2a b ·4b a =4, 当且仅当a =1,b =12时,等号成立. 所以2a +1b的最小值为4. 能力提升题组(建议用时:20分钟)7.已知函数f (x )=x +1+|3-x |,x ≥-1.(1)求不等式f (x )≤6的解集;(2)若f (x )的最小值为n ,正数a ,b 满足2nab =a +2b ,求证:2a +b ≥98. (1)解 根据题意,若f (x )≤6,则有⎩⎨⎧x +1+3-x ≤6,-1≤x <3或⎩⎨⎧x +1+(x -3)≤6,x ≥3, 解得-1≤x ≤4,故原不等式的解集为{x |-1≤x ≤4}.(2)证明 函数f (x )=x +1+|3-x |=⎩⎨⎧4,-1≤x <3,2x -2,x ≥3,分析可得f (x )的最小值为4,即n =4, 则正数a ,b 满足8ab =a +2b ,即1b +2a=8, 又a >0,b >0,∴2a +b =18⎝ ⎛⎭⎪⎫1b +2a (2a +b )=18⎝ ⎛⎭⎪⎫2a b +2b a +5≥18⎝ ⎛⎭⎪⎫5+22a b ·2b a =98,当且仅当a =b =38时取等号. 原不等式得证.8.(2015·全国Ⅱ卷)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件.证明 (1)∵a ,b ,c ,d 为正数,且a +b =c +d ,欲证a +b >c +d ,只需证明(a +b )2>(c +d )2, 也就是证明a +b +2ab >c +d +2cd ,只需证明ab >cd ,即证ab >cd .由于ab >cd ,因此a +b >c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .∵a +b =c +d ,所以ab >cd . 由(1)得a +b >c +d .②若a +b >c +d ,则(a +b )2>(c +d )2, ∴a +b +2ab >c +d +2cd .∵a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件.。

不等式的常见证明方法

不等式的常见证明方法

不等式常见的三种证明方法渠县中学 刘业毅一用基本不等式证明设c b a ,,都是正数。

求证:.c b a cab b ac a bc ++≥++ 证明:.22c bac a bc b ac a bc =•≥+ .22b cab a bc c ab a bc =•≥+ .22a cab b ac c ab b ac =•≥+ ).(2)(2c b a cab b ac a bc ++≥++ .c b a cab b ac a bc ++≥++ 点评:可用综合法分析乘积形式运用不等式可以转化为所求。

思维训练:设c b a ,,都是正数。

求证:.222c b a c b a a c b ++≥++ 二 放缩法证明不等式已知,对于任意的n 为正整数,求证: 1+221+321+ +n 21<47 分析:通过变形将数列{n 21}放缩为可求数列。

解: n 21=n n •1<)1(1-n n =11-n —n1(n ≥2) ∴1+221+321+ +n 21<1+221+231⨯+341⨯+ +)1(1-n n =1+41+(21—31+31—41+ +11-n —n1) =45+21—n1 =47—n 1 点评:放缩为可求和数列或公式是高考重要思想方法。

思维训练:设c b a ,,都是正数,a+b>c,求证:a a +1+b b +1>cc +1三 构造函数法证明 证明不等式3ln 3121112ln <+++++<nn n (n 为正整数) 分析:显然要构造一个含n 的不等式,然后用叠加法证明。

我们构造一个函数,1)(',ln 1)(2xx x f x x x x f -=+-=可得这个函数在x=1时取得最小值0.及对x>0有不等式x x 11ln -≥,如果令x=k k 1+,则有111ln +>+k k k ,如果令x=1+k k ,则kk k ->+11ln ,即kk k k 1ln )1ln(11<-+<+,然后叠加不等式即可。

初中数学不等式的基本性质证明

初中数学不等式的基本性质证明

不等式的性质•不等式的性质:基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变,基本性质:不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变基本性质:不等式两边同时乘以(或除以)同一个小于0的整式,不等号方向改变•1、不等式的基本性质:不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变。

即如果a>b,那么a±c>b±c。

不等式性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变。

即如果a>b,c>0,那么ac>bc(或)。

不等式性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向改变。

即如果a>b,c<0,那么ac<bc(或)。

2、不等式的互逆性:若a>b,则b<a。

3、不等式的传递性:若a>b,b>c,则a>c。

•不等式的性质:①如果x>y,那么y<x;如果y<x,那么x>y;(对称性)②如果x>y,y>z;那么x>z;(传递性)③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)④如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法原则)⑤如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z<y÷z;⑥如果x>y,m>n,那么x+m>y+n;(充分不必要条件)⑦如果x>y>0,m>n>0,那么xm>yn;⑧如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂<y的n次幂(n为负数)或者说,不等式的基本性质有:①对称性;②传递性:③加法单调性:即同向不等式可加性:④乘法单调性:⑤同向正值不等式可乘性:⑥正值不等式可乘方:⑦正值不等式可开方:⑧倒数法则。

证明不等式的基本方法

证明不等式的基本方法
用换元法证明不等式时一定要注意新元的 约束条件及整体置换策略. 主要是三角换元和均值换元。
x2
例7(1)设

y2
1, 求x
y的最大值,
16 9
并求此时的x, y值。 三角换元
(2)设 x, y R,且 x2 y 2 1,
求证:| x2 2xy y 2 | 2 ;
(1)设 x r sin, y r cos,且 | r | 1
证明:∵ a, b 是正数,且 a b , ∴要证 aabb abba ,只要证 lg (aabb ) lg(abba ) ,
只要证 a lg a b lgb b lg a a lgb .
(a lg a b lg b) (b lg a a lg b) = (a b)(lg a lg b)
= (a2 b2 )(a b) = (a b)(a b)2
∵ a,b 是正数,且 a b ,∴ a b 0, (a b)2 >0
∴ (a3 b3 ) (a2b ab2 ) >0,∴ a3 b3 a2b ab2
注:比较法是证明不等式的基本方法,也是 最重要的方法,另外,有时还可作商比较.
当且仅当(a b)(b c)≥0 时,等号成立.
四.反证法:
假设命题结论的反面成立,经过正确的推理, 引出矛盾,因此说明假设错误,从而证明原命题 成立,这样的证明方法叫反证法.(正难则反)
例、已知 f (x) x2 px q,求证:
1
| f (1) |,| f (2) |,| f (3) |中至少有一个不小于2 。
求证:已知a, b, c R+,求证 :书P25页2(2)

3不等式的性质证明和基本不等式

3不等式的性质证明和基本不等式

3.分析法: 由结论到条件,注意格式规范→步
步可逆即充要
x Ex:已知:
y 0 ,比较:
x y x y

x x
2 2
y y
2 2
的大小.
Ex:比较
x
2
与 2 x 的大小。
1 a b 1 b c 1 a c
ab 2
Ex:已知 a
b c ,求证:

Ex:已知 a , b
R , a b , 求证: a b b ( a b ) a

( Ex:已知 a , b R , 求证:
a
2
1
)2 (

b
2
1
1
1
)2 a 2 b 2
b
a
Ex:已知
求证: lg
2
a,b,c R ,
lg b c 2

且不全相等
a c 2 lg a lg b lg c
2

且可推广:

a,b,c R ,
a b c 3


3
abc 仅 当 a b c 0时 取 等 号
n
且进一步:
ai R ,
a1 a 2 a n n
a1 a n
称作:n个正数的算术平均数不小于它的几何平均数 且变形为:
1 a,b
二、不等式的基本性质
(1)传递性:a
b,b c a c
a (2)加法单调性:
a (3)乘法单调性:
b a c b c
b, c 0 ac bc b, c d a c b d b 0, c d 0 ac bd

基本不等式的20种证明方法

基本不等式的20种证明方法

基本不等式的20种证明方法
基本不等式“基本”在哪里?你认为怎样得引入最能体现他的本质?
(1)做差证明
(2)分析法证明
(3)综合法证明
(4)排序不等式
根据排序不等式所说的逆序和小于等于顺序和,便能得到
化简得
(5)函数证明
我们对原函数求导,并令导数等于零。

求的最小值
得出
(5)指数证明
首先这里要用到两个梯形的面积公式。

一个是大家小学都学过的
易得
进而有
进一步有
指取对有
(6)琴生不等式证明
取 y=lnx
由琴生不等式得到
进而有
(7)无字证明(Charles D. Gallant)
(8)无字证明(Doris Schattschneider)
(9)无字证明(Roland H. Eddy)
(10)无字证明(Ayoub B. Ayoub)
(11)无字证明(Sidney H. Kung)
(12)无字证明(Michael K. Brozinsky)
(13)无字证明(Edwin Beckenbach & RichardBellman)
(14)无字证明
(15)无字证明(RBN)
(16)无字证明
进而有
(17)无字证明
进而有
(18)无字证明

(19)构造函数证明


(20)构造期望方差证明


另外还有向量法,复数法,积分法等,均值定理在数学内外有广泛得运用,不仅可以推广,还可以联系多个领域,一个简单结论证明的背后往往可展示引人人胜的各种思路!。

基本不等式的证明

基本不等式的证明

基本不等式的证明1.代数法定理1:如果,a b R ∈,那么222a b ab +≥,当且仅当a b =时,等号成立。

证明: ()2222a b ab a b +-=- 当a b ≠时()2a b ->0当a b =时()2a b -=0,所以 ()2a b -≥0,即 22a b +≥2ab.定理2:如果,0a b >,那么2a b +≥a b =时,等号成立。

证明: 22+≥∴ a b +≥即2a b +≥显然,当且仅当a b =时,2a b +这里,a b 均为正数,我们就称2a b +为,a b ,a b 的几何平均数,因而,这一定理又可叙述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数。

2.几何面积法如图,在正方形中有四个全等的直角三角形。

设直角三角形的两条直角边长为、,那么正方形的边长为。

这样,4个直角三角形的面积的和是,正方形的面积为。

由于4个直角三角形的面积小于正方形的面积,所以:。

当直角三角形变为等腰直角三角形,即时,正方形缩为一个点,这时有。

得到结论:如果,那么(当且仅当a b =时,等号成立) 特别的,如果,,我们用、分别代替、,可得: 如果,,则,(当且仅当a b =时,等号成立).通常我们把上式写作:如果,,,(当且仅当a b =时,等号成立)最值定理:当两个正数的和一定时,其乘积有最大值;当两个正数的乘积一定时。

其和有最 小值。

现给出这一定理的一种几何解释(图1).以a b +长的线段为直径作圆,在直径AB 上取点C ,使AC=a ,CB=b .过点C 作垂直于直径AB 的弦'DD ,连接AD 、DB ,易证,那么即CD =这个圆的半径为2a b +,显然,它大于或等于CD ,即 2a b +≥ 其中当且仅当点C 与圆心重合,即a b =时,等号成立. 如果把2a b +看作是正数,a b,a b 的等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项.例1. 如果,a b R +∈,试比较2a b +211a b +的大小 解: ,a b R +∈, ∴b a 11+≥ab 12即211a b+≤又22⎪⎭⎫ ⎝⎛+b a =4222ab b a ++≤42222b a b a +++=222b a + ∴2a b +≤a b =时,等号成立而由定理2≤2a b +≥2a b +≥≥211a b+(当且仅当a b =时,等号成立)。

第2节证明不等式的基本方法

第2节证明不等式的基本方法

第2节证明不等式的基本方法证明不等式的基本方法总结如下:一、利用数学分析中的中值定理、极值、单调性等性质进行证明。

1.利用中值定理:利用连续函数介值定理或拉格朗日中值定理,根据函数的一些性质,可以推出不等式的成立。

例如,证明一个凸函数在区间上的函数值不小于端点的函数值。

2.利用极值:通过求导或其他方法,找到函数的极值点,然后证明这些极值点就是不等式的最小(最大)值点。

例如,证明两数之积不大于它们的平方和,可以通过求导得到函数的极值点,然后通过证明这个极值点为最小值点来完成。

3.利用单调性:如果已知函数在一些区间上是严格递增(递减)的,可以通过证明不等式在一些特殊点成立,并通过函数的单调性推出在整个区间上成立。

例如,证明一个正数的倒数小于它自己,则可以先证明在0到1之间成立,然后利用单调性推出在整个正数范围内成立。

二、利用数学归纳法进行证明。

如果不等式中的变量是正整数,可以利用数学归纳法进行证明。

首先证明当n=1时不等式成立,然后假设当n=k时不等式成立,再证明当n=k+1时不等式也成立。

例如,证明n个正数的平均值不小于它们的几何平均值,可以先证明当n=1时成立,然后假设当n=k时成立,再证明当n=k+1时也成立,最后利用数学归纳法推出结论。

三、利用代数方法。

1.利用等价变形:对于一个复杂的不等式,可以通过进行等价变形来简化证明。

通过将不等式的两边同时加上或减去一些式子,或者将不等式两边同时乘以或除以一些式子,可以得到一个等价的不等式,然后证明这个等价的不等式。

例如,证明正数的n次方大于等于它的平方,可以将不等式两边同时开方,然后证明这个等价的不等式。

2. 利用加减法、乘除法不等式:对于一个分式或多项式不等式,可以通过利用加减法、乘除法的不等式性质,将不等式化简为更简单的形式,再进行证明。

例如,证明a+b≤2ab,则可以将两边同时减去a+b再加上2,利用不等式的性质简化后得到ab≥1,再证明这个等价的不等式。

2 第2讲 不等式的证明

2 第2讲 不等式的证明

第2讲 不等式的证明1.基本不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a 、b 为正数,则a +b2≥ab ,当且仅当a =b 时,等号成立.定理3:如果a 、b 、c 为正数,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a n n≥na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.2.不等式的证明方法证明不等式常用的方法有比较法、综合法、分析法、反证法、放缩法、数学归纳法等.若a >b >1,证明:a +1a >b +1b.证明:a +1a -⎝⎛⎭⎫b +1b =a -b +b -a ab =(a -b )(ab -1)ab . 由a >b >1得ab >1,a -b >0, 所以(a -b )(ab -1)ab >0.即a +1a -⎝⎛⎭⎫b +1b >0, 所以a +1a >b +1b.已知a >0,b >0,c >0,且a ,b ,c 不全相等,求证:bc a +ac b +abc >a +b +c .证明:因为a ,b ,c ∈(0,+∞),所以bc a +acb≥2bc a ·acb=2c . 同理ac b +ab c ≥2a ,ab c +bca≥2b .因为a ,b ,c 不全相等,所以上述三个不等式中至少有一个等号不成立,三式相加,得2⎝⎛⎭⎫bc a +ac b +ab c >2(a +b +c ),即bc a +ac b +abc>a +b +c .用综合法、分析法证明不等式(师生共研)(一题多解)(2017·高考全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.【证明】 法一(综合法):(1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3 =2+3ab (a +b )≤2+3(a +b )24·(a +b )=2+3(a +b )34,所以(a +b )3≤8,因此a +b ≤2.法二(分析法):(1)因为a >0,b >0,a 3+b 3=2. 要证(a +b )(a 5+b 5)≥4,只需证(a +b )(a 5+b 5)≥(a 3+b 3)2, 再证a 6+ab 5+a 5b +b 6≥a 6+2a 3b 3+b 6, 再证a 4+b 4≥2a 2b 2,因为(a 2-b 2)2≥0,即a 4+b 4≥2a 2b 2成立. 故原不等式成立.(2)要证a +b ≤2成立,只需证(a +b )3≤8, 再证a 3+3a 2b +3ab 2+b 3≤8, 再证ab (a +b )≤2, 再证ab (a +b )≤a 3+b 3,再证ab (a +b )≤(a +b )(a 2-ab +b 2),即证ab ≤a 2-ab +b 2显然成立. 故原不等式成立.用综合法证明不等式是“由因导果”,用分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,可以增加解题思路,开阔视野.1.(2019·湖北八校联考)已知不等式|x |+|x -3|<x +6的解集为(m ,n ). (1)求m ,n 的值;(2)若x >0,y >0,nx +y +m =0,求证:x +y ≥16xy . 解:(1)由|x |+|x -3|<x +6,得⎩⎪⎨⎪⎧x ≥3,x +x -3<x +6或⎩⎪⎨⎪⎧0<x <3,3<x +6或⎩⎪⎨⎪⎧x ≤0,-x +3-x <x +6,解得-1<x <9,所以m =-1,n =9. (2)证明:由(1)知9x +y =1,又x >0,y >0, 所以⎝⎛⎭⎫1x +1y (9x +y )=10+y x +9xy≥10+2y x ×9xy=16, 当且仅当y x =9x y ,即x =112,y =14时取等号,所以1x +1y≥16,即x +y ≥16xy .2.(2019·长春市质量检测(一))设不等式||x +1|-|x -1||<2的解集为A . (1)求集合A ;(2)若a ,b ,c ∈A ,求证:⎪⎪⎪⎪⎪⎪1-abc ab -c >1.解:(1)由已知,令f (x )=|x +1|-|x -1|=⎩⎪⎨⎪⎧2,x ≥1,2x ,-1<x <1,-2,x ≤-1,由|f (x )|<2得-1<x <1,即A ={x |-1<x <1}.(2)证明:要证⎪⎪⎪⎪⎪⎪1-abc ab -c >1,只需证|1-abc |>|ab -c |,只需证1+a 2b 2c 2>a 2b 2+c 2,只需证1-a 2b 2>c 2(1-a 2b 2), 只需证(1-a 2b 2)(1-c 2)>0,由a ,b ,c ∈A ,得-1<ab <1,c 2<1,所以(1-a 2b 2)(1-c 2)>0恒成立.综上,⎪⎪⎪⎪⎪⎪1-abc ab -c>1.放缩法证明不等式(师生共研)若a ,b ∈R ,求证:|a +b |1+|a +b |≤|a |1+|a |+|b |1+|b |.【证明】 当|a +b |=0时,不等式显然成立. 当|a +b |≠0时, 由0<|a +b |≤|a |+|b |⇒1|a +b |≥1|a |+|b |, 所以|a +b |1+|a +b |=11|a +b |+1≤11+1|a |+|b |=|a |+|b |1+|a |+|b |=|a |1+|a |+|b |+|b |1+|a |+|b |≤|a |1+|a |+|b |1+|b |.在不等式的证明中,“放”和“缩”是常用的推证技巧.常见的放缩变换有: (1)变换分式的分子和分母,如1k 2<1k (k -1),1k 2>1k (k +1),1k <2k +k -1,1k >2k +k +1.上面不等式中k ∈N *,k >1. (2)利用函数的单调性.(3)真分数性质“若0<a <b ,m >0,则a b <a +mb +m”.[注意] 在用放缩法证明不等式时,“放”和“缩”均需把握一个度.设n 是正整数,求证:12≤1n +1+1n +2+…+12n <1.证明: 由2n ≥n +k >n (k =1,2,…,n ),得12n ≤1n +k <1n .当k =1时,12n ≤1n +1<1n ;当k =2时,12n ≤1n +2<1n ;…当k =n 时,12n ≤1n +n <1n,所以12=n 2n ≤1n +1+1n +2+…+12n <n n =1.所以原不等式成立.反证法证明不等式(师生共研)设0<a ,b ,c <1,求证:(1-a )b ,(1-b )c ,(1-c )a 不可能同时大于14.【证明】 设(1-a )b >14,(1-b )c >14,(1-c )a >14,三式相乘得(1-a )b ·(1-b )c ·(1-c )a >164,①又因为0<a ,b ,c <1,所以0<(1-a )a ≤⎣⎢⎡⎦⎥⎤(1-a )+a 22=14.同理:(1-b )b ≤14,(1-c )c ≤14,以上三式相乘得(1-a )a ·(1-b )b ·(1-c )c ≤164,与①矛盾.所以(1-a )b ,(1-b )c ,(1-c )a 不可能同时大于14.利用反证法证明问题的一般步骤(1)否定原结论.(2)从假设出发,导出矛盾. (3)证明原命题正确.已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a ,b ,c >0. 证明:①设a <0,因为abc >0, 所以bc <0.又由a +b +c >0,则b +c >-a >0,所以ab +bc +ca =a (b +c )+bc <0,与题设矛盾. ②若a =0,则与abc >0矛盾, 所以必有a >0. 同理可证:b >0,c >0. 综上可证a ,b ,c >0.[基础题组练]1.设a >0,b >0,若3是3a 与3b 的等比中项,求证:1a +1b ≥4.证明:由3是3a 与3b 的等比中项得 3a ·3b =3,即a +b =1,要证原不等式成立,只需证a +b a +a +b b ≥4成立,即证b a +a b ≥2成立,因为a >0,b >0,所以b a +ab≥2b a ·ab=2, (当且仅当b a =a b ,即a =b =12时,“=”成立),所以1a +1b≥4.2.求证:112+122+132+…+1n 2<2.证明:因为1n 2<1n (n -1)=1n -1-1n,所以112+122+132+…+1n 2<1+11×2+12×3+13×4+…+1(n -1)×n=1+⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1-1n =2-1n <2. 3.(2019·长春市质量检测(二))已知函数f (x )=|2x -3|+|3x -6|. (1)求f (x )<2的解集;(2)若f (x )的最小值为T ,正数a ,b 满足a +b =12,求证:a +b ≤T .解:(1)f (x )=|2x -3|+|3x -6|=⎩⎨⎧3-2x +6-3x ⎝⎛⎭⎫x <322x -3+6-3x ⎝⎛⎭⎫32≤x ≤22x -3+3x -6(x >2)=⎩⎨⎧-5x +9⎝⎛⎭⎫x <32-x +3⎝⎛⎭⎫32≤x ≤25x -9(x >2),其图象如图,由图象可知:f (x )<2的解集为⎝⎛⎭⎫75,115.(2)证明:由图象可知f (x )的最小值为1,由基本不等式可知a +b2≤a +b2=14=12, 当且仅当a =b 时,“=”成立,即a +b ≤1=T . 4.设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M . (1)证明:⎪⎪⎪⎪13a +16b <14; (2)比较|1-4ab |与2|a -b |的大小.解:(1)证明:记f (x )=|x -1|-|x +2|=⎩⎪⎨⎪⎧3,x ≤-2,-2x -1,-2<x ≤1,-3,x >1,由-2<-2x -1<0解得-12<x <12,即M =⎝⎛⎭⎫-12,12,所以⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14. (2)由(1)得a 2<14,b 2<14,因为|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2) =(4a 2-1)(4b 2-1)>0,故|1-4ab |2>4|a -b |2,即|1-4ab |>2|a -b |.[综合题组练]1.设a ,b ,c ∈(0,+∞),且a +b +c =1. (1)求证:2ab +bc +ca +c 22≤12;(2)求证:a 2+c 2b +b 2+a 2c +c 2+b 2a≥2.证明:(1)要证2ab +bc +ca +c 22≤12,只需证1≥4ab +2bc +2ca +c 2,即证1-(4ab +2bc+2ca +c 2)≥0,而1-(4ab +2bc +2ca +c 2)=(a +b +c )2-(4ab +2bc +2ca +c 2)=a 2+b 2-2ab =(a -b )2≥0成立,所以2ab +bc +ca +c 22≤12.(2)因为a 2+c 2b ≥2ac b ,b 2+a 2c ≥2ab c ,c 2+b 2a ≥2bca,所以a 2+c 2b +b 2+a 2c +c 2+b 2a ≥⎝⎛⎭⎫ac b +ab c +⎝⎛⎭⎫ab c +bc a +⎝⎛⎭⎫ac b +bc a =a ⎝⎛⎭⎫c b +b c +b ⎝⎛⎭⎫a c +ca +c ⎝⎛⎭⎫ab +b a ≥2a +2b +2c =2(当且仅当a =b =c =13时,等号成立). 2.(2019·新疆自治区适应性检测)设函数f (x )=|2x +1|-|2x -4|,g (x )=9+2x -x 2. (1)解不等式f (x )>1;(2)证明:|8x -16|≥g (x )-2f (x ).解:(1)当x ≥2时,f (x )=2x +1-(2x -4)=5>1恒成立,所以x ≥2. 当-12≤x <2时,f (x )=2x +1-(4-2x )=4x -3>1,得x >1,所以1<x <2.当x <-12时,f (x )=-2x -1-(4-2x )=-5>1不成立.综上,原不等式的解集为(1,+∞).(2)证明:|8x -16|≥g (x )-2f (x )⇔|8x -16|+2f (x )≥g (x ),因为2f (x )+|8x -16|=|4x +2|+|4x -8|≥|(4x +2)-(4x -8)|=10,当且仅当-12≤x ≤2时等号成立,所以2f (x )+|8x -16|的最小值是10,又g (x )=-(x -1)2+10≤10,所以g (x )的最大值是10,当x =1时等号成立. 因为1∈⎣⎡⎦⎤-12,2,所以2f (x )+|8x -16|≥g (x ), 所以|8x -16|≥g (x )-2f (x ).3.(2019·四川成都模拟)已知函数f (x )=m -|x -1|,m ∈R ,且f (x +2)+f (x -2)≥0的解集为[-2,4].(1)求m 的值;(2)若a ,b ,c 为正数,且1a +12b +13c =m ,求证:a +2b +3c ≥3.解:(1)由f (x +2)+f (x -2)≥0得,|x +1|+|x -3|≤2m , 设g (x )=|x +1|+|x -3|,则g (x )=⎩⎪⎨⎪⎧-2x +2,x ≤-1,4,-1<x <3,2x -2,x ≥3,数形结合可得g (-2)=g (4)=6=2m ,得m =3. (2)证明:由(1)得1a +12b +13c=3.由柯西不等式,得(a +2b +3c )⎝⎛⎭⎫1a +12b +13c ≥⎝⎛⎭⎫a ·1a+2b ·12b+3c ·13c 2=32, 所以a +2b +3c ≥3.4.(2019·高考全国卷Ⅲ)设x ,y ,z ∈R ,且x +y +z =1. (1)求(x -1)2+(y +1)2+(z +1)2的最小值.(2)若(x -2)2+(y -1)2+(z -a )2≥13成立,证明:a ≤-3或a ≥-1.解:(1)由于[(x -1)+(y +1)+(z +1)]2=(x -1)2+(y +1)2+(z +1)2+2[(x -1)(y +1)+(y +1)(z +1)+(z +1)(x -1)]≤3[(x -1)2+(y +1)2+(z +1)2],故由已知得(x -1)2+(y +1)2+(z +1)2≥43,当且仅当x =53,y =-13,z =-13时等号成立.所以(x -1)2+(y +1)2+(z +1)2的最小值为43.(2)由于[(x -2)+(y -1)+(z -a )]2=(x -2)2+(y -1)2+(z -a )2+2[(x -2)(y -1)+(y -1)(z -a )+(z -a )(x -2)] ≤3[(x -2)2+(y -1)2+(z -a )2],故由已知得(x -2)2+(y -1)2+(z -a )2≥(2+a )23,当且仅当x =4-a 3,y =1-a 3,z =2a -23时等号成立.因此(x -2)2+(y -1)2+(z -a )2的最小值为(2+a )23.由题设知(2+a )23≥13,解得a ≤-3或a ≥-1.。

高中数学基本不等式证明

高中数学基本不等式证明

高中数学基本不等式证明高中数学中,基本不等式是指一些常见的不等式或不等式组,它们的成立非常重要,经常被用于证明其他不等式或解决实际问题。

下面,我将为您详细介绍几个常见的高中数学基本不等式以及它们的证明。

1. 平均不等式:对于任意正数a1,a2,...,an,有(a1+a2+...+an)/n ≥ (a1*a2*...*an)^(1/n)。

证明:我们可以利用数学归纳法进行证明。

首先,当n=2时,不等式成立,即(a1+a2)/2≥(a1*a2)^(1/2),这是平均值不等式的特殊情况。

假设当n=k时,不等式成立,即(a1+a2+...+ak)/k ≥(a1*a2*...*ak)^(1/k)。

当n=k+1时,考虑(a1+a2+...+ak+ak+1)/(k+1)与(a1*a2*...*ak*ak+1)^(1/(k+1))的大小关系。

由于(a1+a2+...+ak)/k ≥ (a1*a2*...*ak)^(1/k)(根据假设,这是成立的)。

我们可以将(a1+a2+...+ak+ak+1)分解为(k*(a1+a2+...+ak))/k+ak+1,利用不等式的性质,得到:(k*(a1+a2+...+ak))/k+ak+1 ≥k*(a1*a2*...*ak)^(1/k)*(ak+1)^(1/k+1)。

经过简单的变形,我们可以得到要证明的不等式,即(a1+a2+...+ak+ak+1)/(k+1) ≥ (a1*a2*...*ak*ak+1)^(1/k+1)。

根据数学归纳法的原理,平均不等式得证。

2.伯努利不等式:对于任意实数x>-1和正整数n,有(1+x)^n ≥ 1+nx。

证明:我们可以利用数学归纳法来证明伯努利不等式。

首先,当n=1时,左边为(1+x),右边为1+x,显然成立。

假设当n=k时,不等式成立,即(1+x)^k ≥ 1+kx。

当n=k+1时,考虑(1+x)^(k+1)和(1+(k+1)x)之间的大小关系。

高一数学不等式证明的基本方法

高一数学不等式证明的基本方法

不等式证明的基本方法一、基本不等式定理1 如果a, b ∈R, 那么 a 2+b 2≥2ab. 当且仅当a=b 时等号成立。

定理2(基本不等式) 如果a ,b>0,那么 当且仅当a=b 时,等号成立。

即两个正数的算术平均不小于它们的几何平均。

结论:已知x, y 都是正数, (1)如果积xy 是定值p ,那么当x=y 时,和x+y 有最小值 2 ;(2)如果和x+y 是定值s ,那么当x=y 时,积xy 有最大值 小结:理解并熟练掌握基本不等式及其应用,特别要注意利用基本不等式求最值时, 一定要满足“一正二定三相等”的条件。

二、三个正数的算术-几何平均不等式三、不等式证明的基本方法 知识点一:比较法比较法是证明不等式的最基本最常用的方法,可分为作差比较法和作商比较法。

1、作差比较法:常用于多项式大小的比较,通过作差变形(分解因式、配方、拆、拼项等)判断符号(判断差与0的大小关系)得结论(确定被减式与减式的大小. 理论依据: ①;②;③。

一般步骤如下:第一步:作差;第二步:变形;常采用配方、因式分解等恒等变形手段;第三步:判断差的符号;就是确定差是大于零,还是等于零,小于零. 如果差的符号无法确定,应根据题目的要求分类讨论. 第四步:得出结论。

注意:其中判断差的符号是目的,变形是关键。

2、作商比较法常用于单项式大小的比较,当两式同为正时,通过作商变形(约分、化简)判断商与1的大小得结论(确定被除式与除式的大小). 理论依据:若、,则有①;② ;③ .基本步骤:2a bab+≥214sp 33 ,,3a b c a b c R abc a b c +++∈≥==定理如果,那么,当且仅当时,等号成立。

即:三个正数的算术平均不小于它们的几何平均。

212122,,,,,n n nn n a a a a a a a a a a n++≥===11把基本不等式推广到一般情形:对于n 个正数a 它们的算术平均不小于它们的几何平均,即: 当且仅当a 时,等号成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重要不等式及其应用教案教学目的(1)使学生掌握基本不等式a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)和a3+b3+c3≥3abc(a、b、c∈R+,当且仅当a=b=c时取“=”号)及其推论,并能应用它们证明一些不等式.(2)通过对定理及其推论的证明与应用,培养学生运用综合法进行推理的能力.教学过程一、引入新课师:上节课我们学过证明不等式的哪一种方法?它的理论依据是什么?生:求差比较法,即师:由于不等式复杂多样,仅有比较法是不够的.我们还需要学习一些有关不等式的定理及证明不等式的方法.如果a、b∈R,那么(a-b)2属于什么数集?为什么?生:当a≠b时,(a-b)2>0,当a=b时,(a-b)2=0,所以(a-b)2≥0.即(a-b)2∈R+∪{0}.师:下面我们根据(a-b)2∈R+∪{0}这一性质,来推导一些重要的不等式,同时学习一些证明不等式的方法.二、推导公式1.奠基师:如果a、b∈R,那么有(a-b)2≥0.①把①左边展开,得a2-2ab+b2≥0,∴a2+b2≥2ab.②②式表明两个实数的平方和不小于它们的积的2倍.这就是课本中介绍的定理1,它是一个很重要的绝对不等式,对任何两实数a、b都成立.由于取“=”号这种特殊情况,在以后有广泛的应用,因此通常要指出“=”号成立的充要条件.②式中取等号的充要条件是什么呢?师:充要条件通常用“当且仅当”来表达.“当”表示条件是充分的,“仅当”表示条件是必要的.所以②式可表述为:如果a、b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”号).以公式①为基础,运用不等式的性质推导公式②,这种由已知推出未知(或要求证的不等式)的证明方法通常叫做综合法.以公式②为基础,用综合法可以推出更多的不等式.现在让我们共同来探索.2.探索师:公式②反映了两个实数平方和的性质,下面我们研究两个以上的实数的平方和,探索可能得到的结果.先考查三个实数.设a、b、c∈R,依次对其中的两个运用公式②,有a2+b2≥2ab;b2+c2≥2bc;c2+a2≥2ca.把以上三式叠加,得a2+b2+c2≥ab+bc+ca③(当且仅当a=b=c时取“=”号).以此类推:如果a i∈R,i=1,2,…,n,那么有④(当且仅当a1=a2=…=a n时取“=”号).④式是②式的一种推广式,②式就是④式中n=2时的特殊情况.③和④式不必当作公式去记,但从它们的推导过程中可以学到一种处理两项以上的和式问题的数学思想与方法——迭代与叠加.3.再探索师:考察两个以上实数的更高次幂的和,又能得到什么有趣的结果呢?先考查两个实数的立方和.由于a3+b3=(a+b)(a2-ab+b2),启示我们把②式变成a2-ab+b2≥ab,两边同乘以a+b,为了得到同向不等式,这里要求a、b∈R+,得到a3+b3≥a2b+ab2.⑤考查三个正实数的立方和又具有什么性质呢?生:由③式的推导方法,再增加一个正实数c,对b、c,c、a迭代⑤式,得到b3+c3≥b2c+bc2,c3+a3≥c2a+ca2.三式叠加,并应用公式②,得2(a3+b3+c3)≥a(b2+c2)+b(c2+a2)+c(a2+b2)≥a·2bc+b·2ca+c·2ab=6abc.∴a3+b3+c3≥3abc⑥(当且仅当a=b=c时取“=”号).师:这是课本中的不等式定理2,即三个正实数的立方和不小于它们的积的3倍.同学们可能想到n个正实数的立方和会有什么结果,进一步还会想到4个正数的4次方的和会有什么结果,直至n个正数的n次方的和会有什么结果.这些问题留给同学们课外去研究.4.推论师:直接应用公式②和⑥可以得到两个重要的不等式.⑦(当且仅当a=b时取“=”号).这就是课本中定理1的推论.⑧(当且仅当a=b=c时取“=”号).这就是课本中定理2的推论.当a i∈R+(i=1,2,…,n)时,有下面的推广公式(在中学不讲它的证明)⑨(当且仅当a1=a2=…=a n时取“=”号).何平均数.⑨式表明:n个正数的算术平均数不小于它们的几何平均数.这是一个著名的平均数不等式定理.现在只要求同学掌握n=2、3时的两个公式,即⑦和⑧.三、小结(1)我们从公式①出发,运用综合法,得到许多不等式公式,其中要求同学熟练掌握的是公式②、⑥、⑦、⑧.它们之间的关系可图示如下:(2)上述公式的证法不止综合法一种.比如公式②和⑥,在课本上是用比较法证明的.又如公式⑦也可以由①推出;用⑦还可以推出⑧;由⑦、⑧也可以推出②、⑥.但是不论哪种推导系统,其理论基础都是实数的平方是非负数.四个公式中,②、⑦是基础,最重要.它们还可以用几何法或三角法证明.几何法:构造直角三角形ABC,使∠C=90°,BC=a,AC=b(a、b∈R+),则a2+b2=c2表示以斜边c为边的正方形的面积.而如上左图所示,显然有(当且仅当a=b时取“=”号,这时Rt△ABC等腰,如上右图).这个图是我国古代数学家赵爽证明勾股定理时所用过的“勾股方圆图”,同学们在初中已经见过.三角法:在Rt△ABC中,令∠C=90°, AB=c, BC=a,AC=b,则2ab=2·c sin A· c sin B=2c2sinAcos A=c2·sin2A≤c2=a2+b2 (∵sin2A≤1)(当且仅当sin2A=1,A=45°,即 a=b时取“=”号).三、应用公式练习1.判断正误:下列问题的解法对吗?为什么?如果不对请予以改正.a、b∈R+.若tgα、ctgα∈R+.解法就对了.这时需令α是第一、三象限的角.]改条件使a、b∈R+;②改变证法.a2+ab+b2≥2ab+ab=3ab.]师:解题时,要根据题目的条件选用公式,特别注意公式中字母应满足的条件.只有公式①、②对任何实数都成立,公式⑥、⑦、⑧都要求字母是正实数(事实上对非负实数也成立).2.填空:(1)当a________时,a n+a-n≥________;(3)当x________时,lg2x+1≥_________;(5)tg2α+ctg2α≥________;(6)sinxcosx≤________;师:从上述解题中,我们可以看到:(1)对公式中的字母应作广义的理解,可以代表数,也可以代表式子.公式可以顺用,也可以逆用.总之要灵活运用公式.(2)上述题目中右边是常数的,说明左边的式子有最大或最小值.因此,在一定条件下应用重要不等式也可以求一些函数的最大(小)值.(3)重要不等式还可以用于数值估计.如表明任何自然数的算术平方根不大于该数加1之半.四、布置作业略.教案说明1.知识容量问题这一节课安排的内容是比较多的,有些是补充内容.这是我教重点中学程度比较好的班级时的一份教案.实践证明是可行的,效果也比较好.对于普通班级则应另当别论.补充内容(一般式,几何、三角证法等)可以不讲,例题和练习也须压缩.但讲完两个定理及其推论,实现教学的基本要求仍是可以做到的.还应看到学生接受知识的能力也非一成不变的.同是一节课,讲课重点突出,深入浅出,富有启发性,学生就有可能举一反三、触类旁通,获取更多的知识.知识容量增加了,并未增加学生的负担.从整个单元来看,由于压缩了讲课时间,相应的就增加了课堂练习的时间.反之,如果学生被动听讲,目标不清,不得要领,内容讲得再少,学生也是难以接受的.由此可见,知识容量的多少,既与学生的程度有关,与教学是否得法也很有关系.我们应当尽可能采用最优教法,扩大学生头脑中的信息容量,以求可能的最佳效果.2.教学目的问题近年来,随着教改的深入,教师在确定教学目的和要求时,开始追求传授知识和培养能力并举的课堂教学效果.在培养学生的能力方面,不仅要求学生能够运用知识,更重要的是通过自己的思考来获取知识.据此,本节课确定如下的教学目的:一是在知识内容上要求学生掌握四个公式;二是培养学生用综合法进行推理的能力.当然,学生能力的形成和发展,绝不是一节课所能“立竿见影”的.它比掌握知识来得慢,它是长期潜移默化的教学结果.考虑到中学数学的基本知识,大量的是公式和定理,如能在每一个公式、定理的教学中,都重视把传授知识与开拓思维、培养能力结合起来,天长日久,肯定会收到深远的效果.3.教材组织与教法选用问题实现上述教学目的,关键在于组织好教材,努力把传授知识与开拓思维、培养能力结合起来.教材中对定理1和定理2的安排,可能是为了与前面讲的比较法和配方法相呼应.但这容易使人感到这两个定理之间没有什么内在联系,又似乎在应用定理时才能用综合法.事实上,可以用比较法证明两个数的平方和或三个数的立方和的不等式,但当n >3,特别对n是奇数时,用比较法就困难了(因为这时难以配方与分解因式).因此不具有一般性.而对综合法,学生在初中证几何题时已多次用过了(只是课本上没有提到这个名称).现行课本中两个不等式定理及其推论,是著名的平均值不等式:和它的等价形式当n=2,3时的特殊情况(当n=2时,a i的取值有所变化).在中学不讲一般形式,只讲特殊情况是符合大纲要求的.由于普遍性总是寓于特殊性之中,因此,这两个特例应是一般式的基础.同时,这两个特例之间应有紧密的联系,在推导方法上也应该与一般式的证明有共性.这就是本教案的设计思想,因而改变了现行课本的证法.这里,我们用由定理1先推出一个辅助不等式a3+b3≥a2b+ab2,然后经迭代、叠加,推出不等式a3+b3+c3≥3abc,这种方法具有一般性.事实上,引入一个一般的辅助不等式a n+b n≥a n-1b+ab n-1(n>1),由迭代、叠加,再应用数学归纳法就可以证出公式正因为上述证法具有一般性,即揭示了证法的本质(共性),就必然有利于递推与探索.又由(a-b)2≥0非常容易推出a2+b2≥2ab,所以它是“天然”的奠基式.于2ab,因此,凡能用配方法证明的问题,必能用基本不等式证明,反之亦真.可见配方法的重要作用.它的重要性应在上一节比较法中就予以强调.生产调度楼建设审批流程当学生在教师的指导下和教师一起探索问题时,这个探索本身就是培养学生今后独立去获取知识的过程.页脚内容11。

相关文档
最新文档